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Abstract

How does the natural evolution of context para-
graphs affect question answering in generative
Large Language Models (LLMs)? To investi-
gate this, we propose a framework for curat-
ing naturally evolved, human-edited variants
of reading passages from contemporary QA
benchmarks and for analyzing LLM perfor-
mance across a range of semantic similarity
scores, which measure how closely each vari-
ant aligns with content seen during pretrain-
ing. Using this framework, we evaluate six QA
datasets and eight LLMs with publicly avail-
able training data. Our experiments reveal that
LLM performance declines as reading passages
naturally diverge from the versions encountered
during pretraining—even when the question
and all necessary information remain present at
inference time. For instance, average model ac-
curacy on BOOLQ drops by over 25% from the
highest to lowest similarity bins, with slopes
exceeding 70 across several LLMs. These sug-
gest that natural text evolution poses a signifi-
cant challenge to the language understanding
capabilities of LLMs.

1 Introduction

Large Language Models (LLMs), pre-trained on
massive web-scale corpora, have proven effective at
Question Answering (QA) over text passages (Ope-
nAl et al., 2024; DeepSeek-Al et al., 2025b,a; Yang
etal., 2025; OLMo et al., 2025), a task that has long
been established as a testbed for evaluating natural
language understanding (Chen, 2018). Nonethe-
less, concerns remain regarding their genuine read-
ing comprehension abilities and generalization, as
revealed by research efforts on robustness evalua-
tion (Wu et al., 2023; Levy et al., 2023), benchmark
contamination impact analysis (Palavalli et al.,
2024; Li et al., 2024), and others.

Differentiating from previous work, this paper
offers a new perspective on understanding the lim-
itations of generative LLMs by asking: what hap-

pens when reading paragraphs continue to evolve
and diverge from their appearance during pretrain-
ing? This scenario is common in real-world ap-
plications, where test data naturally changes over
time due to ongoing human edits, content updates,
or shifts in context, (e.g., Wikipedia articles (Yang
et al., 2017)), and therefore requires genuine lan-
guage understanding from LLMs. To the best of
our knowledge, however, no prior work has system-
atically investigated this phenomenon in QA.

To address this gap, we propose a framework
to analyse how LLMs performance changes as the
reading paragraph semantically diverges from the
content of its source in the model’s training cor-
pora. Among various examples of evolving text
corpora, we focus on Wikipedia, as it serves as
a primary source for reading passages in widely
used QA benchmarks (Wang, 2022), is commonly
included in LLM training (Zhao et al., 2025), and
most importantly, the evolution of text is clearly
documented via revision histories. This enables us
to curate human-edited variants of passages that re-
flect natural text evolution over time. Our approach
adopts a gradual perspective by computing a con-
tinuous semantic similarity score at the paragraph
level and correlating it with LLM’s QA accuracy.

Within the developed framework, we empiri-
cally evaluate six QA benchmark datasets and eight
LLMs with fully open-source training data. Our
study finds that, across models with different train-
ing corpora and architectural configurations, as
context paragraphs naturally evolve and become
semantically distant from the Wikipedia content
sharing the same article title seen during pretrain-
ing, the reading comprehension performance of
LLMs generally deteriorates. In contrast, human
annotators are less affected by such semantic drift
and maintain relatively stable accuracy regardless
of passage similarity, suggesting that the observed
performance drop is specific to LLMs and not due
to deficiencies in the edited passages themselves.
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Figure 1: An overview of the analysis framework. Module Naturally evolved human-edited reading paragraphs
extraction is adapted from (Wu et al., 2025) with minor modifications. APC: Answers Preserving Checking.

2 Methodology

In our framework (Figure 1), we extract revision
histories of paragraphs from QA benchmarks, order
them by similarity to the version that appears in an
LLM’s pretraining corpus, and correlate the LLMs’
answer accuracy on those passages to the similarity
thus obtained.

Naturally evolved human-edited reading para-
graphs extraction. To obtain edited versions of
original reading paragraphs from contemporary
QA benchmark datasets that genuinely reflect real-
world scenarios, we adopt the natural perturbation
pipeline proposed by Wu et al. (2025), with two
slight modifications: 1) we remove the constraint
of retaining only candidate passage pairs where
both paragraphs exceed 500 characters, allowing
broader dataset applicability and preservation of
diverse editing patterns; and 2) for the matched
original passages with multiple occurrences, we
retain all edited versions for each (see passage OP>
in Figure 1 as an example) to support subsequent
correlation analysis. Appendix A provides details
on answers preserving checking and data statistics.

Semantic similarity-LLM average accuracy cor-
relation analysis. For each naturally evolved,
human-edited paragraph and its corresponding
question, we obtain predictions from an LLM and
record their correctness as 1 (correct) or O (incor-
rect). We also collect predictions using the question
alone to test whether the LLM possesses paramet-
ric knowledge of the answer. Instances in which
the LLM answers correctly without access to the
passage are excluded, as they cast doubt on the
paragraph’s contribution to the answer (Glockner

et al., 2025). We extract English Wikipedia content
from the LLM’s training corpora that shares the
same article title as the edited passage and compute
semantic similarity between them. The maximum
similarity score is used as a proxy for how closely
the passage resembles training data. We then group
similarity scores into ten bins, compute average
LLM accuracy within each bin, and plot accuracy
trends from highest to lowest similarity. To vali-
date the trend, we also assess human performance
across the same bins.

3 Experiments Setup

Broadly, we address the following question: How
well do large language models perform as read-
ing paragraphs naturally evolve from the versions
available in their pre-training corpora? 'To this
end, we select QA benchmarks containing context
paragraphs from Wikipedia and evaluate LLMs
with open-source pre-training corpora, as detailed
below.

Datasets: We select the development set of
six English QA datasets: SQUAD 1.1 (Rajpurkar
et al., 2016), SQUAD 2.0 (Rajpurkar et al., 2018),
ADVERSARIALQA - D(ROBERTA) (Bartolo et al.,
2020), BooLQ (Clark et al., 2019), WIKIWHY (Ho
et al., 2023) (version 1.2) and HOTPOTQA (Yang
et al., 2018) (in the “distractor” setting).

LLMs: We evaluate eight LLMs across six
model families, all with Wikipedia subsets included
in their pre-training corpora and publicly available:
OLMo (OLMo-7B-0724-Instruct-hf) (Groeneveld
etal., 2024), OLMo 2 (OLMo-2-1124-7B-Instruct
and OLMo-2-1124-13B-Instruct) (OLMo
et al., 2025), OLMOE
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Figure 2: Average accuracy of the instruction-finetuned OLMo LLMs across ten semantic similarity bins.
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Figure 3: Average accuracy of other instruction-finetuned LLMs across ten semantic similarity bins.

(OLMoE-1B-7B-0125-Instruct) (Muen-
nighoff et al., 2025), LLM360’s
AmberChat (Liu et al.,, 2024b), TinyLlama

(TinyLlama-1.1B-Chat-v1.0) (Zhang et al.,
2024), Databricks’ Dolly (dolly-v2-7b and
dolly-v2-12b) (Conover et al.,, 2023). The
inference prompts are detailed in Appendix B.

We measure textual similarity at the seman-
tic level using a Sentence Transformers model
all-MinilLM-L6-v2 (Reimers and Gurevych,
2019), and assign the correctness of LLMs’ pre-
dictions using Inclusion Match (IM), i.e., whether
it includes any of the ground truth answers.

4 Results and Discussion

As a general trend, the reading comprehen-
sion performance of instruction-finetuned OLMo
LLMs deteriorates as the reading paragraph de-
viates further from the training corpora. Fig-
ure 2 clearly shows that across the examined
MRC benchmarks, the average accuracy of the
instruction-finetuned OLMo LLMs generally de-
creases as the reading paragraphs evolve and ex-

hibit decreasing textual semantic similarity to
the Wiki subset of the LLMs’ training corpora
(e.g., OLMo-7B-0724-Instruct-hf on SQUAD
2.0, WIKIWHY; OLMo-2-1124-13B-Instruct
on D(ROBERTA) and HOTPOTQA). A compa-
rable decline in average performance across de-
creasing similarity ranges is likewise observed
in other LLMs trained on distinct training cor-
pora. As shown in Figure 3, despite differ-
ences in training corpora, procedure and model
architectures compared to OLMo, LLMs includ-
ing AmberChat, TinyLlama-1.1B-Chat-v1.0 and
dolly-v2-7b/12b also generally demonstrate a
drop in average accuracy as the semantic similarity
between the reading paragraph and the Wikipedia
content in their training dataset decreases. Detailed
slope and correlation statistics supporting these
trends are provided in Appendix C. We note that
the downward trend is less pronounced for datasets
requiring advanced reasoning, such as WIKIWHY
and HOTPOTQA. This may be because natural text
evolution introduces diverse linguistic cues or con-
textual variations that activate broader reasoning



Figure 4: Reading comprehension accuracy of human
annotators across semantic similarity bins.

mechanisms in LLMs, partially offsetting the im-
pact of semantic drift. In contrast, surface-level QA
tasks like SQUAD require less reasoning (Schlegel
et al., 2020; Wu et al., 2021) and therefore appear
more sensitive to the text evolution.

Unlike LLMs, human performance in reading
comprehension is not influenced by deviations in
the measured semantic similarity. To distinguish
whether the observed downward trend in LLMs’
average accuracy stems from the reduced seman-
tic similarity or from the degradation of the edited
reading paragraphs, thereby rendering the ques-
tions even impossible for humans to answer, we
assess human performance across the semantic sim-
ilarity bins within the examined datasets. Human
performance is obtained by randomly selecting an
equal number of edited MRC instances from each
bin, assigning two annotators to label them, and in-
volving the third annotator to resolve any disagree-
ments. See Appendix D for details on human an-
notation. As seen in Figure 4, human performance
remains relatively stable across semantic similarity
bins and does not show a downward trend, further
reinforcing the validity of our findings.

There may be little concern regarding the
impact of paragraph leakage from other data
sources beyond Wikipedia. A natural question
arises as to whether, given the vast scale of
LLMs’ training corpora, the edited versions of
the reading paragraphs might also appear in
sources beyond the Wikipedia subset we focus
on, potentially affecting the findings. Therefore,
using the infini-gram engine (Liu et al., 2024a),
we aim to estimate as accurately as possible the
percentage of edited reading paragraphs that
appear verbatim in the complete training corpora
of the evaluated LLMs across the six examined
MRC benchmarks, as shown in Table 1. Infini-
gram enables efficient querying over the whole

training data of OLMo-2-1124-13B-Instruct
(whose results are also used as a proxy
for OLMo-2-1124-7B-Instruct, given
the same training data shared) and
OLMoE-1B-7B-0125-Instruct. For the re-
maining LLMs, we are limited to query-
ing their pretraining corpora (which al-
ready account for a significant portion of
the overall training data): DOLMA 1.7 for
OLMo-7B-0724-Instruct-hf, REDPAJAMA V1
for AmberChat and TinyLlama-1.1B-Chat-v1.90
(used as a proxy), PILE for dolly-v2-7b and
dolly-v2-12b. As shown in Table 1, verbatim
inclusion of the edited paragraphs in the LLMs’
training corpora remains negligible across the
board. With additional consideration that our
analysis does not include all the edited reading
paragraphs, we believe that the impact of these
paragraphs appearing in other data sources may
not be significant. Finally, we emphasise that
our methodology focuses on measuring the
semantic similarity between the edited reading
paragraphs and the content from the same source,
i.e., Wikipedia. Therefore, extending the anal-
ysis to other potential sources falls outside the
scope of this paper, and we leave this for future
investigation.

SQUAD I.I SQUAD 2.0 D(ROBERTA) B0OLQ WIKIWHY HOTPOTQA
OLMo-7B-0724-Instruct-hf 159 394 133 430 1.52
OLMo-2-1124-7B/13B-Instruct 485 8.53 4.79 275 1.14
OLMoE-1B~78-0125-Instruct 477 8.69 479 275 L14
AnberChat&Tinyllama-1.18-Chat-v1.0 104 240 213 447 114
dolly-v2-7b/12b 0.18 107 - 0.40 0.76

Table 1: Percentage (%) of edited reading paragraphs
that appear verbatim in the training corpora of the eval-
uated LLMs.

5 Conclusion

We introduce a novel methodology for examining
the impact of natural text evolution on the read-
ing comprehension abilities of LLMs by analyzing
their accuracy trends across semantic similarity
bins. Leveraging Wikipedia revision histories, we
curate naturally edited variants of benchmark read-
ing passages, measure their similarity to content in
the model’s training corpora, and correlate these
similarity scores with model accuracy. Our empiri-
cal findings show that, while natural text evolution
has little to no effect on human performance, LLMs
consistently exhibit a decline in accuracy as sim-
ilarity decreases. We hope this study contributes
to the growing body of research focused on under-
standing and addressing the limitations of LLMs.



Limitations

Our work has several limitations. (1) We focus ex-
clusively on the QA task; extending our findings to
other downstream tasks remains an open direction
for future research. (2) We evaluate only transpar-
ent LLMs with fully open-access training corpora.
While this constraint is necessary for our method-
ology, some of these models still lag significantly
behind state-of-the-art proprietary LLMs. Future
work could apply our framework to such models,
though this would require access to their training
data, which is currently unavailable.
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Dataset
# titles (with extracted edit histories/total) # passages _# perturbed passages _# Avg. perturbed passages per passage # questions

SQUAD 1.1 (Rajpurkar et al., 2016)
47/48

SQUAD 2.0 (Rajpurkar et al., 2018)
47/48 466 914 17.82 4281

825 1531 8.85 3920

D(ROBERTA) (Bartolo et al., 2020)
47/48 135 249 556 376

BOOLQ (Clark etal., 2019)

2488/2651 957 2559 3.16 1064

WIKIWHY (Ho et al., 2023)
833/873 193 251 136 193

HOTPOTQA (Yang et al., 2018)
10971/13783 2948 7350 279 2970

Table 2: Summary of naturally edited QA datasets.

B Inference Prompts for QA

We present the prompts used for LLMs in the zero-
shot setting.

SQUAD 1.1 & SQUAD 2.0 & D(ROBERTA):
Use the provided article delimited by triple
quotes to answer question. Provide only
the shortest continuous span from the context
without any additional explanation. If the
question is unanswerable, return “unanswer-
able".\n\n“““{context}"""\n\nQuestion: {ques-
tion}

BOOLQ: Use the provided article delimited by
triple quotes to answer question. Return only
TRUE or FALSE. If the question is unanswerable,
return “unanswerable"”. Do not provide any expla-
nation.\n\n“““{context}"""\n\nQuestion: {ques-
tion}

WIKIWHY & HOTPOTQA: Use the provided
article delimited by triple quotes to answer ques-
tion. If the question is unanswerable, return
“unanswerable”. Do not provide any explana-
tion\n\n“““{context}"""\n\nQuestion: {ques-
tion}

C Correlation and Slope Analysis of
Accuracy vs. Semantic Similarity

Quantitatively, we observe that this decline is
substantial across most datasets. On aver-
age, across similarity bins, model accuracy can
drop by over 30% in datasets like SQUAD
2.0 and BoOOLQ, with BOOLQ consistently
showing among the steepest declines (e.g.,
OLMo-7B-0724-Instruct shows a slope of 74.63,
while OLMo-2-1124-7B-Instruct reaches 74.60).
In contrast, datasets like WIKIWHY and HOT-
POTQA, which require deeper reasoning, show
more gradual degradation—possibly due to their
reduced reliance on surface-level similarity. These
variations highlight how dataset characteristics in-
fluence LLM robustness to natural drift.

D Human Annotation Details

We adopt the same instructions provided to human
annotators in (Wu et al., 2025) and recruit doc-
toral students at the university as annotators. All
annotators possess proficient English reading com-
prehension skills. Prior to the main annotation task,
they are required to label a small set of MRC in-
stances and resolve any disagreements through dis-
cussion until reaching consensus. Annotators are
given access only to the edited reading paragraph
and the question, without being informed that the
paragraph has been edited, in order to avoid bias.
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Figure 5: Accuracy of the instruction-finetuned OLMo models across ten semantic similarity bins, with regression
lines showing the slope of decline for each dataset.
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