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Abstract001

How does the natural evolution of context para-002
graphs affect question answering in generative003
Large Language Models (LLMs)? To investi-004
gate this, we propose a framework for curat-005
ing naturally evolved, human-edited variants006
of reading passages from contemporary QA007
benchmarks and for analyzing LLM perfor-008
mance across a range of semantic similarity009
scores, which measure how closely each vari-010
ant aligns with content seen during pretrain-011
ing. Using this framework, we evaluate six QA012
datasets and eight LLMs with publicly avail-013
able training data. Our experiments reveal that014
LLM performance declines as reading passages015
naturally diverge from the versions encountered016
during pretraining—even when the question017
and all necessary information remain present at018
inference time. For instance, average model ac-019
curacy on BOOLQ drops by over 25% from the020
highest to lowest similarity bins, with slopes021
exceeding 70 across several LLMs. These sug-022
gest that natural text evolution poses a signifi-023
cant challenge to the language understanding024
capabilities of LLMs.025

1 Introduction026

Large Language Models (LLMs), pre-trained on027

massive web-scale corpora, have proven effective at028

Question Answering (QA) over text passages (Ope-029

nAI et al., 2024; DeepSeek-AI et al., 2025b,a; Yang030

et al., 2025; OLMo et al., 2025), a task that has long031

been established as a testbed for evaluating natural032

language understanding (Chen, 2018). Nonethe-033

less, concerns remain regarding their genuine read-034

ing comprehension abilities and generalization, as035

revealed by research efforts on robustness evalua-036

tion (Wu et al., 2023; Levy et al., 2023), benchmark037

contamination impact analysis (Palavalli et al.,038

2024; Li et al., 2024), and others.039

Differentiating from previous work, this paper040

offers a new perspective on understanding the lim-041

itations of generative LLMs by asking: what hap-042

pens when reading paragraphs continue to evolve 043

and diverge from their appearance during pretrain- 044

ing? This scenario is common in real-world ap- 045

plications, where test data naturally changes over 046

time due to ongoing human edits, content updates, 047

or shifts in context, (e.g., Wikipedia articles (Yang 048

et al., 2017)), and therefore requires genuine lan- 049

guage understanding from LLMs. To the best of 050

our knowledge, however, no prior work has system- 051

atically investigated this phenomenon in QA. 052

To address this gap, we propose a framework 053

to analyse how LLMs performance changes as the 054

reading paragraph semantically diverges from the 055

content of its source in the model’s training cor- 056

pora. Among various examples of evolving text 057

corpora, we focus on Wikipedia, as it serves as 058

a primary source for reading passages in widely 059

used QA benchmarks (Wang, 2022), is commonly 060

included in LLM training (Zhao et al., 2025), and 061

most importantly, the evolution of text is clearly 062

documented via revision histories. This enables us 063

to curate human-edited variants of passages that re- 064

flect natural text evolution over time. Our approach 065

adopts a gradual perspective by computing a con- 066

tinuous semantic similarity score at the paragraph 067

level and correlating it with LLM’s QA accuracy. 068

Within the developed framework, we empiri- 069

cally evaluate six QA benchmark datasets and eight 070

LLMs with fully open-source training data. Our 071

study finds that, across models with different train- 072

ing corpora and architectural configurations, as 073

context paragraphs naturally evolve and become 074

semantically distant from the Wikipedia content 075

sharing the same article title seen during pretrain- 076

ing, the reading comprehension performance of 077

LLMs generally deteriorates. In contrast, human 078

annotators are less affected by such semantic drift 079

and maintain relatively stable accuracy regardless 080

of passage similarity, suggesting that the observed 081

performance drop is specific to LLMs and not due 082

to deficiencies in the edited passages themselves. 083
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Figure 1: An overview of the analysis framework. Module Naturally evolved human-edited reading paragraphs
extraction is adapted from (Wu et al., 2025) with minor modifications. APC: Answers Preserving Checking.

2 Methodology084

In our framework (Figure 1), we extract revision085

histories of paragraphs from QA benchmarks, order086

them by similarity to the version that appears in an087

LLM’s pretraining corpus, and correlate the LLMs’088

answer accuracy on those passages to the similarity089

thus obtained.090

Naturally evolved human-edited reading para-091

graphs extraction. To obtain edited versions of092

original reading paragraphs from contemporary093

QA benchmark datasets that genuinely reflect real-094

world scenarios, we adopt the natural perturbation095

pipeline proposed by Wu et al. (2025), with two096

slight modifications: 1) we remove the constraint097

of retaining only candidate passage pairs where098

both paragraphs exceed 500 characters, allowing099

broader dataset applicability and preservation of100

diverse editing patterns; and 2) for the matched101

original passages with multiple occurrences, we102

retain all edited versions for each (see passage OP2103

in Figure 1 as an example) to support subsequent104

correlation analysis. Appendix A provides details105

on answers preserving checking and data statistics.106

Semantic similarity-LLM average accuracy cor-107

relation analysis. For each naturally evolved,108

human-edited paragraph and its corresponding109

question, we obtain predictions from an LLM and110

record their correctness as 1 (correct) or 0 (incor-111

rect). We also collect predictions using the question112

alone to test whether the LLM possesses paramet-113

ric knowledge of the answer. Instances in which114

the LLM answers correctly without access to the115

passage are excluded, as they cast doubt on the116

paragraph’s contribution to the answer (Glockner117

et al., 2025). We extract English Wikipedia content 118

from the LLM’s training corpora that shares the 119

same article title as the edited passage and compute 120

semantic similarity between them. The maximum 121

similarity score is used as a proxy for how closely 122

the passage resembles training data. We then group 123

similarity scores into ten bins, compute average 124

LLM accuracy within each bin, and plot accuracy 125

trends from highest to lowest similarity. To vali- 126

date the trend, we also assess human performance 127

across the same bins. 128

3 Experiments Setup 129

Broadly, we address the following question: How 130

well do large language models perform as read- 131

ing paragraphs naturally evolve from the versions 132

available in their pre-training corpora? To this 133

end, we select QA benchmarks containing context 134

paragraphs from Wikipedia and evaluate LLMs 135

with open-source pre-training corpora, as detailed 136

below. 137

Datasets: We select the development set of 138

six English QA datasets: SQUAD 1.1 (Rajpurkar 139

et al., 2016), SQUAD 2.0 (Rajpurkar et al., 2018), 140

ADVERSARIALQA - D(ROBERTA) (Bartolo et al., 141

2020), BOOLQ (Clark et al., 2019), WIKIWHY (Ho 142

et al., 2023) (version 1.2) and HOTPOTQA (Yang 143

et al., 2018) (in the “distractor” setting). 144

LLMs: We evaluate eight LLMs across six 145

model families, all with Wikipedia subsets included 146

in their pre-training corpora and publicly available: 147

OLMo (OLMo-7B-0724-Instruct-hf) (Groeneveld 148

et al., 2024), OLMo 2 (OLMo-2-1124-7B-Instruct 149

and OLMo-2-1124-13B-Instruct) (OLMo 150

et al., 2025), OLMOE 151
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Figure 2: Average accuracy of the instruction-finetuned OLMo LLMs across ten semantic similarity bins.
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(c) HOTPOTQA

Figure 3: Average accuracy of other instruction-finetuned LLMs across ten semantic similarity bins.

(OLMoE-1B-7B-0125-Instruct) (Muen-152

nighoff et al., 2025), LLM360’s153

AmberChat (Liu et al., 2024b), TinyLlama154

(TinyLlama-1.1B-Chat-v1.0) (Zhang et al.,155

2024), Databricks’ Dolly (dolly-v2-7b and156

dolly-v2-12b) (Conover et al., 2023). The157

inference prompts are detailed in Appendix B.158

We measure textual similarity at the seman-159

tic level using a Sentence Transformers model160

all-MiniLM-L6-v2 (Reimers and Gurevych,161

2019), and assign the correctness of LLMs’ pre-162

dictions using Inclusion Match (IM), i.e., whether163

it includes any of the ground truth answers.164

4 Results and Discussion165

As a general trend, the reading comprehen-166

sion performance of instruction-finetuned OLMo167

LLMs deteriorates as the reading paragraph de-168

viates further from the training corpora. Fig-169

ure 2 clearly shows that across the examined170

MRC benchmarks, the average accuracy of the171

instruction-finetuned OLMo LLMs generally de-172

creases as the reading paragraphs evolve and ex-173

hibit decreasing textual semantic similarity to 174

the Wiki subset of the LLMs’ training corpora 175

(e.g., OLMo-7B-0724-Instruct-hf on SQUAD 176

2.0, WIKIWHY; OLMo-2-1124-13B-Instruct 177

on D(ROBERTA) and HOTPOTQA). A compa- 178

rable decline in average performance across de- 179

creasing similarity ranges is likewise observed 180

in other LLMs trained on distinct training cor- 181

pora. As shown in Figure 3, despite differ- 182

ences in training corpora, procedure and model 183

architectures compared to OLMo, LLMs includ- 184

ing AmberChat, TinyLlama-1.1B-Chat-v1.0 and 185

dolly-v2-7b/12b also generally demonstrate a 186

drop in average accuracy as the semantic similarity 187

between the reading paragraph and the Wikipedia 188

content in their training dataset decreases. Detailed 189

slope and correlation statistics supporting these 190

trends are provided in Appendix C. We note that 191

the downward trend is less pronounced for datasets 192

requiring advanced reasoning, such as WIKIWHY 193

and HOTPOTQA. This may be because natural text 194

evolution introduces diverse linguistic cues or con- 195

textual variations that activate broader reasoning 196

3



0.9
-1.

0
0.8

-0.
9

0.7
-0.

8
0.6

-0.
7

0.5
-0.

6
0.4

-0.
5

0.3
-0.

4
0.2

-0.
3

0.1
-0.

2
0.0

-0.
1

Semantic similarity score ranges

0

20

40

60

80

100

Hu
m

an
 a

cc
ur

ac
y 

(%
)

Dataset
SQuAD 2.0 (0.79)
BoolQ (0.69)
WikiWhy (0.91)
HotpotQA (0.76)

Figure 4: Reading comprehension accuracy of human
annotators across semantic similarity bins.

mechanisms in LLMs, partially offsetting the im-197

pact of semantic drift. In contrast, surface-level QA198

tasks like SQUAD require less reasoning (Schlegel199

et al., 2020; Wu et al., 2021) and therefore appear200

more sensitive to the text evolution.201

Unlike LLMs, human performance in reading202

comprehension is not influenced by deviations in203

the measured semantic similarity. To distinguish204

whether the observed downward trend in LLMs’205

average accuracy stems from the reduced seman-206

tic similarity or from the degradation of the edited207

reading paragraphs, thereby rendering the ques-208

tions even impossible for humans to answer, we209

assess human performance across the semantic sim-210

ilarity bins within the examined datasets. Human211

performance is obtained by randomly selecting an212

equal number of edited MRC instances from each213

bin, assigning two annotators to label them, and in-214

volving the third annotator to resolve any disagree-215

ments. See Appendix D for details on human an-216

notation. As seen in Figure 4, human performance217

remains relatively stable across semantic similarity218

bins and does not show a downward trend, further219

reinforcing the validity of our findings.220

There may be little concern regarding the221

impact of paragraph leakage from other data222

sources beyond Wikipedia. A natural question223

arises as to whether, given the vast scale of224

LLMs’ training corpora, the edited versions of225

the reading paragraphs might also appear in226

sources beyond the Wikipedia subset we focus227

on, potentially affecting the findings. Therefore,228

using the infini-gram engine (Liu et al., 2024a),229

we aim to estimate as accurately as possible the230

percentage of edited reading paragraphs that231

appear verbatim in the complete training corpora232

of the evaluated LLMs across the six examined233

MRC benchmarks, as shown in Table 1. Infini-234

gram enables efficient querying over the whole235

training data of OLMo-2-1124-13B-Instruct 236

(whose results are also used as a proxy 237

for OLMo-2-1124-7B-Instruct, given 238

the same training data shared) and 239

OLMoE-1B-7B-0125-Instruct. For the re- 240

maining LLMs, we are limited to query- 241

ing their pretraining corpora (which al- 242

ready account for a significant portion of 243

the overall training data): DOLMA 1.7 for 244

OLMo-7B-0724-Instruct-hf, REDPAJAMA V1 245

for AmberChat and TinyLlama-1.1B-Chat-v1.0 246

(used as a proxy), PILE for dolly-v2-7b and 247

dolly-v2-12b. As shown in Table 1, verbatim 248

inclusion of the edited paragraphs in the LLMs’ 249

training corpora remains negligible across the 250

board. With additional consideration that our 251

analysis does not include all the edited reading 252

paragraphs, we believe that the impact of these 253

paragraphs appearing in other data sources may 254

not be significant. Finally, we emphasise that 255

our methodology focuses on measuring the 256

semantic similarity between the edited reading 257

paragraphs and the content from the same source, 258

i.e., Wikipedia. Therefore, extending the anal- 259

ysis to other potential sources falls outside the 260

scope of this paper, and we leave this for future 261

investigation. 262

SQUAD 1.1 SQUAD 2.0 D(ROBERTA) BOOLQ WIKIWHY HOTPOTQA

OLMo-7B-0724-Instruct-hf 1.59 3.94 1.33 4.30 1.52 -
OLMo-2-1124-7B/13B-Instruct 4.85 8.53 4.79 2.75 1.14 -
OLMoE-1B-7B-0125-Instruct 4.77 8.69 4.79 2.75 1.14 -
AmberChat&TinyLlama-1.1B-Chat-v1.0 1.04 2.40 2.13 4.47 1.14 -
dolly-v2-7b/12b 0.18 1.07 - 0.40 0.76 -

Table 1: Percentage (%) of edited reading paragraphs
that appear verbatim in the training corpora of the eval-
uated LLMs.

5 Conclusion 263

We introduce a novel methodology for examining 264

the impact of natural text evolution on the read- 265

ing comprehension abilities of LLMs by analyzing 266

their accuracy trends across semantic similarity 267

bins. Leveraging Wikipedia revision histories, we 268

curate naturally edited variants of benchmark read- 269

ing passages, measure their similarity to content in 270

the model’s training corpora, and correlate these 271

similarity scores with model accuracy. Our empiri- 272

cal findings show that, while natural text evolution 273

has little to no effect on human performance, LLMs 274

consistently exhibit a decline in accuracy as sim- 275

ilarity decreases. We hope this study contributes 276

to the growing body of research focused on under- 277

standing and addressing the limitations of LLMs. 278

4



Limitations279

Our work has several limitations. (1) We focus ex-280

clusively on the QA task; extending our findings to281

other downstream tasks remains an open direction282

for future research. (2) We evaluate only transpar-283

ent LLMs with fully open-access training corpora.284

While this constraint is necessary for our method-285

ology, some of these models still lag significantly286

behind state-of-the-art proprietary LLMs. Future287

work could apply our framework to such models,288

though this would require access to their training289

data, which is currently unavailable.290
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all) of the ground truth answers can still be found in 490

the perturbed passage. For BOOLQ, we manually 491

inspect the generated perturbed test set and remove 492

instances where the edited passage contains fewer 493

than 56 characters. We also check WIKIWHY, but 494

no filtering is applied. Table 2 presents the statistics 495

of the extracted data for each QA dataset. 496
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Dataset
# titles (with extracted edit histories/total) # passages # perturbed passages # Avg. perturbed passages per passage # questions

SQUAD 1.1 (Rajpurkar et al., 2016)
47/48 825 1531 8.85 3920

SQUAD 2.0 (Rajpurkar et al., 2018)
47/48 466 914 17.82 4281

D(ROBERTA) (Bartolo et al., 2020)
47/48 135 249 5.56 376

BOOLQ (Clark et al., 2019)
2488/2651 957 2559 3.16 1064

WIKIWHY (Ho et al., 2023)
833/873 193 251 1.36 193

HOTPOTQA (Yang et al., 2018)
10971/13783 2948 7350 2.79 2970

Table 2: Summary of naturally edited QA datasets.

B Inference Prompts for QA497

We present the prompts used for LLMs in the zero-498

shot setting.499

SQUAD 1.1 & SQUAD 2.0 & D(ROBERTA):500

Use the provided article delimited by triple501

quotes to answer question. Provide only502

the shortest continuous span from the context503

without any additional explanation. If the504

question is unanswerable, return “unanswer-505

able".\n\n“““{context}"""\n\nQuestion: {ques-506

tion}507

BOOLQ: Use the provided article delimited by508

triple quotes to answer question. Return only509

TRUE or FALSE. If the question is unanswerable,510

return “unanswerable". Do not provide any expla-511

nation.\n\n“““{context}"""\n\nQuestion: {ques-512

tion}513

WIKIWHY & HOTPOTQA: Use the provided514

article delimited by triple quotes to answer ques-515

tion. If the question is unanswerable, return516

“unanswerable". Do not provide any explana-517

tion.\n\n“““{context}"""\n\nQuestion: {ques-518

tion}519

C Correlation and Slope Analysis of520

Accuracy vs. Semantic Similarity521

Quantitatively, we observe that this decline is522

substantial across most datasets. On aver-523

age, across similarity bins, model accuracy can524

drop by over 30% in datasets like SQUAD525

2.0 and BOOLQ, with BOOLQ consistently526

showing among the steepest declines (e.g.,527

OLMo-7B-0724-Instruct shows a slope of 74.63,528

while OLMo-2-1124-7B-Instruct reaches 74.60).529

In contrast, datasets like WIKIWHY and HOT-530

POTQA, which require deeper reasoning, show531

more gradual degradation—possibly due to their532

reduced reliance on surface-level similarity. These533

variations highlight how dataset characteristics in-534

fluence LLM robustness to natural drift.535

D Human Annotation Details 536

We adopt the same instructions provided to human 537

annotators in (Wu et al., 2025) and recruit doc- 538

toral students at the university as annotators. All 539

annotators possess proficient English reading com- 540

prehension skills. Prior to the main annotation task, 541

they are required to label a small set of MRC in- 542

stances and resolve any disagreements through dis- 543

cussion until reaching consensus. Annotators are 544

given access only to the edited reading paragraph 545

and the question, without being informed that the 546

paragraph has been edited, in order to avoid bias. 547
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Figure 5: Accuracy of the instruction-finetuned OLMo models across ten semantic similarity bins, with regression
lines showing the slope of decline for each dataset.
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