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Abstract

Accurate segmentation is essential in error-critical
domains such as medical imaging, where outputs
support clinical decisions. Probabilistic models like
the Stochastic Segmentation Network (SSN) enable
uncertainty quantification, but existing methods typ-
ically use low-rank plus diagonal covariance struc-
tures that struggle to capture both global and local
spatial correlations, limiting performance gains over
deterministic models. We revisit low-rank formula-
tions and introduce two approaches - Single-Basis
and Mixture-of-Bases decompositions - that project
predicted noise onto learned covariance bases, ei-
ther globally or within partitioned volume blocks.
This yields richer, more flexible uncertainty mod-
eling with minimal parameter overhead. On the
most challenging organs in the 3D TotalSegmenta-
tor CT dataset, our methods significantly improve
Dice scores over deterministic and baseline stochas-
tic models while preserving strong calibration, with
the Mixture-of-Bases performing best. These find-
ings show that basis-driven covariance modeling can
enhance segmentation accuracy and uncertainty es-
timation in 3D medical imaging.

1 Introduction

Uncertainty quantification has become a central re-
search topic in deep learning-based image segmenta-
tion [1]. While deterministic models often achieve
strong performance, they provide only point esti-
mates and neglect predictive uncertainty. This can
lead to overconfident errors, as modern neural net-
works are often poorly calibrated, meaning that
output confidences do not reliably reflect true proba-
bilities [2]. In clinical imaging applications, incorrect
segmentations can have severe consequences, as they
may mislead professionals without providing any
indication of doubt. This is especially important in
organ segmentation, where inaccurate delineation
of anatomical structures can compromise treatment
planning or downstream quantitative analyses [3, 4].
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Automated delineation on Computed Tomography
(CT) is particularly challenging in regions where
boundaries are faint or anatomy is complex [5], of-
ten resulting in overconfident predictions. By ex-
plicitly modeling uncertainty, segmentation models
can highlight regions of low confidence, enabling
clinicians to interpret results more cautiously and
reduce the risk of diagnostic errors. At the same
time, improved uncertainty modeling may further
boost segmentation accuracy through its inherent
regularizing properties. Furthermore, quantifying
uncertainty reduces the ”black-box” nature of deep
learning, making AI models more trustworthy and
accepted by professionals in other fields [6–8].

Various approaches have been proposed to cap-
ture predictive uncertainty in segmentation tasks.
Monte Carlo Dropout is widely used to approximate
Bayesian inference due to its simplicity, although
its accuracy has been questioned [1]. Generative
models such as the Probabilistic U-Net and diffusion-
based methods introduce latent variables to gener-
ate multiple plausible segmentations [9]. Since the
introduction of Stochastic Segmentation Networks
(SSNs) [10], it has become increasingly popular to
model spatially correlated uncertainty in the logit
space using a multivariate normal distribution where
the covariance is decomposed into a diagonal and
low-rank contribution. However, this parameteriza-
tion has been shown theoretically and in simulated
settings to have certain deficiencies [11]. Despite this,
subsequent work has continued to largely rely on the
low-rank covariance parameterization introduced in
the original SSN paper. In contrast, block-based
approximations, where the covariance is divided into
smaller independent blocks, have demonstrated more
robust behavior in spatial domains [11].

In this work, we revisit the low-rank covariance
parameterizations and propose an improved formu-
lation. Specifically, we introduce a framework that
enhances low-rank modeling through learned basis
representations and block-wise decomposition. This
hybrid approach enables expressive and computa-
tionally efficient uncertainty estimation for volumet-
ric segmentation, capturing both local and global
spatial correlations more accurately than standard
low-rank models. In summary, our contributions
are:
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Figure 1. Overview of our proposed method. x denotes the input 3D volume and µ denotes the mean prediction,
similar to the standard nnU-Net output. A is the predicted noise structure for each voxel with rank R. W
represents the weighting of the learned bases B1, B2 and B3. These are multiplied with a partitioned version of A
and added with D, which accounts for the diagonal variance contribution. Together, this models the covariance
matrix Σ, which, along with µ, defines a normal distribution over the network’s output logits.

1. We propose a stochastic segmentation model
that projects high-dimensional representations
of uncertainty onto a learned basis for improved
segmentation performance.

2. We extend this concept to a Mixture-of-Bases
(MoB) setting, where bases are allocated spa-
tially according to a weighting scheme.

3. We introduce a principled training framework
with KL regularization, orthogonality, Dice-
and entropy-based losses that encourage diverse
bases, enabling stable learning and robust un-
certainty estimates.

4. We demonstrate how these frameworks can im-
prove segmentation performance while provid-
ing useful uncertainty estimates on challenging
3D medical imaging segmentation tasks.

2 Related Work

Monteiro et al. [10] introduced Stochastic Segmen-
tation Networks (SSNs), which directly model spa-
tially correlated uncertainty in the logit space. In
this framework, per-pixel predictions are assumed to
follow a multivariate normal distribution. However,
since the covariance matrix scales quadratically with
the number of pixels and classes, SSNs approximate
it using a diagonal plus low-rank decomposition. The
mean, low-rank component, and diagonal variance
are all predicted by the network.

Zepf et al. [12] extended the SSNs by incorporating
Laplace approximations of the posterior over the
network weights [8], while retaining the same low-
rank covariance structure. The authors develop a

fast diagonal Hessian approximation, which has been
shown to scale for large neural networks with skip
connections.

Recently, Müller et al. [13] proposed a fusion-based
approach that combines dropout-based segmenta-
tion heads with Laplacian uncertainty estimates.
Their method leverages large foundational models
to provide image embeddings for downstream seg-
mentation.

Despite these advances, all of the above methods
rely on the same low-rank covariance parameteri-
zation introduced in [10]. While this structure is
computationally efficient, it is too restrictive to cap-
ture both local and global dependencies. This limi-
tation is well-documented in spatial statistics, where
Stein [11], through an analysis of the eigenvalues of
the covariance matrix, demonstrates that restricting
the rank to R may capture large-scale variation ef-
fectively, but tends to miss fine-scale spatial details.
This effect is especially pronounced in cases where
neighbouring observations are very correlated [11],
as is typical in spatial data such as 3D volumes. Fur-
thermore, Stein shows analytically and numerically
that an independent block-based covariance matrix
often provides a much better approximation to the
likelihood than a low rank approximation [11].

3 Methods

In segmentation, uncertainty is often modeled with
a heteroscedastic noise assumption, where the net-
work predicts voxel-wise variances in addition to
logits. This means that the amount of noise, or
uncertainty, can change between different regions of
the volume, rather than being fixed everywhere [14].
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Figure 2. Comparison of parameterizations evaluated
in this study. Panels (a) and (b) illustrate baseline
approaches [8, 10], while panels (c) and (d) correspond
to our proposed methods. The matrices B are shown in
grey to indicate that they are learned parameters rather
than input-dependent.

In a standard 3D segmentation task, we consider
models that map volumes x into their target volume
t, f : RH×W×D → RC×H×W×D, where C denotes
the number of classes. We denote the logits as η.
Then the voxel class probabilities become

p(C|η) = σ(η) (1)

where σ is either a sigmoid or softmax function for
single- and multi-class cases, respectively. In this
work, we assume a Gaussian as the functional form
of the distribution over the logits, and hence p(η) =
N (η|µ,Σ) [8]. In a world with infinite computing
resources, we could model this distribution in full
fidelity by learning both the mean µ(x) and the full
covariance matrix Σ(x) with neural networks, i.e.

p(η|x) = N (η|µ(x),Σ(x)) . (2)

However, the number of elements in the covari-
ance matrix scales quadratically with the number
of voxels in the volume; hence, the formulation is
intractable even for small volumes. Instead, we de-
compose Σ(x) into a diagonal variance D and a
low-rank covariance contribution P [8, 10]

Σ(x) ≈ α D(x) + βP (x)P (x)T , (3)

where P (x) ∈ RH·W ·D·C×R and R is the cho-
sen rank for the low-rank approximation. D(x) ∈
RH·W ·D·C is a diagonal matrix stored as a vector. α
and β are scaling parameters, though these are often
not included explicitly when D and P are learned.
Since all covariance matrices can be Cholesky fac-
torized, it is evident that as the rank increases, so
does the fidelity of the approximation [11]. The rank
places a crucial limitation on the shape of Gaussian

approximation. For two logits to be independent,
their entries in P (x) must be orthogonal. However,
since maximally R orthogonal directions simulta-
neously exist in the span of P (x), then spurious
covariances will necessarily appear.

We propose a novel approach for decomposing the
covariance matrix using neural networks, as illus-
trated in Fig. 1. The key idea is to decompose the
covariance matrix into a matrix A, which is then
projected onto a set of basis vectors. We consider
two variants of this approach: a Single-Basis model
and a Multi-Basis model, which we refer to as the
Mixture-of-Bases (MoB). All methods evaluated in
this paper are summarized in Fig. 2, with our two
proposed variants shown in Fig. 2(c) and Fig. 2(d),
respectively. For comparison, Figs. 2(a) and 2(b)
present the baseline network structures: one assum-
ing a purely diagonal covariance matrix and another
employing the decomposition in Eq. (3), referred to
as Diagonal and Diagonal + Low-rank, respectively.

We define a network A where A(x) ∈ RH·W ·D×R,
i.e, a matrix of rank R. Note that unlike P (x),
it does not have rows corresponding to the class
dimension. Secondly, we define a basis matrix B ∈
RC×R, which is learned but does not depend on
the input. Using these two as a new low-rank term,
while still maintaining a diagonal contribution from
D, we model the covariance as follows:

Let N = DHW and denote by A(x)n = an ∈ RR

and D(x)n = dn ∈ RC the low-rank scales and
diagonal variances at voxel n, respectively. With
B ∈ RC×R the learned basis, the covariance for each
voxel n becomes

Σn = B diag(an)
2B⊤ + diag(dn). (4)

We then construct a block-diagonal matrix with each
entry along the diagonal being Σn ∈ RC×C , hence

Σ(x) = blockdiag (Σ1, . . . ,ΣN ) (5)

This approach enables the model to learn a global
covariance basis B, onto which we project the pre-
dicted uncertainty representation A(x). In this way,
the predicted uncertainty will be regularized by ex-
pressing it along dimensions that the model is al-
ready familiar with. These operations define the
Single-Basis model.
Representing the distribution p(η) as in Eq. (4)

has an obvious limitation. Namely, we assume the ex-
istence of a basis that can account for the structure,
both globally across the full dataset distribution and
locally across the whole volume. To account for this,
we introduce a Mixture-of-Bases setup (MoB), as
depicted in Fig. 2(d). The setup in Fig. 2(c) is recov-
ered as a special case where the number of bases is
one. Instead of only having one basis, we instead de-
fine a set of bases Bi ∈ RC×R, i = 1, . . . ,M where M
denotes the number of bases. In addition, to account
for local variation within the volume, we partition
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the predicted uncertainty A(x) into P×P×P cubes,
of approximately equal size. Recall that the entries
in A(x) correspond to the size of the original volume
but with an additional rank dimension. We then
define a mapping W where W (x) ∈ R(P×P×P )×M

that predicts the probability of each of the M basis
matrices for each of the P ×P ×P partitions. Hence,
we use W (x) to predict which basis matrix Bi is
most suited for each partition of the volume A(x).
Let P (i, j, k) denote a partition, where i, j, k =

1, . . . , P are the cube indices. Then AP (i,j,k) denotes
the elements in A that belong to that partition.
Additionally, let B̂ be the most probable basis matrix
for the partition, retrieved by the argmax over the
M-dimension of W (x) for the appropriate partition
indices (i, j, k). The partitioned and multi-basis
version of Eq. (4) will then be:

Σ(x)P (i,j,k) = blockdiag (Σn)n∈P (i,j,k) , (6)

Where

Σn = B̂ diag(an)
2B̂T + diag(dn) (7)

The entire MoB-pipeline, including the partition-
ing of A(x) into cubes, is depicted in Fig. 1. In
our setup, all the models µ,D,A,W mentioned
above share the same features encoded through a
nnUNet [15].

3.1 Training & losses

We follow standard practices for segmentation and
employ a mix of Dice (Dice) and cross-entropy (CE)
loss, weighted by λdice and λCE respectively.
To ensure that the variance does not collapse to

zero, we assume a prior variance of 1. We enforce
this by employing a Kullback-Leibler (KL) term
given by

LKL = KL (N (µ(x), I)||N (µ(x), D(x))) (8)

where I is the identity matrix and LKL regular-
izes the predicted distribution, penalizing deviations
from a Gaussian with the same mean but identity
covariance.

To ensure variability among basis representations,
we include an orthogonality loss. Consider the flat-
tened version of the tensor containing the N bases
BF ∈ RN×C·R. We normalize and compute the
Gram matrix G where Gi,j = ⟨ BF i

||BF i|| ,
BF j

||BF j || ⟩ and
impose a loss on the scale of the off-diagonal ele-
ments

Lorth =
1

N(N − 1)

∑
i,j

(Gi,j − Ii,j)
2. (9)

Finally, to ensure the exploration of the bases, we
impose a loss on the entropy of the weighting W of

the bases, thus

Lweight =
1

|P |
∑
p∈P

N∑
i

Wp,i lnWp,i, (10)

where P is the set of partitions. The combined loss
during training then becomes

L(η,x, t) = λCE CE+λdice Dice+λKLLKL

+ λorthLorth + λwLweight,
(11)

with the following parameters: λCE = 1, λdice =
1, λKL = 5 · 10−4, λorth = 1. In the training of
the Single-Basis model, we omit the Lweight term.
To ensure properly trained backbones and in the
interest of convergence speed, we employ the nnUNet
training setup to estimate the feature encoder and
initial version of µ(x). After convergence of the
base model, we include the various prediction heads
and bases D,A,B,W in training. During training,
we sample k = 5 times from the predictive logit
distribution p(η|x, f) and compute the loss:

Ltotal =
1

k

k∑
i=1

L(ηi,x, t), ηi ∼ N (µ(x),Σ(x))

(12)

For the Diagonal and Diagonal + Low-rank ap-
proximations, sampling is performed using the torch
distributions package [16]. For our contributions, we
employ the following for each partition p with |p|
elements and rank R:

ηp =µ(x)p +D(x)p ◦· z1 +Bp(A(x)P ◦· z2),

z1 ∼ N (0, Ic·|p|), z2 ∼ N (0, I |p|·R)).
(13)

Where ◦· denotes element-wise multiplication. Under
the common sampling convention that each noise
entry z2 is drawn independently (and independently
of A(x)), the resulting covariance structure is block-
diagonal in the spatial index: logits are correlated
within each voxel (the 2×2 block), but do not covary
across different voxels. However, since A(x) controls
the scale of the covariance, it may enforce spatial
structure on the predicted noise.

During inference, we calculate the expectation of
the predictive distribution over the predicted logits
distribution through Monte-Carlo sampling [14]

p(t|x) = Ep(η|x) [σ(η)] ≈
1

k

k∑
i

σ(η)

η ∼ N (µ(x),Σ(x)) .

(14)
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Table 1. Number of scans in training, validation, and
test sets for each anatomical structure after filtering.

Structure Train Val Test

Pancreas 648 130 163
Gallbladder 524 105 131
Duodenum 614 154 154
Adrenal Gland (L) 640 128 160

4 Data & implementation

To evaluate our method, we used the publicly avail-
able TotalSegmentator dataset [17, 18], version 2.0.1.
This dataset contains 1,228 computed tomography
(CT) scans with ground-truth segmentations of 117
anatomical structures, including organs, bones, mus-
cles, and vessels. The scans were randomly sampled
from routine clinical data covering a broad range
of pathologies, acquisition protocols, scanner types,
and institutions.
We focused our experiments on four particularly

challenging organs: the gallbladder, pancreas, and
left adrenal gland—the three structures with the low-
est Dice scores reported in TotalSegmentator—as
well as the duodenum, the poorest-performing struc-
ture within the gastrointestinal subgroup [18]. To en-
sure meaningful evaluation, we excluded scans where
the target structure was not visible, resulting in four
derived datasets (sizes listed in Table 1). Each
dataset was split 80/20 into training and test sets,
with the training portion further divided 80/20 into
training and validation subsets. We trained separate
nnU-Net models for each anatomical structure using
the nnUNetPlannerResEncL configuration with de-
fault parameters; these constitute our Deterministic
models. After convergence, we extended nnU-Net to
implement the architectures in Fig. 2 and fine-tuned
them following Section 3.1. All models used the
AdamW optimizer with a learning rate and weight
decay of 10−4, along with gradient scaling and clip-
ping. Training ran for up to 20 epochs with batch
size 1, to maximize validation Dice. Data loading,
augmentation, and test-time sliding-window infer-
ence followed nnU-Net defaults. For our two meth-
ods and the Diagonal+Low-rank baseline, we used
rank R = 16, selected for computational feasibil-
ity and consistency with other low-rank approaches
such as LoRA [19]. To obtain robust performance
estimates, all models were trained five times with
different random seeds to compute metric standard
deviations.

5 Results

To evaluate performance on the four TotalSegmen-
tator segmentation tasks [18], we use two metrics:
the Dice score, which measures segmentation accu-
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Figure 3. Calibration curves for the four stochastic
methods and the deterministic model on the pancreas
dataset. Sampling is performed uniformly with 15 bins.

racy, and the negative log-likelihood (NLL), which
assesses how well predicted probabilities match the
ground truth. Table 2 and Table 3 summarize the
mean and standard deviation over five runs, com-
paring the baselines — Diagonal and Diagonal +
Low-rank — with our proposed approaches — Single-
Basis and MoB.

Table 2 shows that both of our approaches con-
sistently achieve the highest Dice scores, with MoB
performing best for three out of four organs. Im-
provements are most pronounced for pancreas seg-
mentation, where our proposed models significantly
outperform the baselines, while still performing bet-
ter on the remaining organs. In contrast, the base-
line models offer little or no gain in Dice score. Stan-
dard deviation ranges are comparable across most
methods, with the exception of two cases where the
Single-Basis model exhibits slightly higher variabil-
ity.

Table 3 reports the negative log-likelihood results,
which reflect a mixture between model calibration
and predictive performance. Here, the advantage of
our method is less clear. For pancreas segmentation,
the MoB still performs best. For duodenum, how-
ever, the Diagonal + Low-rank approximation yields
significantly better calibration than the other meth-
ods. Across all four organs, our proposed models
are considerably better calibrated than the deter-
ministic baseline, while also achieving significantly
higher Dice scores, thus striking a favorable balance
between segmentation accuracy and calibration.

Calibration performance is further illustrated in
Fig. 3, which compares model confidence against
the fraction of true positives. A perfectly calibrated
model would lie on the diagonal. This is measured
in Table 4, which reports metrics quantifying devia-
tions from the diagonal, weighted by the number of
samples in each probability bin. As reflected both vi-
sually in Fig. 3 and from the Maximum Calibration
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Table 2. Average Dice score over the test sets ± one standard deviation across 5 random initializations, for the
stochastic models and the deterministic backbone from which they were trained. Bold denotes best performance.

Pancreas Gallbladder Duodenum AG (L)

Deterministic 80.50± 0.33 79.47± 0.15 81.11± 0.16 87.05± 0.32
Diagonal 80.37± 0.38 79.61± 0.13 81.29± 0.28 86.69± 0.24
Diagonal + Low-rank 80.30± 0.12 79.56± 0.13 81.74± 0.31 86.80± 0.12
Single-Basis (ours) 84.01± 0.89 82.53± 0.52 82.45± 0.34 88.23 ± 1.22
Mixture-of-Bases (ours) 84.91 ± 0.32 82.84 ± 0.41 83.06 ± 0.30 87.48± 0.35

Table 3. Average negative log-likelihood score over the test set ± one standard deviation across 5 random
initializations, for the stochastic models and the deterministic backbone from which they were trained. Bold
denotes best performance.

Pancreas Gallbladder Duodenum AG (L)

Deterministic 0.27± 0.2 0.17± 0.00 0.36± 0.01 0.022± 0.00
Diagonal 0.23± 0.02 0.163± 0.00 0.32± 0.02 0.020± 0.00
Diagonal + Low-rank 0.21± 0.01 0.146± 0.00 0.28 ± 0.03 0.02 ± 0.00
Single-Basis (ours) 0.226± 0.01 0.12 ± 0.00 0.303± 0.00 0.020± 0.00
Mixture-of-Bases (ours) 0.21 ± 0.01 0.13± 0.01 0.30± 0.01 0.02± 0.00

Error (MCE) in Table 4, the deterministic model
is the least calibrated, exhibiting strong overconfi-
dence. The other approaches exhibit more stable
patterns, although our two proposed methods still
show a tendency toward overconfidence. Interest-
ingly, their curves appear as a middle ground be-
tween the deterministic baseline and the Diagonal
+ Low-rank parameterization, highlighting how our
methods navigate the balance between segmentation
performance and calibration. It is further underlined
in Table 4 where the MoB model is only surpassed
by the classical Diagonal + Low-rank model.

To analyse the effects of varying the number of
bases, we test the MoB model with up to five bases
on the pancreas dataset. The results of this are
seen in Fig. 4. For each number of bases, we train
five times with random initializations, following the
described training procedure, and measure the Dice
score on the test set. The highest mean performance
is achieved with three or four bases, with four being
slightly higher; however, this comes with a substan-
tially larger variance than the other configurations.
For this reason, we opted for three bases as the
default choice on all datasets.

In Fig. 5, we present a visual example where the
MoB model’s segmentation closely resembles the
deterministic prediction, but both deviate from the
ground truth. The figure shows a 2D sagittal slice of
a pancreas segmentation. The predicted variances,
Varp(η) [σ(η)], help identify regions where the model
struggles to delineate the organ accurately. Compar-
ing the foreground probability heatmap in Fig. 5(c),
computed from the logits in Eq. (1), with the predic-
tive variance heatmap in Fig. 5(b), we observe that
the variance signal is markedly higher in the regions
where the MoB model produces incorrect segmenta-
tions. This region of interest is highlighted in the
zoomed-in inset. Most importantly, the variance is
relatively low and spatially restricted along the rest
of the predicted object boundary, a property not
shared by the probabilities.

In Fig. 6, we present another example in a 2D
coronal slice, where the MoB model makes a sig-
nificant correction from the deterministic model.
Interestingly, the variance heatmap in the corrected
area shows that the MoB model still considers most
of the area as uncertain. However, the model has
managed to move the segmentation away from the

Table 4. Expected Calibration Error (ECE) and Maximum Calibration Error (MCE) over the test set for the five
different models. Bold denotes best performance.

ECE ↓ MCE ↓
Deterministic 0.017± 0.0 0.432± 0.1
Diagonal 0.018± 0.0 0.390± 0.1
Diagonal + Low-rank 0.012 ± 0.0 0.246 ± 0.0
Single-Basis (ours) 0.017± 0.0 0.318± 0.1
Mixture-of-bases (ours) 0.014± 0.0 0.317± 0.1
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Figure 4. Dice score on the pancreas test set as a
function of the number of bases in the Mixture-of-Bases
model, with whiskers indicating ±1 standard deviation.

area. The predicted variance, however, indicates
that the model is aware that this might be an er-
roneous segmentation. This too is in line with the
results presented in Tables 3 and 4 and Fig. 3.

6 Discussion

We compared several covariance parameterizations
for uncertainty modeling in 3D segmentation. The
Diagonal and Diagonal + Low-rank variants serve
as baselines: they improve calibration (NLL, ECE
& MCE) compared to the deterministic nnUNet,
but bring little to no gains in Dice score. This is
expected since the assumption of independence of
logits in the diagonal approximation fails to capture
the underlying structure, and the added low-rank
structure fails to capture the spatial correlations that
drive segmentation quality. Moreover, these base-
lines treat class covariance and spatial covariance at
the same level, limiting their ability to disentangle
class-specific uncertainty from spatial smoothness.
In contrast, basis-based formulations provide

structured covariance with a closer connection to
the underlying anatomy. By learning basis func-
tions, we model the class covariance more explicitly,
rather than conflating it with spatial correlation.
The Single-Basis model already improves Dice signif-
icantly, showing that the model can benefit from the
added constraint of the forced intra-logit covariance.
However, its calibration is less competitive in some
cases, reflecting limited flexibility.
Our proposed MoB model addresses this limita-

tion by combining multiple structured components.
This yields the strongest and most consistent Dice
score performance across segmentation tasks, while
maintaining competitive NLL. Importantly, mix-
tures also reduce variance across runs, suggesting
a more stable optimization. These results demon-
strate that mixtures of bases strike a favorable bal-

ance between segmentation accuracy and calibrated
uncertainty, offering a scalable alternative to purely
diagonal or unconstrained low-rank approaches.

We hypothesize that a significant cause for the
performance improvement induced by the use of the
learned bases originates from implicit noise reduc-
tion. In the Diagonal + Low-rank setting, we con-
struct the low-rank component from the predicted
P (x). However, this prediction naturally contains
a level of uncertainty too. If the model fails to
predict P (x) accurately, the error will propagate
directly into the sampled predictions. For our pro-
posed models, a similar problem may be ascribed to
A(x). However, in this case, B projects the noise
prediction, as well as the sampled noise, from R
dimensions to two. The dimensionality reduction
may serve as noise reduction, as small variations in
the higher dimensions may not be present in lower
dimensions.

Increasing the number of bases has the poten-
tial to further improve performance. The decrease
observed in Fig. 4 when moving from four to five
bases may result from suboptimal hyperparameter
settings, particularly in the loss functions. Impor-
tantly, the optimal number of bases is likely tied to
the partitioning of A(x). In many cases, the ground-
truth segmentation occupies only a small fraction
of the total volume. Consequently, when A(x) is
partitioned into blocks, the foreground class often
falls entirely within a single block. In such scenarios,
one basis can capture the uncertainty of the back-
ground blocks (which have minimal uncertainty),
while another basis accounts for the foreground. If
the partitioning were more fine-grained, multiple
subregions of the organ would span several blocks,
thereby creating the need for multiple bases to rep-
resent this variation.

Overall, our models improve Dice scores across all
four organs while providing better calibration than
the deterministic nnU-Net. However, their calibra-
tion is not always superior to the stochastic baseline
(Diagonal + Low-rank). Training with our proposed
formulations appears to encourage the model to
account for calibration, which in turn enhances seg-
mentation quality. When the MoB model produces
an incorrect segmentation, it often signals this by
assigning a high predictive variance in the affected
region. This uncertainty estimate could therefore
serve as a proxy to identify areas that might bene-
fit from post-processing or manual refinement, an
aspect not examined in this study. Notably, we eval-
uated the methods on some of the most challenging
organs in the dataset, characterized by ambiguous
boundaries and substantial anatomical variability,
suggesting that the approach may also benefit other
difficult segmentation tasks.

A key limitation of this work is its reliance on
data originating from a very homogenous source.
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Ground truth

Mixture-of-Bases
prediction

Deterministic 
prediction

(a) Segmentation delineation (b) Foreground probability (c) Predictive variance

Figure 5. An example of a MoB segmentation on a 2D sagittal slice where the segmentation fails in certain
areas. In (b) and (c), we overlay the probability of foreground and the predictive variance, respectively, using a
normalized colorbar.

Ground truth

Mixture-of-Bases
prediction

Deterministic 
prediction

(a) Segmentation delineation (b) Foreground probability (c) Predictive variance

Figure 6. An example of a MoB segmentation on a 2D coronal slice where the model improves segmentation over
the deterministic baseline. In (b) and (c), we overlay the probability of foreground and the predictive variance,
respectively, using a normalized colorbar.

Further study into robustness towards distribution
shifts is therefore prudent. Additional hyperparam-
eter tuning, perhaps specifically designed towards
the target organs, would most likely improve perfor-
mance. Despite these constraints, the findings serve
as a proof of concept, indicating that improved low-
rank covariance decompositions can enhance both
segmentation accuracy and uncertainty estimation
in 3D medical image analysis.

7 Conclusion

We investigated alternative covariance parameter-
izations for uncertainty modeling in 3D medical
image segmentation. While baselines that model
the covariance as a diagonal plus low-rank term im-
prove calibration relative to deterministic models,
they fail to provide meaningful gains in segmen-
tation accuracy due to their inability to capture
structured spatial and class-specific correlations. In

contrast, our proposed basis-based formulations ex-
plicitly disentangle class-specific covariance from
spatial variability, resulting in improved segmenta-
tion performance while maintaining comparable cal-
ibration. Evaluated on the most challenging organs
in the TotalSegmentator dataset, the Single-Basis
model achieves substantial Dice score gains, while
the partitioned Mixture-of-Bases further improves
both Dice score and stability, yielding the strongest
and most consistent overall performance. Beyond
accuracy, the structured covariance also yields in-
terpretable uncertainty estimates, with predictive
variance effectively highlighting anatomically am-
biguous regions. Taken together, this work serves
as a proof-of-concept that basis-driven covariance
modeling provides a simple, parameter-efficient, and
effective framework for uncertainty-aware segmen-
tation, with strong potential for medical imaging
applications where both precise predictions and reli-
able uncertainty estimates are critical.
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