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Abstract001

Uncertainty quantification often plays a key role002

when deploying deep learning models in segmenta-003

tion tasks, such as in medical imaging, where the004

results are used directly for clinical decision support.005

Existing stochastic segmentation methods, such as006

Stochastic Segmentation Networks (SSNs), typically007

rely on low-rank plus diagonal covariance structures008

to model predictive uncertainty. While computa-009

tionally efficient, this parameterization often fails to010

capture both global and local spatial correlations,011

leading to limited improvements over deterministic012

models. In this work, we revisit low-rank formula-013

tions and introduce two new approaches: a Single-014

Basis and a Mixture-of-Bases decomposition. By015

projecting predicted noise structures onto learned co-016

variance bases — either globally or, for the Mixture-017

of-Bases, within blocks obtained by partitioning the018

volume — we achieve richer and more flexible un-019

certainty modeling with negligible increases in the020

number of parameters. Evaluated on the 3D segmen-021

tation task of challenging anatomies from the To-022

talSegmentator CT dataset. Our approaches achieve023

significant Dice score improvements over determinis-024

tic and baseline stochastic models while maintaining025

competitive calibration, with the Mixture-of-Bases026

yielding the greatest improvement. These results027

demonstrate that basis-driven covariance modeling028

is a simple yet powerful way to improve both seg-029

mentation accuracy and uncertainty estimation in030

3D medical image analysis.031

All code and experiments will be made public032

upon acceptance.033

1 Introduction034

Uncertainty quantification has become a central re-035

search topic in deep learning-based image segmenta-036

tion [1]. While deterministic models often achieve037

strong performance, they provide only point esti-038

mates and neglect predictive uncertainty. This can039

lead to overconfident errors, as modern neural net-040

works are often poorly calibrated, meaning that041

output confidences do not reliably reflect true proba-042

bilities [2]. In clinical imaging applications, incorrect043

segmentations can have severe consequences, as they044

may mislead professionals without providing any045

indication of doubt. This is especially important in046

organ segmentation, where inaccurate delineation 047

of anatomical structures can compromise treatment 048

planning or downstream quantitative analyses [3, 049

4]. Automated delineation on Computed Tomogra- 050

phy (CT) is particularly challenging in regions where 051

boundaries are faint or anatomy is complex [5], often 052

resulting in overconfident predictions. By explicitly 053

modeling uncertainty, segmentation models can high- 054

light regions of low confidence, enabling clinicians 055

to interpret results more cautiously and reduce the 056

risk of diagnostic errors. Furthermore, quantifying 057

uncertainty reduces the ”black-box” nature of deep 058

learning, making AI models more trustworthy and 059

accepted by professionals in other fields [6–8]. 060

Various approaches have been proposed to cap- 061

ture predictive uncertainty in segmentation tasks. 062

Monte Carlo Dropout is widely used to approximate 063

Bayesian inference due to its simplicity, although 064

its accuracy has been questioned [1]. Generative 065

models such as the Probabilistic U-Net and diffusion- 066

based methods introduce latent variables to gener- 067

ate multiple plausible segmentations [9]. Since the 068

introduction of Stochastic Segmentation Networks 069

(SSNs) [10], it has become increasingly popular to 070

model spatially correlated uncertainty in the logit 071

space using a multivariate normal distribution where 072

the covariance is decomposed into a diagonal and 073

low-rank contribution. However, this parameteriza- 074

tion has been shown theoretically and in simulated 075

settings to have certain deficiencies [11]. Despite this, 076

subsequent work has continued to largely rely on the 077

low-rank covariance parameterization introduced in 078

the original SSN paper. In contrast, block-based 079

approximations, where the covariance is divided into 080

smaller independent blocks, have demonstrated more 081

robust behavior in spatial domains [11]. 082

In this work, we revisit the low-rank covariance 083

parameterizations and propose an improved formu- 084

lation. Specifically, we introduce a framework that 085

enhances low-rank modeling through learned basis 086

representations and block-wise decomposition. This 087

hybrid approach enables expressive and computa- 088

tionally efficient uncertainty estimation for volumet- 089

ric segmentation, capturing both local and global 090

spatial correlations more accurately than standard 091

low-rank models. In summary, our contributions 092

are: 093

1. We propose a stochastic segmentation model 094

that projects high-dimensional representations 095
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Figure 1. Overview of our proposed method. x denote the input 3D volume and µ denotes the mean prediction,
similar to the standard nnU-Net output. A is the predicted noise structure for each voxel with rank R. W
represents the weighting of the learned bases B1, B2 and B3. These are multiplied with a partitioned version
of A and added with D, which accounts for the the diagonal variance contribution. Together, this models the
covariance matrix Σ, which, along with µ, defines a normal distribution over the network’s output logits.

of uncertainty onto a learned basis for improved096

segmentation performance.097

2. We extend this concept to a Mixture-of-Bases098

(MoB) setting, where bases are allocated spa-099

tially according to a weighting scheme.100

3. We introduce a principled training framework101

with KL regularization, orthogonality, Dice-102

and entropy-based losses that encourage diverse103

bases, enabling stable learning and robust un-104

certainty estimates.105

4. We demonstrate how these frameworks can im-106

prove segmentation performance while provid-107

ing useful uncertainty estimates on challenging108

3D medical imaging segmentation tasks.109

2 Related Work110

Monteiro et al. [10] introduced Stochastic Segmen-111

tation Networks (SSNs), which directly model spa-112

tially correlated uncertainty in the logit space. In113

this framework, per-pixel predictions are assumed to114

follow a multivariate normal distribution. However,115

since the covariance matrix scales quadratically with116

the number of pixels and classes, SSNs approximate117

it using a diagonal plus low-rank decomposition. The118

mean, low-rank component, and diagonal variance119

are all predicted by the network.120

Zepf et al. [12] extended the SSNs by incorporating121

Laplace approximations of the posterior over the122

network weights [8], while retaining the same low-123

rank covariance structure. The authors develop a124

fast diagonal Hessian approximation, which has been125

shown to scale for large neural networks with skip 126

connections. 127

Recently, Müller et al. [13] proposed a fusion-based 128

approach that combines dropout-based segmenta- 129

tion heads with Laplacian uncertainty estimates. 130

Their method leverages large foundational models 131

to provide image embeddings for downstream seg- 132

mentation. 133

Despite these advances, all of the above meth- 134

ods rely on the same low-rank covariance param- 135

eterization introduced in [10]. While this struc- 136

ture is computationally efficient, it is too restrictive 137

to capture both local and global dependencies in 138

the uncertainty estimates. This limitation is well- 139

documented in spatial statistics, where block-based 140

covariance approximations have shown superior per- 141

formance in capturing fine-scale variation, especially 142

in cases where neighbouring observations are very 143

correlated [11], as is typical in spatial data such as 144

3-dimensional (3D) volumes. 145

3 Methods 146

In segmentation, uncertainty is often modeled with 147

a heteroscedastic noise assumption, where the net- 148

work predicts voxel-wise variances in addition to 149

logits. This means that the amount of noise, or 150

uncertainty, can change between different regions of 151

the volume, rather than being fixed everywhere [14]. 152

In a standard 3D segmentation task, we consider 153

models that map volumes x into their target volume 154

t, f : RH×W×D → RC×H×W×D, where C denotes 155

the number of classes. We denote the logits as η. 156

Then the voxel class probabilities become 157
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Figure 2. Comparison of parameterizations evaluated
in this study. Panels (a) and (b) illustrate baseline
approaches [8, 10], while panels (c) and (d) correspond
to our proposed methods. The matrices B are shown in
grey to indicate that they are learned parameters rather
than input-dependent.

p(C|η) = σ(η) (1)158

where σ is either a sigmoid or softmax function for159

single- and multi-class cases, respectively. In this160

work, we assume a Gaussian as the functional form161

of the distribution over the logits, and hence p(η) =162

N (η|µ,Σ) [8]. In a world with infinite computing163

resources, we could model this distribution in full164

fidelity by learning both the mean µ(x) and the full165

covariance matrix Σ(x) with neural networks, i.e.166

p(η|x) = N (η|µ(x),Σ(x)) . (2)167

However, the number of elements in the covari-168

ance matrix scales quadratically with the number169

of voxels in the volume; hence, the formulation is170

intractable even for small volumes. Instead, we de-171

compose Σ(x) into a diagonal variance D and a172

low-rank covariance contribution P [8, 10].173

Σ(x) ≈ α D(x) + βP (x)P (x)T . (3)174

Where P (x) ∈ RH·W ·D·C×R and R is the chosen175

rank for the low-rank approximation. α and β are176

scaling parameters, though these are often not in-177

cluded explicitly when D and P are learned. Since178

all covariance matrices can be Cholesky factorized,179

it is evident that as the rank increases, so does the180

fidelity of the approximation [11].181

We propose a novel approach for decomposing the182

covariance matrix using neural networks, as illus-183

trated in Fig. 1. The key idea is to decompose the184

covariance matrix into a matrix A, which is then185

projected onto a set of basis vectors. We consider186

two variants of this approach: a Single-Basis model187

and a Multi-Basis model, which we refer to as the188

Mixture-of-Bases (MoB). All methods evaluated in 189

this paper are summarized in Fig. 2, with our two 190

proposed variants shown in Fig. 2(c) and Fig. 2(d), 191

respectively. For comparison, Figs. 2(a) and 2(b) 192

present the baseline network structures: one assum- 193

ing a purely diagonal covariance matrix and another 194

employing the decomposition in Eq. (3), referred to 195

as Diagonal and Diagonal + Low-rank, respectively. 196

We define a network A where A(x) ∈ RH·W ·D×R, 197

i.e, a matrix of rank R. Note that unlike P (x), 198

it does not have rows corresponding to the class 199

dimension. Secondly, we define a basis matrix B ∈ 200

RC×R, which is learned but does not depend on 201

the input. Using these two as a new low-rank term, 202

while still maintaining a diagonal contribution from 203

D, we model the covariance as follows: 204

Let N = DHW and denote by A(x)n = an ∈ RR
205

and D(x)n = dn ∈ RC the low-rank scales and 206

diagonal variances at voxel n, respectively. With 207

B ∈ RC×R the learned basis, the covariance for each 208

voxel n becomes 209

Σn = B diag(an)
2B⊤ + diag(dn). (4) 210

We then construct a block-diagonal matrix with each 211

entry along the diagonal being Σn ∈ RC×C , hence 212

Σ(x) = blockdiag (Σ1, . . . ,ΣN ) (5) 213

This approach enables the model to learn a global 214

covariance basis B, onto which we project the pre- 215

dicted uncertainty representation A(x). In this way, 216

the predicted uncertainty will be regularized by ex- 217

pressing it along dimensions that the model is al- 218

ready familiar with. These operations define the 219

Single-Basis model. 220

Representing the distribution p(η) as in Eq. (4) 221

has an obvious limitation. Namely, we assume the ex- 222

istence of a basis that can account for the structure, 223

both globally across the full dataset distribution and 224

locally across the whole volume. To account for this, 225

we introduce a Mixture-of-Bases setup (MoB), as 226

depicted in Fig. 2(d). The setup in Fig. 2(c) is recov- 227

ered as a special case where the number of bases is 228

one. Instead of only having one basis, we instead de- 229

fine a set of bases Bi ∈ RC×R, i = 1, . . . ,M where M 230

denotes the number of bases. In addition, to account 231

for local variation within the volume, we partition 232

the predicted uncertainty A(x) into P×P×P cubes, 233

of approximately equal size. Recall that the entries 234

in A(x) correspond to the size of the original volume 235

but with an additional rank dimension. We then 236

define a model W where W (x) ∈ R(P×P×P )×M that 237

predicts the probability of each of the M basis ma- 238

trices for each of the P × P × P partitions. Hence, 239

we use W (x) to predict which basis matrix Bi is 240

most suited for each partition of the volume A(x). 241

Let P (i, j, k) denote a partition, where i, j, k = 242

1, . . . , P are the cube indices. Then AP (i,j,k) denotes 243

the elements in A that belong to that partition. 244
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Additionally, let B̂ be the most probable basis matrix245

for the partition, retrieved by the argmax over the246

M-dimension of W for the appropriate partition247

indices (i, j, k). The partitioned and multi-basis248

version of Eq. (4) will then be:249

Σ(x)P (i,j,k) = blockdiag (Σn)n∈P (i,j,k) , (6)250

Where251

Σn = B̂ diag(an)
2B̂T + diag(dn) (7)252

The entire MoB-pipeline, including the partition-253

ing of A(x) into cubes, is depicted in Fig. 1. In254

our setup, all the models µ,D,A,W mentioned255

above share the same features encoded through a256

nnUNet [15].257

3.1 Training & losses258

We follow standard practices for segmentation and259

employ a mix of Dice (Dice) and cross-entropy (CE)260

loss, weighted by λdice and λCE respectively.261

To ensure that the variance does not collapse to262

zero, we assume a prior variance of 1. We enforce263

this by employing a Kullback-Leibler (KL) term264

given by265

LKL = KL (N (µ(x), I)||N (µ(x), D(x))) (8)266

where I is the identity matrix and LKL regular-267

izes the predicted distribution, penalizing deviations268

from a Gaussian with the same mean but identity269

covariance.270

To ensure variability among basis representations,271

we include an orthogonality loss. Consider the flat-272

tened version of the tensor containing the N bases273

BF ∈ RN×C·R. We normalize and compute the274

Gram matrix G where Gi,j = ⟨ BF i

||BF i|| ,
BF j

||BF j || ⟩ and275

impose a loss on the scale of the off-diagonal ele-276

ments277

Lorth =
1

N(N − 1)

∑
i,j

(Gi,j − Ii,j)
2. (9)278

Finally, to ensure the exploration of the bases, we279

impose a loss on the entropy of the weighting W of280

the bases, thus281

Lweight =
1

|P |
∑
p∈P

N∑
i

Wp,i lnWp,i, (10)282

where P is the set of partitions. The combined loss283

during training then becomes284

L(η,x, t) = λCE CE+λdice Dice+λKLLKL

+ λorthLorth + λwLweight,
(11)285

Table 1. Number of scans in training, validation, and
test sets for each anatomical structure after filtering.

Structure Train Val Test

Pancreas 648 130 163
Gallbladder 524 105 131
Duodenum 614 154 154
Adrenal Gland (L) 640 128 160

with the following parameters: λCE = 1, λdice = 286

1, λKL = 5 · 10−4, λorth = 1. In the training of 287

the Single-Basis model, we omit the Lweight term. 288

To ensure properly trained backbones and in the 289

interest of convergence speed, we employ the nnUNet 290

training setup to estimate the feature encoder and 291

initial version of µ(x). After convergence of the 292

base model, we include the various prediction heads 293

and bases D,A,B,W in training. During training, 294

we sample k = 5 times from the predictive logit 295

distribution p(η|x, f) and compute the loss: 296

Ltotal =
1

k

k∑
i=1

L(ηi,x, t), ηi ∼ N (µ(x),Σ(x))

(12) 297

3.2 Inference & Sampling 298

During inference, we calculate the expectation of 299

the predictive distribution over the predicted logits 300

distribution through Monte-Carlo sampling [14] 301

p(t|x) = Ep(η|x) [σ(η)] ≈
1

k

k∑
i

σ(η)

η ∼ N (µ(x),Σ(x)) .

(13) 302

For the Diagonal and Diagonal + Low-rank ap- 303

proximations, sampling is performed using the torch 304

distributions package [16]. For our contributions, we 305

employ the following for each partition p with |p| 306

elements and rank R: 307

ηp =µ(x)p +D(x)p ◦· z1 +Bp(A(x)P ◦· z2),

z1 ∼ N (0, Ic·|p|), z2 ∼ N (0, I |p|·R)).
(14) 308

Where ◦· denotes element-wise multiplication. Under 309

the common sampling convention that each noise 310

entry z2 is drawn independently (and independently 311

of A(x)), the resulting covariance structure is block- 312

diagonal in the spatial index: logits are correlated 313

within each voxel (the 2×2 block), but do not covary 314

across different voxels. Any nonzero cross-voxel 315

covariance, therefore, must enter via the predicted 316

matrix A(x). 317
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Table 2. Average Dice score over the test sets ± one standard deviation across 5 random initializations, for the
stochastic models and the deterministic backbone from which they were trained. Bold denotes best performance.

Pancreas Gallbladder Duodenum AG (L)

Deterministic 80.50± 0.33 79.47± 0.15 81.11± 0.16 87.05± 0.32
Diagonal 80.37± 0.38 79.61± 0.13 81.29± 0.28 86.69± 0.24
Diagonal + Low-rank 80.30± 0.12 79.56± 0.13 81.74± 0.31 86.80± 0.12
Single-Basis (ours) 84.01± 0.89 82.53± 0.52 82.45± 0.34 88.23 ± 1.22
Mixture-of-Bases (ours) 84.91 ± 0.32 82.84 ± 0.41 83.06 ± 0.30 87.48± 0.35

Table 3. Average negative log-likelihood score over the test set ± one standard deviation across 5 random
initializations, for the stochastic models and the deterministic backbone from which they were trained. Bold
denotes best performance.

Pancreas Gallbladder Duodenum AG (L)

Deterministic 0.27± 0.2 0.17± 0.00 0.36± 0.01 0.022± 0.00
Diagonal 0.23± 0.02 0.163± 0.00 0.32± 0.02 0.020± 0.00
Diagonal + Low-rank 0.21± 0.01 0.146± 0.00 0.28 ± 0.03 0.02 ± 0.00
Single-Basis (ours) 0.226± 0.01 0.12 ± 0.00 0.303± 0.00 0.020± 0.00
Mixture-of-Bases (ours) 0.21 ± 0.01 0.13± 0.01 0.30± 0.01 0.02± 0.00

4 Data & implementation318

To evaluate our method, we used the publicly avail-319

able TotalSegmentator dataset [17, 18], version 2.0.1.320

This dataset contains 1,228 computed tomography321

(CT) scans with ground-truth segmentations of 117322

anatomical structures, including organs, bones, mus-323

cles, and vessels. The scans were randomly sampled324

from routine clinical data covering a broad range325

of pathologies, acquisition protocols, scanner types,326

and institutions.327

We focused our experiments on four particularly328

challenging organs: the gallbladder, pancreas, and329

left adrenal gland—the three structures with the low-330

est Dice scores reported in TotalSegmentator—as331

well as the duodenum, the poorest-performing struc-332

ture within the gastrointestinal subgroup [18]. To333

ensure meaningful evaluation, we excluded scans334

where the target structure was not visible, result-335

ing in four derived datasets (sizes listed in Table 1).336

Each dataset was split 80/20 into training and test337

sets, with the training portion further divided 80/20338

into training and validation subsets.339

4.1 Experiments340

We trained separate nnU-Net models for each se-341

lected anatomical structure [15], using the nnUNet-342

PlannerResEncL configuration with default parame-343

ters until convergence. The output of this procedure344

is referred to as the Deterministic model.345

After convergence of the deterministic models,346

we extended the nnU-Net framework to fit the ar-347

chitectures shown in Fig. 2 and fine-tuned them348

following the procedure in Section 3.1. All mod-349

els were trained using the AdamW optimizer with350

learning rate = 10−4 and weight decay = 10−4 [19], 351

employing gradient scaling and clipping. Training 352

was performed for a maximum of 20 epochs with a 353

batch size of 1, saving the checkpoint that achieved 354

the highest Dice score on the validation set. Data 355

loading and augmentation were performed using 356

nnU-Net’s default pipeline, and visual results on 357

the test set were generated with nnU-Net’s default 358

predictor class, which incorporates a sliding window 359

procedure [15]. For our two proposed methods and 360

the Diagonal + Low-rank baseline, we used a rank of 361

R = 16, chosen based on computational constraints 362

and consistent with default ranks in other low-rank 363

approaches such as LoRA [20]. 364

To obtain robust performance estimates, we 365

trained each model five times with different random 366

initializations, enabling estimation of the standard 367

deviation for all metrics. 368

5 Results 369

To evaluate performance on the four TotalSegmen- 370

tator segmentation tasks [18], we use two metrics: 371

the Dice score, which measures segmentation accu- 372

racy, and the negative log-likelihood (NLL), which 373

assesses how well predicted probabilities match the 374

ground truth. Table 2 and Table 3 summarize the 375

mean and standard deviation over five runs, com- 376

paring the baselines — Diagonal and Diagonal + 377

Low-rank — with our proposed approaches — Single- 378

Basis and MoB. 379

Table 2 shows that both of our approaches con- 380

sistently achieve the highest Dice scores, with MoB 381

performing best for three out of four organs. Im- 382

provements are most pronounced for pancreas seg- 383
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Figure 3. Calibration curves for the four stochastic
methods and the deterministic model on the pancreas
dataset. Sampling is performed uniformly with 15 bins.

mentation, where our proposed models significantly384

outperform the baselines, while still performing bet-385

ter on the remaining organs. In contrast, the base-386

line models offer little or no gain in Dice score. Stan-387

dard deviation ranges are comparable across most388

methods, with the exception of two cases where the389

Single-Basis model exhibits slightly higher variabil-390

ity.391

Table 3 reports the negative log-likelihood results,392

which reflect a mixture between model calibration393

and predictive performance. Here, the advantage of394

our method is less clear. For pancreas segmentation,395

the MoB still performs best. For duodenum, how-396

ever, the Diagonal + Low-rank approximation yields397

significantly better calibration than the other meth-398

ods. Across all four organs, our proposed models399

are considerably better calibrated than the deter-400

ministic baseline, while also achieving significantly401

higher Dice scores, thus striking a favorable balance402

between segmentation accuracy and calibration.403

Calibration performance is further illustrated in404

Fig. 3, which compares model confidence against405

the fraction of true positives. A perfectly calibrated406

model would lie on the diagonal. This is measured407

in Table 4, which reports metrics quantifying devia-408

tions from the diagonal, weighted by the number of409

samples in each probability bin. As reflected both vi-410

sually in Fig. 3 and from the Maximum Calibration411

2 3 4 5
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0.848

0.854

0.860

0.866

0.873

D
ice

 S
co

re

Figure 4. Dice score on the pancreas test set as a
function of the number of bases in the Mixture-of-Bases
model, with whiskers indicating ±1 standard deviation.

Error (MCE) in Table 4, the deterministic model 412

is the least calibrated, exhibiting strong overconfi- 413

dence. The other approaches exhibit more stable 414

patterns, although our two proposed methods still 415

show a tendency toward overconfidence. Interest- 416

ingly, their curves appear as a middle ground be- 417

tween the deterministic baseline and the Diagonal 418

+ Low-rank parameterization, highlighting how our 419

methods navigate the balance between segmentation 420

performance and calibration. It is further underlined 421

in Table 4 where the MoB model is only surpassed 422

by the classical Diagonal + Low-rank model. 423

To analyse the effects of varying the number of 424

bases, we test the MoB model with up to five bases 425

on the pancreas dataset. The results of this are 426

seen in Fig. 4. For each number of bases, we train 427

five times with random initializations, following the 428

described training procedure, and measure the Dice 429

score on the test set. The highest mean perfor- 430

mance is reached using four bases; however, with a 431

significantly higher variance than for the remaining 432

configurations. For this reason, we opted for three 433

bases as the default choice on all datasets. 434

In Fig. 5, we present a visual example where the 435

MoB model’s segmentation closely resembles the 436

deterministic prediction, but both deviate from the 437

ground truth. The figure shows a 2D sagittal slice of 438

a pancreas segmentation. The predicted variances, 439

Table 4. Expected Calibration Error (ECE) and Maximum Calibration Error (ECE) over the test set for the five
different models. Bold denotes best performance.

ECE ↓ MCE ↓
Deterministic 0.017± 0.0 0.432± 0.1
Diagonal 0.018± 0.0 0.390± 0.1
Diagonal + Low-rank 0.012 ± 0.0 0.246 ± 0.0
Single-Basis (ours) 0.017± 0.0 0.318± 0.1
Mixture-of-bases (ours) 0.014± 0.0 0.317± 0.1
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Ground truth

Mixture-of-Bases
prediction

Deterministic 
prediction

(a) Segmentation delineation (b) Foreground probability (c) Predictive variance

Figure 5. An example of a MoB segmentation on a 2D sagittal slice where the segmentation fails in certain
areas. In (b) and (c), we overlay the probability of foreground and the predictive variance, respectively, using a
normalized colorbar.

Varp(η) [σ(η)], help identify regions where the model440

struggles to delineate the organ accurately. Compar-441

ing the foreground probability heatmap in Fig. 5(c),442

computed from the logits in Eq. (1), with the predic-443

tive variance heatmap in Fig. 5(b), we observe that444

the variance signal is markedly higher in the regions445

where the MoB model produces incorrect segmenta-446

tions. This region of interest is highlighted in the447

zoomed-in inset. Most importantly, the variance is448

relatively low and spatially restricted along the rest449

of the predicted object boundary, a property not450

shared by the probabilities.451

In Fig. 6, we present another example in a 2D452

coronal slice, where the MoB model makes a sig-453

nificant correction from the deterministic model.454

Interestingly, the variance heatmap in the corrected455

area shows that the MoB model still considers most456

of the area as uncertain. However, the model has457

managed to move the segmentation away from the458

area. The predicted variance, however, indicates459

that the model is aware that this might be an er-460

roneous segmentation. This too is in line with the461

results presented in Tables 3 and 4 and Fig. 3.462

6 Discussion463

We compared several covariance parameterizations464

for uncertainty modeling in 3D segmentation. The465

Diagonal and Diagonal + Low-rank variants serve466

as baselines: they improve calibration (NLL, ECE467

& MCE) compared to the deterministic nnUNet,468

but bring little to no gains in Dice score. This is469

expected since the assumption of independence of470

logits in the diagonal approximation fails to capture471

the underlying structure, and the added low-rank472

structure fails to capture the spatial correlations that473

drive segmentation quality. Moreover, these base-474

lines treat class covariance and spatial covariance at 475

the same level, limiting their ability to disentangle 476

class-specific uncertainty from spatial smoothness. 477

In contrast, basis-based formulations provide 478

structured covariance with a closer connection to 479

the underlying anatomy. By learning basis func- 480

tions, we model the class covariance more explicitly, 481

rather than conflating it with spatial correlation. 482

The Single-Basis model already improves Dice signif- 483

icantly, showing that the model can benefit from the 484

added constraint of the forced intra-logit covariance. 485

However, its calibration is less competitive in some 486

cases, reflecting limited flexibility. 487

Our proposed MoB model addresses this limita- 488

tion by combining multiple structured components. 489

This yields the strongest and most consistent Dice 490

score performance across segmentation tasks, while 491

maintaining competitive NLL. Importantly, mix- 492

tures also reduce variance across runs, suggesting 493

a more stable optimization. These results demon- 494

strate that mixtures of bases strike a favorable bal- 495

ance between segmentation accuracy and calibrated 496

uncertainty, offering a scalable alternative to purely 497

diagonal or unconstrained low-rank approaches. 498

We hypothesize that a significant cause for the 499

performance improvement induced by the use of the 500

learned bases originates from implicit noise reduc- 501

tion. In the Diagonal + Low-rank setting, we con- 502

struct the low-rank component from the predicted 503

P (x). However, this prediction naturally contains 504

a level of uncertainty too. If the model fails to 505

predict P (x) accurately, the error will propagate 506

directly into the sampled predictions. For our pro- 507

posed models, a similar problem may be ascribed to 508

A(x). However, in this case, B projects the noise 509

prediction, as well as the sampled noise, from R 510

dimensions to two. The dimensionality reduction 511

may serve as noise reduction, as small variations in 512

7
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Ground truth

Mixture-of-Bases
prediction

Deterministic 
prediction

(a) Segmentation delineation (b) Foreground probability (c) Predictive variance

Figure 6. An example of a MoB segmentation on a 2D coronal slice where the model improves segmentation over
the deterministic baseline. In (b) and (c), we overlay the probability of foreground and the predictive variance,
respectively, using a normalized colorbar.

the higher dimensions may not be present in lower513

dimensions.514

Increasing the number of bases has the poten-515

tial to further improve performance. The decrease516

observed in Fig. 4 when moving from four to five517

bases may result from suboptimal hyperparameter518

settings, particularly in the loss functions. Impor-519

tantly, the optimal number of bases is likely tied to520

the partitioning of A(x). In many cases, the ground-521

truth segmentation occupies only a small fraction522

of the total volume. Consequently, when A(x) is523

partitioned into blocks, the foreground class often524

falls entirely within a single block. In such scenarios,525

one basis can capture the uncertainty of the back-526

ground blocks (which have minimal uncertainty),527

while another basis accounts for the foreground. If528

the partitioning were more fine-grained, multiple529

subregions of the organ would span several blocks,530

thereby creating the need for multiple bases to rep-531

resent this variation.532

Overall, our models improve Dice scores across all533

four organs while providing better calibration than534

the deterministic nnU-Net. However, their calibra-535

tion is not always superior to the stochastic baseline536

(Diagonal + Low-rank). Training with our proposed537

formulations appears to encourage the model to538

account for calibration, which in turn enhances seg-539

mentation quality. When the MoB model produces540

an incorrect segmentation, it often signals this by541

assigning a high predictive variance in the affected542

region. This uncertainty estimate could therefore543

serve as a proxy to identify areas that might bene-544

fit from post-processing or manual refinement, an545

aspect not examined in this study. Notably, we eval-546

uated the methods on some of the most challenging547

organs in the dataset, characterized by ambiguous548

boundaries and substantial anatomical variability,549

suggesting that the approach may also benefit other550

difficult segmentation tasks.551

A key limitation of this work is its reliance on552

data originating from a very homogenous source.553

Further study into robustness towards distribution 554

shifts is therefore prudent. Additional hyperparam- 555

eter tuning, perhaps specifically designed towards 556

the target organs, would most likely improve perfor- 557

mance. Despite these constraints, the findings serve 558

as a proof of concept, indicating that improved low- 559

rank covariance decompositions can enhance both 560

segmentation accuracy and uncertainty estimation 561

in 3D medical image analysis. 562

7 Conclusion 563

We investigated alternative covariance parameteriza- 564

tions for uncertainty modeling in 3D medical image 565

segmentation. While baselines that model the co- 566

variance as a diagonal plus low-rank term improve 567

calibration relative to deterministic models, they fail 568

to provide meaningful gains in segmentation accu- 569

racy due to their inability to capture structured spa- 570

tial and class-specific correlations. In contrast, our 571

proposed basis-based formulations explicitly disen- 572

tangle class-specific covariance from spatial variabil- 573

ity, resulting in improved segmentation performance 574

while also enhancing calibration. Although the cali- 575

bration gains are modest compared to the baseline. 576

Evaluated on the most challenging organs in the 577

TotalSegmentator dataset, the Single-Basis model 578

achieves substantial Dice score gains, while the parti- 579

tioned Mixture-of-Bases further improves both Dice 580

score and stability, yielding the best overall per- 581

formance. This work serves as a proof-of-concept 582

that basis-driven covariance modeling provides a 583

simple, parameter-efficient, and effective framework 584

for uncertainty-aware segmentation, with strong po- 585

tential for medical imaging applications where both 586

precise predictions and reliable uncertainty estimates 587

are critical. 588
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