
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REWARD DIMENSION REDUCTION FOR SCALABLE
MULTI-OBJECTIVE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we introduce a simple yet effective reward dimension reduction
method to tackle the scalability challenges of multi-objective reinforcement learn-
ing algorithms. While most existing approaches focus on optimizing two to four
objectives, their abilities to scale to environments with more objectives remain
uncertain. Our method uses a dimension reduction approach to enhance learning
efficiency and policy performance in multi-objective settings. While most tradi-
tional dimension reduction methods are designed for static datasets, our approach
is tailored for online learning and preserves Pareto-optimality after transformation.
We propose a new training and evaluation framework for reward dimension reduc-
tion in multi-objective reinforcement learning and demonstrate the superiority of
our method in environments including one with sixteen objectives, significantly
outperforming existing online dimension reduction methods.

1 INTRODUCTION

Reinforcement Learning (RL) is a powerful machine learning paradigm focused on training agents
to make sequential decisions by interacting with their environment. Through trial and error, RL
algorithms allow agents to iteratively improve their decision-making policies, with the ultimate goal
of maximizing cumulative rewards. In recent years, the field of Multi-Objective Reinforcement
Learning (MORL) has gained considerable attention due to its relevance in solving real-world con-
trol problems involving multiple, often conflicting, objectives. These problems span across domains
such as advanced autonomous control (Weber et al., 2023), power system management, and logistics
optimization (Hayes et al., 2022), where balancing trade-offs among competing objectives is crucial
(Roijers et al., 2013).

MORL extends the traditional RL framework by enabling agents to handle multiple objectives si-
multaneously. This requires methods capable of identifying and managing trade-offs among these
objectives. MORL specifically focuses on learning a set of policies that approximate the Pareto
frontier, representing solutions where no objective can be improved without compromising others.
Most of the current approaches scalarize vector rewards into scalar objectives to generate a diverse
set of policies (Abels et al., 2019; Yang et al., 2019; Xu et al., 2020; Basaklar et al., 2023; Lu et al.,
2023), thereby avoiding the need for retraining during the test phase.

Although these methods have proven effective in standard MORL benchmarks (Felten et al., 2023),
most benchmarks involve only two to four objectives, leaving open the question of whether existing
MORL algorithms can scale effectively to environments with more objectives (Hayes et al., 2022).
Indeed, various practical applications demand optimizing many objectives simultaneously (Li et al.,
2015). For example, Fleming et al. (2005) introduced an example of optimizing a complex jet engine
control system that requires balancing eight physical objectives. In military contexts, a commander
should manage dozens of objectives that directly influence decision-making (Dagistanli & Üstün,
2023), including the positions of allies and enemies, casualty rates, combat capabilities of allies and
enemies, and time estimations for achieving strategic goals. When planning for multiple potential
battle scenarios, exploring such high-dimensional objective space in its raw form is inefficient and
very challenging due to the complexity of the original space (Wang & Sebag, 2013).

An advantageous feature of many real-world MORL applications is that objectives often exhibit
correlations, leading to inherent conflicts or trade-offs. For example, an autonomous vehicle must
balance safety and speed, where optimizing one can compromise the other. Similarly, traffic light
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control must manage multiple interrelated objectives to ensure smooth traffic flow (Hayes et al.,
2022). These correlations suggest that reducing the dimensionality of the reward space while pre-
serving its essential features could be a viable strategy to make current MORL algorithms scalable
to many objective spaces.

Dimension reduction techniques (Roweis & Saul, 2000; Tenenbaum et al., 2000; Zass & Shashua,
2006; Lee et al., 2007; Cardot & Degras, 2018; McInnes & Healy, 2018; Bank et al., 2020), widely
used in other machine learning domains, capture the most significant features of high-dimensional
data while filtering out irrelevant noise. However, typical approaches operate on static datasets,
whereas RL necessitates continuous data collection during online training. This introduces a unique
challenge: applying dimension reduction in MORL while retaining the essential structure of the
original reward space. To our knowledge, few studies have addressed this challenge within the
MORL context.

In this paper, we address these challenges by introducing a simple yet effective reward dimension
reduction method that scales MORL algorithms to higher-dimensional reward spaces. We propose
a new training and evaluation framework tailored for the online reward dimension reduction setting.
Our approach ensures that Pareto-optimality is preserved after transformation, allowing the agent to
learn and execute policies that remain effective in the original reward space.

Our contributions are as follows. First, we propose a new training and evaluation framework for
online reward dimension reduction in MORL. We also derive conditions and introduce learning
techniques to ensure that online training and Pareto-optimality are maintained, providing a stable
and efficient approach for scalable MORL. Lastly, our method demonstrates superior performance
compared to existing online dimension reduction methods in MORL environments including one
with sixteen objectives.

2 BACKGROUND

A multi-objective Markov decision process (MOMDP) is defined by the tuple ⟨S,A, P, µ0, r, γ⟩.
Here, S represents the set of states, A the set of actions, P the state transition probabilities, µ0

the initial state distribution, r the reward function, and γ ∈ [0, 1) the discount factor. Unlike the
traditional single-objective MDP, the reward function r : S × A → RK in a MOMDP is vector-
valued, where K ≥ 2 is the number of objectives. This vector-valued nature of the reward function
allows the agent to receive multiple rewards for each state-action pair, each corresponding to a
different objective.

In the context of MORL, the performance of a policy π is evaluated by its expected cumulative
reward, denoted as J(π) = (J1(π), · · · , JK(π)) := Eπ [

∑∞
t=0 γ

trt] ∈ RK . To compare vector-
valued rewards, we use the notion of Pareto-dominance (Roijers et al., 2013), denoted >P . For two
vector returns, J(π) and J(π′), we have:

J(π′) >P J(π) ⇐⇒ (∀i ∈ {1, . . . ,K}, Ji(π′) ≥ Ji(π)) and (∃j ∈ {1, . . . ,K}, Jj(π′) > Jj(π)).
(1)

This means that J(π′) Pareto-dominates J(π) if it is at least as good as J(π) in all objectives and
strictly better in at least one.

The goal of MORL is to identify a policy π whose J(π) lies on the Pareto frontier (or boundary) F
of all achievable return tuples J = {(J1(π), · · · , JK(π)) | π ∈ Π}, where Π denotes the set of all
possible policies. The formal definition of the Pareto frontier 1 is as follows (Roijers et al., 2013;
Yang et al., 2019):

F = {J(π) | ∄π′ s.t. J(π′) >P J(π)}. (2)

In other words, no single policy achieving F can improve one objective without sacrificing at least
one other objective. Finding a policy achieving the Pareto frontier ensures an optimal balance among
the competing objectives with the best possible trade-offs.

1Strictly speaking, the Pareto frontier can also be defined as the set of non-dominated policies, {π ∈ Π |
∄π′ s.t. J(π′) >P J(π)} (Hayes et al., 2022), rather than the set of non-dominated vector returns as shown in
equation 2 . In this case, multiple policies may achieve the same vector return (Hayes et al., 2022). To avoid this
redundancy, in this paper, we define the Pareto frontier and the convex coverage set as presented in equation 2
and equation 3, respectively.
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Researchers are also interested in obtaining policies that cover the convex coverage set (CCS) of a
given MOMDP defined as follows (Yang et al., 2019):

CCS = {J(π) | ∃ω ∈ ∆K s.t. ω⊤J(π) ≥ ω⊤J(π′), ∀π′ ∈ Π with J(π′) ∈ F} (3)

J1

J2

A
B

C
D

O

𝐹= {A,B,C,D,E}

CCS = {A,B,D,E}

𝜔

E

C’

D’

OC’ < OD’

Figure 1: Comparison of the Pareto
frontier F and the CCS for K = 2,
where C ′ and D′ represent the projec-
tions of points C and D onto the pref-
erence vector ω, respectively. Yellow
dashed line represents the outer convex
boundary of F .

where ∆K is the (K−1)-simplex and ω ∈ ∆K represents
a preference vector that specifies the relative importance
of each objective (i.e.,

∑K
k=1 ωk = 1, ωk ≥ 0,∀k).

Figure 1 illustrates the relationship between Pareto fron-
tier and CCS. In Figure 1, we assume that the achievable
points {A,B,C,D,E} form the Pareto frontier. Then,
for the preference vector ω in Figure 1, the inner product
between ω and the return vector at the point C is smaller
than the inner product between ω and the return vector at
the point D. The inner product between ω and the return
vector at the point C is smaller than that between ω and
any other point in the Pareto frontier. Hence, the point C
is not included in the CCS. Note that the CCS represents
the set of achievable returns that are optimal for some lin-
ear combination of objectives, and it is a subset of the
Pareto frontier F by definition. Since the weighted sum
is widely used in real-world applications to express spe-
cific preferences over multiple objectives (Hayes et al.,
2022), CCS is a proper refinement of the Pareto frontier.

In the context of multi-policy MORL (Roijers et al.,
2013), the goal is to find multiple policies that cover (an approximation of) either the Pareto fron-
tier or the CCS so that during test phases, we perform well across various scenarios without having
to retrain from scratch. Specifically, we aim to achieve Pareto-optimal points that maximize the
hypervolume while minimizing the sparsity (Hayes et al., 2022).

Reference point
0 J1

J2

Green dots:
Pareto frontier

J1

J2

A B

C
D

SP of {A,B,D} = 0.5(|AB|2 + |BD|2)
SP of {A,C,D} = 0.5(|AC|2 + |CD|2)
 

0

Figure 2: Evaluation metrics in multi-policy MORL: hypervolume and sparsity. (Left) Hypervolume
is represented by the pink area in the figure. (Right) The sparsity of the solution set {A,B,D} is
lower than that of {A,C,D} when points C and D are close, indicating that {A,B,D} offers a
more diverse set of solutions than {A,C,D}.

As seen in the left figure of Figure 2, the hypervolume measures the volume in the objective
space dominated by the set of current Pareto frontier points and bounded by a reference point.
In the figure, the hypervolume corresponds to the area of the pink region. This metric pro-
vides a scalar value quantifying how well the policies cover the objective space. Formally, let
X = {x1, · · · , xN} ⊂ RK be a set of N Pareto frontier points and x0 ∈ RK be a reference point,
where xi = (xi1, . . . , xiK), i = 0, . . . , N . Then, the hypervolume metric HV (X,x0) is defined by
the K-dimensional volume of the union of hybercubes

⋃N
i=1 CK

k=1[x0k, xik], where CK
k=1[x0k, xik]

is the hypercube of which side at the k-th dimension is given by the line segment [x0k, xik].

Another metric is sparsity, which assesses the distribution of policies within the objective space. As
seen in the right figure of Figure 2, a set of Pareto frontier points with low sparsity ensures that the
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solutions are well-distributed, offering a diverse range of trade-offs among the objectives. If there is a
set of N Pareto frontier points X = {x1, · · · , xN} ⊂ RK with xi = (xi1, . . . , xiK) (i = 1, . . . , N ),
sparsity is defined as:

SP :=
1

N − 1

K∑
k=1

N−1∑
i=1

(Sk[i]− Sk[i+ 1])2 (4)

where Sk = Sort{xik, 1 ≤ i ≤ N} in descending order in the k-th objective, 1 ≤ k ≤ K. Given
a dimension k and its two endpoints, Sk[1] and Sk[N ], the Cauchy–Schwarz inequality implies that∑N−1

i=1 (Sk[i] − Sk[i + 1])2 is minimized when the differences Sk[i] − Sk[i + 1] are constant for
all 1 ≤ i ≤ N − 1. Therefore, sparsity acts as an indicator of how well-distributed a set of return
vectors is. Reducing sparsity while maintaining a high hypervolume helps avoid situations where
only a few objectives perform well. Therefore, considering both low sparsity and high hypervolume
offers a more comprehensive evaluation criterion than relying solely on hypervolume.

3 RELATED WORK

There are mainly two branches in MORL. The first branch is single-policy MORL, where the goal is
to obtain an optimal policy π∗ = argmaxπ h(J(π)) where h : RK → R is a fixed non-decreasing
utility function, mostly for non-linear one (Siddique et al., 2020; Park et al., 2024). The other branch
is the multi-policy MORL, where we aim to acquire multiple policies that cover an approximation
of the Pareto frontier or CCS. Beyond several classical methods such as iterative single-policy ap-
proaches (Roijers et al., 2014), current approaches in the multi-policy MORL either train a set of
multiple policies (Xu et al., 2020) or train a single network to cover multiple policies (Abels et al.,
2019; Yang et al., 2019; Basaklar et al., 2023; Lu et al., 2023). For completeness, these approaches
should be followed by a preference elicitation method for the test phase given that additional inter-
active approaches are allowed (Hayes et al., 2022) (e.g., Zintgraf et al. (2018) inferred unknown user
preference using queries of pairwise comparison on the Pareto frontier). Nonetheless, the area of
elicitation has received far less attention than the learning methods themselves. Researchers usually
focus solely on the learning algorithms during the training phase assuming that test preferences will
be explicitly given.

Xu et al. (2020) trains a set of multiple policies in parallel using the concept of evolutionary learn-
ing, and the best policy in the policy set is used for evaluation during the test phase. Other works
construct a single policy network parameterized by ω ∈ ∆K to cover the CCS, which is easier than
direct parameterization over the set of non-decreasing functions to cover the Pareto frontier. Abels
et al. (2019) and Yang et al. (2019) constructed single-policy networks to exploit the advantages
of CCS. Specifically, Yang et al. (2019) defined the optimal multi-objective action-value function
for all ω ∈ ∆K : Q∗(s, a, ω) = EP,π∗(·|·;ω)|s0=s,a0=a [

∑∞
t=0 γ

trt] ∈ RK , where the optimal pol-
icy π∗ is given by π∗(·|·;ω) = arg supπ ω

⊤EP,π [
∑∞

t=0 γ
trt]. Based on a new definition of the

multi-objective optimality operator, the authors proposed an algorithm for training a neural network
Qθ(s, a, ω) to approximate Q∗(s, a, ω). Basaklar et al. (2023) modified the multi-objective optimal-
ity operator to match each direction of the learned action-value function and preference vector, and
Lu et al. (2023) tackled a learning stability issue of multi-policy MORL by providing theoretical
analysis on linear scalarization.

While these methods have demonstrated promising performance in MORL benchmarks with two
to four objectives, it remains an open question whether current algorithms can effectively scale to
environments with more objectives (Hayes et al., 2022). The challenge lies in effectively covering
all possible preferences during training. In most previous MORL algorithms, agents sample ran-
dom preferences in each episode to collect diverse behaviors. However, performing this sampling
naively in high-dimensional spaces becomes computationally expensive because the coverage (or
hypervolume) grows exponentially with the number of objectives (Wang & Sebag, 2013).

In this paper, we address the scalability issue by proposing a reward dimension reduction technique
with a suitable training and evaluation framework to narrow down the search space while preserving
the most relevant information. Our approach is motivated by the observation that objectives are
correlated in many real-world cases. While a variety of dimension reduction techniques exist in
machine learning (Roweis & Saul, 2000; Tenenbaum et al., 2000; Lee et al., 2007; McInnes &
Healy, 2018), most are designed for static (batch-based) datasets. Only a few methods are suitable
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for online settings, and in some cases, no online version exists at all (McInnes & Healy, 2018).
Developing online variants of batch-based dimension reduction techniques is itself an active area
of research. Currently, incremental principal component analysis (PCA) and online autoencoders
are commonly used for online dimension reduction (Cardot & Degras, 2018; Bank et al., 2020).
However, we will demonstrate that they fail to preserve Pareto-optimality after transformation in the
context of multi-policy MORL.

To our knowledge, few studies have explored reward dimension reduction in MORL. For instance,
Giuliani et al. (2014) applied non-negative principal component analysis (NPCA) to a fixed set of
return vectors collected from several pre-defined scenarios, identifying the principal components.
However, they did not perform any further online interactions, but multi-policy MORL algorithms
require online learning. In this paper, we propose a simple yet stable method for online dimension
reduction that preserves Pareto-optimality after transformation, as described in the following section.

4 METHOD

4.1 TRAINING AND EVALUATION FRAMEWORK

𝓜=<S,A,P,𝜇0,R,𝛾>
R: K-dim

𝓜’=<S,A,P,𝜇0,f(R),𝛾>

f(R): m-dim

f: RK → Rm

(K > m)

J1

J2

J3

J1

J2

𝜔m

𝜔

Figure 3: Our proposed reward dimension reduction framework. We design a mapping function
f : RK → Rm from the original reward space to the reduced reward space.

As seen in Figure 3, we aim to design a mapping function f : RK → Rm for reward dimension
reduction, where K > m ≥ 2. f transforms the original MOMDP M = ⟨S,A, P, µ0, r, γ⟩ into
another MOMDP M′ = ⟨S,A, P, µ0, f(r), γ⟩, reducing the dimensionality of the reward space
while preserving essential features. We assume that standard multi-policy MORL approaches, such
as Yang et al. (2019), perform adequately in the reduced-dimensional reward space of M′. Then
for any preference vector ωm ∈ ∆m, the (m− 1)-simplex, the optimal multi-objective action-value
function and the optimal policy are defined as:

Q∗
m(s, a, ωm) = EP,π∗

m(·|·;ωm)|s0=s,a0=a

[ ∞∑
t=0

γtf(rt)

]
∈ Rm, where (5)

π∗
m(·|·;ωm) = arg sup

π
ω⊤
mEP,π

[ ∞∑
t=0

γtf(rt)

]
= arg sup

π
EP,π

[ ∞∑
t=0

γt(ω⊤
mf(rt))

]
. (6)

π∗
m is also expressed as π∗

m(a|s, ωm) = 1 if a = argmaxa′ ω⊤
mQ∗

m(s, a′, ωm), π∗
m(a|s, ωm) = 0

otherwise. Note that the key aspect of multi-policy MORL is that we learn the action-value function
Q∗

m(s, a, ωm) not just for a particular linear combination weight ωm but for all possible weights
{ωm ∈ ∆m} in the training phase so that we can choose the optimal policy for any arbitrary combi-
nation weight depending on the agent’s preference in the test or evaluation phase.

Our goal is to design a dimension reduction function, f , such that the policies learned in the reduced-
dimensional space achieve high performance in the original reward space while satisfying two
key requirements: (i) online updates for dimension reduction and (ii) the preservation of Pareto-
optimality in the sense that ∀ωm ∈ ∆m,

Eπ∗
m(·|·,ωm)

[ ∞∑
t=0

γtf(rt)

]
∈ CCSm ⇒ Eπ∗

m(·|·,ωm)

[ ∞∑
t=0

γtrt

]
∈ F (7)
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where CCSm represents the convex coverage set in the reduced reward space and F ⊂ RK repre-
sents the Pareto frontier in the original reward space.

To the best of our knowledge, research on reward dimension reduction in MORL is limited, and
there is no well-established evaluation protocol for this task. In this section, we propose a new
training and evaluation framework tailored to the reward dimension reduction problem, along with
the algorithm itself (outlined in Section 4.2). This framework facilitates a fair comparison of online
dimension reduction techniques within the context of the original MOMDP.

During the training phase, we aim to learn the optimal multi-objective action-value function
Q∗

m(s, a, ωm) while we simultaneously update the dimension reduction function f online. For
the action-value function update, we sample data (s, a, r, s′) from a replay buffer but utilize the
reduced-dimensional rewards f(r) instead of the original rewards r. Our goal is to ensure that
Eπ∗

m(·|·,ωm) [
∑∞

t=0 γ
tf(rt)] ∈ CCSm after the training phase ends.

In the evaluation phase, the learned policy π∗
m(·|·, ωm) is tested on a set of Ne preferences Ωm,Ne ⊂

∆m, with Ne = |Ωm,Ne |, where the points are evenly distributed on the (m− 1)-simplex. For each
ωm ∈ Ωm,Ne

, we compute the expected cumulative reward Eπ∗
m(·|·,ωm) [

∑∞
t=0 γ

trt] ∈ RK in the
original reward space, as the MOMDP provides the high-dimensional vector reward at each timestep.
Our goal is for the Pareto frontier points of {Eπ∗

m(·|·,ωm) [
∑∞

t=0 γ
trt] ∈ RK |ωm ∈ Ωm,Ne

} to
maximize hypervolume while minimizing sparsity.

4.2 DESIGN OF DIMENSION REDUCTION FUNCTION

To preserve the Pareto-optimality as shown in equation 7, we impose two minimal conditions on the
dimension reduction function f :

Theorem 1. If f is affine and each element of the matrix is positive, then equation 7 is satisfied.

Proof. First, if f is affine, then f(r) = Ar+b ∈ Rm, where A ∈ Rm×K . By linearity, ∀ωm ∈ ∆m,

Eπ∗
m(·|·,ωm) [

∑∞
t=0 γ

t(Art + b)] = A

(
Eπ∗

m(·|·,ωm) [
∑∞

t=0 γ
trt]

)
+ 1

1−γ b ∈ CCSm.

Next, if each element of A is positive, we claim that Eπ∗
m(·|·,ωm) [

∑∞
t=0 γ

trt] ∈ F so that the
Pareto-optimality in equation 7 is preserved.

This is proved by contradiction. Given ωm ∈ ∆m, suppose ∃π′ ∈ Π s.t. Eπ′ [
∑∞

t=0 γ
trt] >P

Eπ∗
m(·|·,ωm) [

∑∞
t=0 γ

trt] in the original reward space. By the definition of >P in equation 1, each
dimension of Eπ′ [

∑∞
t=0 γ

trt] − Eπ∗
m(·|·,ωm) [

∑∞
t=0 γ

trt] ∈ RK is non-negative and at least one
dimension is positive.

For each 1 ≤ j ≤ m, let a⊤j ∈ R1×K be the j-th row vector of A and bj be the j-th ele-
ment of b. Then a⊤j (Eπ′ [

∑∞
t=0 γ

trt] − Eπ∗
m(·|·,ωm) [

∑∞
t=0 γ

trt]) > 0. In other words, we have
AEπ′ [

∑∞
t=0 γ

trt] >P AEπ∗
m(·|·,ωm) [

∑∞
t=0 γ

trt] in the reduced-dimensional space. By linearity,
adding Eπ′ [

∑∞
t=0 γ

tb] = Eπ∗
m(·|·,ωm) [

∑∞
t=0 γ

tb] = 1
1−γ b to both sides gives

Eπ′

[ ∞∑
t=0

γt(Art + b)

]
>P Eπ∗

m(·|·,ωm)

[ ∞∑
t=0

γt(Art + b)

]
. (8)

Since CCSm is by definition a subset of the Pareto frontier in the reduced-dimensional
space, CCSm consists of vector returns in the Pareto frontier. Therefore, equation 8
gives a contradiction since Eπ∗

m(·|·,ωm) [
∑∞

t=0 γ
t(Art + b)] ∈ CCSm is Pareto dominated by

Eπ′ [
∑∞

t=0 γ
t(Art + b)].

In short, the condition of f(r) = Ar + b with A ∈ Rm×K
+ guarantees the preservation of Pareto-

optimality in equation 7. From equation 6,

π∗
m(·|·, ωm) = sup

π
E

[ ∞∑
t=0

γt(ω⊤
mArt)

]
+

1

1− γ
ω⊤
mb = sup

π
E

[ ∞∑
t=0

γt(ω⊤
mArt)

]
. (9)
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In discounted reward settings, the bias term b does not affect the determination of π∗
m, so we set

b = 0 for simplicity.

In addition, we impose another condition that A is row-stochastic:
∑K

k=1 Ajk = 1, 1 ≤ j ≤ m.
Then

K∑
k=1

(A⊤ωm)k =

K∑
k=1

m∑
j=1

Ajk(ωm)j =

m∑
j=1

(ωm)j

K∑
k=1

Ajk =

m∑
j=1

(ωm)j = 1. (10)

In other words, ∀ωm ∈ ∆m, we have the corresponding preference vector A⊤ωm ∈ ∆K in the
original reward space. Let A⊤ = [a1, · · · , am] ∈ RKm

+ where aj ∈ ∆K , 1 ≤ j ≤ m. Then
A⊤ωm ∈ ∆K and the set {A⊤ωm|ωm ∈ ∆m} ⊂ ∆K is the convex combination of aj ∈ ∆K , 1 ≤
j ≤ m. Conceptually, the role of the matrix A is to narrow down the preference search space from
∆K to a proper subset of the ∆K .

The next question is “how should we design the affine transform A to maximally preserve the infor-
mation of the original vector reward function r?” To address this question, we propose constructing
a reconstruction neural network gϕ, where the input is the reduced-dimensional reward f(r). The
network gϕ is trained to minimize the reconstruction loss:

min
A>0, A row-stochastic,ϕ

Es,a∥r(s, a)− gϕ(f(r(s, a)))∥2 (11)

where A > 0 denotes that each element of A is positive. This approach, combining compression
with reconstruction, is widely employed to capture the essential features of input data while dis-
carding irrelevant information (Baldi, 2012; Kingma & Welling, 2014; Berahmand et al., 2024).
However, solving the optimization problem in equation 11 is more challenging than conventional
autoencoder-style learning, where the encoder is a general neural network trained without con-
straints. In contrast, our method must ensure that the matrix A satisfies both the positivity constraint
A > 0 and row-stochasticity during online training.

To overcome this challenge, we introduce a novel approach by parameterizing A using softmax
parameterization, ensuring both positivity and row-stochasticity constraints are satisfied through-
out training. Our implementation in PyTorch (Paszke et al., 2019) effectively applies this param-
eterization, and we solve the optimization in equation 11 using stochastic gradient descent in an
online setting. The reconstruction loss is minimized alongside the training of the parameterized
multi-objective action-value function Qθ(s, a, ωm), which approximates Q∗

m(s, a, ωm) as defined
in equation 5.

Let r(s, a) = [r1(s, a), · · · , rK(s, a)]⊤ ∈ RK , where each rk, for 1 ≤ k ≤ K, lies in the scalar-
valued function space R|S|×|A|. The transformation f(r) selects m(< K) functions in R|S|×|A|

based on a convex combination of {rk}Kk=1 within the reward function space. If the expressivity
of gϕ is nearly perfect, we may achieve accurate reconstruction of {rk}Kk=1 even if f does not
include all relevant information from r. To address this issue, we propose intentionally reducing the
expressivity of gϕ by using dropout (Srivastava et al., 2014) to improve the generalization ability of
f . Dropout was originally introduced to prevent overfitting, but as we show in the next section, this
technique plays a key role in achieving diverse multi-objective solutions.

5 EXPERIMENTS

5.1 ENVIRONMENT AND BASELINES

While various practical applications require addressing many objectives (Fleming et al., 2005; Li
et al., 2015; Hayes et al., 2022), there currently exist few MORL simulation environments with
reward dimensions exceeding four (Hayes et al., 2022; Felten et al., 2023). To address this issue, we
considered the following two MORL environments: LunarLander-5D (Hung et al., 2023) and our
modified implementation of an existing traffic light control environment (Alegre, 2019) to create a
sixteen-dimensional reward setting.

LunarLander-5D is a challenging MORL environment with a five-dimensional reward function
where the agent aims to land a lunar module on the moon’s surface successfully. Each reward
dimension represents: (i) a sparse binary indicator for successful landing (+ for success, - for crash),
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(ii) a combined measure of the module’s position, velocity, and orientation, (iii) the fuel cost of
the main engine, (iv) the fuel cost of the side engines, and (v) a time penalty. This environment
presents significant challenges because failing to balance these objectives effectively can easily lead
to unsuccessful landings (Felten et al., 2023; Hung et al., 2023).

Figure 4: A snapshot of our considered
environment: traffic light control.

Traffic light control is a practical example of a problem
that can be formulated as MORL, where efficiently bal-
ancing many correlated objectives is crucial (Hayes et al.,
2022). As shown in Figure 4, the traffic intersection fea-
tures four road directions (North, South, East, and West),
each with four inbound and four outbound lanes. At each
time step, the agent receives a state representing traffic
flow information. The traffic light controller selects a
phase as its action, and the reward is a 16-dimensional
vector where each dimension corresponds to a measure
proportional to the negative total waiting time of cars on
the respective inbound lanes.

In our experiments, we used the MORL algorithm from
Yang et al. (2019) as the base algorithm for the original
reward space (Base). We incorporated several online di-
mension reduction methods to the vector rewards in the
base algorithm, including online autoencoder (AE) (Bank et al., 2020), incremental PCA (Cardot
& Degras, 2018), our online implementation of conventional batch-based NPCA (Zass & Shashua,
2006), and our proposed approach. We followed the training and evaluation framework outlined in
Section 4.1, setting m = 16 when evaluating the base algorithm alone.

For incremental PCA, we update the sample mean vector µ ∈ RK and the sample covariance matrix
C ∈ RK×K at each timestep t using vector reward rt. We periodically perform eigendecomposition
on C and select the top m eigenvectors u1, . . . , um ∈ RK corresponding to the largest eigenvalues,
maximizing

∑m
l=1 u

⊤
l Cul. We construct the matrix U = [u1, . . . , um] ∈ RK×m so that U⊤(r −

µ) ∈ Rm represents the reduced vector for r, following the PCA assumption that the transformed
vectors are centered (Cardot & Degras, 2018).

For the online implementation of original NPCA (Zass & Shashua, 2006), we directly parameterize
U = [u1, . . . , um] ∈ RK×m with a non-negativity constraint for efficient training (which we denote
as U ≥ 0). This direct parameterization removes an extra hyperparameter tuning for the constraint
U ≥ 0 and gives a fair implementation compared with our method that also uses direct parameteri-
zation. We optimize the objective maxU≥0

∑m
l=1 u

⊤
l Cul−β∥U⊤U − Im∥2 using gradient descent,

with a hyperparameter β > 0. Balancing the PCA loss with the orthonormality constraint creates
a trade-off between capturing principal component information and maintaining orthonormal basis
vectors. Both PCA and NPCA do not use reconstructor gϕ.

In the traffic environment, we set m = 4 for all online dimension reduction methods, as the sample
covariance matrices consistently reached an effective rank of 4 by the end of training. We set m = 3
for LunarLander-5D. To enhance the statistical reliability of our experimental results, we applied a
25% trimmed mean by excluding the seeds with maximum and minimum hypervolume values over
eight random seeds and reporting the averages of the metrics over the remaining six random seeds.
This offers greater robustness against outliers than the standard average (Maronna et al., 2019).
(Additional implementation details can be found in Appendix E.)

5.2 RESULTS

Base PCA AE NPCA Ours
HV(×107, ↑) 3.1± 4.7 3.2± 4.2 0 1.7± 3.1 25.6± 6.9
SP(×102, ↓) 31.2± 25.3 188.6± 180.7 31.3± 30.6 53.0± 47.7 1.1± 1.2

Table 1: Performance comparison in LunarLander-5D environment, with the reference point for
hypervolume evaluation set to (0,−100,−100,−100,−100) ∈ R5. HV: hypervolume, SP: sparsity.
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Table 1 demonstrates that in the LunarLander-5D environment, our algorithm outperforms the base-
line methods in both hypervolume and sparsity metrics. Specifically, our approach improves the base
algorithm’s hypervolume by a factor of 8.3. It also reduces sparsity to the ratio of 1

28.4 , resulting in
more diverse and better-performing solutions. Note that the hypervolume values reflect successful
landing episodes, so our dimension reduction is more efficient for achieving successful landing and
balancing remaining objectives simultaneously than the baselines.

Base PCA AE NPCA Ours
HV(×1061, ↑) 4.4± 6.8 0 0.007± 0.018 19.4± 15.3 166.9± 48.1
SP(×105, ↓) 1842± 1290 3837± 2164 7834± 3323 34.2± 52.3 2.3± 1.0

Table 2: Performance comparison in our traffic experiment where we set reference point for hyper-
volume evaluation to (−104,−104, · · · ,−104) ∈ R16 . HV: hypervolume, SP: sparsity.

Next, Table 2 demonstrates that our algorithm consistently outperforms the baseline methods in the
traffic environment with sixteen-dimensional reward. Our algorithm improves the base algorithm’s
hypervolume by a factor of 37.9 while significantly reducing sparsity, indicating that reward dimen-
sion reduction effectively scales the base algorithm to higher-dimensional spaces. The PCA-based
dimension reduction is an affine transformation, but because the matrix does not meet the positivity
condition in Theorem 1, it fails to guarantee Pareto-optimality as outlined in equation 7. Simi-
larly, the AE method uses a nonlinear transformation that fails to satisfy the linearity requirement in
Theorem 1, producing worse hypervolume and sparsity than the base case.

NPCA NPCA-ortho Ours
HV(×1061, ↑) 19.4± 15.3 0.3± 0.5 166.9± 48.1
SP(×105, ↓) 34.2± 52.3 203.7± 24.1 2.3± 1.0

Rank 1 4 4

Table 3: Performance comparison in the traffic experiment with NPCA and NPCA-ortho where
“Rank” refers to the rank of the matrix in each method.

In Table 2, our method outperforms NPCA by significantly increasing hypervolume and reducing
sparsity, with improvements of 8.6x in hypervolume. Although NPCA employs an affine transfor-
mation with a nonnegative matrix, its online variant encounters instability due to the conflicting
objectives of optimizing the principal component loss while maintaining the orthonormality con-
straint. As shown in Table 3, the best-performing NPCA models, in terms of hypervolume and
sparsity, had matrices of rank 1. The learning process prioritized maximizing the PCA loss, at the
expense of enforcing the orthonormality constraint, producing completely overlapping basis vectors.

To address this, we tuned hyperparameters to emphasize the orthonormality constraint, denoting
this variant as NPCA-ortho. However, Table 3 shows that this adjustment led to a performance de-
cline compared to NPCA. The reason is that assigning more weight to the orthonormality constraint
weakened the PCA update, significantly reducing its ability to capture relevant information from the
original reward space. Additionally, we found that balancing the two losses was highly sensitive
and difficult to fine-tune. In contrast, our method avoids these issues, offering a more stable and
effective solution for reward dimension reduction without the trade-offs inherent in NPCA’s design.

To better illustrate results in high-dimensional space, we visualized the Pareto frontier points ob-
tained from the traffic environment using t-SNE (Van der Maaten & Hinton, 2008), as detailed in
Appendix B.1. We also present hypervolume values for different reference points in Appendix B.2.

5.3 ABLATION STUDY

In this section, we explore the impact of the main components in our proposed dimension reduction
approach. Specifically, we address two key questions: (i) How does limiting the expressivity of
the reconstructor gϕ influence the diversity of the solutions obtained? (ii) How do the conditions
outlined in Section 4.2 affect the preservation of Pareto-optimality in equation 7?

To answer the first question, we evaluated the effect of removing dropout during the learning of gϕ
in equation 11. As shown in Table 4, omitting dropout resulted in a slight decrease in hypervolume,
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No dropout Ours
HV(×1061, ↑) 127.1 166.9
SP(×105, ↓) 9.5 2.3

Table 4: Ablation study on the effect of dropout during reward dimension reduction learning.

while sparsity sharply increased by a factor of 4.1. Note that we want to cover a broad region of
the Pareto frontier, rather than simply expanding coverage in the high-dimensional reward space. In
the early stages of training, the collected return data are less likely to lie on the Pareto frontier. As
learning progresses, higher-quality data are gathered. Dropout helps to leverage this improved data
by intentionally slowing down the fitting process of the function f , thereby preventing premature
convergence to suboptimal solutions.

To address the second question, we analyzed the impact of the constraints applied to the dimension
reduction function f . Specifically, we examined three aspects: bias, row-stochasticity, and positivity,
to assess how these conditions influence the preservation of Pareto-optimality. Table 5 presents the
results of our ablation study.

Ours +bias -rowst -positivity -rowst, -positivity
HV(×1061, ↑) 166.9 132.9 46.8 0 0
SP(×105, ↓) 2.3 2.7 38.8 4066.6 5310.7

Table 5: Ablation study examining the impact of different conditions on the dimension reduction
function f . “+bias” adds a bias term b in f ; “-rowst” removes the row-stochasticity constraint while
retaining the positivity condition; “-positivity” removes the positivity condition.

First, adding a bias term to f results in a slight decrease in hypervolume and an increase in sparsity
compared to our method. However, the impact is less severe than the other modifications. While,
in theory, the bias term b does not affect the determination of the optimal policy under discounted
reward settings (as shown in equation 9), in practice, introducing a bias term offers minimal benefit,
so a purely linear transformation is sufficient.

We next observe a performance drop when the row-stochasticity condition is removed. Notably,
sparsity increased sharply by a factor of 16.9, highlighting the detrimental impact of this removal.
Note that the direction of each preference vector ωm, not the magnitude, matters for the deter-
mination of optimal policy π∗

m in equation 6. By confining the search space to the simplex, the
learning process can focus on finding the correct direction to extract essential reward information,
rather than expending unnecessary effort on adjusting magnitudes. Consequently, enforcing the
row-stochasticity constraint enhances learning efficiency, leading to more diverse solutions.

If we remove the positivity condition while maintaining the row-stochasticity constraint, the algo-
rithm produces zero hypervolume. This is due to the lack of the positivity condition required by
Theorem 1. Finally, further removing the row-stochasticity gives f(r) = Ar with a generic linear
matrix A that also fails to preserve Pareto-optimality in equation 7.

In conclusion, the positivity condition is essential for maintaining Pareto-optimality, while the row-
stochasticity constraint improves the efficiency of online learning under the positivity condition.
(We also provide an ablation study on the effect of the reduced dimensionality m in Appendix B.3.)

6 CONCLUSION

In this paper, we proposed a simple yet effective reward dimension reduction technique to address
the scalability challenges of multi-policy MORL algorithms. By leveraging dimension reduction,
our approach efficiently captures the key features of the reward space, enhancing both learning
efficiency and policy performance while preserving Pareto-optimality during online learning. We
also introduced a new training and evaluation framework tailored to reward dimension reduction,
demonstrating superior performance compared to existing methods.
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of each algorithm in Section 5.1 and Appendix E, including the
techniques, fine-tuned hyperparameters, and infrastructures used in our experiments. Upon accep-
tance, we will publicly release the source code to ensure accessibility and reproducibility. The
evaluation protocol for performance comparison is outlined in Section 4.1. Additionally, Theorem
1 is presented in a self-contained manner, making it straightforward to verify the theoretical results.
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A LIMITATION AND FUTURE WORK

While our approach offers a promising solution for scaling MORL algorithms, several avenues re-
main for future research. First, as discussed in Section 5.1, the lack of benchmarks for environments
with more than ten objectives limits the comprehensive validation of our method. Developing robust
benchmarks for high-dimensional MORL scenarios is a crucial direction for our future research.

Second, although we provided mathematical conditions for preserving Pareto-optimality in Theo-
rem 1, these are only sufficient conditions. We investigated the effect of each condition in Section
5.3. However, our method’s theoretical guarantees will be more solid if we establish the necessary
conditions that pinpoint when Pareto-optimality fails. We provide a detailed discussion in Appendix
C.

Third, recent research in MORL has focused on developing additional metrics to better evaluate
performance, recognizing that the data behavior in MORL is more complex than in standard RL.
High-dimensional scenarios are difficult to visualize, and data behavior often deviates from intuitive
expectations (Lee et al., 2007). Therefore, designing informative metrics beyond standard measures
like hypervolume and sparsity is essential for gaining deeper insights and advancing the field. For
a case study, we discuss an additional metric called Expected Utility Metric (EUM) (Zintgraf et al.,
2015; Hayes et al., 2022) in Appendix D.

Fourth, while our approach enables effective training for scalable MORL, for practical use, test
preference vectors in their original high-dimensional form must be reduced to the lower-dimensional
space learned by our model. Developing methods for preference vector reduction, and potentially
integrating preference elicitation mentioned in Section 3, will be essential for making our approach
more practical and complete.

Lastly, our method can be extended in various directions. For example, constrained MORL rep-
resents a promising direction, especially for safety-critical tasks where additional constraints must
be considered. This extension could open up new applications where optimality and safety are
paramount. Also, combining reward dimension reduction with reward canonicalization (Gleave
et al., 2020) and extending reward linear shifting (Sun et al., 2022) to high-dimensional offline
MORL represent promising avenues for extending our work, both theoretically and experimentally.
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B ADDITIONAL EXPERIMENTS

B.1 VISUALIZATION OF THE PARETO FRONTIERS

Figure 5: t-SNE visualization of the acquired Pareto frontier points

In Figure 5, we visualized the Pareto frontier obtained in the traffic environment for each algorithm
using t-SNE (Van der Maaten & Hinton, 2008). We emphasize that our primary objective is
to cover a broad region of the Pareto frontier, not merely to cover a wide region of a high-
dimensional reward space itself. Although AE solutions may appear widely distributed, this does
not necessarily imply extensive coverage of the Pareto frontier because the Pareto frontier is a subset
of the original space. Given that AE yields a low hypervolume, it is less likely to represent a wide
range of the Pareto frontier.

According to the overlap analysis, smaller overlaps with the Base method suggest a different local
structure, for example, either in a way of our method (with high hypervolume) or a way of PCA
(with very low hypervolume). This qualitative difference suggests that our method and PCA are
distinct in their approach to exploring the solution space. Also, NPCA overlaps with more points
from the Base and AE methods than ours, demonstrating the insufficiency of NPCA in covering a
larger region of the Pareto frontier than the Base method.

B.2 HYPERVOLUMES WITH DIFFERENT REFERENCE POINTS

In the traffic environment, we selected the reference point (−104,−104, . . . ,−104) ∈ R16 based
on observations that, after the initial exploration phase, most points in the current Pareto fronts fell
within this defined region (except for PCA). However, some points may deviate from this region.
To account for these outliers, the reference points can be adjusted accordingly. We evaluated the
hypervolume using different reference points in both the traffic environment and LunarLander-5D.
As shown in Tables 6 and 7, our algorithm consistently outperforms the baseline methods.

Base PCA AE NPCA Ours
HV1(×107, ↑) 3.1± 4.7 3.2± 4.2 0 1.7± 3.1 25.6± 6.9
HV2(×108, ↑) 7.6± 9.0 8.8± 7.9 0 4.9± 6.8 37.1± 6.7

Table 6: Performance comparison in the LunarLander-5D environment. The reference
points for hypervolume evaluation are set to (0,−100,−100,−100,−100) ∈ R5 for HV1 and
(0,−150,−150,−150,−150) ∈ R5 for HV2. HV: hypervolume.
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Base PCA AE NPCA Ours
HV1(×1061, ↑) 4.4± 6.8 0 0.007± 0.018 19.4± 15.3 166.9± 48.1
HV2(×1067, ↑) 5.0± 6.7 0 0.3± 0.7 11.5± 4.8 29.3± 3.4
HV3(×1073, ↑) 1.6± 0.8 0 0.2± 0.3 1.9± 0.4 2.9± 0.2

Table 7: Performance comparison in the traffic experiment. The reference points for hypervolume
evaluation are set to (−104,−104, · · · ,−104) ∈ R16 for HV1, (−2 × 104,−2 × 104, · · · ,−2 ×
104) ∈ R16 for HV2, and (−4×104,−4×104, · · · ,−4×104) ∈ R16 for HV3. HV: hypervolume.

B.3 EFFECT OF THE REDUCED DIMENSIONALITY m

Table 8 shows the impact of varying the reduced dimensionality m in our method in the traffic
environment. As m increases from 4 to 6, sparsity rises significantly while hypervolume remains
constant. This results in situations where only a few objectives perform well. When m increases
from 8 to 10, both sparsity increases and hypervolume decreases, leading to a lower-quality set of
returns in the original reward space. Based on these observations, we set m = 4 for our traffic
environment experiments.

m is a hyperparameter for our algorithm, and selecting an appropriate value in practice is achievable.
This is because we can estimate the effective rank of the sample covariance matrix recursively (Car-
dot & Degras, 2018) during the early exploration phase of the RL algorithm, rather than throughout
the entire training process. We found that this straightforward approach performs effectively in our
experiments.

m 2 4 6 8 10
HV(×1063, ↑) 1.4 1.7 1.7 1.9 1.1
SP(×105, ↓) 1.5 2.3 30 20 81

Table 8: Ablation study in the traffic environment regarding the impact of varying the dimensional-
ity m where we set reference point for hypervolume evaluation to (−104,−104, · · · ,−104) ∈ R16.
HV: hypervolume, SP: sparsity.

C DISCUSSION ON THE NECESSARY CONDITION OF THEOREM 1

We acknowledge that theoretically analyzing the opposite direction of Theorem 1 is challeng-
ing. To find conditions for a counterexample of f beyond f(r) = Ar + b with A ∈ Rm×K

+ ,
we may follow a similar flow in the proof of the Theorem 1. Given ωm ∈ ∆m, suppose
∃π′ ∈ Π s.t. Eπ′ [

∑∞
t=0 γ

trt] >P Eπ∗
m(·|·,ωm) [

∑∞
t=0 γ

trt] in the original reward space. We
first impose that f = [f1, · · · , fm] be a monotonically strictly increasing function satisfying
A >P B ⇒ fj(A) > fj(B) for all 1 ≤ j ≤ m (Hayes et al., 2022). Then we have
f(Eπ′ [

∑∞
t=0 γ

trt]) >P f(Eπ∗
m(·|·,ωm) [

∑∞
t=0 γ

trt]) in the reduced-dimensional space. If f further
satisfies

Eπ′

[ ∞∑
t=0

γtf(rt)

]
>P Eπ∗

m(·|·,ωm)

[ ∞∑
t=0

γtf(rt)

]
, (12)

this gives a contradiction and f becomes our target counterexample. This is directly satisfied when
f is affine. However, it is difficult to find such an example other than affine functions, primarily
due to the inequality in >P . For instance, if we consider generalized (strictly) convex functions
(Mishra et al., 2009) satisfying ag(x)+ bg(y) > g(ax+ by) for any a, b > 0 (a ̸= b, not necessarily
a+ b = 1) for each element of f , then we have
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Eπ′

[ ∞∑
t=0

γtf(rt)

]
=
∑
s,a

dπ
′
(s, a)f(r(s, a)) >P f(

∑
s,a

dπ
′
(s, a)r(s, a)) = f

(
Eπ′

[ ∞∑
t=0

γtrt

])
(13)

where dπ
′
(s, a) is the occupancy measure (or the unnormalized state-action visitation frequency)

(Puterman, 1994) of π′ in a given MOMDP and equation 13 holds when π′ is replaced with
π∗
m(·|·, ωm). However, due to the inequality in f(Eπ′ [

∑∞
t=0 γ

trt]) >P f(Eπ∗
m(·|·,ωm) [

∑∞
t=0 γ

trt]),
Eπ′ [

∑∞
t=0 γ

tf(rt)] >P Eπ∗
m(·|·,ωm) [

∑∞
t=0 γ

tf(rt)] is not always implied in general.

Alternatively, we conducted an empirical analysis by relaxing the condition in equation 12 and
directly optimizing f under the sole constraint of a strictly monotonically increasing function. As
part of our ablation study, we parameterized f as a strictly monotonically increasing function using a
neural network (similar to approaches like Rashid et al. (2018) but maintaining strict monotonicity)
and trained it within the traffic environment, denoted by “monotone.”

Monotone Ours
HV(×1061, ↑) 0 166.9
SP(×105, ↓) 5353.0 2.3

Table 9: Ablation study on the effect of imposing strict monotonicity on f .

Table 9 shows that this approach resulted in a hypervolume of zero, similar to the “-positivity” and
“-rowst, -positivity” cases in Table 5. This suggests that merely imposing a strictly monotonically
increasing function condition is insufficient to construct a meaningful counterexample in practice.
Importantly, nonzero hypervolume was only achieved when both the affine and positivity conditions
were satisfied, as demonstrated in the “-rowst” case from Table 5. These results underscore the
empirical effectiveness of our algorithm based on Theorem 1.

D DISCUSSION ON EUM METRIC

The Expected Utility Metric (EUM) (Zintgraf et al., 2015; Hayes et al., 2022) is defined as follows:

EUM(F , fs,ΩK,N̄e
) := Eω∈ΩK,N̄e

[max
r∈F

fs(ω, r)]. (14)

Here, ΩK,N̄e
⊂ ∆K represents a set of N̄e preferences in the original reward space and fs is a

scalarization function. We here analyze our result with EUM because it effectively evaluates the
agent’s performance across a wide range of preferences (Hayes et al., 2022), aiming for a higher
EUM to prevent the Pareto frontier from covering only a narrow region. To calculate EUM, we set
fs(ω, r) = ∥projω[r]∥, the projected length of the vector r onto ω. We set N̄e to 126 and 15,504 for
LunarLander and the traffic environment, respectively.

LunarLander-5D Base PCA AE NPCA Ours
EUM(↑) −25.8± 24.3 −20.2± 21.5 −76.2± 48.6 −28.4± 13.9 −11.5± 5.4

Table 10: Performance comparison in LunarLander-5D experiment. EUM: expected utility metric.

Traffic Base PCA AE NPCA Ours
EUM(×103, ↑) −3.4± 2.9 −35.1± 15.2 −16.1± 8.8 −4.4± 1.2 −2.0± 1.0

Table 11: Performance comparison in our traffic experiment. EUM: expected utility metric.

As demonstrated in Table 10 and 11, our method outperforms baseline approaches in terms of the
EUM. It is important to note that during training, the Base method uses equidistant points in the
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original reward space, which naturally leads to high EUM values, especially when the reward space
has a high dimensionality. Nevertheless, our algorithm delivers superior performance compared to
other reward dimension reduction methods, particularly in higher-dimensional environments like the
traffic scenario.

This advantage of EUM helps prevent the concentration of solutions in a narrow region within the
original reward space. Based on the concept of EUM, designing more advanced metrics adequate
for high-dimensional space will be our promising future research direction.

E IMPLEMENTATION DETAILS

E.1 SOURCE CODE AND ENVIRONMENT

For our implementation, we adapted morl-baselines (Felten et al., 2023) and integrated it with sumo-
rl (Alegre, 2019), a toolkit designed for traffic light control simulations, as discussed in Section 5.
For LunarLander-5D, we used morl-baselines (Felten et al., 2023) with the reward function provided
by the source code of Hung et al. (2023).

The traffic light system offers four distinct phases: (i) Straight and right turns for North-South
traffic, (ii) Left turns for North-South traffic, (iii) Straight and right turns for East-West traffic, and
(iv) Left turns for East-West traffic. At each time step, the agent receives a 37-dimensional state,
which includes a one-hot encoded vector representing the current traffic light phase, the number of
vehicles in each incoming lane, and the number of vehicles traveling at less than 0.1 meters per
second for each lane. The simulation starts with a one-hot vector where the first element is set
to one. Based on this state, the controller chooses the next traffic light phase. The time between
phase changes is 20 seconds, with each episode spanning 4000 seconds, or 200 timesteps. When
transitioning to a different phase, the last 2 seconds of the interval display a yellow light to minimize
vehicle collisions. The reward, represented by a 16-dimensional vector, is calculated as the negative
total waiting time for vehicles on each inbound lane. The simulation runs for 52,000 timesteps in
total. For LunarLander-5D, the simulation runs for 2M timesteps.

E.2 BASELINES

For our proposed method and the baselines, we set the discount factor γ = 0.99 and use a buffer size
of 52,000 and 1M for traffic and LunarLander, respectively. In Base algorithm (Yang et al., 2019),
we utilize a multi-objective action-value network Qθ with an input size of observation dimension
plus K, two hidden layers of 128(LunarLander)/256(traffic) units each, and ReLU activations after
each hidden layer. The output layer has a size of |A| × K. For the dimension reduction methods,
the Qθ network has an input size of input size of observation dimension plus m, two hidden layers
of 128(LunarLander)/256(traffic) units with ReLU activations, and an output layer of size |A| ×m.

We train Qθ using the Adam optimizer (Kingma & Ba, 2015), applying the loss function after
the first 200 timesteps, with a learning rate of 0.0003 and a minibatch size of 32. Exploration
follows an ϵ-greedy strategy, with ϵ linearly decaying from 1.0 to 0.05 over the first 10% of the
total timesteps. The target network is updated every 500 timesteps. We update θ using the gradient
∇θL(θ), L(θ) = (1− λ)Lmain(θ) + λLaux(θ), where Lmain(θ) is the primary loss and Laux(θ) is the
auxiliary loss in Yang et al. (2019). The weight λ is linearly scheduled from 0 to 1 over the first 75%
and 25% percent of the total timesteps in traffic and LunarLandar, respectively. Sampling preference
vectors ωm ∈ ∆m during training and execution follows the uniform Dirichlet distribution.

For the three online dimension reduction methods (our approach, the autoencoder, and our imple-
mentation of online NPCA), we utilize the Adam optimizer for updates. In our method, the matrix
A is initialized with each entry set to 1/K. The neural network gϕ has an input dimension of m,
two hidden layers of 32 units each, and ReLU activations after each hidden layer. The output layer
has a size of K. We use a dropout rate of 0.75 and 0.25 in in traffic and LunarLandar, respectively
(with 0 meaning no dropout). Equation 11 is optimized with a learning rate of 0.0003 and an update
interval of 5 timesteps.

For the autoencoder, the encoder network has an input size of K, two hidden layers with 32 units
each, and ReLU activations after each hidden layer. The output layer has a size of m. The de-
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coder follows the same architecture as gϕ, but without dropout. The reward reconstruction loss is
optimized with a learning rate of 0.0001 and an update interval of 20 timesteps.

For the online NPCA, we use ReLU parameterization for efficient learning (also implemented in
PyTorch (Paszke et al., 2019)) to meet the constraint on matrix U . The matrix U is initialized
similarly with each entry set to 1/K. NPCA is optimized with a learning rate of 0.0001, an update
interval of 20(traffic)/50(LunarLander) timesteps, and β = 50000(traffic)/1000(LunarLander). The
reduced vector representation of r is UT (r − µ) ∈ Rm, following the PCA assumption that the
transformed vectors are centered (Zass & Shashua, 2006; Cardot & Degras, 2018). For NPCA-ortho
in traffic, increasing the value of β did not yield better orthonormality, so we set the update interval
to 5 timesteps, keeping the same β value.

For incremental PCA, we recursively update the sample mean vector of rewards as µt+1 =
t

t+1µt +
1

t+1rt+1 ∈ RK and the sample covariance matrix as Ct+1 = t
t+1Ct +

t
(t+1)2 (rt+1 −

µt)(rt+1 − µt)
⊤ ∈ RK×K for each timestep t (Cardot & Degras, 2018). Every 20 timesteps, we

eigen-decompose the covariance matrix, selecting the top m eigenvectors u1, . . . , um ∈ RK corre-
sponding to the largest eigenvalues, and update U = [u1, . . . , um] ∈ RK×m. The reduced vector
representation of r is UT (r−µ) ∈ Rm, assuming the vectors are centered (Cardot & Degras, 2018).
U is initialized as a matrix with each entry set to 1/K. For evaluation, we generated fifteen and thirty
five equidistant points on the simplex for LunarLander and the traffic environment, respectively. For
evenly distributed sampling and calculating hypervolume and sparsity, we use the implementation
provided in Felten et al. (2023). We use infrastructures of Intel Xeon Gold 6238R CPU @ 2.20GHz
and Intel Core i9-10900X CPU @ 3.70GHz.
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