
MA-GTS: A Multi-Agent Framework for Solving Complex Graph
Problems in Real-World Applications

Anonymous ACL submission

Abstract001

Graph-theoretic problems arise in real-world002
applications like logistics, communication net-003
works, and traffic optimization. These prob-004
lems are often complex, noisy, and irregular,005
posing challenges for traditional algorithms.006
Large language models offer potential solutions007
but face several challenges, including limited008
accuracy, input length constraints, and subopti-009
mal algorithm selection. To address these chal-010
lenges, we propose MA-GTS (Multi-Agent011
Graph Theory Solver), a multi-agent frame-012
work that decomposes these complex problems013
through agent collaboration. MA-GTS maps014
the implicitly expressed text-based graph data015
into clear, structured graph representations and016
dynamically selects the most suitable algorithm017
based on problem constraints and graph struc-018
ture scale. We validate MA-GTS using the019
G-REAL dataset, a real-world-inspired graph020
theory dataset we created. Experimental results021
show that MA-GTS outperforms state-of-the-022
art methods in cost-effectiveness, accuracy, and023
scalability, achieving strong results on multi-024
ple benchmarks (G-REAL 93.6%, GraCoRe025
96.9% NLGraph 98.4%) with robust perfor-026
mance on both closed- and open-source base027
models.028

1 Introduction029

Graph-theoretic problems have extensive applica-030

tions in domains such as logistics scheduling, com-031

munication networks, production planning, and032

traffic optimization (Li et al., 2023b). These prob-033

lems typically involve a large number of nodes034

and edges, coupled with complex constraints and035

dynamic variations, making their solution highly036

challenging (Bondy and Murty, 2008). Despite sig-037

nificant advancements in graph theory and algorith-038

mic design, traditional approaches remain compu-039

tationally expensive and inefficient when handling040

large-scale, high-complexity problems. Existing041

methods, including exact algorithms, greedy strate-042

gies, and dynamic programming (Bellman, 1966),043
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Figure 1: MA-GTS leverages multi-agent collaboration
to overcome noise and semantic loss in real-world graph
problems, leading to better answers.

perform well on small-scale instances. However, 044

as problem size increases, their computational com- 045

plexity and memory requirements grow exponen- 046

tially, rendering them impractical for real-world 047

applications. While heuristic methods (Kokash, 048

2005) can improve performance under specific con- 049

ditions, they often suffer from local optima and 050

require extensive parameter tuning and model se- 051

lection. Therefore, developing efficient and scal- 052

able solution frameworks capable of addressing 053

the computational demands and structural variabil- 054

ity of complex graph-theoretic problems remains a 055

critical research challenge. 056

Recent advancements in LLMs have spurred 057

interest in their applications for graph-theoretic 058

problems. Leveraging their natural language pro- 059

cessing (NLP) capabilities, LLMs can serve as 060

scene interpreters (mapping real-world problems 061

to graph models), graph extractors (identify- 062

ing graph structures from unstructured data), and 063

graph algorithm invokers (assisting in solving 064

and optimizing graph-based problems), address- 065

ing certain limitations of traditional algorithms. 066

However, significant challenges remain in exist- 067

ing methods (LLMs and simple multi-agent frame- 068

work). Figure 1 clearly illustrates the challenges 069

existing methods face when addressing real-world 070

graph problems. Firstly, LLMs rely on statisti- 071

cal pattern matching rather than strict mathemat- 072

ical computations, limiting their reasoning accu- 073

racy and making them unreliable for NP-hard prob- 074
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Figure 2: MA-GTS framework for solving real-world graph problems, consisting of three layers: Information
Extraction, Knowledge Integration, and Algorithm Execution, each with specialized agents.

lems (Hochba, 1997). Secondly, their ability to075

handle large-scale graphs is limited by the Trans-076

former (Vaswani, 2017) architecture’s context win-077

dow and computational complexity, which restricts078

their capacity to capture global information. Fi-079

nally, LLMs lack the ability to decompose and080

map real-world graph theory problems, which often081

contain complex textual noise and implicit graph082

structures. In summary, existing methods struggle083

to effectively handle long texts and graph problems084

in real-world scenarios. Problems like disordered085

nodes, noisy text, and poor algorithm choices can086

all affect the quality of graph modeling, text un-087

derstanding, and the interpretability of reasoning.088

These limitations highlight the inadequacy of exist-089

ing methods for solving complex graph-theoretic090

problems in real-world applications and underscore091

the need for more efficient and scalable paradigms.092

To tackle these challenges, we propose MA-093

GTS(Multi-Agent Graph Theory Solver), an in-094

novative multi-agent framework designed to ad-095

dress complex real world graph-theoretic problems096

through agent collaboration and competition. Fig-097

ure 2 illustrates the framework, which incorporates098

a multi-agent coordination mechanism allowing099

agents to perform local searches independently100

while sharing information and cooperating, thus101

improving solution efficiency and accuracy. MA-102

GTS analyzes the original real-world problem tex-103

tual data, filters out noise, and extracts key graph104

data and problem-specific details, reducing the text105

length that LLMs must process and enhancing rea-106

soning efficiency. MA-GTS selects the optimal107

graph algorithm based on refined text and adjusts108

the graph’s textual representation to match the al-109

gorithm, improving reasoning and solution qual-110

ity. This coordination mitigates the limitations of111

LLMs in implicit graph structure modeling, en-112

suring efficient solutions for complex graph tasks.113

Additionally, dynamic agent interactions enable 114

the framework to address large-scale problems and 115

adapt to complex constraints and dynamic changes. 116

117
To validate the effectiveness of the multi-agent 118

framework, we introduce the G-REAL dataset, de- 119

signed to simulate complex graph theory problems 120

relevant to real-world scenarios. Unlike traditional 121

datasets that rely on simple textual descriptions 122

of graph structures, G-REAL better reflects prac- 123

tical applications for large-scale models. Exper- 124

iments comparing MA-GTS with state-of-the-art 125

open-source and closed-source LLMs (including 126

three closed-source and three open-source mod- 127

els), as well as with a general multi-agent frame- 128

work and a graph-specific multi-agent framework, 129

show that MA-GTS significantly outperforms ex- 130

isting LLMs and multi-agent frameworks in terms 131

of efficiency and accuracy, under both direct rea- 132

soning and Chain of Thought (CoT) (Wei et al., 133

2022) reasoning settings. Notably, it excels in solv- 134

ing large-scale problems with complex constraints, 135

offering superior scalability, robustness, and cost- 136

effectiveness. The primary contributions of this 137

study are as follows: 138

• First, we propose an innovative multi-agent 139

framework, MA-GTS, which overcomes the lim- 140

itations of traditional graph theory algorithms in 141

large-scale complex problems, achieving state- 142

of-the-art performance in our tests. 143

• Second, we constructed a real-world graph the- 144

ory dataset, G-REAL, that aligns with practical 145

needs, providing the necessary data support for 146

validating the effectiveness of the algorithm. 147

• Finally, by introducing novel collaboration mech- 148

anisms and strategies, we achieve efficient and 149

precise graph theory problem-solving within the 150

multi-agent system, demonstrating its substantial 151

potential in real-world application scenarios. 152
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G-Real TIEA

PIEA

GSIEA

GTA

SGIA

ASA
Network Monitoring Problem

Problem Type: Vertex Cover

Wireless Channel Allocation Problem
Problem Type: Coloring

Delivery Logistics Problem
Problem Type: TSP

Our company has 8 computers connected by 
several communication links. These computers 
are named: ... ...

Problem: How can we select the minimum 
number of computers to deploy monitoring 
devices, such that every communication link is 
monitored by at least one device? 

Communication links as follows: ... ...

I am designing a public Wi-Fi network for my 
city, with ... The network will cover 8 major 
locations in the city: ... ...

The interference relationships between the base 
stations are as follows: ... ...

Can you help me come up with a solution for 
frequency allocation to ensure stable and 
reliable network performance across all 
locations?

Our company handles deliveries across a busy 
urban area, and today we have 7 distinct 
delivery points to cover ... ...

Here is the distance table showing the 
approximate distance (in kilometers) between 
each pair of locations: ... ...

Based on this distance table, we need to 
determine the optimal delivery route that ... 
return to warehouse with the shortest possible 
total distance.

Function:  Extracts problem type, 
constraints, and optimization objectives for 
graph theory solutions.

Tool Use: False

Output Format: 
• objective: The goal of the problem
• constraints: Key constraints in the problem.
• optimization: Optimization objectives

Function:  Extracts and standardizes graph 
data from text, identifying nodes, edges, 
weights, and topology for efficient downstream 
processing.
Tool Use: False
Output Format: 
• nodes: List of nodes in the graph
• edges: Connected nodes with attributes like 

weight or direction
• graph type: The type of graph 

Function:  Extracts background, entities, 
and definitions from text to provide semantic 
context for problem analysis.
Tool Use: False
Output Format: 
• context: The background and contextual 

description of the problem.
• entities: List of key entities or concepts 

mentioned.
• definitions: Definitions and explanations of 

terms involved

Graph Theory 
Knowledge Base

Function:  Integrates extracted information, 
analyzes graph properties, and searches a 
Graph Theory Knowledge Base to select the 
optimal algorithm, enhancing inference 
efficiency and solution accuracy.

Tool Use: False

Output Format: 
• problem: Type of graph theory problem.
• algorithm: Selected algorithm name.
• parameters: Required parameters for the 

algorithm.
• complexity: Time complexity of the 

selected algorithm.
• description: Why this algorithm is the best 

choice for the given problem.

Function: Converts textual graph data into a 
standardized, optimized format, ensuring 
consistency, efficiency, and compatibility for 
computational solving.
Tool Use: True
Output Format: 
• graph type: The type of graph
• adjacency list: Maps nodes to their 

neighbors and edge weights.
• node mapping: Links node names to 

numerical IDs.

Code Interpreter Graph Theory Algorithm 
Library

Function:  Executes the selected 
optimal graph algorithm by extracting and 
formatting required parameters, calling 
the Graph Theory Algorithm Library for 
computation, ensuring solution feasibility, 
and providing clear, explainable 
reasoning for the results.

Tool Use: True

Final Solution: 
The most efficient delivery route that visits 
each delivery point exactly once and 
returns to the warehouse is:

 **Route**: Warehouse → Gilded 
Archway → Jade Fountain → Zenith 
Arena → Primrose Boulevard → Temple 
Square → Pennywhistle Arcade → Lunar 
Pier → Warehouse

 **Total Distance**: 34 units
This solution ensures that the delivery is 
conducted in the most efficient manner, 
minimizing travel distance.

Figure 3: This figure details the G-REAL dataset’s composition and features, along with the full MA-GTS graph
problem-solving pipeline, outlining each component’s functions and input/output formats.

2 Related Work153

LLMs for Graph: Recent advancements in LLMs154

for graph tasks have led to significant contribu-155

tions in methodology and evaluation. These tasks156

are often classified into Enhancer, Predictor, and157

Alignment types (Li et al., 2023b). Notably, (Pan158

et al.) presents a roadmap for unifying LLMs159

with Knowledge Graphs (KGs), while (Chai et al.,160

2023) proposes an end-to-end method for solving161

graph-related problems, (Cao et al., 2024) improves162

LLMs’ understanding of graph structures by ad-163

dressing positional biases and incorporating an ex-164

ternal knowledge base. On the evaluation front, sev-165

eral benchmarks have been introduced. NLGraph166

(Wang et al., 2024) offers a simple test dataset for167

graph tasks, and GPT4Graph (Guo et al., 2023)168

evaluates LLM capabilities on semantic tasks. Gra-169

CoRe (Yuan et al., 2025) comprehensively verifies170

the graph understanding and reasoning capabilities171

of LLM. In addition to these representative bench-172

marks, ProGraph (Li et al., 2024a), GraphArena173

(Tang et al., 2024), GLBench (Li et al., 2024c),174

etc. are also widely used. Other notable works175

include (Liu and Wu, 2023), which assesses LLMs176

in graph data analysis, and (Perozzi et al., 2024),177

which designs a hint method for graph tasks.178

LLM Agents: Several multi-agent frameworks179

have been proposed to improve coordination and180

efficiency in complex tasks. MetaGPT (Hong et al.,181

2023) embeds human workflows into LLMs to re-182

duce hallucinations. CAMEL (Li et al., 2023a) en- 183

ables autonomous agent cooperation aligned with 184

human goals, and its extension OWL (Hu et al., 185

2025) builds on this. AutoGen (Wu et al., 2023) of- 186

fers a flexible framework for customizing agent in- 187

teractions via natural language and code. Addition- 188

ally, (Li et al., 2024b) addresses simple graph prob- 189

lems. Multi-agent frameworks like GraphTeam 190

(Li et al., 2024b), GCoder (Zhang et al., 2024), 191

and GraphAgent (Hu et al., 2024) can enhance the 192

reasoning ability of LLMs through multiple interac- 193

tions, but they are mainly applied to standard graph 194

structures, and their effectiveness on real-world 195

graph theory problems remains uncertain. 196

3 MA-GTS 197

We consider a real-world graph problem P , mod- 198

eled as a graph G. The system uses a graph the- 199

ory knowledge base KG and an algorithm library 200

Lcode to support problem understanding and solv- 201

ing. From P , it extracts the textual description T , 202

identifies the problem type P , and constructs the 203

graph structure G. The objective is to automati- 204

cally select an appropriate algorithm Alg∗, apply it 205

to the structured graph G′, and iteratively optimize 206

the solution Sn. 207

The MA-GTS framework adopts a hierarchi- 208

cal processing paradigm, comprising three lay- 209

ers: the Information Extraction Layer(IEL), the 210

Knowledge Integration Layer(KIL), and the Al- 211
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gorithm Execution Layer(AEL). These layers212

interact through a hierarchical collaborative com-213

munication mechanism, enabling an end-to-end214

pipeline that processes unstructured data and solves215

complex graph-theoretic problems. Additionally,216

to support the knowledge base of MA-GTS, we217

have constructed the Graph Theory Knowledge218

Base and Graph Theory Algorithm Library. More219

information about them in the Appendix A.220

The IEL processes text and structured data to ex-221

tract graph information and identify problem types222

for standardized input. The KIL builds structured223

graph data using graph theory and optimization to224

enhance accuracy and scalability. The AEL runs225

specified algorithms and performs self-checks to226

efficiently solve complex graph problems. Figure227

3 shows each agent’s function by layer.228

By leveraging agent collaboration, MA-GTS en-229

sures efficient problem-solving, high scalability,230

and adaptability to complex constraints, offering a231

novel solution for real-world graph-theoretic chal-232

lenges. The specific functionalities of each agent233

are detailed as follows:234

3.1 Information Extraction Layer (IEL)235

The IEL extracts relevant information from text236

and unstructured data, structures it for downstream237

use, and filters out irrelevant content to sharpen238

problem-specific details. It also captures implicit239

graph structures to boost efficiency and reduce the240

effects of text length on LLMs inference.241

Textual Information Extraction Agent (TIEA):242

The TIEA analyzes real-world graph problems to243

extract key textual information unrelated to graph244

structure or solution goals. Using NLP, it identifies245

and structures context, background, entities, con-246

cepts, and definitions, organizing semantic content247

to support later analysis. The output is standardized248

for downstream processing.249

Graph Structure Information Extraction Agent250

(GSIEA): The GSIEA extracts implicitly embed-251

ded graph-structural information from text, par-252

ticularly structured formats like tables, lists, adja-253

cency matrices, or edge lists. It parses these inputs254

to identify nodes, edges, weights, and other topo-255

logical properties, converting them into standard-256

ized graph representations (e.g., adjacency matri-257

ces, lists). This transformation enables downstream258

agents to efficiently use the extracted data for prob-259

lem solving.260

Problem Information Extraction Agent (PIEA):261

The PIEA leverages LLMs’ problem classification262

Algorithm 1 Pipeline of MA-GTS
Input: Real-world graph problem P , graph theory knowledge

baseKG , graph theory algorithm libraryLcode., self check
number Ncheck

Output: Optimized solution Sn

1: Step 1: Information Extraction Layer
2: Extract textual information: T ← ATIEA(P )
3: Identify problem type: P ← APIEA(P )
4: Extract graph structure: G← AGSIEA(P )
5: Generate extracted information set: (T ,P, G)
6: Step 2: Knowledge Integration Layer
7: Select best algorithm:
8: LP ← AGTA(T ,P,KG)
9: Alg∗ ← arg optAlgi∈LP

AGTA(Algi, T )
10: Get structured graph: G′ ← ASGIA(G)
11: Define structured problem: (G′, Alg∗)
12: Step 3: Algorithm Execution Layer
13: Load algorithm code:
14: CodeAlg∗ ← AASA(Alg∗,Lcode)
15: Get algorithm output :
16: Scode ← AASACoding(CodeAlg∗ , G

′)
17: Get optimized solution Sn :
18: S0 ← AASA(Scode, Alg∗, G′);
19: for i = 1, 2, · · · , Ncheck do
20: Sn ← AASA(S

n−1, Alg∗, G′);
21: end for

capabilities to analyze real-world graph-theoretic 263

problems, identify their types, and extract key com- 264

ponents. It classifies problems (e.g., shortest path, 265

network flow, graph matching), extracts relevant 266

constraints and objectives, and outputs the infor- 267

mation in a structured format. This guidance im- 268

proves the accuracy and efficiency of downstream 269

problem-solving agents. Formally,the operation of 270

IEL is: 271

T ← ATIEA(P ),P ← APIEA(P ),

G← AGSIEA(P ), IELoutput = (T ,P, G)
(1) 272

where P is graph theory problem and A∗ is a differ- 273

ent agent in IEL, (T ,P, G) represent the extracted 274

text information, question information and graph 275

structure information respectively. 276

3.2 Knowledge Integration Layer (KIL) 277

The primary objective of this layer is to construct 278

structured graph data with high representational ca- 279

pacity and integrate graph-theoretic principles for 280

advanced modeling, thus enhancing the efficiency 281

of the solution and the quality of optimization. 282

Structured Graph Information Agent (SGIA): 283

The SGIA standardizes graph data from the GSIEA 284

for efficient, consistent, and usable output. It 285

cleans, deduplicates, and optimizes raw data into 286

formats compatible with diverse environments to 287

ensure accuracy. Additionally, it optimizes data 288

storage and indexing based on algorithm require- 289

ments, enhancing computational efficiency for 290
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large-scale graphs. Without this agent, data incon-291

sistencies, redundancy, and unoptimized structures292

could hinder algorithm performance. As a key com-293

ponent of MA-GTS, it ensures data standardization294

and optimization for efficient, scalable problem-295

solving.296

Graph Theory Agent (GTA): The GTA integrates297

information from the TIEA and PIEA with a Graph298

Theory Knowledge Base to analyze graph prob-299

lems and find optimal solutions, improving LLM300

inference efficiency. It models the input problem301

by extracting key features such as type, constraints,302

and structural complexity, then queries the Graph303

Theory Knowledge Base to select the most suit-304

able solution method from classical algorithms305

(e.g., shortest path, maximum flow, graph match-306

ing) (Gallo and Pallottino, 1988; Goldberg and Tar-307

jan, 1988) and heuristic techniques. By matching308

problems to algorithms, it reduces inefficient ex-309

haustive searches, cutting computational costs and310

improving solution quality. Additionally, it also311

guides multi-agent collaboration, allowing the AEL312

to directly invoke optimal algorithms for efficient,313

scalable execution. Without it, LLMs risk poor314

strategy selection, high computation, and lower ef-315

ficiency. As a key MA-GTS component, it ensures316

effective algorithm selection and inference in com-317

plex graph tasks. Formally,the operation of KIL318

is:319

LP ← AGTA(T ,P,KG),

Alg∗ ← arg optAlgi∈LP
AGTA(Algi, T ),

G′ ← ASGIA(G),KILoutput = (G′, Alg∗)

(2)320

where LP represents the set of graph theory al-321

gorithms selected by GTA based on textual and322

problem-specific information, KG denotes the323

Graph Theory Knowledge Base, Alg∗ refers to the324

algorithm suitable for the given graph size, and G′325

stands for the normalized graph structure data.326

3.3 Algorithm Execution Layer (AEL)327

The primary goal of this layer is to integrate mul-328

tiple algorithmic paradigms, ensuring efficient,329

scalable, and robust solutions under various con-330

straints. Without it, the MA-GTS framework would331

rely solely on LLM-based inference, leading to332

high computational costs, instability, or suboptimal333

outcomes. As the computational core, the AEL334

enables the efficient solution of complex graph-335

theoretic problems across varying scales and com-336

plexities.337

Algorithm Solving Agent (ASA): The ASA is 338

the core computational unit of the AEL, responsi- 339

ble for solving problems by executing algorithmic 340

functions based on the optimal strategy selected by 341

the GTA and the structured graph data processed 342

by the SGIA. It utilizes a Graph Theory Algo- 343

rithm Library that integrates exact algorithms 344

(Noto and Sato, 2000) and heuristic approaches, 345

ensuring suitable solutions across various problem 346

scenarios. After computation, the agent performs 347

result integration and verification through cross- 348

validation, error analysis, and constraint checking 349

to ensure correctness. The ASA also offers ex- 350

plainable reasoning with inference paths, key deci- 351

sions, and optimization steps for transparency. As 352

MA-GTS’s computational core, it delivers efficient, 353

robust, and scalable solutions for complex graph 354

problems. Formally,the operation of AEL is: 355

CodeAlg∗ ← AASA(Alg∗,Lcode),

Scode ← AASACoding(CodeAlg∗ , G
′),

S0 ← AASA(Scode, Alg∗, G′),

(3) 356

where Lcode represents the Graph Theory Algo- 357

rithm Library, CodeAlg∗ denotes the code obtained 358

after optimal algorithm matching by ASA, Scode 359

refers to the output generated by running the code, 360

and S0 represents the interpretable output obtained 361

by combining the code output with problem review. 362

Finally, ASA undergoes n rounds of self-checking, 363

ultimately producing the final suitable result, Sn. 364

4 G-REAL 365

Existing datasets for evaluating LLMs’ understand- 366

ing and reasoning on graph-structured data are ex- 367

plicitly constructed. However, real-world graph- 368

theoretic problems often involve rich textual seman- 369

tic information and implicitly structured represen- 370

tations. To assess the performance of the MA-GTS 371

framework on practical problems, we introduce G- 372

REAL, a dataset that captures real-world graph 373

problems. This dataset comprises three commonly 374

encountered graph-theoretic challenges: (1) the 375

optimization of logistics and delivery routes, (2) 376

wireless network channel allocation, and (3) net- 377

work monitoring optimization. These correspond 378

to four fundamental graph problems: the Traveling 379

Salesman Problem (TSP), the Minimum Graph 380

Coloring Problem, the Minimum Vertex Cover 381

Problem and the Shortest Path Problem, respec- 382

tively (Hoffman et al., 2013; Jensen and Toft, 2011; 383

Hochbaum, 1982). They correspond to four com- 384

mon problems in real-world scenarios, namely the 385
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G-REAL GraCoRe NLGraph
TSP Coloring Vetex Cover Shortest Path TSP Shortest Path Cycle

#Graph 900 900 900 900 360 380 1150
Node Range 8 to 25 8 to 25 8 to 25 8 to 25 8 to 25 5 to 20 5 to 15

Real-World Problem Delivery Logistics Wireless Channel Allocation Network Monitoring Target Navigation $ $ $

Text Noise " " " " $ $ $

Table 1: Differences between different datasets.

Delivery Logistics Problem, the Wireless Chan-386

nel Allocation Problem, the Network Monitor-387

ing Problem, and the Target Navigation Problem.388

The composition of G-REAL can be seen briefly389

in Figure 3. In this section, we provide a detailed390

description of the dataset’s composition and con-391

struction methodology. More detail about G-REAL392

in Appendix C.393

4.1 Data Collection394

To mitigate the risk of data contamination in LLMs,395

which could lead to biased test accuracy due to396

prior exposure to training data, G-REAL employs397

several techniques, including randomized node398

naming, synthetic node descriptions, added tex-399

tual noise, and randomly structured graph represen-400

tations. Node names are generated by randomly401

combining the 26 letters of the alphabet, and syn-402

thetic node descriptions are created with arbitrary403

textual representations. For example, a node may404

be described as: "Amber Plaza: A bustling cen-405

tral square surrounded by cafes, boutiques, and406

street performers." These fictional descriptions en-407

sure that LLMs cannot leverage prior knowledge,408

maintaining the integrity of the evaluation.409

To improve dataset realism and obscure graph410

structure, we introduce textual noise to each in-411

stance, simulating real-world graph problems em-412

bedded in unstructured text. Graph structures are413

randomly generated, with each node assigned a414

unique name to reduce prior LLM exposure. Op-415

timal and approximate solutions are generated for416

each problem type using established algorithms,417

providing benchmarks for evaluating both LLM418

and MA-GTS performance.419

4.2 Data Statistics420

To evaluate our framework’s effectiveness in real-421

world graph-theoretic problems, we construct test422

datasets with graph sizes from 8 to 25 nodes for423

each problem type. Each sub-dataset includes 50424

instances with distinct structures, offering both op-425

timal and approximate solutions for a comprehen-426

sive assessment of robustness and generalization.427

A statistical summary is provided in Table 1.428

4.3 Evaluation 429

For the TSP, Minimum Graph Coloring, Minimum 430

Vertex Cover, and Shortest Path problems, the out- 431

put includes both selected nodes and the final so- 432

lution, requiring dual evaluation. To fully assess 433

LLMs’ graph reasoning, both output types are used 434

as evaluation metrics. The model’s performance 435

is measured by verifying the accuracy of both the 436

selected node set and the computed solution. The 437

methodology for calculating the final accuracy is 438

as follows: ACCALL = 0.5 · ACCnodes + 0.5 · 439

ACCresult, where ACCnodes and ACCresult repre- 440

sent the accuracy of the node set and the predicted 441

values, respectively, with a value of 1 for correct 442

predictions and 0 for incorrect ones. 443

5 Experiments Setup 444

5.1 Datasets 445

To evaluate the reasoning capabilities of the MA- 446

GTS framework across various graph-theoretic 447

problem types, complexities, and domains, we used 448

the G-REAL dataset alongside two benchmark 449

datasets, GraCoRe (Yuan et al., 2025) and NL- 450

Graph (Wang et al., 2024), covering seven distinct 451

graph-theoretic tasks. We selected three sub-tasks 452

for evaluation: the TSP, shortest path problem, and 453

Cycle problem in GraCoRe and NLGraph. Notably, 454

both GraCoRe and G-REAL include TSP instances, 455

both NLGraph and G-REAL include Shortest Path 456

instances; however, the G-REAL TSP and Shortest 457

Path is more complex and reflects real-world sce- 458

narios with implicit graph structure data. By com- 459

paring performance on these two types instances, 460

we assess the model’s ability to handle more in- 461

tricate problems. The simpler tasks in NLGraph 462

evaluate the generalization and robustness of MA- 463

GTS. A summary of the differences between these 464

datasets is provided in Table 1. 465

5.2 Baselines and Foundation Model 466

We compared three of OpenAI’s latest closed- 467

source models: o3-mini, GPT-4o-mini, and GPT- 468

3.5 (Achiam et al., 2023). Additionally, we eval- 469

uated three of the most recent open-source mod- 470

els: Llama3-7b (Touvron et al., 2023), Qwen2.5- 471

7b (Bai et al., 2023) and Deepseek-V3-660B (Liu 472

et al., 2024). For the evaluation methodology, we 473

adopted both direct inference and CoT reasoning 474

approaches. For the foundation model, we selected 475

the GPT-4o-mini and Deepseek-V3-660B model, 476

they respectively represent some of the more ad- 477

6



G-REAL GraCoRe NLGraph
Model Method Delivery Logistics

Problem (TSP)
Wireless Channel

Allocation Problem (Coloring)
Network Monitoring

Problem (Vetex Cover)
Target Navigation

Problem (Shortest Path) TSP Shortest Path Cycle

Direct 11.8% 80.1% 68.7% 47.1% 79.7% 100.0% 97.3%o3-mini
CoT 12.9% 83.1% 72.8% 41.8% 80.0% 98.4% 97.8%

Direct 2.5% 23.4% 0.3% 7.1% 1.1% 27.3% 50.9%GPT-4o-mini
CoT 3.1% 25.1% 0.0% 6.4% 1.1% 27.6% 51.1%

Direct 0.1% 0.7% 2.5% 4.0% 1.9% 30.5% 50.0%GPT-3.5
CoT 2.1% 7.6% 4.8% 3.6% 1.6% 34.7% 49.9%

Direct 0.6% 16.2% 17.4% 4.6% 3.8% 22.1% 49.6%Qwen2.5-7B
CoT 0.6% 8.8% 8.5% 5.8% 3.0% 27.3% 52.7%

Direct 3.6% 10.1% 7.2% 4.3% 0.3% 12.6% 53.7%Llama3-7B
CoT 4.1% 14.3% 6.7% 4.2% 0.3% 19.4% 50.9%

Direct 4.9% 27.2% 21.1% 11.4% 10.5% 50.8% 78.1%Deepseek-V3-660B
CoT 5.5% 28.3% 22.2% 32.2% 18.8% 92.9% 77.8%

OWL (GPT-4o-mini) Multi-Agent 10.2% 47.4% 7.8% 19.1% 4.4% 36.3% 49.7%

GraphTeam (GPT-4o-mini) Multi-Agent 8.8% 90.0% 12.0% 87.7% 84.4% 98.4% 100.0%
MA-GTS (Deepseek-V3-660B) Multi-Agent 76.2% 88.2% 99.1%(↑26.3%) 88.2% 93.1% 93.8% 100.0%

MA-GTS (GPT-4o-mini) Multi-Agent 94.9%(↑82%) 94.5%(↑4.5%) 93.2% 91.7%(↑4%) 96.9%(↑12.5%) 97.8%(↓2.2%) 98.9%

Table 2: The performance comparison of LLMs and MA-GTS on G-REAL and two benchmarks is shown. Red
text indicates MA-GTS’s accuracy improvement over the best LLM, while green text highlights the opposite.
GPT-4o-mini was used as the base model for MA-GTS.

vanced open-source and closed-source models. Fur-478

thermore, we conducted a comparative analysis of479

the performance of OWL (Hu et al., 2025) and480

GraphTeam (Li et al., 2024b), which respectively481

represent a general-purpose multi-agent framework482

and a graph-theoretic multi-agent framework. Re-483

garding the final test results, for each task, we used484

the accuracy of the final computed solution as the485

primary evaluation metric. More details about mod-486

els in Appendix B.487

6 Results and Analysis488

We evaluate the performance of our framework489

against other LLMs on graph theory problems, with490

results presented in Table 2. MA-GTS outperforms491

all baselines, achieving state-of-the-art results and492

matching the performance of the leading o3-mini493

model on simpler problems. We also assess the494

MA-GTS framework from multiple perspectives.495

6.1 Performance on real-world problems496

As shown in Table 2, G-REAL provides four real-497

world graph theory problems, with TSP being the498

most complex. Based on the results from these499

problems, MA-GTS demonstrates superior perfor-500

mance, achieving an accuracy rate exceeding 90%501

across all tests. Notably, in the case of the TSP,502

MA-GTS outperforms the o3-mini model by 82%.503

Even when built upon the open-source DeepSeek504

model, MA-GTS still achieves strong performance.505

Furthermore, when compared to the GPT-4o-mini506

model, MA-GTS significantly improves its perfor-507

mance from 3.1% to 94.9%, marking a substantial508

increase. This clearly underscores the effectiveness509

of our framework. Additionally, it is evident that,510

aside from the o3-mini model, other models exhibit511

subpar performance on the G-REAL dataset. It is512

particularly interesting that the performance gap be-513

tween the two open-source and two closed-source 514

models is minimal, suggesting that the complexity 515

of the problems may lead to a consistent decline 516

in performance, an issue that warrants further in- 517

vestigation. Overall, MA-GTS stands out for its 518

advanced capabilities and generalization when han- 519

dling complex graph theory problems. 520

6.2 Performance on simple problem 521

Table 2 shows that for simpler graph theory prob- 522

lems, such as the Shortest Path and Cycle problems 523

from the NLGraph dataset, the o3-mini model per- 524

forms exceptionally well, with MA-GTS also show- 525

ing strong results. Specifically, for Shortest Path 526

problem, the gap between MA-GTS and o3-mini is 527

just 2.2%, and MA-GTS performs equally well on 528

the Cycle problem. In contrast, other models per- 529

form less satisfactorily. The MA-GTS framework, 530

based on the GPT-4o-mini model, significantly en- 531

hances the accuracy of the 4o model, bringing it 532

on par with the o3-mini. Overall, MA-GTS demon- 533

strates excellent performance across diverse textual 534

descriptions and graph structures, highlighting its 535

remarkable generalization capabilities. 536

6.3 G-REAL effectiveness analysis 537

To evaluate the performance of LLMs and MA- 538

GTS on real-world graph theory problems, we con- 539

structed the G-REAL dataset. As shown in Ta- 540

ble 2, the performance of existing LLMs on the 541

G-REAL dataset is suboptimal. To validate the 542

effectiveness of this dataset, we compared it with 543

the TSP problem from the GraCoRe Benchmark, 544

testing problems with node sizes ranging from 8 545

to 25, consistent with the scale of G-REAL. From 546

this comparison, we observe that on the G-REAL 547

dataset, which includes text complexity, added text 548

noise, and node name shuffling, the o3-mini model 549
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TSP Coloring VertexCover Shortest Path
Inp.Tokens(k) Out.Tokens(k) Price($) Inp.Tokens(k) Out.Tokens(k) Price($) Inp.Tokens(k) Out.Tokens(k) Price($) Inp.Tokens(k) Out.Tokens(k) Price($)

o3-mini 2.31 4.98 0.0244 0.69 6.83 0.0309 0.6 9.73 0.0443 0.87 3.12 0.0147
MA-GTS(GPT-4o-mini) 13.32 4.56(↓8.4%) 0.0047(↓80.7%) 6.79 2.57(↓62.4%) 0.0025(↓91.9%) 6.39 2.31(↓76.2%) 0.0023(↓94.8%) 7.36 2.42(↓22.4%) 0.0025(↓82.9%)

Table 3: Comparison of inference costs between MA-GTS and o3-mini model on G-REAL.
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Figure 4: Performance of different problems across
varying node numbers (MA-GTS v.s. o3-mini).

performs poorly, with its accuracy dropping from550

79.7% in GraCoRe to 11.8%. In contrast, the551

MA-GTS framework appears unaffected by the552

complexities of real-world graph theory problems,553

maintaining performance above 90%. This result554

indirectly supports the validity of the G-REAL555

dataset and shows the stability of the MA-GTS.556

557

6.4 Impact of Node Size558

To evaluate the impact of node scale on LLMs in559

complex graph theory problems, we tested the per-560

formance of MA-GTS and the o3-mini model on561

four complex graph problem datasets, with node562

sizes ranging from 8 to 25. The results, shown in563

Figure 4, clearly demonstrate that as the number564

of nodes increases, the performance of the o3-mini565

model deteriorates, particularly in the TSP prob-566

lem from G-REAL. For node sizes greater than 20,567

the o3-mini model is unable to produce correct an-568

swers. In contrast, under the MA-GTS, the effect569

of node size is less pronounced. Even with more570

than 20 nodes, MA-GTS maintains high prediction571

accuracy and stability. It highlights both the effec-572

tiveness and superiority of MA-GTS. Performance573

of MA-GTS on larger node scales is discussed in574

the Appendix D.575

6.5 Cost Analysis576

Since MA-GTS requires multiple agent calls to577

model APIs for inference, cost considerations arise.578

To address this, we compared the inference costs579

of MA-GTS based on the GPT-4o-mini model with580

the o3-mini model, as shown in Table 3. Surpris-581

ingly, MA-GTS incurs significantly lower costs582

than the o3-mini model. The o3-mini model, in583

contrast, has hidden reasoning tokens during in-584

ference, leading to long, concealed reasoning pro-585

cesses even in direct inference scenarios. As shown586

in the table, the inference cost of MA-GTS is about587

G-REAL
TSP Coloring Vetex Cover Average error rate

GPT-4o-mini(Tool use) 30.8% 39.0% 4.6% 75.0%
w/o IEL 12.5% 42.2% 14.6% 19.4%
w/o KIL 7.8% 37.1% 12.8% 1.0%
w/o AEL 4.6% 32.1% 7.4% 3.2%

MA-GTS(GPT-4o-mini) 94.9% 94.5% 93.2% 0.5%

Table 4: Ablation Experiments for Each Layer of MA-
GTS ("Tool use" refers to the utilization of only the
algorithm library we have constructed).

one-tenth to one-twentieth of the o3-mini model, 588

requiring far fewer inference tokens. Moreover, 589

MA-GTS achieves far better results than o3-mini, 590

demonstrating its high cost-effectiveness in deliv- 591

ering more accurate outcomes at a lower cost. Run- 592

time efficiency is discussed in the Appendix D. 593

6.6 Ablations Studies and Analyses 594

To validate the effectiveness of each layer in MA- 595

GTS, we conducted ablation experiments, with re- 596

sults shown in Table 4. It demonstrates that each 597

layer is crucial, and removing any layer signifi- 598

cantly affects the final results. Although the IEL 599

layer has the smallest impact on accuracy, its ab- 600

sence leads to a substantial increase in error rate 601

(19%), highlighting its role in maintaining stabil- 602

ity. The absence of the AEL layer results in the 603

greatest accuracy loss. Even when a module is re- 604

moved, MA-GTS still improves the accuracy of the 605

base model, validating the framework’s effective- 606

ness. Additionally, when inference is performed 607

using only the GPT-4o-mini model with the con- 608

structed algorithm library, accuracy improves, but 609

the error rate remains high (75%). For graph sizes 610

larger than 10 nodes, the model struggles to cor- 611

rectly invoke algorithms, further demonstrating the 612

robustness and generalizability of MA-GTS. 613

7 Conclusion 614

We introduces MA-GTS, a Multi-Agent Frame- 615

work for solving real-world graph theory problems, 616

validated using the G-REAL dataset. Performance 617

comparisons across various LLMs show that MA- 618

GTS achieves high accuracy, stability, and cost- 619

effectiveness, excelling in both complex and sim- 620

pler graph problems. With accuracy consistently 621

above 90%, MA-GTS outperforms existing meth- 622

ods, maintaining stability across different problem 623

scales and being well-suited for larger graphs. Fu- 624

ture work will focus on scaling to even larger prob- 625

lems and improving cost-efficiency. 626
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Limitations627

Although the MA-GTS framework demonstrates628

significant advantages in addressing complex629

graph-theoretic problems, several limitations re-630

main. First, while the G-REAL dataset provides631

valuable support for validating the framework’s632

effectiveness, it may not fully capture the diver-633

sity of real-world graph problems, thus limiting634

the generalizability of the framework. Second, the635

MA-GTS framework may still require substantial636

computational resources when handling large-scale637

problems, particularly in resource-constrained en-638

vironments. Moreover, despite the improvements639

made in enhancing LLMs’ graph structure model-640

ing capabilities, LLMs may still encounter perfor-641

mance bottlenecks when dealing with graphs that642

exhibit highly dependent relationships or special-643

ized structures. Finally, the current capabilities of644

open-source model invocation tools are insufficient,645

which may impact the stability of the MA-GTS646

framework.647
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A MA-GTS Details802

A.1 Graph Theory Knowledge Base803

The Graph Theory Knowledge Base is a graph the-804

ory problem database that we have constructed,805

containing a wide range of common graph theory806

problems encountered in daily life, including both807

complex and simple ones. Each problem is asso-808

ciated with multiple optimal or approximate solu-809

tion algorithms. For each algorithm, we provide a810

detailed description of its complexity, applicable811

conditions, and parameter settings, though it does812

not include corresponding code. This database can813

serve as a reference book for agents in graph theory.814

A specific example can be seen in Figure 5.815

A.2 Graph Theory Algorithm Library816

The Graph Theory Algorithm Library is a Python817

code repository that we have constructed, contain-818

ing code corresponding to the graph theory algo-819

rithms in the Graph Theory Knowledge Base. This820

ensures the correctness of input parameters and821

helps maintain the stability of the MA-GTS frame-822

work. Each code snippet is accompanied by de-823

tailed parameter descriptions and is designed to824

accommodate various types of graph structure rep-825

resentations. A specific example can be seen in826

Figure 6.827

A.3 Prompt Templates828

In this section, I will introduce the prompts for each829

agent, which will be displayed in Figures 7 to 12.830

B Details on baseline models831

We evaluated 6 of the latest LLMs, including Ope-832

nAI o3-mini reasoning model, launched on Jan-833

uary 31, 2025 and the latest open-source model,834

DeepSeek-V3. Table 6 presents more details on the835

models and their versions.836

C Details on G-REAL837

Existing graph theory benchmarks do not align with838

real-world scenarios. To better evaluate the ability839

of MA-GTS in solving graph theory problems in840

practical contexts and to test the performance gap841

between LLMs on structured textual graph data842

and implicit representations, we constructed the G-843

REAL dataset. This dataset contains three common844

real-world problems, with detailed information pro-845

vided in the G-REAL section. It generates problem846

graphs of varying scales by randomly encoding847

node names and structures, with the naming con- 848

ventions and sample problems illustrated in Figures 849

13 to 16. 850

D More experimental analysis 851

D.1 Large-scale node analysis 852

Why 8-25 enough: In our work, we chose to fo- 853

cus on graphs with 8–25 nodes, primarily due to 854

the complexity and reasoning difficulty posed by 855

realistic tasks. Unlike large-scale but structurally 856

explicit graphs, the G-REAL dataset introduces 857

substantial textual noise, implicit graph structures, 858

and randomly named nodes. These factors make 859

the problem setting significantly closer to real- 860

world semantic reasoning scenarios and increase 861

the overall problem difficulty. This differs from ex- 862

isting benchmarks, which typically construct graph- 863

structured data using explicitly defined and concise 864

textual descriptions. 865

More experiments: We have extended our exper- 866

iments to include larger graph sizes. As shown 867

in Table 7, we tested the TSP and Graph Color- 868

ing problems with 25, 30, 35, and 40-node graphs, 869

with 5 instances evaluated for each size. The re- 870

sults show that even on larger graphs, our frame- 871

work maintains high accuracy and stability. We 872

plan to include more experiments on even larger 873

graph sizes in future versions of the paper to further 874

validate the scalability of our approach.

25 30 35 40
TSP 0.8 0.6 0.8 0.8

Coloring 1 0.6 1 0.6

Table 5: This table shows the results of experiments
conducted on TSP and Coloring problems with extended
graph sizes of 25, 30, 35, and 40 nodes. For each size, 5
problem instances were tested.

875

D.2 Runtime analysis 876

G-REAL focuses on graph reasoning under com- 877

plex semantic conditions, which more closely re- 878

semble real-world user scenarios. These tasks often 879

contain intricate semantic information and irrele- 880

vant noise, posing significant challenges for LLMs. 881

For instance, the Delivery Logistics Problem in G- 882

REAL is a TSP instance. In contrast to existing 883

TSP benchmarks—where nodes are ordered, con- 884

nections are explicitly stated, and the problem type 885

is clearly defined—G-REAL requires the model to 886

infer all of this information from natural language. 887
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This increases the difficulty of graph construction888

and makes reasoning more error.889

We conducted a supplementary evaluation on890

the G-REAL-TSP task by randomly selecting five891

graphs with 15-node scales (Table 6). We measured892

the average solution time per problem instance, in-893

cluding task decomposition, tool invocation, and re-894

sult verification. Compared to existing multi-agent895

frameworks, MA-GTS demonstrates a clear advan-896

tage in time efficiency. These results highlight that897

our framework is capable of maintaining high ac-898

curacy while keeping inference time relatively low,899

further validating its practical applicability.900

MA-GTS Graphteam OWL
Time use (s) 148.48 251.34 139.39

ACC (%) 100 0 0

Table 6: The table presents the results of testing on the
G-Real-TSP problem using 5 randomly selected graphs
with 15 nodes each.Base model is GPT-4o-mini.
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{
    "graph_theory_problems": {
      "TSP(Traveling Salesman Problem)": [
        {
          "algorithm": "Brute Force",
          "solution_type": "Optimal",
          "description": "By exhaustively checking all possible paths, it finds the shortest route.",
          "suitable_graph_size": "Suitable for small graphs (up to 10 nodes) due to factorial time complexity 
(O(n!)), as the computation time increases drastically with more nodes.",
          "time_complexity": "O(n!)",
          "input": {
            "graph": "A complete weighted graph represented as an adjacency matrix or edge list.",
            "start_node": "The starting node for the traveling salesman problem."
          }
        },
        {
          "algorithm": "Dynamic Programming (Held-Karp Algorithm)",
          "solution_type": "Optimal",
          "description": "Uses dynamic programming to reduce repeated calculations, building the global 
solution from subproblems.",
          "suitable_graph_size": "Suitable for medium-sized graphs (up to 50 nodes). This algorithm has 
higher time complexity, so it’s more suitable for smaller to medium-sized instances.",
          "time_complexity": "O(n^2 * 2^n)",
          "input": {
            "graph": "A complete weighted graph represented as an adjacency matrix or edge list.",
            "start_node": "The starting node for the traveling salesman problem."
          }
        }, ... ...

Figure 5: Details of Graph Theory Knowledge Base

def transform_dict(input_dict):
    output_dict = {}
    for key, value in input_dict.items():
        new_list = []
        for item in value:
            for sub_key, sub_value in item.items():
                new_list.append((int(sub_key), int(sub_value)))
        output_dict[int(key)] = new_list
    return output_dict

def tsp_dynamic_programming(adjacency_list): ...

def tsp_greedy_nearest_neighbor(adjacency_list): ...

def graph_coloring_backtracking(adjacency_list): ...

def graph_coloring_greedy(adjacency_list):  ...

def vertex_cover_brute_force(adjacency_list): ...

Figure 6: Details of Graph Theory Algorithm Library
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TIEA_SYS_PROMPT = 
"""
Your task is to extract textual information from the input real-world graph theory 
problem. This information should include background descriptions, context, 
definitions of entities or concepts, and any other details not directly related to 
graph structure or problem objectives. Output the results as a dictionary in the 
following format:

{
    "context": "The background and contextual description of the problem",
    "entities": "A list of all entities or concepts mentioned",
    "definitions": "Definitions and explanations of terms involved"
}
Based on the input, complete the extraction and ensure the format is clear.
"""

Figure 7: Details of TIEA

PIEA_SYS_PROMPT = 
"""
Your task is to extract the problem objectives and related details from the input real-
world graph theory problem. Clearly state the problem's goal (e.g., shortest path, 
maximum flow, graph coloring), any constraints, and potential optimization 
objectives.You need to explain in detail what the goal of the problem is. If you are 
looking for a path, you need to give the starting and ending nodes. Output the results 
as a dictionary in the following format:

{
    "objective": "The goal of the problem",
    "constraints": "Any constraints associated with the problem",
    "optimization": "Any explicit optimization objectives, if applicable"
}
Based on the input, complete the extraction and ensure the format is clear.
"""

Figure 8: Details of PIEA
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GSIEA_SYS_PROMPT = 
"""
Your task is to extract graph structure information from the input real-world graph theory problem. Ensure the 
information is complete and concise, even if there are many nodes or edges. Follow these steps:

1. **Nodes**: List all nodes. If the number of nodes is too large, group them logically (e.g., by properties or 
categories) and explain the grouping.

2. **Edges**: List all edges in a simplified format as tuples:
    - Each tuple contains the two connected nodes and, if applicable, essential attributes (e.g., weight, 
direction).
    If the edges are too many, group them logically (e.g., by node, weight range) and explain the grouping.

3. **Graph Type**: Specify the type of graph (e.g., undirected, directed, weighted).

Output the results as a dictionary in the following format:
{
    "nodes": ["Node1", "Node2", "Node3", ...],
    "edges": [
        ("Node1", "Node2", {"weight": 5}),
        ("Node2", "Node3", {"direction": "one-way"}),
    ],
    "graph_type": "Type of the graph (e.g., undirected, directed, weighted)"
}
If grouping is applied, clearly state the grouping method and ensure **all information is complete**.
"""

Figure 9: Details of GSIEA

SGIA_SYS_PROMPT = """
You will receive a textual graph structure data, which contains the information of the 
nodes and edges of the graph. Please convert it into a digital graph structure data in 
a standard graph representation format. Note that you can only call the tool once. 
You can use appropriate tools or codes to complete this task. You need to use the 
"generate_adjacency_list" tool to convert the text into an adjacency list. Output the 
results as a dictionary in the following format:
{
  "graph_type": "directed" or "undirected",
  "adjacency_list": {
    node_number: [(neighbor_number, weight)]
  },
  "node_mapping": {
    node_name: node_number
  }
}

**The output "adjacency_list" should be exactly the same as the output of the tool.**
"""

Figure 10: Details of SGIA
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GTA_SYS_PROMPT = """
You are an expert in graph theory algorithms, and you have access to a comprehensive library of graph algorithms. Given the following two 
pieces of information:
1. **Text Information**: This includes details about the graph, such as its structure, number of nodes, number of edges, sparsity, and other 
properties. Based on this information, you should assess the scale and characteristics of the graph.
2. **Problem Information**: This defines the specific graph theory problem to solve (e.g., shortest path, graph connectivity, minimum spanning 
tree, maximum flow, graph coloring, etc.). You should choose the most appropriate algorithm to solve the problem based on its type.
3. **Graph Theory Algorithm Library:**: A library of graph theory algorithms, including the problem and graph size that each algorithm is suitable 
for.

Your task is to:
- Analyze the graph's scale and characteristics (e.g., small vs large graph, sparse vs dense).
- Choose the most suitable graph algorithm based on the problem type and graph properties (considering time and space complexity). In 
particular, the algorithm to be used is determined based on the number of nodes obtained based on the graph structure information.
- The algorithm function to be used is determined according to the **suitable_graph_size** description in the algorithm.
- Output a dictionary that includes:
    - **problem type**: Types of graph theory problems.
    - **algorithm**: The name of the selected algorithm.
    - **parameters**: The parameters required for the algorithm.(You only need to tell the retriever to retrieve the parameter name, not the entire 
parameter input data.)
    - **complexity**: The time complexity of the selected algorithm (brief description).
    - **description**: A brief explanation of why this algorithm is the best choice for the given problem.
Output the results as a dictionary in the following format:
{
    "problem": "Types of graph theory problems.",
    "algorithm": "The name of the selected algorithm.",
    "parameters": "The parameters required for the algorithm.",
    "complexity": "The time complexity of the selected algorithm (brief description).",
    "description": "A brief explanation of why this algorithm is the best choice for the given problem."
}

"""

Figure 11: Details of GTA

AGENT_ASA_SYS_PROMPT =  """
You are tasked with solving a graph-related problem using the provided input data. The input 
specifies the graph type, adjacency list, node mapping, problem type, and the algorithm to use.
Please use the tools according to the given algorithm to get the final answer.

Your task:
1. Identify the algorithm to use from the "algorithm" key.
2. Extract the required inputs based on the algorithm's parameters. Ensure the inputs strictly follow 
the parameter requirements and format.
3. Use the appropriate algorithm tool to solve the problem.
4. Analyze the tool's output and summarize the final answer.

**Instructions for using the tool**:
- Identify the algorithm name from the input (e.g., Dijkstra, BFS).
- Use the parameters required for the algorithm tool exactly as described in the "algorithm" input.
- Ensure the input format matches the tool's strict parameter requirements.

**Output Requirements**:
1. Summarize the problem and the algorithm used.
2. Display the tool's output clearly.
3. Finally, you need to analyze the output of the tool, combine it with the node mapping information 
and question text information, and give the final appropriate answer.
"""

Figure 12: Details of ASA
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Model Version Model Link

OpenAI o3-mini o3-mini https://platform.openai.com/docs/models/o1#o3-mini
GPT-4o-mini gpt-4o-mini https://platform.openai.com/docs/models/gpt-4o-mini

GPT-3.5 gpt-3.5-turbo https://platform.openai.com/docs/models/gpt-3-5-turbo
Llama3-ins-8b Meta-Llama-3-8B-Instruct https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Qwen2.5-7b-ins Qwen2.5-7B-Instruct https://huggingface.co/Qwen/Qwen2-7B-Instruct
Deepseek-V3 DeepSeek-V3-0324-660B https://huggingface.co/deepseek-ai/DeepSeek-V3-0324

Table 7: More details about models.

PLACE = {
    "Amber Plaza": "A bustling central square surrounded by cafes, boutiques, and street performers.",
    "Beacon Tower": "The tallest building in the city, offering panoramic views and a rotating rooftop 
restaurant.",
    "Cobalt Market": "A vibrant marketplace where merchants sell exotic goods and fresh produce from all 
over.",
    "Duskwood Park": "A sprawling urban park filled with dense trees, walking trails, and a serene lake.",
    "Echo Station": "The city’s largest transportation hub, always alive with the sound of trains and 
announcements.",
    "Flare Alley": "A narrow, colorful street lined with neon-lit bars and underground clubs.",
    "Gilded Archway": "A historic landmark leading to the city’s oldest district, adorned with intricate 
carvings.",
    "Haven Docks": "The city’s bustling port area, filled with cargo ships, seafood stalls, and lively 
taverns.",
    "Ironbridge Crossing": "A massive steel bridge connecting the industrial zone with the city center.",
    "Jade Fountain": "A tranquil plaza centered around a beautiful fountain made of green stone.",
    "King’s Row": "A luxurious shopping street lined with high-end stores and designer boutiques.",
    "Lighthouse Point": "A scenic overlook by the bay with a historic lighthouse and picnic spots.",
    "Moonlit Promenade": "A romantic walkway along the riverbank, lit by soft lanterns at night.",
    "Nimbus Plaza": "A futuristic square surrounded by glass skyscrapers and interactive digital art 
installations.",
... ...

Figure 13: Details of Random Places
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Our company handles deliveries across a busy urban area, and today we have 7 distinct delivery points to cover. The delivery driver will 
start from our central warehouse and needs to drop off packages at each location before returning to the warehouse. Since these delivery 
points are scattered throughout different parts of the city, we’re looking to find the most efficient route to minimize the total distance 
traveled. This will help us save on fuel, reduce delivery times, and improve our overall efficiency.
The warehouse, is located near the city center. Each location represents a different type of business or residential area with unique 
delivery requirements:
Zenith Arena: A state-of-the-art stadium for concerts, sports events, and major public gatherings.
Pennywhistle Arcade: A vintage entertainment district with old-style theaters, arcades, and street performers.
Gilded Archway: A historic landmark leading to the city’s oldest district, adorned with intricate carvings.
Primrose Boulevard: A tree-lined street with boutique stores, local bakeries, and street performers.
Temple Square: A historic site featuring a grand temple surrounded by artisan shops and open courtyards.
Lunar Pier: A picturesque wooden pier with food stalls, fishing spots, and a small amusement park.
Jade Fountain: A tranquil plaza centered around a beautiful fountain made of green stone.
Each pair of points has a different travel distance between them, based on city traffic patterns and street layouts. Here is the distance 
table showing the approximate distance (in kilometers) between each pair of locations:
Distances from Warehouse to each delivery point: Warehouse to Zenith Arena is 9 km, Warehouse to Pennywhistle Arcade is 8 km, 
Warehouse to Gilded Archway is 3 km, Warehouse to Primrose Boulevard is 5 km, Warehouse to Temple Square is 6 km, Warehouse to 
Lunar Pier is 3 km, Warehouse to Jade Fountain is 10 km.
Distances from Delivery Zenith Arena to each delivery point: Zenith Arena to Pennywhistle Arcade is 10 km, Zenith Arena to Gilded 
Archway is 1 km, Zenith Arena to Primrose Boulevard is 6 km, Zenith Arena to Temple Square is 6 km, Zenith Arena to Lunar Pier is 8 km, 
Zenith Arena to Jade Fountain is 4 km.
Distances from Delivery Pennywhistle Arcade to each delivery point: Pennywhistle Arcade to Gilded Archway is 8 km, Pennywhistle 
Arcade to Primrose Boulevard is 6 km, Pennywhistle Arcade to Temple Square is 5 km, Pennywhistle Arcade to Lunar Pier is 9 km, 
Pennywhistle Arcade to Jade Fountain is 8 km.
Distances from Delivery Gilded Archway to each delivery point: Gilded Archway to Primrose Boulevard is 3 km, Gilded Archway to Temple 
Square is 3 km, Gilded Archway to Lunar Pier is 8 km, Gilded Archway to Jade Fountain is 1 km.
Distances from Delivery Primrose Boulevard to each delivery point: Primrose Boulevard to Temple Square is 3 km, Primrose Boulevard to 
Lunar Pier is 10 km, Primrose Boulevard to Jade Fountain is 7 km.\nDistances from Delivery Temple Square to each delivery point: 
Temple Square to Lunar Pier is 10 km, Temple Square to Jade Fountain is 9 km.
Distances from Delivery Lunar Pier to each delivery point: Lunar Pier to Jade Fountain is 10 km.
Based on this distance table, we need to determine the optimal delivery route that allows the driver to start from the warehouse, visit each 
delivery point exactly once, and return to warehouse with the shortest possible total distance.

Figure 14: Details of TSP

I am designing a public Wi-Fi network for my city, with the goal of providing free high-
speed internet access across various public areas. The network will cover 4 major 
locations in the city: Maplewood Conservatory, Moonlit Promenade, Shadowbridge 
Arcade and Pennywhistle Arcade. 
Each of these locations will have a Wi-Fi base station, but the stations are located at 
varying distances from one another, and some may have overlapping coverage 
areas. The main issue I face is how to allocate frequencies to these base stations in 
a way that minimizes interference. I know that if two adjacent stations use the same 
frequency, their signals will interfere with each other, which will affect the network’s 
stability and speed.
 The interference relationships between the base stations are as follows: 
The Maplewood Conservatory has overlapping signal areas with Pennywhistle 
Arcade. 
The Moonlit Promenade has overlapping signal areas with Pennywhistle Arcade. 
The Shadowbridge Arcade has overlapping signal areas with Pennywhistle Arcade. 
I need to assign frequencies to the stations in such a way that no two adjacent 
stations use the same frequency, ensuring minimal interference. The ideal solution is 
to minimize the number of frequencies needed, as this would lower both the 
infrastructure costs and the ongoing maintenance expenses.
Can you help me come up with a solution for frequency allocation to ensure stable 
and reliable network performance across all locations?

Figure 15: Details of Coloring Problem
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Our company has 7 computers connected by several communication links. These computers 
are named: Server Bluewave, Server Skyhawk, Server Glacierpeak, Server Stealthwind, Server 
Oceanview, Server Ghostwind and Server Stormbreaker. 
To ensure network security, we need to install monitoring devices (such as firewalls or intrusion 
detection systems) on some of these computers so that all communication links are monitored. 
Assume that the connections between the computers (i.e., the communication links) are 
bidirectional. This means that information can flow in both directions across any link. Our goal is 
to deploy monitoring devices in a way that ensures all communication links are covered by at 
least one monitoring device. 
Problem: How can we select the minimum number of computers to deploy monitoring devices, 
such that every communication link is monitored by at least one device? 
Communication links as follows: : 
Server Bluewave is connected with Server Skyhawk, Server Glacierpeak, Server Stealthwind, 
Server Oceanview. \nServer Skyhawk is connected with Server Glacierpeak, Server Ghostwind. 
Server Stealthwind is connected with Server Oceanview, Server Ghostwind, Server 
Stormbreaker. 

Figure 16: Details of Vertex Cover Problem

19


	Introduction
	Related Work
	MA-GTS
	Information Extraction Layer (IEL)
	Knowledge Integration Layer (KIL)
	Algorithm Execution Layer (AEL)

	G-REAL
	Data Collection
	Data Statistics 
	Evaluation

	Experiments Setup
	Datasets
	Baselines and Foundation Model

	Results and Analysis
	Performance on real-world problems
	Performance on simple problem
	G-REAL effectiveness analysis
	Impact of Node Size
	Cost Analysis
	Ablations Studies and Analyses

	Conclusion
	MA-GTS Details
	Graph Theory Knowledge Base
	Graph Theory Algorithm Library
	Prompt Templates

	Details on baseline models
	Details on G-REAL
	More experimental analysis
	Large-scale node analysis
	Runtime analysis


