
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Bridging the Gap: Teacher-Assisted Wasserstein Knowledge
Distillation for Efficient Multi-Modal Recommendation

Anonymous Author(s)

ABSTRACT
Multi-modal recommender systems (MMRecs) leverage diverse

modalities to deliver personalized recommendations, yet they often

struggle with efficiency due to the large size of modality encoders

and the complexity of fusing high-dimensional features. To address

the efficiency issue, a promising solution is to compress a cumber-

some MMRec into a lightweight ID-based Multi-Layer Perceptron-

based Recommender system (MLPRec) through Knowledge Dis-

tillation (KD). Despite effectiveness, we argue that this approach

overlooks the significant gap between the complex teacher MMRec

and the lightweight, ID-based student MLPRec, which differ signifi-

cantly in size, architecture, and input modalities, leading to ineffec-

tive knowledge transfer and suboptimal student performance. To

bridge this gap, we propose TARec, a novel teacher-assistedWasser-

stein Knowledge Distillation framework for compressing MMRecs

into an efficient MLPRec. TARec introduces: (i) a two-staged KD

process using an intermediate Teacher Assistant (TA) model to

bridge the gap between teacher and student, facilitating smoother

knowledge transfer; (ii) logit-level KD using the Wasserstein Dis-

tance as metric, replacing the conventional KL divergence to ensure

stable gradient flow even with significant teacher-student gaps; and

(iii) embedding-level contrastive KD to further distill high-quality

embedding-level knowledge from teacher. Extensive experiments

on real-world datasets verify the effectiveness of TARec, demon-

strating that TARec significantly outperforms the state-of-the-art

MMRecs while reducing computational costs. Our anonymous code

is available at: https://anonymous.4open.science/r/TARec-0980/.
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1 INTRODUCTION
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Figure 1: Visualizations on the distributions of (a)(b): the
distances between the teacher and student embeddings for
users and items, (c): the average cosine similarity between
one-hop neighbourhood nodes, and (d)-(f): the predicted user-
item similarity score and the performance with different
training methods indicate a significant gap between teacher
and student models during knowledge distillation.

Multi-modal Recommender systems (MMRecs) leverage diverse

data from multiple modalities, such as images, text, and audio, to

deliver accurate and personalized recommendation [13, 22, 41, 46,

50, 52]. While MMRecs significantly improve recommendation qual-

ity, they introduce significant computational overhead due to (1)

reliance on large, pre-trained, modality encoders (e.g., CLIP [30]

and BERT [6]); (2) the complex architectures required to fuse high-

dimensional features frommodality encoders [16, 52]. These factors

significantly reduce both speed and efficiency, limiting the applica-

bility of MMRecs, especially in industry settings where inference

latency and scalability issues are imperative [2, 23].

To address the efficiency issue, a promising approach is to com-

press a cumbersome MMRec into a lightweight ID-based Multi-

Layer Perceptron-based Recommender system (MLPRec) [53] through

Knowledge Distillation (KD) [15], thereby optimizing efficiency and

hopefully without sacrificing performance. However, we argue that

a critical issue with this approach is the large gap between the

teacher and student, particularly when they differ significantly in

size, architecture and model input. Such a gap often brings distri-

bution shifts between the teacher and the student [29], hinders

the student’s ability to accurately mimic the teacher, and conse-

quently results in inadequate knowledge transfer and suboptimal

model compression [10, 18]. To illustrate this gap, we visualize the

pairwise embedding distances between the teacher and student

(Figure 1 (a)(b)), the distribution of the similarity between one-hop

neighbourhood nodes (Figure 1 (c)) and the distribution of the pre-

dicted user-item similarity score (a.k.a., the prediction logits) with

1
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different training methods (Figure 1 (d)-(f), from which we can

observe significant gaps at both the embedding and the logit level.

Our analysis reveals two key issues associated with this gap:

• Single-step KD is ineffective for large gap.While MLPRecs

have simple architectures and are less prone to overfitting, they

are unable to exploit graph topology and multi-modal features

as the MMRecs do. Consequently, the embedding and logit dis-

tributions of the MLPRecs can differ significantly from those of

MMRecs, as evidenced in Figure 1(a)-(f). Although single-step

KD (distilling knowledge directly from the teacher MMRec to the

student MLPRec) can reduce this gap to some extent, a notable

disparity between teacher and student nevertheless remains, and

the student still cannot capture high-quality graph topology from

the teacher, as illustrated in Figure 1(a)-(c). This suggests that

single-step KD is still insufficient to fully bridge this gap, result-

ing in misalignment between the student and the teacher and

hence suboptimal performance, as evidenced in Figure 1(d)-(f).

• Limitations of KL Divergence for KD. While the standard KD

adopts the KL Divergence (KL Div.) as metric to measure the di-

vergence between teacher distribution and student distribution,

this metric can become problematic when the distribution gap is

large, as the KL Div. may produce excessively large values (i.e.,

not Hölder continuous) and is highly sensitive to even small defor-

mations of the distributions’ supports [8], both of which lead to

unstable gradients and an increased risk of model collapse [1, 38].

As a result, using KL Div. for KD in our scenario (i.e., a significant

gap exists between teacher and student) may not effectively align

the distribution of the teacher and with that of the student, lead-

ing to inadequate knowledge transfer and degraded performance

(Figure 1(a)(b)(d)), while using a Hölder continuous metric (e.g.,

Wasserstein distance) for KD can significantly reduce the gap both

at the embedding and the logit level (Figure 1(a)-(c)).

Building on these insights, we propose TARec, a novel teacher-

assistant-enhanced Wasserstein knowledge distillation framework

to efficiently compress MMRecs into MLPRec. Specifically, as single-

step KD is ineffective to bridge the gap, we introduce an interme-

diate Teacher Assistant (TA) model, which shares characteristics

of both the teacher and the student model, and a two-staged KD

process: first distilling the MMRec teacher into the TA, and then

distilling the TA into the student MLPRec. In this way, the gaps

at both stages (teacher-TA, TA-student) are minimized, facilitating

effective knowledge transfer and alignment between the teacher

and the student. In light of the limitations of the KL divergence,

we propose a novel KD approach based on Wasserstein distance as

metric [37]. Unlike KL divergence, Wasserstein distance does not

require overlapping distributions to provide stable gradient flow,

enabling effective learning even when there is a significant gap be-

tween the teacher and student models. Additionally, its continuity

regarding convergence in law and ability to metrize topology—i.e.,

convergence in Wasserstein distance implies weak convergence of

distributions—facilitates more precise knowledge transfer at the

logit level. [8, 9]. Since students are mainly represented by embed-

ding, we introduce an embedding-level KD loss function to help it

absorb collaborative filtering signals from the teacher, effectively

distilling high-order signals from user-item interactions into the

student’s embeddings to enhance performance. Through TARec,

the knowledge from the teacher MMRec is effectively distilled into

a simple yet highly efficient MLPRec that is capable of performing

fast and accurate inference.

The main contributions of this work are summarized as follows:

• We identify and address the significant gap between multimodal

recommendationmodels andMLP-based studentmodels by propos-

ing the TARec framework, which introduces a teacher assistant

model and leverages both logit-level and embedding-level KD to

facilitate effective knowledge transfer.

• We propose a novel Wasserstein distance-based KD loss func-

tion to overcome the limitations of KL divergence for KD, en-

abling better distillation of complex collaborative filtering pat-

terns when the gap between the teacher and the student is large.

• We propose an embedding-level contrastive KD loss function to

capture collaborative signals in embeddings, allowing the student

model to learn user-item interaction relations not fully captured

through logit-level distillation.

• Extensive experiments validating the effectiveness of our ap-

proach, showing that TARec outperforms the state-of-the-art

MMRecs while significantly reducing computational overhead.

2 PRELIMINARIES
Notations and Definitions. In recommender systems, we denote

U as the set of users and I as the set of items. The interactions

between users and items are represented as a bipartite graph G =

(V, E), where the node set is V = U ∪ I and the edge set E ⊆
U × I consists of observed user-item interactions. For each user

𝑢 ∈ U, we denote N𝑢 = {𝑖 ∈ I | (𝑢, 𝑖) ∈ E} as the set of items

that user 𝑢 has interacted with. For each item 𝑖 ∈ I, we denote
N𝑖 = {𝑢 ∈ U | (𝑢, 𝑖) ∈ E} as the set of users who have interacted
with item 𝑖 . Additionally, in multi-modal recommendation, each

item 𝑖 ∈ I is associated with a set of features F𝑖 = {𝑓 1
𝑖
, 𝑓 2
𝑖
, · · · , 𝑓𝑀

𝑖
}

from𝑀 from different modalities, such as texts and images.

GNN-based Multi-modal Recommendation. In recommender

systems, user-item interactions can be effectively and naturally

represented as a bipartite graph. Graph Neural Networks (GNNs)

possess the ability to capture complex higher-order relationships

by iteratively aggregating information from neighboring nodes [14,

40, 41], establishing GNN-based multi-modal recommendation as a

leading approach within Multi-modal Recommender Systems [46,

52]. The typical pipeline for GNN-basedMulti-modal Recommender

System (MMRec) consists of two main components: modality en-

coders and neighborhood aggregation layers. Specifically, for each

modality 𝑚(1≤𝑚≤𝑀), a modality encoder (e.g., CLIP [30] and

BERT [6]) extracts the embedding x𝑚
𝑖

from the modality feature

𝑓𝑚
𝑖
. For each item 𝑖 ∈ I, the set of all its multi-modal embeddings

{f1
𝑖
, f2
𝑖
, · · · f𝑀

𝑖
}, together with the its ID embedding e𝐼𝐷

𝑖
are fused

together [41, 54] to construct its embedding e𝑖 ∈ R𝑑 . Additionally,
for each user𝑢 ∈ U, its ID embedding is represented as e𝑢 ∈ R𝑑 . In
the neighborhood aggregation layers, the embeddings of users and

items are interatively updated by aggregating information from

their neighbors [14]. At each layer 𝑘 , the embeddings are updated

as follows:

e(𝑘+1)𝑢 =
∑︁
𝑖∈N𝑢

1√︁
|N𝑢 |

√︁
|N𝑖 |

e(𝑘 )
𝑖

e(𝑘+1)
𝑖

=
∑︁
𝑢∈𝑁𝑖

1√︁
|N𝑖 |

√︁
|N𝑢 |

e(𝑘 )𝑢 , (1)
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where e(𝑘 )𝑢 and e(𝑘 )
𝑖

denote the representations of user 𝑢 and item

𝑖 at layer 𝑘 , respectively. After 𝐾 layers of information aggregation,

the final representations of users and items are obtained by averag-

ing the representations from all layers, i.e., ê𝑢 = 1

𝐾+1
∑𝐾
𝑘=0

e(𝑘 )𝑢 , ê𝑖 =
1

𝐾+1
∑𝐾
𝑘=0

e(𝑘 )
𝑖

, and the predicted user-item similarity score (a.k.a.,

the prediction logits) is computed as 𝑦𝑢𝑖 = ê⊤𝑢 ê𝑖 .
MLP-based Recommendation. Different from GNN-based MM-

Recs that require cumbersome modality feature encoders and graph

aggregation layers, MLP-based Recommender system (MLPRec)

adopts a simple and lightweight model architecture, and typically

do not handle multi-modal features. As a result, they are computa-

tionally efficient and less prone to overfitting compared to complex

GNNs. Specifically, in MLPRec, the user ID embedding e𝑢 ∈ R𝑑
and the item ID embedding e𝑖 ∈ R𝑑 are simply processed by a

multi-layer perceptron to obtain their final representations:

ê𝑢 = 𝜙 (e𝑢 ) ê𝑖 = 𝜙 (e𝑖 ), (2)

where 𝜙 (·) represents the multi-layer perceptron. Same as MMRec,

the prediction logits for MLPRec is also calculated as 𝑦𝑢𝑖 = ê⊤𝑢 ê𝑖 .
Model Traning. In the simplest form, both MMRec and MLPRec

can be independently trained using the Bayesian Personalized Rank-

ing (BPR) [32] loss function:

L
bpr

(H) = −
∑︁
𝑢∈U

∑︁
𝑖∈N𝑢

∑︁
𝑗∉N𝑢

log𝜎
(
𝑦𝑢,𝑖 − 𝑦𝑢,𝑗

)
+ 𝜆𝑟 ∥ΘH ∥2, (3)

where 𝜎 (·) denotes the sigmoid function, 𝜆𝑟 is the regularization

coefficient, andΘH denotes the parameters of modelH (an MMRec

or MLPRec) that we are training, 𝑗 denotes the index of sampled

negative items. However, as previously illustrated in Figure 1, in-

dependent training leads to significant gap between the teacher

MMRec and the student MLPRec, and we will elaborate on how we

bridge the gap with our TARec in the following section.

3 METHODOLOGY
TARec seamlessly distills knowledge from a cumbersome teacher

MMRec into a lightweight student MLPRec via a teacher-assisted,

two-staged Wasserstein knowledge distillation approach. Figure 2

provides a framework overview of TARec. We explain the workflow

of the Two-staged Teacher-assisted KD process in Section 3.1, and

the details of the Wasserstein KD loss function and contrastive

KD loss function in Section 3.2 and Section 3.3, respectively. We

summarize the training procedure of TARec in Algorithm 1.

3.1 Teacher-assisted Two-staged KD
As mentioned earlier, compressing an MMRec into an MLPRec

with single-step KD faces a significant gap. The student MLPRec

has a very different architecture from the teacher MMRec—it lacks

graph topology and does not explicitly utilizemulti-modal features—

and hence the distribution of prediction logits in the MLPRec may

diverge considerably from that of the MMRec. To bridge this gap,

we draw inspirations from [26, 34] and introduce a shallower GNN

with ID embeddings as input [14] to serve as the Teacher Assistant

(TA). The TAA shares characteristics of both the teacher T and the

student S by combining the graph topology with ID embeddings,

thereby effectively capturing structural information while aligning

with the student’s focus on ID embeddings.

Our proposed framework, TARec, operates in a two-staged man-

ner. At the first stage, we train a TA network by distilling the teacher

into the TA. At the second stage, the TA network then serves as the

teacher to guide the student model’s training through knowledge

distillation (KD). In this way, the gaps at both stages (teacher-TA,

TA-student) are minimized, facilitating effective alignment between

the teacher and the student. To ensure effective knowledge transfer,

we propose a novel logit-level Wasserstein KD loss function L
logit

,

and an embedding-level contrastive KD loss function L
emb

. De-

tails of L
logit

and L
emb

are available in Section 3.2 and Section 3.3

respectively, and we elaborate on the workflow of TARec as follows.

3.1.1 Stage One: Teacher-to-Assistant Distillation. At stage
one, we freeze the teacher MMRec T and distill T into the TAA by

jointly optimizing the BPR loss function and the KD loss functions:

L (T,A) = L
bpr

(A) + 𝜆1Llogit
(DT,DA ) + 𝜆2Lemb

(ZT,ZA ), (4)

where the logit-level distribution DT = {yT
𝑢𝑖
|𝑢 ∈ U, 𝑖 ∈ I},DA =

{yA
𝑢𝑖
|𝑢 ∈ U, 𝑖 ∈ I} are constructed using the pairwise ranking

score yT
𝑢𝑖

= log𝜎 ((êT𝑢 )⊤êT
𝑖
− (êT𝑢 )⊤êT

𝑗
), yA

𝑢𝑖
= log𝜎 ((êA𝑢 )⊤êA

𝑖
−

(êA𝑢 )⊤êA
𝑗
) in Eq. 3, the embeddings ZT = {eT𝑢 |𝑢 ∈ U} ∪ {eT

𝑖
|𝑖 ∈

I},ZA = {eA𝑢 |𝑢 ∈ U} ∪ {eA
𝑖
|𝑖 ∈ I} are constructed with all

the user and item embeddings, the superscript T and A denote

whether the logits/embeddings come from the teacher or the TA.

3.1.2 Stage Two: Assistant-to-Student Distillation. At stage
two, we freeze the TA obtained from stage one, and distill the TAA
into the student MLPRec S by jointly optimizing the BPR ranking

loss function and the KD loss functions:

L (A,S) = L
bpr

(S) + 𝜆1Llogit
(DA ,DS) + 𝜆2Lemb

(ZA ,ZS), (5)

where the logit-level distribution D and the set of embeddings Z
are constructed in the same way as Eq. 4, the superscript A and S
denote whether D and Z come from the TA or the student.

3.2 Logit-level Wasserstein KD
In KD, we need a metric to measure the difference between teacher

distribution and student distribution, and some classic metrics

include the Kullback-Leibler (KL), reverse KL (RKL), and Jensen-

Shannon (JS) divergences, all of which can be viewed as special

cases of the f-divergences between two distributions P and Q:

D𝑓 (P∥Q) =
∫
𝑥∈X

𝑓

(
P(𝑥)
Q(𝑥)

)
Q(𝑥) 𝑑𝑥, (6)

where 𝑓 is a convex function, X denote the sample space of dis-

tributions P and Q. However, f-divergences are asymmetric and

unstable with respect to deformations of the distributions [4, 8].

When two distributions have little or no overlap, these measures

encounter training difficulties. For example, the KL divergence may

become infinite, and the JS divergence can become locally saturated,

leading to vanishing gradients and optimization challenges [1, 4, 7].

Moreover, because f-divergences induce stronger topologies, when

the gap between the distribution of the teacher and that of the

student is large, they may produce excessively large values (i.e., not

Hölder continuous) that lead to unstable gradients and an increased

risk of model collapse or mode averaging [1, 38, 47].

3
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Figure 2: Framework overview of TARec. The left part illustrates the architecture of the MMRec teacher, teacher assistant, and
MLPRec student. The middle part details the distillation process, including logit-level Wasserstein KD and embedding-level
contrastive KD. The right part outlines the two stages (Teacher-to-Assistant, Assistant-to-student) of the KD process.

To address this issue, we propose a novel logit-level KD loss

function based on Wasserstein distance as metric. Different from

f-divergences, Wasserstein distance provides stable gradients even

when the distributions have disjoint supports. It induces a weaker

topology than f-divergences, enabling smoother optimization and

effectively avoiding issues like model collapse associated with f-

divergences [1, 8]. We elaborate on the calculation of the Wasser-

stein KD loss function in Section 3.2.1, and theoretically prove in

Section 3.2.2 that the proposed loss function is Hölder continuous,

enabling stabilized training even when the distribution gap is large.

3.2.1 Wasserstein Distance-Based Knowledge Distillation.
We denote (H ,K) ∈ {(T ,A), (A,S)} as the model pairs, where

we wish to distill modelH into model K . The Wasserstein KD loss

function can be formulated as follows:

L
logit

(DH,DK ) =𝑊 𝑝
(
DH,DK

)
, (7)

where the Wasserstein distance (𝑝-norm) between two probability

distributions P and Q is defined as follows:

𝑊 𝑝 (P,Q) =
(

inf

𝜋∈Γ (P,Q)

∫
𝑋×𝑌

𝑑 (𝑥,𝑦)𝑝 𝑑𝜋 (𝑥,𝑦)
)
1/𝑝

. (8)

Here Γ(P,Q) is the set of all transport plans (couplings) withmarginals

P and Q, and 𝑑 (𝑥,𝑦) denotes the distance between points 𝑥 and 𝑦.

Sinkhorn Algorithm for Calculating Wasserstein Distance.
Computing the exact Wasserstein distance involves solving a lin-

ear programming problem, which is computationally costly and

non-differentiable. To address this issue, we employ the Sinkhorn

algorithm [5] to transform the problem of calculating Wasserstein

distance into calculating an entropy-regularized optimal transport

distance𝑊𝜖 (P,Q), thereby converting it into a smooth, differen-

tiable convex optimization task. The entropy-regularized optimal

transport distance is defined as follows:

𝑊𝜖 (P,Q) = min

𝝅 ∈Γ (P,Q)
⟨𝝅 ,C⟩ − 𝜖𝐻 (𝝅), (9)

where 𝝅 is the transport plan, C is the cost matrix (𝑝-norm) de-

fined as C𝑖 𝑗 = 1

𝑝 | |P(𝑖) − P( 𝑗) | |𝑝 , 𝐻 (𝝅) = −∑
𝑖, 𝑗 𝝅𝑖 𝑗 log𝝅𝑖 𝑗 is the

entropy of 𝝅 , and 𝜖 controls the strength of the regularization. The

Sinkhorn algorithm approximates the optimal transport plan 𝝅
through iterative updates of scaling vectors u and v:

u(ℓ+1) =
P

Kv(ℓ ) v(ℓ+1) =
Q

K⊤u(ℓ ) , (10)

where K𝑖 𝑗= exp

(
−C𝑖 𝑗

𝜖

)
is the Gibbs kernel matrix computed from

the cost matrix C and the regularization parameter 𝜖 . The vectors

u and v are typically initialized as vectors of ones. This iterative

process (coordinate ascent) continues until convergence, yielding

the optimal transport plan 𝝅𝑖 𝑗 = u𝑖𝐾𝑖 𝑗v𝑗 . The optimal transport

distance is then computed as follows:

𝑊𝜖 (P,Q) = ⟨𝝅 ,C⟩ =
∑︁

𝑖, 𝑗
𝝅𝑖 𝑗C𝑖 𝑗 . (11)

Unbiased Sinkhorn Divergence. While the Sinkhorn algorithm

enhances computational efficiency through entropy regularization,

it introduces an entropic bias. Specifically, for positive 𝜖 , in general,

𝑊𝜖 (P,Q) ≠ 0, which means that minimizing𝑊𝜖 (P,Q) with respect

to P results in a biased solution. To mitigate this, we introduce the

unbiased Sinkhorn divergence as the loss function for KD:

𝑊 unbiased

𝜖 (P,Q) =𝑊𝜖 (P,Q) − 1

2

𝑊𝜖 (P, P) −
1

2

𝑊𝜖 (Q,Q) . (12)

This formulation subtracts the self-similarity terms, eliminating the

entropic bias and ensuring thatW𝜖 (P,Q) = 0 when P = Q [8]. To

demonstrate the issue caused by entropic bias, we visualize in Fig-

ure 3 the evolution of the distribution P toward a fixed distribution

Q [33], guided by the gradient −∇x𝑖𝐿(P,Q) (gradient directions
shown in red). Both biased and unbiased methods use the same 𝜖 .

The visualization illustrates that, regardless of the gradient flow

direction, the speed of loss reduction, or the final convergence re-

sults, the unbiased Sinkhorn divergence provides more precise and

efficient gradient flows and better alignment, whereas the biased

method results in a blurred approximation of the target distribution.

3.2.2 Theoretical Analysis.

Theorem 1. The proposed Wasserstein KD loss function is Hölder
continuous, i.e., it satisfies the following inequality:

𝑊
𝑝
𝑝 (u, v) ≤ 2

𝑝−1𝐿∥u − v∥1, 𝑝 ∈ [1,∞]
4
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Figure 3: Evolution of source distribution P towards target Q
shows that the unbiased Sinkhorn divergence yields a more
efficient and precise gradient flow.

Detailed proofs are provided in Appendix A.1. This theorem im-

plies that the value of the proposed loss function is upper bounded

even when the difference between two distributions u and v is very

large. This property can be very helpful in our setting with a large

gap, as it ensures controlled and steady measurement in the differ-

ence between the teacher distribution and the student distribution,

enabling stable gradient and smooth training process.

3.3 Embedding-Level Contrastive KD
Since MLPRec lacks an explicit graph inductive bias for effectively

modeling user-item interactions, we introduce an embedding-level

contrastive KD loss function to distill high-quality collaborative

filtering signals from the teacher model to enhance the correspond-

ing signals in the student’s embeddings. Specifically, let (H ,K) ∈
{(T ,A), (A,S)} denote the model pairs, where the goal is to distill

H into K . We employ InfoNCE [27] and construct positive and

negative samples from H and K based on user-item interaction

relations, thereby distilling the high-order collaborative signals

into student embeddings. The embedding-level KD loss function is

formulated as follows:

L
emb

(ZH,ZK ) = −
∑︁
𝑢∈U

∑︁
𝑖∈N𝑢

log

exp

(
(eH𝑢 )⊤eK

𝑖

)
(eH𝑢 )⊤eK

𝑖
+
∑︁
𝑗∉N𝑢

exp

(
(eH𝑢 )⊤eK𝑗

)
−

∑︁
𝑢∈U

∑︁
𝑖∈N𝑢

log

exp

(
(eK𝑢 )⊤eH

𝑖

)
(eK𝑢 )⊤eH

𝑖
+
∑︁
𝑗∉N𝑢

exp

(
(eK𝑢 )⊤eH𝑗

) .
(13)

4 EXPERIMENT
In this section, we conduct comprehensive experiments to answer

the following Research Questions (RQs):
• RQ1: How does TARec perform compared with the state-of-the-

art recommender systems?

• RQ2:What is the effectiveness of the key components in TARec?

• RQ3: Is TARec efficient in terms of inference latency, memory

usage and number of parameters?

• RQ4: Can TARec bridge the gap between the teacher MMRec

and the student MLPRec?

• RQ5: How does TARec perform w.r.t different hyperparameters?

Algorithm 1 The Training Procedure of TARec

Require: teacher T , teacher assistant A, student S
Ensure: a well-trained student MLPRec S
1: procedure𝑊𝜖 (P,Q)
2: Compute cost matrix C and kernel matrix K
3: Initialize vectors u and v as vectors of ones

4: while u, v do not converge do
5: u(ℓ+1) = P

Kv(ℓ )
v(ℓ+1) = Q

K⊤u(ℓ )
6: end while
7: Compute optimal transport plan 𝝅𝑖 𝑗 = u𝑖𝐾𝑖 𝑗v𝑗

8: return
∑

𝑖,𝑗 𝝅𝑖 𝑗C𝑖 𝑗

9: end procedure
10: Train teacher T with L

bpr
(T) until convergence

11: Stage One: Teacher-to-Assistant Distillation
12: while teacher assistant A do not converge do
13: Compute logits DT

, DA

14: Compute unbiased Sinkhorn divergence:

15: L
logit

(DT ,DA )=𝑊𝜖 (DT ,DA )− 1

2
𝑊𝜖 (DT ,DT )− 1

2
𝑊𝜖 (DA ,DA )

16: Compute embedding-level KD loss L
emb

(ZT ,ZA )
17: Update teacher assistant A with L (T,A)
18: end while
19: Stage Two: Assistant-to-Student Distillation
20: while student S do not converge do
21: Compute logits DA

, DS

22: Compute unbiased Sinkhorn divergence:

23: L
logit

(DA,DS)=𝑊𝜖 (DA,DS)− 1

2
𝑊𝜖 (DA,DA)− 1

2
𝑊𝜖 (DS,DS)

24: Compute embedding-level KD loss L
emb

(ZA ,ZS )
25: Update student S with L (A,S)
26: end while

4.1 Experimental Settings
4.1.1 Dataset. We conduct experiments on three public bench-

markmulti-modal recommendation datasets. The statistics of datasets

are in Appendix A.2, and dataset details are introduced as follows:

• Netflix: The Netflix dataset [41] contains user-item interaction

records from the Netflix platform. The multimodal content in-

cludes movie posters associated with the provided movie titles.

Image features are extracted with CLIP-ViT [30], while textual

features are encoded using a pre-trained BERT model [19].

• Tiktok: The Tiktok micro-video dataset [42] includes user-item

interactions and three modality features: visual, acoustic, and

textual. The visual and acoustic features are 128-dimensional

vectors extracted from micro-videos, and the textual features are

obtained from captions using the Sentence-BERT model [31].

• Electronics: The Amazon Electronics review dataset [12, 25]

contains users’ reviews and product information from the elec-

tronics domain. The visualmodality consists of 4,096-dimensional

image features extracted by pre-trained convolutional neural

networks [12]. The textual features are generated by combining

attributes such as titles, descriptions, categories, and brands into

384-dimensional vectors using the Sentence-BERT model [31].

4.1.2 Evaluation Protocols. In line with previous studies [41,

43], we adopt an all-ranking evaluation strategy to ensure fair

comparison [20]. For top-K recommendation tasks, we adopt two

widely used metrics, Recall@K (R@K) and Normalized Discounted

Cumulative Gain (N@K) with 𝐾 = 20 and 50.
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Table 1: Performance comparisons on benchmark datasets. The best and the second-best performance in each column is bolded
and underlined. * indicates the improvements are statistically significant compared to the best baseline (p-value < 0.05).

Model
Netflix Tiktok Electronics

R@20 N@20 R@50 N@50 R@20 N@20 R@50 N@50 R@20 N@20 R@50 N@50

BPR-MF 0.1583 0.0578 0.2396 0.0740 0.0488 0.0177 0.1038 0.0285 0.0211 0.0081 0.0399 0.0117

NGCF 0.1617 0.0612 0.2455 0.0767 0.0604 0.0206 0.1099 0.0296 0.0241 0.0095 0.0417 0.0128

LightGCN 0.1605 0.0609 0.2449 0.0768 0.0612 0.0211 0.1119 0.0301 0.0259 0.0101 0.0428 0.0132

VBPR 0.1661 0.0621 0.2402 0.0729 0.0525 0.0186 0.1061 0.0289 0.0234 0.0095 0.0409 0.0125

MMGCN 0.1685 0.0620 0.2486 0.0772 0.0629 0.0208 0.1221 0.0305 0.0273 0.0114 0.0445 0.0138

GRCN 0.1762 0.0661 0.2669 0.0868 0.0642 0.0211 0.1285 0.0311 0.0281 0.0117 0.0518 0.0158

LATTICE 0.1654 0.0623 0.2531 0.0770 0.0675 0.0232 0.1401 0.0362 0.0340 0.0135 0.0641 0.0184

CLCRec 0.1801 0.0719 0.2789 0.0892 0.0657 0.0214 0.1329 0.0329 0.0300 0.0118 0.0559 0.0169

SLMRec 0.1743 0.0682 0.2878 0.0869 0.0669 0.0221 0.1363 0.0342 0.0331 0.0132 0.0624 0.0180

BM3 0.1792 0.0720 0.2842 0.0923 0.0660 0.0225 0.1351 0.0343 0.0336 0.0141 0.0637 0.0195

PromptMM 0.1864 0.0743 0.3054 0.1013 0.0737 0.0258 0.1517 0.0410 0.0369 0.0155 0.0691 0.0218

TARec 0.2148* 0.0841* 0.3189* 0.1046* 0.0979* 0.0369* 0.1839* 0.0536* 0.0490* 0.0209* 0.0803* 0.0271*
Improv. 15.24% 13.19% 4.42% 3.26% 32.84% 43.02% 21.23% 30.73% 32.79% 34.84% 16.21% 24.31%

4.1.3 Implementation Details. Our TARec is implemented with

PyTorch [28]. We employ the AdamW optimizer [24] for training.

Learning rates were searched within the range of [1e-4, 1e-3]. The

coefficients for L2 weight decay are tuned from {1e-3, 1e-4, 1e-5}.

The weight 𝜆1 and 𝜆2 are tuned from {1e1, 1e0, 1e-1, 1e-2, 1e-3,

1e-4, 1e-5}. The entropy regularization parameter is set as 0.01.

All baseline models are evaluated using their respective source

codes and original publications, with parameter tuning performed

through a unified process to ensure fair comparison.

4.1.4 Baselines. To thoroughly evaluate the performance of TARec,

we conduct a comprehensive comparison with several state-of-the-

art baselines from two research lines.

i) Collaborative Filtering Methods
• BPR-MF [32]: It leverages the BPR loss to handle implicit feed-

back, designed to improve personalized ranking by maximizing

the difference between positive and negative interactions.

• NGCF [40]: It introduces a GNN-based collaborative filtering

framework that injects high-order collaborative filtering signals

into representations through embedding propagation layers.

• LightGCN [14]: It proposes a simplified graph convolutional

network for recommendation by removing redundant designs in

the graph convolution layers.

ii) Multi-Modal Recommendation Methods
• VBPR [13]: It is a matrix factorization-based recommendation

approach that integrates visual features from product images to

enhance personalized ranking performance.

• MMGCN [46]: It captures fine-grained user preferences by con-

structing modality-specific graphs and refining the representa-

tions of users and items for each modality.

• GRCN [45]: It introduces an adaptive refinement module that

identifies and prunes false positive edges in interaction structures

by leveraging multi-modal item characteristics.

• LATTICE [51]: It introduces modality-aware structure learn-

ing layers and graph convolutions to mine latent collaborative

filtering signals from multi-modal content.

• CLCRec [44]: It addresses cold-start recommendation by maxi-

mizing mutual information between item content and collabora-

tive signals through contrastive learning.

• SLMRec [36]: It employs self-supervised learning to capture

the multi-modal patterns in recommendation data by generating

multiple views of items through data augmentation and applies

contrastive learning to improve item representations.

• BM3 [54]: It introduces a self-supervised multi-modal recom-

mendation framework that bootstraps latent contrastive views

from the representations of users and items and jointly optimizes

self-supervised multi-modal objective functions.

• PromptMM [41]: It enhances multi-modal recommendation

through prompt-tuning and single-step KD to compress the MM-

Rec into a lightweight MLPRec.

4.2 Overall Performance Comparison (RQ1)
Table 1 presents the results of all methods on three datasets. Based

on the results, we have the following observations:

• TARec consistently achieves the best performance among all

baseline methods. Compared to state-of-the-art multi-modal rec-

ommender systems, TARec compresses both modality informa-

tion and high-order collaborative filtering signals into a simple

yet efficient MLPRec, achieving competitive results. Unlike the

runner-up method, PromptMM, which uses single-step distilla-

tion and employs KL divergence as the metric, we effectively

incorporate an intermediate assistant model and a Wasserstein

KD loss function, bridging the gap between models. Additionally,

embedding-level contrastive KD enhances knowledge transfer

during the two-stage training, further boosting performance.

• Compared to traditional matrix factorization methods, graph-

based approaches (e.g., NGCF, LightGCN) significantly improve

performance. Additionally, MMRecs such as MMGCN and LAT-

TICE, leverage modality content to outperform LightGCN. As

indicated in Figure 1 and discussed earlier, vanilla MLPRec is effi-

cient but do not perform well. With TARec, we effectively utilize

the advantages of graph-based approaches and the integration

of multi-modal content based on an MMRec teacher, achieving

effective recommendation results while maintaining efficiency.

• The introduction of multi-modal information generally enhances

model performance, but it also presents challenges. For example,

the LATTICE method suffers from noise introduced by the ho-

mogeneous graph, resulting in poor performance on the Netflix

6
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Table 2: Ablation study on key components of TARec.

Data Netflix Tiktok Electronics

Metrics R@20 N@20 R@20 N@20 R@20 N@20

w/o-TA & W. dist. 0.1796 0.0737 0.0790 0.0296 0.0392 0.0172

w/o-TA 0.1893 0.0749 0.0882 0.0322 0.0419 0.0177

w/o-W. dist. 0.2050 0.0769 0.0888 0.0332 0.0459 0.0201

w/o-Emb 0.2082 0.0807 0.0954 0.0351 0.0471 0.0203

TARec 0.2148 0.0841 0.0979 0.0369 0.0490 0.0209

dataset compared to contrastive learning-enhanced methods like

CLCRec and SLMRec. Unlike these models, which rely solely on

contrastive learning within a single model to refine their em-

beddings, TARec incorporates embedding-level contrastive KD

across different teacher/student model pairs. This approach ef-

fectively combines the strengths of both MMRec and contrastive

learning through contrastive KD, transferring knowledge from a

stronger MMRec model and enhancing the student’s embeddings.

4.3 Ablation Study (RQ2)
To verify the effectiveness of the key components, we design four

variants of TARec:

• w/o-TA & W. dist.: This variant directly distills the teacher MM-

Rec into the student MLPRec with KL-divergence as metric.

• w/o-TA: This variant removes the TA during distillation, while

the Wasserstein KD loss remains unchanged.

• w/o-W. dist.: This variant replaces the Wasserstein distance with

KL-divergence to measure the divergence during distillation.

• w/o-Emb: This variant removes the embedding-level contrastive

KD loss function during distillation.

The experiment results in Table 2 verify the effectiveness of each

component in TARec: (1) For the w/o-TA & W. dist. variant, remov-

ing both the TA and the Wasserstein distance leads to a significant

performance drop across all datasets. This highlights the critical

role of these components in bridging the gap between the teacher

and student models, indicating that direct knowledge distillation

fromMMRec using KL-divergence is insufficient. (2) For the w/o-TA
variant, although the Wasserstein KD is retained to enable better

measurement of the differences between the teacher and student

models, the student model still struggles to align its multi-modal

representations with those of the teacher. This demonstrates the

crucial role of the assistant model in narrowing this gap. (3) For

the w/o-W. dist. variant, although it achieves better results than

w/o-TA , it still underperforms the full TARec. This suggests that

the Wasserstein distance is a more robust and effective metric for

capturing and aligning the complex distributional differences be-

tween the teacher and student models, especially when there are

significant disparities between the two models. (4) For the w/o-Emb

variant, although it remains competitive with other ablated ver-

sions, it still underperforms the full TARec. This demonstrates that

the embedding-level contrastive KD plays a crucial role in distill-

ing the higher-order collaborative filtering signal from the teacher

into the student. Without it, the model’s ability to capture and

utilize high-order collaborative filtering semantics across different

modalities is weakened, leading to a decline in performance.

Table 3: Comparisons on model efficiency. “Latency” rep-
resents the average inference time for each dataset. “Mem-
ory” represents GPU memory usage. “Params.” represents
the number of model parameters. “Accel.” represents the
speedup relative to the Teacher model. “Compr.” represents
the parameter reduction relative to the Teacher model. All
experiments are conducted on a single RTX 4090 GPU.

Dataset Model Latency Memory Params. Accel. Compr.

Netflix

MMRec 11.5 ms 0.93 GB 29.95M - -

MLPRec 0.33 ms 0.78 GB 3.91M 34.8x 7.7x

Electronics

MMRec 14.3 ms 2.32 GB 104.60M - -

MLPRec 0.34 ms 1.35 GB 4.05M 42.1x 25.8x
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Figure 4: Heatmaps of the difference of the logits between
the teacher and the student from the TikTok dataset.

4.4 Efficiency Analysis (RQ3)
We evaluate the resource utilization and inference efficiency of the

teacher MMRec and the student MLPRec in our TARec framework,

on the Netflix and Electronics datasets. Table 3 presents the detailed

results, focusing on the average inference time, the usage of GPU

memory, and the acceleration ratio compared to the teacher model.

The results demonstrate that the compressed student MLPRec is

more efficient than the original teacher MMRec in the TARec frame-

work from various perspectives. On the Netflix dataset, TARec re-

duces the average inference time from 11.5 ms to 0.33 ms, achieving

an acceleration ratio of 34.8×. On the Electronics dataset, the time

decreases from 14.3 ms to 0.34 ms, resulting in an acceleration ratio

of 42.1×. These substantial reductions are attributed to TARec’s

design: it does not require encoding raw multimodal features from

images and text, nor does it rely on modality-based encoders, ben-

efiting from the simple and efficient architecture of the MLPRec.

Similarly, TARec demonstrates improved GPU memory efficiency.

Memory consumption decreases from 0.93 to 0.78 GB in the Netflix

dataset and from 2.32 to 1.35 GB in the Electronics dataset, making

TARec suitable for resource-constrained environments.

4.5 Qualitative Analysis (RQ4)
To studywhether TARec can bridge the gap between the teacher and

the student, we visualize the difference of the logit (i.e., || (eT𝑢 )⊤eT
𝑖
−

(eS𝑢 )⊤eS
𝑖
| |) between the teacher and the student trained with dif-

ferent methods. From the heatmaps in Figure 4, we observe that

the vanilla MLPRec exhibits significant discrepancies in predicting

user preferences compared to the teacher MMRec, highlighting the

need to bridge this gap. While single-step distillation without TA

partially aligns the logit of the two models, MLPRec distilled within

the TARec framework achieves the best alignment with the teacher
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Figure 5: Impact study of hyperparameters in TARec.

model’s logit, demonstrating the lowest difference with teacher in

the heatmap. This indicates that TARec can effectively bridge the

gap between the teacher and student, enable the student to learning

high-quality collaborative filtering signals from the teacher.

4.6 Hyperparameter Sensitivity (RQ5)
We evaluate the influences of key hyperparameters in TARec. From

the results in Figure 5, we have the following observations:

• Logit-level KD loss weight 𝜆1: We tune 𝜆1 from [10−5, . . . , 102]
and find that both Recall@20 and NDCG@20 increase signifi-

cantly as 𝜆1 rise from 10
−4

to 10
−2
, peaking at 𝜆1 = 10

−2
. This

indicates that increasing L𝑙𝑜𝑔𝑖𝑡 , based on the Wasserstein dis-

tance, effectively transfers the teacher model’s high-order col-

laborative filtering signals and modality-related knowledge to

the student model. However, beyond 𝜆1 = 10
−2
, performance

decreases, suggesting that excessive logit-level alignment can

degrade performance in cross-architecture learning.

• Embedding-level contrastive KD loss weight 𝜆2: With 𝜆1 fixed

at 1 × 10
−2
, we tune 𝜆2 to assess its impact. Performance of the

student model improves as 𝜆2 increases up to 1 × 10
−2

due to

effective transfer of the teacher’s knowledge at the embedding

level. However, unlikeL
logit

, performance sharply declines when

𝜆2 exceeds 1 × 10
−2
, because the significant architectural differ-

ence between MLPRec and MMRec means that over-aligning the

embeddings weakens the performance of MLPRec.

• Joint impact of 𝜆1 and 𝜆2: We explore the effects of simultane-

ously varying 𝜆1 and 𝜆2 across the range [10−5, . . . , 102]. The
results indicate that extremely low values (e.g., 10

−5
) for both

weights cause a sharp decline in performance, emphasizing the

necessity of integrating both logit-level and embedding-level

distillation losses. Optimal performance is achieved when L
logit

and L
emb

are similarly weighted, demonstrating that the model

effectively captures complementary knowledge from both levels.

Additionally, the model remains robust across a wide spectrum of

𝜆1 and 𝜆2 values, indicating that TARec is robust to the selection

of these hyperparameters and does not require extensive tuning.

• Embedding dimension 𝑑 : We evaluate the impact of varying the

embedding dimension 𝑑 across the range [16, 32, 64, 96, 128].

The results show that performance steadily improves as the em-

bedding dimension increases. Performance gains are particularly

significant when the dimension ranges from 16 to 64. Beyond

64, although the rate of improvement slows, performance con-

tinues to increase. This suggests that, unlike previous MMRec

method [41] that may saturate around a dimension of 64, TARec

continues to benefit from higher dimensions, as the TARec frame-

work can leverage stronger teacher models. The positive corre-

lation between embedding dimension and performance enables

TARec to support teacher models across a wide range of dimen-

sions, highlighting its strong potential for collaboration with

high-dimensional MMRecs based on large modality encoders.

5 RELATEDWORK
Multi-ModalRecommender Systems. Multi-modal recommender

systems leverage data from various modalities to provide person-

alized recommendation, and can alleviate the data sparsity and

the cold-start issue. For example, VBPR [13] fuses visual features

with item ID embeddings to enhance the performance of collab-

orative filtering. Subsequently, many works have adopted graph

neural network (GNN)-based methods to generate and integrate

representations from various modalities, such as MMGCN [46],

GRCN [45] and DualGNN [39]. In news recommendation, some

studies also integrate multi-modal information like visual content

to enhance recommendation performance [48, 49]. Additionally,

inspired by advances in contrastive self-supervised learning [3, 11],

methods such as CLCRec [44], SLMRec [36] and BM3 [54] employ

contrastive learning loss functions to further improve the quality

of representation learning. However, these models are inefficienct

as they often rely on cumbersome modality encoder and complex

fusion layers, which limits their usage in practical applications.

Knowledge Distillation. Knowledge distillation aims to transfer

knowledge from a complex large model to a smaller model, en-

abling the latter to achieve comparable performance with fewer

computational resources [15]. However, smaller models do not al-

ways benefit from stronger teachers [17, 26, 34]. To address this,

TAKD [26] introduces an intermediate-sized network to bridge the

gap between models, while DGKD [34] collects multiple assistant

models to enhance the distillation process. In recommender systems,

knowledge distillation is also employed to achieve efficient recom-

mendation, such as DESIGN [35] and PromptMM [41]. However,

these works employ a single-step KD approach, which is ineffec-

tive to address the large gap arising from the significant difference

between the teacher and the student. To bridge this gap, we present

a novel teacher-assisted Wasserstein knowledge distillation frame-

work for model compression, enabling effective knowledge transfer

and superior performance in multi-modal recommendation.

6 CONCLUSION
In this paper, we present TARec, a novel teacher-assistedWassertein

knowledge distillation framework to compress a cumbersome MM-

Rec into an efficient MLPRec. TARec introduces an intermediate-

size teacher assistant with a two-staged KD process to bridge the

gap between the teacher and the student, develops a novel logit-

level Wasserstein knowledge distillation loss function to ensure

stable training, and further complement the logit-level KD with an

embedding-level contrastive KD to distill the collaborative filtering

signals into the embeddings of the student model. Extensive ex-

periments on real-world datasets verify the effectiveness of TARec,

demonstrating that TARec significantly outperforms the state-of-

the-artMMRecs, reduces computational costs, and effectively bridge

the gap between the teacher and the student.
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A APPENDIX
A.1 Proof of Wasserstein Distance Continuity
In TARec, we propose using the Wasserstein distance instead of the

KL-divergence to measure the difference in logits between different

models, due to its superior continuity properties. Below, we provide

a detailed proof of this property.

Theorem 7.1 Let 𝝁 and 𝝂 be two probability measures on a Polish

space (X, 𝑑) with 𝑝 ∈ [1,∞), and fix a point x0 ∈ X. Then:

𝑊𝑝 (𝝁,𝝂) ≤ 2

1

𝑝′
(∫

X
𝑑 (x0, x)𝑝 𝑑 |𝝁 − 𝝂 | (x)

) 1

𝑝

,
1

𝑝
+ 1

𝑝′
= 1. (14)

Step 1: Decompose the Measure 𝝁 − 𝝂
Define the positive and negative parts of the measure 𝝁 − 𝝂 :

(𝝁 − 𝝂)+ = max{𝝁 − 𝝂, 0}, (𝝁 − 𝝂)− = −min{𝝁 − 𝝂, 0}. (15)

Then, the total variation distance of 𝝁 − 𝝂 is given by:

∥𝝁 − 𝝂 ∥TV = (𝝁 − 𝝂)+ + (𝝁 − 𝝂)− . (16)

Define the overlapping part of 𝝁 and 𝝂 :

𝝁 ∧ 𝝂 = 𝝁 − (𝝁 − 𝝂)+ = 𝝂 − (𝝁 − 𝝂)− . (17)

Define 𝑎 as the mass of the positive or negative part:

𝑎 = (𝝁 − 𝝂)+ [X] = (𝝁 − 𝝂)− [X] (18)

Step 2: Transference Plan 𝝅
Let 𝝅 be the transference plan obtained by keeping fixed all the

mass shared by 𝝁 and 𝝂 , and distributing the rest uniformly:

𝝅 = (Id, Id)# (𝝁 ∧ 𝝂) + 1

𝑎
(𝝁 − 𝝂)+ ⊗ (𝝁 − 𝝂)−, (19)

where (Id, Id)# (𝝁 ∧ 𝝂) is the pushforward measure of 𝝁 ∧ 𝝂 under

the identity map (Id, Id), and ⊗ denotes the product measure. A

more readable version of 𝝅 is:

𝝅 (𝑑𝑥 𝑑𝑦) = (𝝁 ∧ 𝝂) (𝑑𝑥) 𝛿𝑦=𝑥

+ 1

𝑎
(𝝁 − 𝝂)+ (𝑑𝑥) (𝝁 − 𝝂)− (𝑑𝑦) . (20)

Step 3: Estimate the Wasserstein Distance
According to the definition of the Wasserstein distance, we have:

𝑊𝑝 (𝝁,𝝂)𝑝 ≤
∫
X×X

𝑑 (x, y)𝑝 𝑑𝝅 (x, y) =
∫
X
𝑑 (x, x)𝑝 𝑑 (𝝁 ∧ 𝝂) (x)︸                          ︷︷                          ︸

=0

+ 1

𝑎

∫
X×X

𝑑 (x, y)𝑝 𝑑 (𝝁 − 𝝂)+ (x) 𝑑 (𝝁 − 𝝂)− (y) (21)

Step 4: Apply Inequalities
Using the triangle inequality 𝑑 (x, y) ≤ 𝑑 (x, x0) + 𝑑 (x0, y) and the

convexity inequality (𝐴 + 𝐵)𝑝 ≤ 2
𝑝−1 (𝐴𝑝 + 𝐵𝑝 ) for 𝐴, 𝐵 ≥ 0:

𝑑 (x, y)𝑝 ≤ [𝑑 (x, x0) + 𝑑 (x0, y)]𝑝

≤ 2
𝑝−1 (𝑑 (x, x0)𝑝 + 𝑑 (x0, y)𝑝

)
. (22)

Step 5: Estimate the Upper Bound of the Integral
10
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Substituting the inequality into the integral, we get:

𝑊𝑝 (𝝁,𝝂)𝑝 ≤
∫
X×X

𝑑 (x, y)𝑝 𝑑𝜋 (x, y)

=
1

𝑎

∫
X×X

𝑑 (x, y)𝑝 𝑑 (𝝁 − 𝝂)+ (x) 𝑑 (𝝁 − 𝝂)− (y)

≤ 2
𝑝−1

𝑎

∫
X×X

[
𝑑 (x, x0)𝑝 + 𝑑 (x0, y)𝑝

]
𝑑𝜆(x, y)︸                                    ︷︷                                    ︸

𝑑𝜆 (x, y) = 𝑑 (𝝁 − 𝝂 )+ (x) 𝑑 (𝝁 − 𝝂 )− (y)

≤ 2
𝑝−1

∫
X
𝑑 (x, x0)𝑝 𝑑 (𝝁 − 𝝂)+ (x)

+ 2
𝑝−1

∫
X
𝑑 (y, x0)𝑝 𝑑 (𝝁 − 𝝂)− (y)

= 2
𝑝−1

∫
X
𝑑 (x0, x)𝑝 𝑑 |𝝁 − 𝝂 | (x). (23)

Here, we used the fact that 𝑎 = (𝝁 − 𝝂)+ ( [𝑋 ]) = (𝝁 − 𝝂)− ( [𝑋 ]).
Step 6: Complete the Proof
Combining the above estimates, we have:

𝑊𝑝 (𝝁,𝝂)𝑝 ≤ 2
𝑝−1

∫
X
𝑑 (x0, x)𝑝 𝑑 |𝝁 − 𝝂 | (x), (24)

which implies:

𝑊𝑝 (𝝁,𝝂) ≤ 2

1

𝑝′
(∫

X
𝑑 (x0, x)𝑝 𝑑 |𝝁 − 𝝂 | (x)

) 1

𝑝

. (25)

Lemma 7.1 When the sample space Ω is a countable set, the total

variation distance between two probability distributions 𝝁 and 𝝂 is

equal to half of their L1 norm difference [21]:

| |𝝁,𝝂 | |𝑇𝑉 =
1

2

∥𝝁 − 𝝂 ∥1 =
1

2

∑︁
𝜔∈Ω

|𝝁 (𝜔) − 𝝂 (𝜔) |. (26)

Corollary 7.1 Considering Equations (25) and (26), we have:

𝑊𝑝 (𝝁,𝝂) ≤ 2
1− 2

𝑝𝐶

1

𝑝

𝑀
∥𝝁 − 𝝂 ∥

1

𝑝

1
= 𝐾 ∥𝝁 − 𝝂 ∥

1

𝑝

1
(27)

Here, 𝐶𝑀 is a constant related to the measure space. This result

demonstrates that the Wasserstein distance is Hölder continuous

with respect to the total variation distance.

A.2 Statistics of datasets

Table 4: Statistics of datasets with multi-modal item Visual
(V), Acoustic (A), Textual (T) contents.

Dataset Netflix Tiktok Electronics

Modality V T V A T V T

Feat. Dim. 512 768 128 128 768 4096 384

User 43,739 14,343 41,691

Item 17,239 8,690 21,479

Interaction 609,341 276,637 359,165

Sparsity 99.919% 99.778% 99.960%
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