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Abstract—This paper presents MiXR-Interact, a dataset pro-
viding motion tracking data for users’ interactions in mixed
reality (MR) environments, focusing on tracking their gaze, upper
body movements, and hand gestures. The dataset is based on
the Meta Quest Pro headset, offering an easy-to-use resource for
researchers and developers working in MR and human-computer
interaction (HCI). MiXR-Interact focuses on collecting natural
and precise interactions with virtual objects, with three core
interaction types: pushing, pointing, and grasping. To ensure ro-
bustness and generalization, each interaction is performed across
six distinct directions, reflecting a diverse range of movement
trajectories relative to the user’s body. This directional diversity
provides critical insights into how users approach and engage
with virtual objects from multiple angles. In addition, to precisely
track contact points during interactions, 17 key contact points
are defined for each direction and are labeled. These contact
points are used as reference markers to accurately localize and
quantify the joint-to-object contact points for each interaction
type and direction. In addition to providing the dataset, this
paper evaluates the quality and precision of the collected dataset
in MR through a set of evaluation metrics. These metrics assess
critical aspects of interaction performance, including Trajectory
Similarity, Joint Orientation, and Joint-to-Contact Alignment. It
also details the theoretical and implementation considerations for
dataset collection, offering valuable insights for applications in
MR and human-robot interaction (HRI).

Index Terms—Mixed-Reality, Body tracking, Human-robot
interaction

I. INTRODUCTION

Gaze direction, hand gestures, and full-body positions are
part of the most important information cues for natural
human communication and interactions. They allow us to
perceive and interpret information even before it is verbally
conveyed. These interaction methods are particularly critical
in applications like Mixed Reality (MR), where creating
an immersive experience demands a seamless and intuitive
flow of information [1]. Complex MR applications, such as
immersive telepresence and teleoperation, rely on exchanging
rich and detailed interaction data to maintain a high level
of realism and engagement across networked environments.
Telepresence enables users to experience a distant environment
as if they were physically present, while teleoperation involves
the remote control of machines or systems, often in scenarios
where direct human involvement is impractical or unsafe [2].

This applications faces challenges like latency, information
representation, and limited contextual awareness due to the
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Fig. 1: MiXR-Interact: Data Collection Setup for Capturing
Gaze, Upper Body Movements, and Hand Interactions in a
Mixed Reality Environment

physical distance between the user and the remote systems,
which can disrupt immersion and control. Despite extensive
research in these applications, the physical separation remains
a significant obstacle to achieve high-level seamless presence
and interaction across remote and virtual environments [3]–[5].

To address these challenges, state predictive mechanisms
could be used to update the MR elements. User’s body state
such as facial expressions, gestures, posture, and mannerisms
can be used to anticipate and communicate. This states are
powerful form of nonverbal communication cues that often
occurs instinctively, without deliberate thought [6]. During
interactions or conversations, people instinctively observe and
interpret subtle movements, gestures, and expressions from
those around them. For example, a slight adjustment in pos-
ture, a raised eyebrow, or crossed arms can convey a range of
emotions such as confidence, curiosity, or defensiveness. By
tuning into these signals, people naturally form impressions,
predict behaviors, and anticipate what others might say or
do next. A fascinating example of this phenomenon occurs
in musical ensembles, where musicians use nonverbal com-
munication, particularly eye gaze, to convey their intentions
and interpret co-performers [7]. Techniques such as machine
learning models could be trained on body states and could be
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used to anticipate user intent.
Meta Quest Pro was chosen for its affordability and

widespread use in MR research, making it a practical founda-
tion for dataset development. Furthermore, the methods and
protocols used to create the dataset are hardware-agnostic,
allowing them to adapt seamlessly to other MR devices with
similar tracking capabilities. This ensures broader applicability
across diverse research environments.

The integration of gaze, upper body movements, and hand
interactions is essential for advancing MR, HCI, and HRI.
Each feature provides unique insights: gaze direction reveals
the user’s focus, upper body movements indicate posture
and spatial orientation, and hand interactions capture fine
motor skills required for object manipulation. Studying these
elements separately often misses the broader context of user
behavior. By combining them, it becomes possible to gain
a deeper understanding of user interactions and to design
systems that respond naturally and intuitively.

This paper presents MiXR-Interact, a novel dataset that
combines gaze, upper body movements, hand movements, and
virtual object poses to improve the composition of existing
datasets and provide researchers with a rigorously evaluated
resource for advancing MR, HCI, and HRI development. The
dataset has been made openly available to enable broader ac-
cess and support further research in these fields 1. Additionally,
the paper explores various methodologies and considerations
for collecting datasets in immersive environments, focusing on
the complexities and nuances of capturing user interactions.

II. RELATED WORK

Several researchers showed that during interaction, hu-
mans often begin looking towards an object before initiating
movement [8]. This suggests that gaze features are valuable
indicators for intent prediction and early human activity detec-
tion, playing a key role in visual information processing and
measuring attention, interest, and arousal. For instance, a study
introduced in [9], [10], presented a dataset of joint poses and
gazes to enhance prediction accuracy. It used gaze and motion
features to estimate user intentions and predict current actions
and target objects. Furthermore, the work described in [11] has
been aimed to develop eye-hand coordination and gaze-based
intention recognition to improve performance in teleoperated
pick-and-place tasks. By tracking a user’s hand, a system was
developed to predict both the timing and likelihood of specific
virtual objects colliding with the user [12].

Various sensors have been used to track human body
movements and gaze. Electromyography (EMG) and inertial
measurement units (IMUs) are commonly used to capture
human body poses [13]. RGB-D cameras have been utilized
to monitor hand movements [14], while the Microsoft Kinect
Sensor has been used to track joint movements related to
nonverbal cues [15]. For gaze tracking, researchers have devel-
oped head-mounted devices combined with a small endoscopic

1github.io/MiXR-Interact-Dataset
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camera, infrared light, and a mobile phone to provide cost-
effective and accurate vision tracking solutions and estimate
the gaze point [16]. In the context of MR, predicting hand-
object interaction involves using a recorded history of hand
points and virtual object poses [17].

Despite substantial advancements in MR, HCI, or HRI, a
significant gap persists in datasets that integrate tracking data
for gaze, upper body motion, hand movements, and virtual
object poses within MR environments. To bridge this gap,
we introduce MiXR-Interact to enhance the composition of
existing datasets and provide researchers with a rigorously
evaluated resource.

III. BUILDING THE DATASET

When collecting the dataset, it was important to estab-
lish clear objectives to ensure a systematic and purposeful
approach to data acquisition. The primary objective defined
for this dataset was to enable the identification of the most
likely contact points where a user intends to interact and to
allow for the rapid localization of these points. This objective
makes sure that the dataset supports systems in accurately
predicting user intent in real-time scenarios. The secondary
goal was to provide insights into the type of interaction the
user is likely to perform. This goes beyond merely identifying
contact locations to include an understanding of the nature of
the interaction itself. For instance, the dataset should facilitate
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Fig. 3: The six directional grasping, pushing, and pointing
gestures

the differentiation between actions such as a push, a grasp, or
a point.

To achieve these goals, it is important to understand the
complexities of human anatomy and behavior. A thorough
understanding of the human body, particularly the anatomy
and dynamics of the eyes, upper body, and hand joints, is
necessary. These elements play a central role in interactions, as
the gaze directs attention, the upper body conveys movement
intent, and the hand joints execute precise actions. The follow-
ing sections provide an in-depth exploration of the relevant
anatomical features and the characteristics of the dataset,
highlighting how these aspects were defined and incorporated
to create a robust resource for understanding and modeling
human interactions.

A. Anatomy of the Eye and Upper Body Joints in Interaction

We believe that tracking eye movements and upper body
joints (Fig. 2) could play a crucial role in accurately in-
terpreting and predicting human intentions. The human eye
plays a critical role in perception and interaction through
gaze behavior, signaling intent, attention, and emotional states.
Its movements, controlled by six extraocular muscles, enable
tracking and focus on objects, with visual information pro-
cessed by photoreceptor cells in the retina, making gaze a
key component of nonverbal communication [18], [19]. In
addition, the upper body joints, particularly in the shoulders,
elbows, wrists, hands, and fingers, are vital for recognizing
human intent. Larger movements originate at the shoulder and
elbow joints, while finer adjustments occur in the Metacar-
pophalangeal (MCP), Proximal Interphalangeal (PIP), and
Distal Interphalangeal (DIP) joints, with the thumb’s unique
Carpometacarpal (CMC) joint enabling precision manipulation
[20]. To capture this intent-driven motion, we collected the
user’s gaze position, along with the position and orientation
of their body and hands as they interacted with virtual objects.

Fig. 4: Data collection setup: The left panel shows the contact
points, while the right panel illustrates the pointing interaction.

In addition to user data, detailed information about the
MR environment is collected, including the 3D positions
and orientations of all objects within the virtual space. It
includes predefined contact poses, specific spatial locations,
and configurations where user interactions, such as grasping,
pointing, or pushing, are intended to occur.

B. Dataset Characteristics

Maintaining consistency during data collection is crucial for
ensuring that the resulting data is reliable, reproducible, and
accurate. Inconsistencies in the data can introduce bias, reduce
validity, and lead to unreliable conclusions. To achieve these
goals, we have established three key characteristics that define
the quality and integrity of the dataset:

1) Diversity in interaction: To ensure that this dataset
captures a representative range of interactions, inspired
by authors in [21], we defined three key interaction
types: grasping, pushing, and pointing (Fig. 1). These
interactions were selected because they encompass a
broad spectrum of common human-object and human-
environment engagements. In addition, these three in-
teractions were performed in six distinct directions to
capture a full range of motion: forward, backward, left-
to-right, right-to-left, upward, and downward, as seen in
Fig. 3.

2) Consistency in collection: A careful experimental pro-
tocol was defined to ensure that the collected data is
consistent in flow and direction.

3) Accuracy in contact point interaction: To ensure
accurate and precise contact point interactions during
data collection, the contact points in MR must be large
enough to facilitate easy interaction while remaining
small enough to require precise contact.

IV. DATA COLLECTION

A. Data Collection Setup

This dataset and the collection mechanism are based on the
Meta Quest Pro MR headset system. The headset supports
gaze, hand, and body tracking, as well as motion controllers
for interaction. During the collection, it was connected to a
high-performance computer with an NVIDIA RTX 3090 GPU
and an Intel i9 processor to handle the rendering of the MR
environment and save the tracked data.



Fig. 5: Data collection setup: The left image illustrates the
pushing interaction, while the right panel depicts the grasping.

The MR interface was created using the Unreal Engine 5.
As illustrated in Fig. 4 (Left), participants interact with a
plane that contains designated contact points. These contact
points serve as anchors for the placement of various 3D
mesh objects, each selected to the specific task at hand.
The type and shape of the 3D mesh objects are selected to
facilitate natural interaction, with common examples including
spherical, rectangular, and handle-shaped meshes.

For instance, in the Pointing task, a spherical mesh is
placed at the contact point, as shown in Fig. 4 (Right). The
spherical shape is chosen to provide a clear and intuitive target
for participants, allowing them to interact with the virtual
plane through precise pointing gestures. For tasks that involve
pushing, a rectangular mesh is positioned at the contact points,
as depicted in Fig. 5 (Left). The larger surface area of the
rectangular mesh enables participants to apply force with a
broader contact region, supporting a more natural pushing
action. In grasping tasks, a handle-shaped mesh, resembling a
door handle, is placed at the contact points, as illustrated in
Fig. 5 (Right). The handle-shaped design facilitates grasping
actions, encouraging participants to employ natural hand poses
and grip strategies similar to how they would interact with a
real-world handle.

B. Dataset Description

The ”Eye Tracking API” enables developers to access gaze
direction information captured by the Quest Pro’s inward-
facing cameras. This functionality provides insights into where
a user is looking. Similarly, the ”Body Tracking API” offers an
upper-body skeleton model that leverages the positional data
from the head and hands. However, it is important to note that
the body tracking system is limited to the upper body and does
not include data for the legs or lower body.

In Fig. 2, the tracked points for hand movements, upper
body articulation, and eye gaze are illustrated, highlighting the
specific regions covered by the APIs. For example, each hand
has 23 distinct joints spanning the fingers and wrist. These
joints are individually tracked to provide detailed data on both
position and orientation. For gaze tracking, only the position
data of the gaze origin and fixation point is collected, allowing
the gaze direction to be easily calculated from these two points.
Since this tracking information is generated as a time series
dataset, it can be easily read, analyzed, and processed using a
Pandas DataFrame.

C. Data Collection Procedure

A total of 20 human subjects (5 females and 15 males)
aged between 22 and 33 years participated in the study. The
mean age of the sample population was µ = 26.35 years,
with a standard deviation of σ = 2.71 years. All subjects had
a 20/20 or corrected vision, and the eye tracker was calibrated
for all subjects. Based on the ITU-T [22] recommendation,
subjects were made familiar with the setup, the MR headset,
and the MR environment. Each subject performed all three
interaction types, engaging with all 17 contact points in six
distinct directions. To ensure consistency in the collected pose
data, subjects were instructed to return their hand to a reset
position before moving on to the next task. This step was
critical for maintaining uniform trajectories across subjects.
The experimenter controlled when the next contact point
appeared, ensuring participants followed the correct sequence
and pace to prevent rushing or skipping steps, maintaining
the integrity of the dataset. All participants in this study were
volunteers, and each provided informed consent by signing a
consent form permitting the collection and use of their data for
the specified research purposes. The data collection process
was approved by the Ethics Committee of Liguria Region,
under the protocol IIT ADVR TELE01.

V. EVALUATION METRICS

In addition to the dataset, the paper introduces evaluation
metrics for assessing trajectory similarity, joint orientation, and
joint-to-contact position differences.

A. Trajectory Similarity

When collecting data, joint trajectories are assumed to be
similar for interactions occurring in a single, consistent direc-
tion. However, due to variations in movement speed, timing,
and subtle deviations in spatial paths, direct point-by-point
comparisons may not accurately capture the actual similarity
between trajectories. To address these challenges, we used 3D
Dynamic Time Warping (DTW) [23] as the primary evaluation
metric to measure and quantify the similarity between 3D
trajectories.

Unlike traditional Euclidean distance, which assumes fixed
point-to-point correspondence at equal time intervals, 3D
DTW provides a more flexible approach. It allows for non-
linear alignment of the time axis by stretching, compressing,
or shifting time to achieve the optimal alignment between
two trajectories. This process ensures that trajectories that are
similar but misaligned in time (e.g., one subject moving faster
than another) can still be recognized as similar. The alignment
is achieved by calculating the cumulative Euclidean distance
between corresponding 3D points [x, y, z] at each time step
along the trajectories while simultaneously determining the
best alignment path that minimizes the total distance. The
final output of 3D DTW is a distance score, which serves as
an indicator of similarity. A smaller DTW distance indicates
that the trajectories are more similar, while larger distances
reflect greater differences in spatial paths, timing, or both. For
perfectly identical trajectories, the DTW distance is zero.



B. Joint Orientation

Since the orientation of finger joints provides important
insights into the direction of interaction, analyzing the joint
orientations becomes important. Finger joints naturally align
with the intended direction of motion or interaction, making
their orientation a key indicator of user intent.

To facilitate this analysis, we first converted the quaternion
representations of joint rotations into Euler angles, which
include roll, pitch, and yaw orientations. This conversion
allowed us to represent the joint orientations in a format that
is more intuitive and easier to analyze geometrically. Next, we
used the Rayleigh Hypothesis Test to evaluate the statistical
distribution of these angles. This test is particularly well-
suited for analyzing directional data, as it determines whether
the observed angles exhibit a uniform distribution or show
significant clustering around a preferred direction.

• Null Hypothesis (H 0): The angles are uniformly dis-
tributed around the circle, meaning no preferred direction
exists.

• Alternative Hypothesis (H a): The angles are not uni-
formly distributed, indicating the presence of a dominant
or preferred direction.

If the null hypothesis is rejected, it suggests that the
angles are not randomly distributed but are instead clustered
around a specific angle, revealing a preferred orientation
in the movement or interaction direction. By applying this
method, we aimed to uncover patterns and tendencies in finger
joint orientations that could be linked to specific types of
interactions or movement intents.

C. Joint to Contact Position Distance

Subjects interacted with a virtual object, where precise
alignment between the subject’s final joint position and the
object’s contact point was expected. Ideally, at the moment of
interaction, the joint position should coincide perfectly with
the designated contact point on the virtual object, ensuring no
spatial gap between them. Achieving this alignment is crucial
for accurate tracking, naturalistic interaction, and effective
coordination with the virtual environment. To quantify this
alignment, we used the Euclidean distance as the evaluation
metric. Euclidean distance measures the straight-line distance
between two points in 3D space. In this context, the two
critical points are the final joint position and the corresponding
contact point on the object.

As mentioned in the data collection section, a cubic mesh is
used for pushing, while a spherical mesh is used for pointing,
and a door handle model is used for grasping, all using
simplified collision models to enhance the responsiveness
of virtual objects. These simplified models are expected to
introduce small deviations, and this evaluation aims to identify
and analyze these discrepancies.

VI. EVALUATION AND ANALYSIS

Figure 6 presents a frame-by-frame illustration of the grasp-
ing, pushing, and pointing interactions. The figure shows how

Fig. 6: Frame-by-frame illustration of grasping, pushing, and
pointing interactions and their corresponding MR environment.
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Fig. 7: Analysis of trajectory similarity using dynamic time
warping for pushing interaction.
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Fig. 8: Analysis of trajectory similarity using dynamic time
warping for grasping in the left and pointing on the right
interaction.

the joints are tracked throughout each interaction, demon-
strating their movement and alignment relative to the contact
points. This visual representation provides clear evidence of



Fig. 9: Randomly sampled grasping trajectories for the middle
proximal position.

Fig. 10: Randomly sampled pushing trajectories for the middle
distal position.

Fig. 11: Randomly sampled pointing trajectories for the index
tip position.

the relationship between joint positions and contact points dur-
ing each type of interaction. The following section will provide
a detailed analysis and summary of trajectory similarity, joint
orientation, and joint-to-contact position distance.

A. Trajectory Similarity

Figure 7 illustrates the similarities and differences in joint
trajectories using DTW as an evaluation metric for pushing
interaction. The indices from 0 to 18 correspond to tra-
jectories recorded from 19 subjects (out of 20), with one
subject excluded as an outlier to ensure a fair comparison.
Given space constraints, we included only one trajectory for
each additional movement direction. Specifically, Index 19
represents the backward trajectory, Index 20 denotes the left-
to-right movement, Index 21 corresponds to the right-to-left
movement, Index 22 reflects the downward movement, and
Index 23 represents the upward movement.

The DTW distance is visualized as a color-coded heatmap,
where more intense red shades indicate larger DTW dis-
tances, signifying greater dissimilarity between trajectories.
Conversely, if two trajectories are identical or highly similar,
the DTW distance is zero or close to zero, represented by
lighter or less intense colors. As observed in the graph (Fig.

Fig. 12: Roll (left), Pitch (middle), and Yaw (right) orientation
during forward grasping.

7), the trajectories corresponding to other movement directions
(backward, lateral, and vertical) exhibit significant differences
compared to the forward trajectories, as indicated by the strong
red coloration. This shows the distinct nature of movement in
different directions, showing the collected datasets captured
both spatial and temporal differences between trajectories.

Similarly, Fig. 8 shows the joint trajectory similarities for
grasping and pointing interactions. Like the pushing interac-
tion, these heatmaps use DTW to measure the differences.
The red colors show bigger differences between trajectories,
while lighter colors show more similarity. Both grasping and
pointing interactions reveal clear differences in movement
patterns, depending on the type of interaction and direction.

Additionally, to examine the similarities of joint trajectories
across different subjects, we randomly selected data samples
for the three interaction types: grasping, pushing, and pointing.
Fig. 9 (grasping trajectories), Fig. 10 (pushing trajectories),
and Fig. 11 (pointing trajectories) illustrate the randomly
sampled trajectories for all subjects. These plots demonstrate
that the trajectories follow a consistent pattern across different
subjects for each interaction type. This consistency suggests
that the dataset captures reliable and repeatable movement
patterns, making it a strong resource for analyzing human
interactions.

Together, these graphs (Fig. 7, 8, 9, 10, and 11) highlight
the ability of the dataset to represent unique and consistent
movement patterns for each interaction type, offering valuable
insights into both spatial and temporal dynamics. This provides
strong evidence that the dataset can be used for analyzing
different human interactions with accuracy and detail.

B. Joint Orientation

The Rayleigh test results for roll, pitch, and yaw during
forward grasping shows significant clustering in all three
angular orientations, as shown in Fig. 12. The p-values for roll
(6.24×10−9), pitch (6.43×10−13), and yaw (2.55×10−8) are
all much smaller than 0.05, leading to the rejection of the null
hypothesis of uniform distribution. The high Z-statistics for
roll (14.903), pitch (18.924), and yaw (14.101) further confirm
the presence of strong clustering. This indicates that users
exhibit consistent, preferred orientations in roll, pitch, and yaw
during forward grasping, with pitch showing the most pro-
nounced alignment. These results highlight the biomechanical



Fig. 13: Roll (left), Pitch (middle), and Yaw (right) orientation
during left-to-right grasping.

Fig. 14: Roll (left), Pitch (middle), and Yaw (right) orientation
during upward grasping.

constraints and natural hand alignment used during grasping
actions in MR.

The Rayleigh test results for roll, pitch, and yaw during left-
to-right grasping in MR reveal significant clustering in all three
angular orientations. The p-values for roll (1.18×10−5), pitch
(0.0051), and yaw (0.0040) are all smaller than 0.05, leading to
the rejection of the null hypothesis of uniform distribution for
each angle. The Z-statistics for roll (10.022), pitch (5.056), and
yaw (5.268) further confirm the presence of clustering, with
roll showing the strongest alignment. As seen in Fig. 13, this
indicates that users exhibit consistent preferred orientations in
roll, pitch, and yaw during grasping from left to right, with
roll displaying the most pronounced alignment. These results
highlight the natural alignment of the hand and the movement
constraints used during grasping actions in MR.

Similar to other directions, all except for upward grasping
shows a preferred direction. In the case of upward grasping,
the Rayleigh test indicates significant directional patterns in
the Roll and Pitch angles, as both have very small p-values
(less than 0.05), suggesting non-uniform distributions and
strong directional biases. However, as illustrated in Fig. 14,
the Yaw angle’s p-value is 0.4056, much larger than 0.05,
implying that the Yaw data are uniformly distributed with no
significant directional bias. In summary, while the Roll and
Pitch angles exhibit clear patterns, the Yaw angle does not
show directional preference.

C. Joint to Contact Position Distance

As seen in Fig. 15 bottom and top left, for pointing upward
interaction, 80% of the joints perfectly align with the contact

points (zero distances), while the remaining 20% show small
deviations, with two joints having notable distances of 1.80
and 1.07. The mean final joint positions closely match the
mean contact point positions along the X-axis (-112.51 vs.
-112.14) and Y-axis (-195.21 vs. -195.30), indicating good
alignment. In the Z-axis, the mean joint position (188.06) is
slightly lower than the mean contact point position (188.23),
suggesting a small vertical offset. The standard deviations for
joint positions are higher than for contact points across all
axes, particularly in the X-axis (15.13 vs. 14.88) and Z-axis
(14.02 vs. 13.55), indicating more variability in joint posi-
tioning compared to the contact points. Overall, the alignment
could best said strong, with only 20% of joints slightly off.

In the middle top and bottom (Fig. 15), the evaluation for
pushing forward interaction shows that 55% of the joints per-
fectly align with the contact points (zero distances), while the
remaining 45% show slight deviations. Notably, large devia-
tions are observed for certain interactions, with the highest dis-
tances being 8.09, 7.11, 4.58, and 3.29, indicating significant
misalignment for these joints. The mean final joint positions
are close to the mean contact point positions along the Y-
axis (-207.82 vs. -207.13) and Z-axis (166.93 vs. 165.33), but
there is a more noticeable offset in the X-axis (-114.08 vs.
-110.73), suggesting that joints are positioned slightly further
back relative to contact points. The standard deviations are
higher for joint positions than contact points across all axes,
particularly in the Z-axis (9.69 vs. 8.47), highlighting greater
variability in joint positioning. The alignment is generally
good, with slight deviations in 45% of the joints.

In the right top and bottom (Fig. 15) for grasping down-
ward interaction, the analysis reveals that 50% of the joints
perfectly align with the contact points (zero distances), while
the remaining 50% show deviations. Among these, the largest
deviations are 3.85, 3.59, and 1.93, indicating areas where
alignment could be improved. The mean final joint positions
closely match the mean contact point positions along the X-
axis (-123.22 vs. -122.78) and Y-axis (-193.93 vs. -193.74),
suggesting good horizontal alignment. However, joint posi-
tions (126.72) along the Z-axis are slightly higher than the
contact points (124.67), indicating a small vertical offset. The
standard deviations for joint positions are slightly larger than
for contact points on all axes, with the greatest difference in
the Z-axis (13.66 vs. 11.62), reflecting greater variability in
the joint positions relative to the contact points.

Here, the differences between joint positions and contact
points arise from the interaction between the user and virtual
objects, which are simplified collisions that do not perfectly
match the actual object geometry. Flat collision boundaries
in the pushing task make contact detection easier but can
cause small shifts with slight hand movements. In grasping,
the curved surface of the handle mesh increases variability in
contact detection due to changes in hand orientation. These
limitations in collision modeling contribute to the observed
deviations in joint and contact point alignment.



Gaze Origin

Fig. 15: Euclidean distances between interaction joint positions and contact points, along with the mean and standard deviation
for final joint and contact point positions. The top row images correspond to upward pointing (left), forward pushing (middle),
and downward grasping (right). Similarly, the bottom row shows pointing (left), pushing (middle), and grasping (right) actions.

VII. CONCLUSION

This paper presented MiXR-Interact, a dataset of tracked
gaze, body, and hand movements in mixed reality (MR),
specifically designed for Meta Quest headsets. The dataset
contains three core interaction types — pushing, pointing,
and grasping — each performed in six different directions to
enhance generalizability. By defining 17 precise key points
for interaction in each direction, the dataset provides accurate
tracking and localization of joint-to-contact positions, offering
a resource for researchers and developers in MR and HRI.
In addition to the dataset, the paper introduces evaluation
metrics for assessing trajectory similarity, joint orientation,
and joint-to-contact position differences. The analysis reveals
key insights into user movement consistency and joint-to-
contact alignment. For trajectory similarity, Dynamic Time
Warping (DTW) distances highlight distinct differences in
movement direction, with higher DTW values observed in non-
forward pushing tasks, indicating greater temporal and spatial
variability. The joint orientation analysis shows significant
clustering of roll, pitch, and yaw for most interaction types,
as confirmed by Rayleigh test results. For joint-to-contact
position distance, the evaluation shows that 80% of joints

perfectly align with contact points in upward pointing, while
55% and 50% alignment are observed for forward pushing and
downward grasping, respectively. Variability in joint positions,
as indicated by higher standard deviations compared to contact
points, reflects the influence of collision models and user
movement variability. The MiXR-Interact dataset, along with
its proposed evaluation metrics and implementation insights,
provide a valuable resource for researchers and developers in
MR and HRI. By enabling a better understanding and analysis
of human movement during interactions, this work supports
the development of more precise, adaptive, and responsive
MR-based interaction systems.

As future work, we are exploring the development of a deep
learning framework to predict and estimate interaction types
and points in real time using this dataset. This approach aims
to leverage the rich data in MiXR-Interact to train machine-
learning models capable of recognizing and forecasting user
intent and movement trajectories during MR interactions. Such
advancements could enable more adaptive, responsive, and
personalized VR and MR experiences.
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