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Abstract

Uncertainty quantification often plays a key role
when deploying deep learning models in segmenta-
tion tasks, such as in medical imaging, where the
results are used directly for clinical decision support.
Existing stochastic segmentation methods, such as
Stochastic Segmentation Networks (SSNs), typically
rely on low-rank plus diagonal covariance structures
to model predictive uncertainty. While computa-
tionally efficient, this parameterization often fails to
capture both global and local spatial correlations,
leading to limited improvements over deterministic
models. In this work, we revisit low-rank formula-
tions and introduce two new approaches: a Single-
Basis and a Mixture-of-Bases decomposition. By
projecting predicted noise structures onto learned co-
variance bases — either globally or, for the Mixture-
of-Bases, within blocks obtained by partitioning the
volume — we achieve richer and more flexible un-
certainty modeling with negligible increases in the
number of parameters. Evaluated on the 3D segmen-
tation task of challenging anatomies from the To-
talSegmentator CT dataset. Our approaches achieve
significant Dice score improvements over determinis-
tic and baseline stochastic models while maintaining
competitive calibration, with the Mixture-of-Bases
yielding the greatest improvement. These results
demonstrate that basis-driven covariance modeling
is a simple yet powerful way to improve both seg-
mentation accuracy and uncertainty estimation in
3D medical image analysis.

All code and experiments will be made public
upon acceptance.

1 Introduction

Uncertainty quantification has become a central re-
search topic in deep learning-based image segmenta-
tion [1]. While deterministic models often achieve
strong performance, they provide only point esti-
mates and neglect predictive uncertainty. This can
lead to overconfident errors, as modern neural net-
works are often poorly calibrated, meaning that
output confidences do not reliably reflect true proba-
bilities [2]. In clinical imaging applications, incorrect
segmentations can have severe consequences, as they
may mislead professionals without providing any
indication of doubt. This is especially important in
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Structured Covariance Modeling Using Learned Mixture-of-
Bases for Uncertainty in 3D Segmentation

organ segmentation, where inaccurate delineation
of anatomical structures can compromise treatment
planning or downstream quantitative analyses [3,
4]. Automated delineation on Computed Tomogra-
phy (CT) is particularly challenging in regions where
boundaries are faint or anatomy is complex [5], often
resulting in overconfident predictions. By explicitly
modeling uncertainty, segmentation models can high-
light regions of low confidence, enabling clinicians
to interpret results more cautiously and reduce the
risk of diagnostic errors. Furthermore, quantifying
uncertainty reduces the ”black-box” nature of deep
learning, making AI models more trustworthy and
accepted by professionals in other fields [6-8].

Various approaches have been proposed to cap-
ture predictive uncertainty in segmentation tasks.
Monte Carlo Dropout is widely used to approximate
Bayesian inference due to its simplicity, although
its accuracy has been questioned [1]. Generative
models such as the Probabilistic U-Net and diffusion-
based methods introduce latent variables to gener-
ate multiple plausible segmentations [9]. Since the
introduction of Stochastic Segmentation Networks
(SSNs) [10], it has become increasingly popular to
model spatially correlated uncertainty in the logit
space using a multivariate normal distribution where
the covariance is decomposed into a diagonal and
low-rank contribution. However, this parameteriza-
tion has been shown theoretically and in simulated
settings to have certain deficiencies [11]. Despite this,
subsequent work has continued to largely rely on the
low-rank covariance parameterization introduced in
the original SSN paper. In contrast, block-based
approximations, where the covariance is divided into
smaller independent blocks, have demonstrated more
robust behavior in spatial domains [11].

In this work, we revisit the low-rank covariance
parameterizations and propose an improved formu-
lation. Specifically, we introduce a framework that
enhances low-rank modeling through learned basis
representations and block-wise decomposition. This
hybrid approach enables expressive and computa-
tionally efficient uncertainty estimation for volumet-
ric segmentation, capturing both local and global
spatial correlations more accurately than standard
low-rank models. In summary, our contributions
are:

1. We propose a stochastic segmentation model
that projects high-dimensional representations
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Figure 1. Overview of our proposed method. x denote the input 3D volume and p denotes the mean prediction,
similar to the standard nnU-Net output. A is the predicted noise structure for each voxel with rank R. W
represents the weighting of the learned bases Bi, B2 and Bs. These are multiplied with a partitioned version
of A and added with D, which accounts for the the diagonal variance contribution. Together, this models the
covariance matrix 3, which, along with u, defines a normal distribution over the network’s output logits.

of uncertainty onto a learned basis for improved
segmentation performance.

2. We extend this concept to a Mixture-of-Bases
(MoB) setting, where bases are allocated spa-
tially according to a weighting scheme.

3. We introduce a principled training framework
with KL regularization, orthogonality, Dice-
and entropy-based losses that encourage diverse
bases, enabling stable learning and robust un-
certainty estimates.

4. We demonstrate how these frameworks can im-
prove segmentation performance while provid-
ing useful uncertainty estimates on challenging
3D medical imaging segmentation tasks.

2 Related Work

Monteiro et al. [10] introduced Stochastic Segmen-
tation Networks (SSNs), which directly model spa-
tially correlated uncertainty in the logit space. In
this framework, per-pixel predictions are assumed to
follow a multivariate normal distribution. However,
since the covariance matrix scales quadratically with
the number of pixels and classes, SSNs approximate
it using a diagonal plus low-rank decomposition. The
mean, low-rank component, and diagonal variance
are all predicted by the network.

Zepf et al. [12] extended the SSNs by incorporating
Laplace approximations of the posterior over the
network weights [8], while retaining the same low-
rank covariance structure. The authors develop a
fast diagonal Hessian approximation, which has been

shown to scale for large neural networks with skip
connections.

Recently, Miiller et al. [13] proposed a fusion-based
approach that combines dropout-based segmenta-
tion heads with Laplacian uncertainty estimates.
Their method leverages large foundational models
to provide image embeddings for downstream seg-
mentation.

Despite these advances, all of the above meth-
ods rely on the same low-rank covariance param-
eterization introduced in [10]. While this struc-
ture is computationally efficient, it is too restrictive
to capture both local and global dependencies in
the uncertainty estimates. This limitation is well-
documented in spatial statistics, where block-based
covariance approximations have shown superior per-
formance in capturing fine-scale variation, especially
in cases where neighbouring observations are very
correlated [11], as is typical in spatial data such as
3-dimensional (3D) volumes.

3 Methods

In segmentation, uncertainty is often modeled with
a heteroscedastic noise assumption, where the net-
work predicts voxel-wise variances in addition to
logits. This means that the amount of noise, or
uncertainty, can change between different regions of
the volume, rather than being fixed everywhere [14].
In a standard 3D segmentation task, we consider
models that map volumes x into their target volume
t, f: REXWXD _y ROXHEXWXD “where C' denotes
the number of classes. We denote the logits as 7.
Then the voxel class probabilities become
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(d) Mixture-of-Bases

(b) Diagonal + Low-rank

(c) Single-Basis

Figure 2. Comparison of parameterizations evaluated
in this study. Panels (a) and (b) illustrate baseline
approaches [8, 10], while panels (¢) and (d) correspond
to our proposed methods. The matrices B are shown in
grey to indicate that they are learned parameters rather
than input-dependent.

p(Cln) = a(n) (1)

where ¢ is either a sigmoid or softmax function for
single- and multi-class cases, respectively. In this
work, we assume a Gaussian as the functional form
of the distribution over the logits, and hence p(n) =
N(n|p,X) [8]. In a world with infinite computing
resources, we could model this distribution in full
fidelity by learning both the mean u(x) and the full
covariance matrix 3(x) with neural networks, i.e.

p(nlz) =N (nlp(z), X(x)) . (2)

However, the number of elements in the covari-
ance matrix scales quadratically with the number
of voxels in the volume; hence, the formulation is
intractable even for small volumes. Instead, we de-
compose X(x) into a diagonal variance D and a
low-rank covariance contribution P [8, 10].

Y(z) ~ a D(z) + BP(x)P(z)". (3)

Where P(x) € RE-W-DCXE and R is the chosen
rank for the low-rank approximation. « and 3 are
scaling parameters, though these are often not in-
cluded explicitly when D and P are learned. Since
all covariance matrices can be Cholesky factorized,
it is evident that as the rank increases, so does the
fidelity of the approximation [11].

We propose a novel approach for decomposing the
covariance matrix using neural networks, as illus-
trated in Fig. 1. The key idea is to decompose the
covariance matrix into a matrix A, which is then
projected onto a set of basis vectors. We consider
two variants of this approach: a Single-Basis model
and a Multi-Basis model, which we refer to as the
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Mixture-of-Bases (MoB). All methods evaluated in
this paper are summarized in Fig. 2, with our two
proposed variants shown in Fig. 2(c) and Fig. 2(d),
respectively. For comparison, Figs. 2(a) and 2(b)
present the baseline network structures: one assum-
ing a purely diagonal covariance matrix and another
employing the decomposition in Eq. (3), referred to
as Diagonal and Diagonal + Low-rank, respectively.

We define a network A where A(x) € RIT-W-DxE
i.e, a matrix of rank R. Note that unlike P(x),
it does not have rows corresponding to the class
dimension. Secondly, we define a basis matrix B €
RE*E which is learned but does not depend on
the input. Using these two as a new low-rank term,
while still maintaining a diagonal contribution from
D, we model the covariance as follows:

Let N = DHW and denote by A(z), = a, € RE
and D(z), = d,, € R the low-rank scales and
diagonal variances at voxel n, respectively. With
B € RE*E the learned basis, the covariance for each
voxel n becomes

¥, = Bdiag(a,)?B" + diag(d,). (4)

We then construct a block-diagonal matrix with each
entry along the diagonal being ¥,, € R*¢ hence

Y (x) = blockdiag (X1, ...,2nN) (5)

This approach enables the model to learn a global
covariance basis B, onto which we project the pre-
dicted uncertainty representation A(x). In this way,
the predicted uncertainty will be regularized by ex-
pressing it along dimensions that the model is al-
ready familiar with. These operations define the
Single-Basis model.

Representing the distribution p(n) as in Eq. (4)
has an obvious limitation. Namely, we assume the ex-
istence of a basis that can account for the structure,
both globally across the full dataset distribution and
locally across the whole volume. To account for this,
we introduce a Mixture-of-Bases setup (MoB), as
depicted in Fig. 2(d). The setup in Fig. 2(c) is recov-
ered as a special case where the number of bases is
one. Instead of only having one basis, we instead de-
fine a set of bases B; € RE*E =1, ..., M where M
denotes the number of bases. In addition, to account
for local variation within the volume, we partition
the predicted uncertainty A(x) into P x P x P cubes,
of approximately equal size. Recall that the entries
in A(x) correspond to the size of the original volume
but with an additional rank dimension. We then
define a model W where W (zx) € RUPXPXP)XM that
predicts the probability of each of the M basis ma-
trices for each of the P x P x P partitions. Hence,
we use W(x) to predict which basis matrix B; is
most suited for each partition of the volume A(x).

Let P(i,7,k) denote a partition, where 1,7,k =
1,..., P are the cube indices. Then Ap(; ;1) denotes
the elements in A that belong to that partition.
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Additionally, let B be the most probable basis matrix
for the partition, retrieved by the arg max over the
M-dimension of W for the appropriate partition
indices (4,j,k). The partitioned and multi-basis
version of Eq. (4) will then be:

(@) p(i,j,k) = blockdiag (En),epijr . (6)

Where

S, = Bdiag(a,)?BT + diag(d,) (7)

The entire MoB-pipeline, including the partition-
ing of A(x) into cubes, is depicted in Fig. 1. In
our setup, all the models u, D, A, W mentioned
above share the same features encoded through a
nnUNet [15].

3.1 Training & losses

We follow standard practices for segmentation and
employ a mix of Dice (Dice) and cross-entropy (CE)
loss, weighted by Agice and Acg respectively.

To ensure that the variance does not collapse to
zero, we assume a prior variance of 1. We enforce
this by employing a Kullback-Leibler (KL) term
given by

Licr =KL (ula), D[N (a(z), D)) (8)
where I is the identity matrix and Lgj regular-
izes the predicted distribution, penalizing deviations
from a Gaussian with the same mean but identity
covariance.

To ensure variability among basis representations,
we include an orthogonality loss. Consider the flat-
tened version of the tensor containing the N bases
BF ¢ RVXCE  We normalize and compute the
Gram matrix G where G; j = (%, Hgijll> and
impose a loss on the scale of the off-diagonal ele-
ments

1 2
NN-D > (Gij— 1)

()

9)

£orth =

Finally, to ensure the exploration of the bases, we
impose a loss on the entropy of the weighting W of
the bases, thus

>

pEP 1

welght p I3l (10)

\P\

where P is the set of partitions. The combined loss
during training then becomes

L(n,z,t) = Acg CE +Aqgice Dice +Akr, LKL,

(11)
+ )\orth‘corth + )\wcweightv
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Table 1. Number of scans in training, validation, and
test sets for each anatomical structure after filtering.

Structure Train Val Test
Pancreas 648 130 163
Gallbladder 524 105 131
Duodenum 614 154 154
Adrenal Gland (L) 640 128 160

with the following parameters: Acg = 1, Adice =

1, Akr, = 5-107%, Aosen = 1. In the training of
the Single-Basis model, we omit the Lyeignt term.
To ensure properly trained backbones and in the
interest of convergence speed, we employ the nnUNet
training setup to estimate the feature encoder and
initial version of p(x). After convergence of the
base model, we include the various prediction heads
and bases D, A, B, W in training. During training,
we sample k& = 5 times from the predictive logit
distribution p(n|x, f) and compute the loss:

£total =

k
Z 772,$ t Ui NN(M((E),E(Q?))
- (12)

k‘\»ﬂ

3.2 Inference & Sampling

During inference, we calculate the expectation of
the predictive distribution over the predicted logits
distribution through Monte-Carlo sampling [14]

k
pltlz) = ~ 20l

n~N(uz),S(z)) .

(n\w

pv\»—‘

(13)

For the Diagonal and Diagonal + Low-rank ap-
proximations, sampling is performed using the torch
distributions package [16]. For our contributions, we
employ the following for each partition p with [p|
elements and rank R:

=p(®)p + D(x), © 21 + By(A(x)p © 22),
zZq NN(O,IC‘|p|),22 NN(O,I‘p“R)).

Where o denotes element-wise multiplication. Under
the common sampling convention that each noise
entry zs is drawn independently (and independently
of A(x)), the resulting covariance structure is block-
diagonal in the spatial index: logits are correlated
within each voxel (the 2x2 block), but do not covary
across different voxels. Any nonzero cross-voxel
covariance, therefore, must enter via the predicted
matrix A(x).
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Table 2. Average Dice score over the test sets + one standard deviation across 5 random initializations, for the
stochastic models and the deterministic backbone from which they were trained. Bold denotes best performance.

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Pancreas Gallbladder Duodenum AG (L)
Deterministic 80.50 £ 0.33 79.47 £0.15 81.11 +£0.16 87.05 £ 0.32
Diagonal 80.37 = 0.38 79.61 £0.13 81.29 £0.28 86.69 +0.24
Diagonal + Low-rank 80.30 £0.12 79.56 +0.13 81.74 £0.31 86.80 £0.12
Single-Basis (ours) 84.01 +0.89 82.53 £0.52 82.45+0.34 88.23 £+ 1.22
Mixture-of-Bases (ours) 84.91 4+ 0.32 82.84 +£0.41 83.06+0.30 87.48+0.35

Table 3. Average negative log-likelihood score over the test set + one standard deviation across 5 random
initializations, for the stochastic models and the deterministic backbone from which they were trained. Bold

denotes best performance.

Pancreas Gallbladder ~ Duodenum AG (L)
Deterministic 0.27£0.2 0.17+£0.00  0.36£0.01  0.02240.00
Diagonal 0.23£0.02  0.163£0.00 0.324+0.02  0.020 £ 0.00
Diagonal + Low-rank 0.21+0.01  0.146+0.00 0.28+0.03 0.02 =+ 0.00
Single-Basis (ours) 0.226+0.01 0.12+0.00 0.303+0.00 0.020 %+ 0.00
Mixture-of-Bases (ours) 0.21 £0.01 0.13+£0.01  0.30£0.01  0.02+0.00

4 Data & implementation

To evaluate our method, we used the publicly avail-
able TotalSegmentator dataset [17, 18], version 2.0.1.
This dataset contains 1,228 computed tomography
(CT) scans with ground-truth segmentations of 117
anatomical structures, including organs, bones, mus-
cles, and vessels. The scans were randomly sampled
from routine clinical data covering a broad range
of pathologies, acquisition protocols, scanner types,
and institutions.

We focused our experiments on four particularly
challenging organs: the gallbladder, pancreas, and
left adrenal gland—the three structures with the low-
est Dice scores reported in TotalSegmentator—as
well as the duodenum, the poorest-performing struc-
ture within the gastrointestinal subgroup [18]. To
ensure meaningful evaluation, we excluded scans
where the target structure was not visible, result-
ing in four derived datasets (sizes listed in Table 1).
Each dataset was split 80/20 into training and test
sets, with the training portion further divided 80/20
into training and validation subsets.

4.1 Experiments

We trained separate nnU-Net models for each se-
lected anatomical structure [15], using the nnUNet-
PlannerResEncL configuration with default parame-
ters until convergence. The output of this procedure
is referred to as the Deterministic model.

After convergence of the deterministic models,
we extended the nnU-Net framework to fit the ar-
chitectures shown in Fig. 2 and fine-tuned them
following the procedure in Section 3.1. All mod-
els were trained using the AdamW optimizer with

learning rate = 10~* and weight decay = 10~% [19],
employing gradient scaling and clipping. Training
was performed for a maximum of 20 epochs with a
batch size of 1, saving the checkpoint that achieved
the highest Dice score on the validation set. Data
loading and augmentation were performed using
nnU-Net’s default pipeline, and visual results on
the test set were generated with nnU-Net’s default
predictor class, which incorporates a sliding window
procedure [15]. For our two proposed methods and
the Diagonal + Low-rank baseline, we used a rank of
R = 16, chosen based on computational constraints
and consistent with default ranks in other low-rank
approaches such as LoRA [20].

To obtain robust performance estimates, we
trained each model five times with different random
initializations, enabling estimation of the standard
deviation for all metrics.

5 Results

To evaluate performance on the four TotalSegmen-
tator segmentation tasks [18], we use two metrics:
the Dice score, which measures segmentation accu-
racy, and the negative log-likelihood (NLL), which
assesses how well predicted probabilities match the
ground truth. Table 2 and Table 3 summarize the
mean and standard deviation over five runs, com-
paring the baselines — Diagonal and Diagonal +
Low-rank — with our proposed approaches — Single-
Basis and MoB.

Table 2 shows that both of our approaches con-
sistently achieve the highest Dice scores, with MoB
performing best for three out of four organs. Im-
provements are most pronounced for pancreas seg-
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Figure 3. Calibration curves for the four stochastic
methods and the deterministic model on the pancreas
dataset. Sampling is performed uniformly with 15 bins.

mentation, where our proposed models significantly
outperform the baselines, while still performing bet-
ter on the remaining organs. In contrast, the base-
line models offer little or no gain in Dice score. Stan-
dard deviation ranges are comparable across most
methods, with the exception of two cases where the
Single-Basis model exhibits slightly higher variabil-
ity.

Table 3 reports the negative log-likelihood results,
which reflect a mixture between model calibration
and predictive performance. Here, the advantage of
our method is less clear. For pancreas segmentation,
the MoB still performs best. For duodenum, how-
ever, the Diagonal 4+ Low-rank approximation yields
significantly better calibration than the other meth-
ods. Across all four organs, our proposed models
are considerably better calibrated than the deter-
ministic baseline, while also achieving significantly
higher Dice scores, thus striking a favorable balance
between segmentation accuracy and calibration.

Calibration performance is further illustrated in
Fig. 3, which compares model confidence against
the fraction of true positives. A perfectly calibrated
model would lie on the diagonal. This is measured
in Table 4, which reports metrics quantifying devia-
tions from the diagonal, weighted by the number of
samples in each probability bin. As reflected both vi-
sually in Fig. 3 and from the Maximum Calibration
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2 3 4 5
Number of bases (MoB)

Figure 4. Dice score on the pancreas test set as a
function of the number of bases in the Mixture-of-Bases
model, with whiskers indicating +1 standard deviation.

Error (MCE) in Table 4, the deterministic model
is the least calibrated, exhibiting strong overconfi-
dence. The other approaches exhibit more stable
patterns, although our two proposed methods still
show a tendency toward overconfidence. Interest-
ingly, their curves appear as a middle ground be-
tween the deterministic baseline and the Diagonal
+ Low-rank parameterization, highlighting how our
methods navigate the balance between segmentation
performance and calibration. It is further underlined
in Table 4 where the MoB model is only surpassed
by the classical Diagonal 4+ Low-rank model.

To analyse the effects of varying the number of
bases, we test the MoB model with up to five bases
on the pancreas dataset. The results of this are
seen in Fig. 4. For each number of bases, we train
five times with random initializations, following the
described training procedure, and measure the Dice
score on the test set. The highest mean perfor-
mance is reached using four bases; however, with a
significantly higher variance than for the remaining
configurations. For this reason, we opted for three
bases as the default choice on all datasets.

In Fig. 5, we present a visual example where the
MoB model’s segmentation closely resembles the
deterministic prediction, but both deviate from the
ground truth. The figure shows a 2D sagittal slice of
a pancreas segmentation. The predicted variances,

Table 4. Expected Calibration Error (ECE) and Maximum Calibration Error (ECE) over the test set for the five

different models. Bold denotes best performance.

ECE | MCE |
Deterministic 0.017+£0.0 0.432+£0.1
Diagonal 0.018 £ 0.0 0.390 £ 0.1
Diagonal + Low-rank 0.012 4+ 0.0 0.246 £ 0.0
Single-Basis (ours) 0.017+0.0  0.318+0.1
Mixture-of-bases (ours) 0.014+0.0  0.317+0.1
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(a) Segmentation delineation

(b) Foreground probability
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ix? Ground truth

Mixture-of-Bases
prediction

Deterministic
prediction

| o

(¢) Predictive variance

Figure 5. An example of a MoB segmentation on a 2D sagittal slice where the segmentation fails in certain
areas. In (b) and (c), we overlay the probability of foreground and the predictive variance, respectively, using a

normalized colorbar.

Vary, [0(n)], help identify regions where the model
struggles to delineate the organ accurately. Compar-
ing the foreground probability heatmap in Fig. 5(c),
computed from the logits in Eq. (1), with the predic-
tive variance heatmap in Fig. 5(b), we observe that
the variance signal is markedly higher in the regions
where the MoB model produces incorrect segmenta-
tions. This region of interest is highlighted in the
zoomed-in inset. Most importantly, the variance is
relatively low and spatially restricted along the rest
of the predicted object boundary, a property not
shared by the probabilities.

In Fig. 6, we present another example in a 2D
coronal slice, where the MoB model makes a sig-
nificant correction from the deterministic model.
Interestingly, the variance heatmap in the corrected
area shows that the MoB model still considers most
of the area as uncertain. However, the model has
managed to move the segmentation away from the
area. The predicted variance, however, indicates
that the model is aware that this might be an er-
roneous segmentation. This too is in line with the
results presented in Tables 3 and 4 and Fig. 3.

6 Discussion

We compared several covariance parameterizations
for uncertainty modeling in 3D segmentation. The
Diagonal and Diagonal + Low-rank variants serve
as baselines: they improve calibration (NLL, ECE
& MCE) compared to the deterministic nnUNet,
but bring little to no gains in Dice score. This is
expected since the assumption of independence of
logits in the diagonal approximation fails to capture
the underlying structure, and the added low-rank
structure fails to capture the spatial correlations that
drive segmentation quality. Moreover, these base-

lines treat class covariance and spatial covariance at
the same level, limiting their ability to disentangle
class-specific uncertainty from spatial smoothness.

In contrast, basis-based formulations provide
structured covariance with a closer connection to
the underlying anatomy. By learning basis func-
tions, we model the class covariance more explicitly,
rather than conflating it with spatial correlation.
The Single-Basis model already improves Dice signif-
icantly, showing that the model can benefit from the
added constraint of the forced intra-logit covariance.
However, its calibration is less competitive in some
cases, reflecting limited flexibility.

Our proposed MoB model addresses this limita-
tion by combining multiple structured components.
This yields the strongest and most consistent Dice
score performance across segmentation tasks, while
maintaining competitive NLL. Importantly, mix-
tures also reduce variance across runs, suggesting
a more stable optimization. These results demon-
strate that mixtures of bases strike a favorable bal-
ance between segmentation accuracy and calibrated
uncertainty, offering a scalable alternative to purely
diagonal or unconstrained low-rank approaches.

We hypothesize that a significant cause for the
performance improvement induced by the use of the
learned bases originates from implicit noise reduc-
tion. In the Diagonal + Low-rank setting, we con-
struct the low-rank component from the predicted
P(x). However, this prediction naturally contains
a level of uncertainty too. If the model fails to
predict P(x) accurately, the error will propagate
directly into the sampled predictions. For our pro-
posed models, a similar problem may be ascribed to
A(z). However, in this case, B projects the noise
prediction, as well as the sampled noise, from R
dimensions to two. The dimensionality reduction
may serve as noise reduction, as small variations in

475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

NLDL
#42



NLDL
#42

513
514
515
516
517
518

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553

NLDL 2026 Full Paper Submission #42. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Segmentation delineation

(b) Foreground probability

~“"“= Ground truth
L™ ™

Mixture-of-Bases
prediction

I # Deterministic
prediction

(c) Predictive variance

Figure 6. An example of a MoB segmentation on a 2D coronal slice where the model improves segmentation over
the deterministic baseline. In (b) and (c), we overlay the probability of foreground and the predictive variance,

respectively, using a normalized colorbar.

the higher dimensions may not be present in lower
dimensions.

Increasing the number of bases has the poten-
tial to further improve performance. The decrease
observed in Fig. 4 when moving from four to five
bases may result from suboptimal hyperparameter
settings, particularly in the loss functions. Impor-
tantly, the optimal number of bases is likely tied to
the partitioning of A(x). In many cases, the ground-
truth segmentation occupies only a small fraction
of the total volume. Consequently, when A(x) is
partitioned into blocks, the foreground class often
falls entirely within a single block. In such scenarios,
one basis can capture the uncertainty of the back-
ground blocks (which have minimal uncertainty),
while another basis accounts for the foreground. If
the partitioning were more fine-grained, multiple
subregions of the organ would span several blocks,
thereby creating the need for multiple bases to rep-
resent this variation.

Overall, our models improve Dice scores across all
four organs while providing better calibration than
the deterministic nnU-Net. However, their calibra-
tion is not always superior to the stochastic baseline
(Diagonal 4+ Low-rank). Training with our proposed
formulations appears to encourage the model to
account for calibration, which in turn enhances seg-
mentation quality. When the MoB model produces
an incorrect segmentation, it often signals this by
assigning a high predictive variance in the affected
region. This uncertainty estimate could therefore
serve as a proxy to identify areas that might bene-
fit from post-processing or manual refinement, an
aspect not examined in this study. Notably, we eval-
uated the methods on some of the most challenging
organs in the dataset, characterized by ambiguous
boundaries and substantial anatomical variability,
suggesting that the approach may also benefit other
difficult segmentation tasks.

A key limitation of this work is its reliance on
data originating from a very homogenous source.

Further study into robustness towards distribution
shifts is therefore prudent. Additional hyperparam-
eter tuning, perhaps specifically designed towards
the target organs, would most likely improve perfor-
mance. Despite these constraints, the findings serve
as a proof of concept, indicating that improved low-
rank covariance decompositions can enhance both
segmentation accuracy and uncertainty estimation
in 3D medical image analysis.

7 Conclusion

We investigated alternative covariance parameteriza-
tions for uncertainty modeling in 3D medical image
segmentation. While baselines that model the co-
variance as a diagonal plus low-rank term improve
calibration relative to deterministic models, they fail
to provide meaningful gains in segmentation accu-
racy due to their inability to capture structured spa-
tial and class-specific correlations. In contrast, our
proposed basis-based formulations explicitly disen-
tangle class-specific covariance from spatial variabil-
ity, resulting in improved segmentation performance
while also enhancing calibration. Although the cali-
bration gains are modest compared to the baseline.
Evaluated on the most challenging organs in the
TotalSegmentator dataset, the Single-Basis model
achieves substantial Dice score gains, while the parti-
tioned Mixture-of-Bases further improves both Dice
score and stability, yielding the best overall per-
formance. This work serves as a proof-of-concept
that basis-driven covariance modeling provides a
simple, parameter-efficient, and effective framework
for uncertainty-aware segmentation, with strong po-
tential for medical imaging applications where both
precise predictions and reliable uncertainty estimates
are critical.
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