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ABSTRACT

Unlearnable Examples (UEs) are introduced as a data protection strategy that
generates imperceptible perturbations to mislead models into learning spurious
correlations rather than real semantics. In this paper, we reveal a fundamental
vulnerability of UEs that emerges when learning starts from a pretrained model.
Specifically, our empirical analysis shows that even when data are protected by
carefully crafted perturbations, pretraining priors still allow the model to by-
pass the shortcuts introduced by UEs and capture semantic information from the
data, thereby nullifying unlearnability. To counter this effect, we propose BAIT
(Binding Artificial perturbations to Incorrect Targets), a novel bi-level optimiza-
tion formulation in which the inner level mirrors standard UE objectives, while
the outer level enforces a dynamic association of perturbations with incorrect la-
bels, deliberately misleading pretraining priors and preventing them from align-
ing with true semantics. This mislabel-perturbation binding mechanism blocks
the pretrained model from readily establishing the true label-data relationship, so
the learning process cannot quickly rely on image semantics and instead remains
dependent on the perturbations. Extensive experiments on standard benchmarks
and multiple pretrained backbones demonstrate that our approach produces UEs
that remain effective in the presence of pretraining priors.

1 INTRODUCTION

The rapid growth of social media has resulted in a large amount of data shared online, enabling large-
scale datasets (Deng et al., 2009; Lin et al., 2014) but also raising concerns over unauthorized usage.
To safeguard privacy, Unlearnable Examples (UEs) have emerged as a promising data protection
strategy. By injecting perturbations into training data, UEs mislead models into capturing synthetic
shortcuts rather than underlying semantics, thereby degrading the performance on clean test data.

Existing UE studies (Huang et al., 2021; Wu et al., 2023) primarily target randomly initialized mod-
els. However, as training from scratch is annotation-intensive, practitioners commonly adopt pre-
trained backbones (Iofinova et al., 2022; Fang et al., 2023). Yet the behavior of UEs on pretrained
models remains unexplored, leaving a critical gap in assessing their applicability in real-world de-
ployment. Meanwhile, UEs essentially operate by injecting spurious shortcuts (Ren et al., 2022; Yu
et al., 2022; Sandoval-Segura et al., 2022), and recent studies indicate that pretraining can improve
robustness to spurious correlations (Tu et al., 2020; Izmailov et al., 2022; Mehta et al., 2022). This
raises a natural question: Can UEs remain effective when trained on pretrained models?

In this paper, we uncover an overlooked yet fundamental vulnerability of UEs when applying to
a pretrained model. As shown in Figure 1a, when trained on unlearnable perturbations, the test
accuracies of pretrained models are substantially higher than their train-from-scratch counterparts,
indicating that they circumvent the intended unlearnability and acquire meaningful semantics. We
hypothesize that pretraining priors are the primary factor that enables models to bypass the spurious
correlation introduced by UEs. To investigate the role of pretraining, we progressively remove
priors by replacing the pretrained layers with randomly initialized ones and observe that the test
accuracy consistently decreases, indicating that the protective effect of UEs strengthens as priors are
reduced, as illustrated in Figure 1b. We further posit that the presence of pretraining priors facilitates
a semantics–label pathway, which guides models to exploit underlying semantics rather than the
perturbation-label shortcuts, thereby enabling the resumption of effective learning. To validate this,
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Figure 1: Empirical analysis of the vulnerability of existing UE methods to pretraining priors.
All experiments are conducted on CIFAR-10 with ResNet-18. (a) Existing UE methods, such as
EMN (Huang et al., 2021), REM (Fu et al., 2022), LSP (Yu et al., 2022), TUE (Ren et al., 2022)
and 14A (Chen et al., 2024), suffer severe unlearnability degradation when applied to pretrained
(PT) backbones instead of train-from-scratch (TS) models. (b) We progressively replace layers of a
four-layer ImageNet pretrained ResNet-18 with randomly initialized layers until obtaining a train-
from-scratch model. The resistance to UEs steadily diminishes as pretraining priors are removed. (c)
We report the normalized total parameter updates when training on clean data and UEs, with details
in Appendix B.1. We observe that effective perturbations are capable of reducing parameter updates
and misleading models into acquiring easy-to-learn shortcuts. In contrast, for existing UE methods
such as EMN, pretrained models circumvent the spurious correlations and remain fully optimized.

we examine the parameter update dynamics when training on clean data and on UEs produced by
EMN (Huang et al., 2021), as shown in Figure 1c. We observe that for pretrained models, the
parameter update magnitude on UEs is comparable to that on clean data and considerably larger
than training from scratch. This indicates that due to the semantic pathway within priors, the models
are able to resume learning meaningful image features rather than being confined to the spurious
correlations introduced by UEs. These findings highlight that existing UE methods are vulnerable
to pretraining, as strong priors enable models to bypass their protection and acquire real semantics.

To address the aforementioned limitation, we propose BAIT (Binding Artificial perturbations to
Incorrect Targets), a novel bi-level formulation designed to counteract priors and craft effective
UEs against fully fine-tuned pretrained models. The core idea is to disrupt the data-label alignment
reinforced by pretraining priors and instead recover the UE-induced spurious perturbation-label cor-
relations. To achieve this, we bind perturbations to incorrect target labels that are semantically
distinct from ground truth. Specifically, the inner level injects fixed perturbations that discourage
the optimization of model parameters from encoding genuine semantics, while the outer level opti-
mizes perturbations to map perturbed images onto designated incorrect labels, thereby misleading
the underlying label-data relationships established by priors. This mislabel-perturbation binding
mechanism blocks models from effortlessly exploiting pretraining priors, compelling reliance on
perturbations and producing UEs that remain effective against pretrained backbones. As shown
in Figure 1, our method successfully reduces the test accuracy to chance level against pretraining
priors. Our main contributions are summarized as follows:

• We reveal that UEs suffer from a fundamental vulnerability when applied to pretrained
backbones. We also empirically demonstrate that pretraining priors enable models to by-
pass UE-induced shortcuts and acquire true semantics.

• We propose BAIT, a bi-level optimization framework that binds perturbations to incorrect
target labels, thereby disrupting the semantics-label mapping underpinned by pretraining
priors and reconstructing the synthetic perturbation-label correlations.

• Extensive qualitative and quantitative experiments demonstrate the effectiveness and gen-
eralizability of BAIT against various pretrained backbones.

2 RELATED WORK

Unlearnable Examples (UEs) have emerged as a promising protection approach to prevent unautho-
rized data usage. The goal is to inject imperceptible perturbations into data such that models trained
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on these perturbed samples achieve high training accuracy but fail to generalize to the clean test
set, with test accuracy dropping to the chance level. To achieve this, prior studies mainly introduce
“shortcuts” during training, guiding models to memorize synthetic perturbation-label associations
instead of learning real semantics (Huang et al., 2021; Sandoval-Segura et al., 2022; Wu et al., 2023;
Wang et al., 2025). Recently, UEs have been extended to broader and more practical scenarios. For
example, some works (Ren et al., 2022; He et al., 2023; Wang et al., 2024) investigate UEs in the
context of unsupervised learning. Moreover, works like UC (Zhang et al., 2023) consider label-
agnostic settings, and 14A (Chen et al., 2024) further explores cross-dataset transferability. These
studies have greatly promoted the development of this literature.

However, existing efforts predominantly focus on applying UEs to train-from-scratch classifiers,
which neglects the practical yet crucial case of pretrained models that underpin most modern appli-
cations, leaving a critical gap in the current UE literature. Some UE studies (Qin et al., 2023; Sun
et al., 2024) incorporate pretrained models either during perturbation optimization or as an auxil-
iary testbed to showcase the effectiveness of their methods. However, they did not study how UEs
perform when training starts from a pretrained model. In this paper, we make the first attempt to
uncover the vulnerability of UEs against pretraining priors. To address this limitation, we design a
novel bi-level optimization framework that optimizes perturbations to align perturbed samples with
designated labels different from their original class. As a result, our approach prevents pretrained
models from learning the underlying semantics-label pathway introduced by priors and forces them
to rely on perturbations to establish spurious correlations between perturbations and labels.

3 PROPOSED METHOD

In this section, we first describe our UE setting that targets classifiers with pretraining priors. We
then introduce BAIT, a novel bi-level optimization framework designed to bind perturbations to
incorrect target labels that are distinct from the true semantics. Finally, we elaborate on the imple-
mentation details and optimization strategies of the proposed framework.

3.1 PROBLEM SETUP

In contrast to existing UE studies that target train-from-scratch classifiers, we introduce a new UE
setting that focuses on rendering data unlearnable for pretrained classifiers. Such models possess
rich prior knowledge from their pretraining data and thus are harder to be misled by the injected
unlearnable perturbations. Below, we formulate the problem in the context of image classification.

Objectives. Let (x, y) be a labeled example, where x ∈ X is a data point, and y ∈ Y = {1, . . . ,K}
is its label. We denote the clean training and test sets as Dc, Dt, respectively. The goal of UEs
is to transform the training set Dc into an unlearnable dataset Du by injecting perturbations δ to
each example as x′ = x + δ. Generally, the perturbation δ is constrained by ∥δ∥p ≤ ϵ, ensuring
imperceptibility to human vision, where ∥ · ∥p denotes the Lp norm and ϵ is chosen to be sufficiently
small. A pretrained classifier fθ : X → ∆Y , where θ is the model parameters and ∆Y denotes
the probability simplex over the label space Y , is fully fine-tuned on Du. The effectiveness of
perturbations δ is then evaluated by measuring the performance degradation of fθ on the clean test
setDt, which would approximate the chance level if δ can successfully counter the pretraining priors
of fθ and establish artificial perturbation-label correlations for the training process.

3.2 BINDING ARTIFICIAL PERTURBATIONS TO INCORRECT TARGETS

Existing works primarily focus on designing UEs to protect data from train-from-scratch classi-
fiers. However, as shown in Figure 1, their unlearnability diminishes substantially when applied to
pretrained backbones, where priors bypass spurious correlations and allow the model to learn real
data-label relationships. This fundamental vulnerability severely limits the practical deployment of
UEs in protecting personal data from unauthorized exploitation.

To address the aforementioned limitation, we craft BAIT, a novel bi-level optimization framework
that aims at binding artificial perturbations to incorrect targets. BAIT binds perturbations to des-
ignated incorrect labels that are semantically different from the ground truth, deliberately steer-
ing learning away from genuine semantics. Concretely, we design a mislabel-perturbation binding
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mechanism that impedes the inherent data-label alignment within priors and instead drives the model
to rely on perturbations to align the perturbed samples with a designated incorrect target label. In
this way, when samples are perturbed with different perturbations, the perturbed samples can be
mapped toward different incorrect target labels y, regardless of the true class. As training proceeds,
models are compelled to rely on perturbations rather than pretraining priors to make label predic-
tions, thereby bypassing the strength of prior knowledge in building the intrinsic semantics-label
pathway. Consequently, BAIT neutralizes the influence of pretraining priors and produces unlearn-
able examples that remain effective against pretrained backbones. The formulation of the bi-level
BAIT framework is provided below.

min
δ

E(x,y)∼Dc
L
(
fθ(x

i + δj), yj
)

s.t. θ ∈ argmin
θ

E(x,y)∼Dc
L
(
fθ(x

i + δi), yi
)
,

(1)

where x, δ, and y are data samples, class-wise perturbations, and labels, respectively; superscripts i
and j indicate class indices with i, j ∈ {1, . . . ,K}, i ̸= j, and K being the total number of classes;
function fθ denotes a pretrained surrogate model parameterized by θ; L is the cross-entropy loss.
Our formulation is a min-min bi-level optimization problem with different goals at each level, where
the inner level optimizes model parameters θ to align the input xi with the ground truth label yi by
adding corresponding perturbation δi, then the outer level enforces cross-label assignment by adding
perturbation δj to bind the same input xi onto a designated incorrect label yj .

Our BAIT framework generates perturbations that actively counteract pretraining priors. (1) The
inner optimization updates model parameters with fixed unlearnable perturbations, where these per-
turbations assist in establishing spurious correlations between data and labels and keep the surrogate
model from learning real image features. More precisely, a sample x from class i is perturbed
by the corresponding perturbation δi and is mapped to its ground-truth label yi. (2) The outer
optimization on perturbations is the core innovation that dynamically strengthens the intentional
mislabel-perturbation binding. Unlike conventional UEs, where perturbations preserve the original
data-label relationship (xi + δi → yi), we enforce cross-label assignment and explicitly bind the
perturbed samples onto designated incorrect labels (xi + δj → yj), deliberately misleading pre-
training priors and preventing alignment with true semantics. This mislabel-perturbation binding
mechanism blocks the pretrained model from readily establishing true data-label correspondences
with the guidance of priors, so that training is compelled to treat δ as the dominant signal. As a re-
sult, when pretrained models are trained on these unlearnable examples, they are tricked by spurious
perturbation-label associations rather than the underlying data-label relationship, thereby failing to
capture true image semantics.

3.3 STRATEGY FOR CRAFTING EFFECTIVE UNLEARNABLE EXAMPLES

Perturbation Generation. We follow generator-based UE methods (Liu et al., 2024a; Chen et al.,
2024) and develop a perturbation generator G to generate unlearnable perturbations. G is designed
with a standard encoder-decoder structure, which takes raw images x as input and produces corre-
sponding perturbations as δ = G(x). To ensure visual imperceptibility, we constrain the perturba-
tion magnitude by ∥δ∥∞ ≤ ϵ with ϵ = 8/255, in accordance with previous works (Huang et al.,
2021; Ren et al., 2022; Liu et al., 2024a).

Learning to Learn Unlearnable Perturbations. Directly minimizing the full bi-level objective
in Equation 1 is intractable. To overcome this challenge, we adopt a meta-learning strategy (Finn
et al., 2017; Huang et al., 2020; Liu et al., 2024b), approximating the outer objective by unrolling
the inner optimization for N steps. Specifically, at the n-th iteration, let θn denote the surrogate
model weights and δ denote the perturbation (initialized to zero at the start of training). We create
a copy of the current surrogate weights, θ′n,0 ← θn, which is then updated through N inner-level
optimization steps as follows:

θ′n,m+1 = θ′n,m − α∇θ′
n,m

E(x,y)∼Dc
L
(
fθ(x

i + δi), yi
)
, (2)

where m ∈ {0, 1, . . . , N − 1}, and α indicates the learning rate that controls the step size. This
N -step unrolling enables a “look ahead” perspective during training, allowing us to explicitly assess
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how perturbations introduced at the current step gradually influence the outer mislabel-perturbation
binding objective after N inner updates.

The unrolled surrogate model with weights θ′n,N is then employed in the outer-level optimization
to update perturbations, enforcing the perturbed samples onto incorrect target labels and misleading
the intrinsic semantics-label connection within pretraining priors, which is shown below:

δjn+1 = δjn − β∇δj
n
E(x,y)∼Dc

L(fθ(xi + δjn), y
j), (3)

where i, j ∈ {1, . . . ,K} with i ̸= j denote class indices; β indicates the learning rate to optimize
perturbations. In this procedure, each sample x from class i is perturbed with δj from a target
class j and forced towards the target incorrect label yj , which optimizes perturbations that counter
pretraining priors and prevent the model from relying on priors to associate samples with real labels.

The updated perturbations are incorporated into the corresponding samples x at the inner level, and
the surrogate model θn is then updated accordingly to θn+1, which serves as the initialization for
the next iteration:

θn+1 = θn − α∇θnE(x,y)∼Dc
L(fθ(xi + δi), yi). (4)

The above meta-learning procedures are executed iteratively throughout the entire training process,
ultimately yielding the optimized perturbations.

Curriculum-Guided Target Label Selection. To enhance the effectiveness of perturbations by
directing perturbed samples toward diverse target labels, we dynamically select target labels rather
than relying on fixed incorrect targets. Drawing inspiration from curriculum learning (Bengio et al.,
2009; Wang et al., 2021), we design a three-stage easy-to-hard strategy according to the likelihood
of misclassification, as shown below.

• Stage 1: Hard Negative Classes. We first select the non-ground-truth class with the highest
logit score. Since these classes are most easily confused with the true class, they provide a
natural starting point for optimization.

• Stage 2: Random Classes. We then randomly select non-ground-truth classes as the incor-
rect target labels, increasing task difficulty and improving the generalizability of perturbations
across varying target labels.

• Stage 3: Most Dissimilar Classes. Finally, we select the class with the lowest logit score. This
constitutes the most challenging case, as perturbations must push predictions toward semanti-
cally unrelated classes.

This progressive curriculum learning strategy dynamically guides perturbations to perform mislabel-
perturbation binding from easy to hard targets, thereby enhancing their ability to mislead pretraining
priors away from aligning samples with true labels. As a result, models are forced to depend on these
perturbations for classification throughout training.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed optimization framework against pre-
trained backbones with fully trainable parameters on standard benchmarks. We further examine its
transferability across different pretraining priors and network architectures. Moreover, we evaluate
performance with train-from-scratch classifiers to demonstrate the effectiveness of our method in
conventional UE settings. Finally, we provide qualitative visualizations to demonstrate the imper-
ceptibility of perturbations.

4.1 EXPERIMENTAL SETUP

Datasets and Backbones. The datasets include CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-
100 (Krizhevsky et al., 2009), which contain 50,000 training images and 10,000 test images, and
SVHN (Netzer et al., 2011), which contains 73,257 training images and 26,032 test images. The
evaluated ImageNet-pretrained backbone includes ResNet-18 (He et al., 2016), ResNet-50 (He
et al., 2016), VGG-11 (Simonyan & Zisserman, 2014), DenseNet-121 (Huang et al., 2017), and
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Table 1: Test accuracy (%) ↓ comparison between our method and baselines against ImageNet-
pretrained backbones on CIFAR-10, CIFAR-100, and SVHN datasets.

Dataset Backbone Clean EMN TUE REM LSP GUE 14A Ours

CIFAR-10

ResNet-18 84.10 61.82 82.72 74.46 54.20 23.17 65.70 14.40
ResNet-50 86.48 57.54 85.68 85.06 65.00 71.42 72.81 14.82
VGG-11 88.39 80.90 87.67 63.32 55.63 45.77 50.80 22.14

DenseNet-121 87.17 63.31 86.30 61.05 62.66 72.31 74.89 20.32

CIFAR-100

ResNet-18 55.73 55.53 55.20 55.22 36.98 54.09 33.67 20.77
ResNet-50 60.73 45.78 59.54 58.69 42.84 53.14 36.58 28.02
VGG-11 63.62 38.10 62.52 35.25 39.26 57.02 30.58 26.64

DenseNet-121 61.92 49.94 61.14 48.37 36.27 56.78 44.34 25.81

SVHN

ResNet-18 90.96 37.55 41.15 76.45 38.91 39.68 81.47 14.37
ResNet-50 92.09 30.29 35.52 87.38 45.48 91.74 85.59 18.86
VGG-11 93.34 56.24 77.54 51.50 49.89 32.14 82.89 17.75

DenseNet-121 92.97 58.22 40.53 71.87 53.56 73.34 86.83 11.61

GoogLeNet (Szegedy et al., 2015). Unless otherwise specified, evaluations are conducted on
ImageNet-pretrained models with a learning rate of 0.001, in contrast to prior UE studies that rely
on train-from-scratch classifiers. The original fully connected layer is modified to match the number
of classes in each downstream dataset. We report classification accuracy on the clean test set as the
evaluation metric, where lower accuracy reflects stronger unlearnability.

Baselines. We use six representative UE methods as baselines, which are Error-Minimizing Noise
(EMN) (Huang et al., 2021), Transferable Unexample Examples (TUE) (Ren et al., 2022), Robust
Error-Minimizing Noise (REM) (Fu et al., 2022), Linear Separable Perturbation (LSP) (Yu et al.,
2022), Game Unlearnable Example (GUE) (Liu et al., 2024a), and Universal Perturbation Generator
(14A) (Chen et al., 2024), and evaluate their unlearnable effect against pretrained classifiers.

Implementation Details. Our model is implemented in PyTorch and trained on a single NVIDIA
A5000 GPU. If not specified otherwise, we utilize an ImageNet-pretrained ResNet-18 as the sur-
rogate model and set its learning rate α to 0.1. We adopt the Adam optimizer (Kingma & Ba,
2015) with a learning rate β of 0.001 to optimize the perturbation generator. Perturbations are con-
structed in a class-wise fashion, where we first generate perturbations for individual samples and
then compute their class-wise averages. The unrolling step is set to N = 2. For the three-stage
curriculum learning strategy, we train each stage for 30 epochs on CIFAR-10 and CIFAR-100, and
for 20 epochs on SVHN. Perturbations are bounded by 8/255 for imperceptibility. All results are
reported as averages over five runs with different random seeds.

4.2 UNLEARNABILITY UNDER PRETRAINING PRIORS

Table 2: Test accuracy (%) ↓ comparison against a
pretrained ResNet-18 with a pretrained surrogate
model for perturbation optimization.

Method CIFAR-10 CIFAR-100 SVHN

EMN∗ 59.84 45.20 32.33
TUE∗ 82.65 55.28 47.71
REM∗ 56.08 34.30 55.26
Ours 14.40 20.77 14.37

Unlearnability against ImageNet-Pretrained
Backbones. As previously discussed in Sec-
tion 1, existing UE approaches are predomi-
nantly designed for train-from-scratch classi-
fiers and exhibit a marked decline in effective-
ness when transferred to pretrained backbones.
In this work, we introduce BAIT to explic-
itly counter prior knowledge and generate per-
turbations that remain effective for pretrained
backbones. As shown in Table 1, we conduct
comprehensive evaluations against ImageNet-
pretrained classifiers and compare our approach
with representative baselines. Perturbations are optimized and evaluated on the same backbone to
ensure consistency. The results show that our method outperforms current UE methods across all
backbones and datasets. Specifically, it drives performance close to random guessing on CIFAR-
10 and SVHN, and achieves substantial accuracy reductions on CIFAR-100 compared to baselines.
Notably, even though 14A (Chen et al., 2024) incorporates a pretrained CLIP backbone to aid per-
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Table 3: Transferability across pretrained backbones with different priors. An ImageNet-pretrained
ResNet-18 is used as the surrogate model for perturbation optimization, and the resulting unlearnable
examples are evaluated against prior knowledge from CIFAR-10, CIFAR-100, and SVHN.

Dataset Pretraining Prior EMN TUE REM LSP GUE Ours

CIFAR-10 CIFAR-100 48.58 82.26 60.88 60.64 27.05 20.58
SVHN 28.33 49.00 37.91 38.53 15.55 9.75

CIFAR-100 CIFAR-10 33.67 61.05 24.77 35.08 66.93 22.89
SVHN 62.57 62.18 16.77 26.14 59.10 11.21

SVHN CIFAR-10 19.13 12.80 70.43 26.73 29.35 11.27
CIFAR-100 28.75 19.47 64.42 47.71 24.14 17.49

Table 4: Cross-architecture test accuracy (%) ↓ comparison of our method and baselines on CIFAR-
10. ResNet-18 is used as the surrogate model during perturbation generation, and the resulting
unlearnable examples are evaluated on ImageNet-pretrained classifiers with diverse architectures to
assess transferability across network structures.

Method Network Architecture
ResNet-50 VGG-11 DenseNet-121 GoogLeNet

EMN 70.18 69.74 68.79 63.98
TUE 84.86 86.64 85.21 82.41
REM 83.36 76.19 82.45 79.67
GUE 26.94 27.62 27.78 25.69
Ours 15.94 17.28 18.51 18.56

turbation generation, our method surpasses it on all benchmarks. These results highlight the superior
ability of BAIT to bind perturbations with designated incorrect labels, compelling models to rely on
perturbations rather than priors and thereby preventing models from learning genuine semantics.

Further Comparison to Re-implemented Baselines with ImageNet-Pretrained Priors. Several
UE methods generally do not exploit pretraining priors when generating perturbations. Therefore, a
natural question is whether their limitations arise from this omission, and whether their performance
would improve if assisted with such priors. To rigorously examine this, we re-implement represen-
tative surrogate-based UE methods, replacing their randomly initialized surrogates with ImageNet-
pretrained models to enable a fairer and more comprehensive comparison. The revised variants
are denoted as EMN∗, TUE∗, and REM∗, respectively. As shown in Table 2, even with access to
ImageNet priors during perturbation optimization, our method consistently outperforms baselines,
exhibiting stronger capabilities to erode and disrupt pretrained knowledge. This advantage enables
our unlearnable examples to reliably counter pretrained backbones in practical applications and to
provide sustained protection against unauthorized data usage.

Unlearnability across Different Pretraining Priors. As introduced in Section 3.2, we employ an
ImageNet-pretrained surrogate model during the perturbation optimization and evaluate the result-
ing unlearnable examples on corresponding ImageNet-pretrained backbones. To consider practical
scenarios where backbones may be pretrained on different datasets, we further examine the gener-
alizability of BAIT to other pretraining priors derived from CIFAR-10, CIFAR-100, and SVHN. As
shown in Table 3, our method consistently outperforms baselines in this transferability-focused sce-
nario, demonstrating its ability to bypass priors, thereby generating unlearnable examples effective
across diverse pretrained backbones. Moreover, we observe that backbones pretrained on datasets
semantically similar to the perturbed one exhibit stronger resistance to UEs. For example, when
the perturbed dataset is CIFAR-10, baselines show greater resistance with CIFAR-100 priors (daily
objects) than with SVHN priors (digits). This indicates that broader and more semantically aligned
priors provide greater resistance to UEs, thereby further highlighting the superiority of our approach
in Table 1, where extensive ImageNet-pretrained priors are considered.

Unlearnability across Different Architectures We further examine the transferability of our per-
turbations across different network architectures. As shown in Table 4, perturbations are optimized
with ResNet-18 as the surrogate model and evaluated on various backbones, including ResNet-
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Table 5: Impact of each stage of curriculum-guided target label selection against an ImageNet-
pretrained ResNet-18 model. “Stage1”, “Stage2”, “Stage3” denotes selecting target labels from
“Hard Negative Classes”, “Random Classes”, and “Most Dissimilar Classes”, respectively.

Stage1 Stage2 Stage3 CIFAR-10 CIFAR-100 SVHN

✓ 23.68 35.75 21.75
✓ ✓ 20.60 23.94 16.58
✓ ✓ ✓ 14.40 20.77 14.37

Table 6: Test accuracy (%) ↓ comparison between our method and baselines against standard train-
from-scratch classifiers on CIFAR-10.

Method ResNet-18 ResNet-50 VGG-11 DenseNet-121

EMN 16.42 13.45 16.93 14.71
TUE 10.67 12.23 12.79 17.60
REM 15.18 25.57 47.68 41.54
LSP 13.54 15.94 17.15 17.47
GUE 13.25 12.97 23.89 13.71
14A 41.34 24.85 39.87 48.97
Ours 10.18 10.01 10.13 10.05

50 (He et al., 2016), VGG-11 (Simonyan & Zisserman, 2014), DenseNet-121 (Huang et al., 2017),
and GoogLeNet (Szegedy et al., 2015). The results demonstrate that our method induces unlearn-
ability across all target architectures, driving test accuracy close to chance level. Compared with
baselines, it consistently achieves superior performance, underscoring its strong cross-architecture
transferability and practical effectiveness.

4.3 ABLATIONS AND FURTHER ANALYSES

Impact of Curriculum-guided Target Label Selection. The selection of incorrect target labels
plays a crucial role in optimizing perturbations to establish effective mislabel-perturbation binding,
and we conduct ablation studies to assess its role. As shown in Table 5, unlearnability against pre-
trained priors improves progressively with the inclusion of each stage. Specifically, we observe that
selecting hard negative classes as the incorrect target labels (Stage 1) introduces the basic unlearn-
able effect, while incorporating random classes (Stage 2) and the most dissimilar classes (Stage 3)
further strengthen it. These results highlight the contribution of each curriculum-guided stage and
demonstrate that the synergistic integration of all three stages leads to the strongest performance.

EMN

GUE

LSP

TUE

Clean

Ours

Figure 2: Perturbed examples on CIFAR-10.

Unlearnability against Conventional Train-
from-Scratch Backbones. We argue that the
mislabel-perturbation binding mechanism of
the proposed BAIT also provides a feasible so-
lution for train-from-scratch classifiers. To as-
sess its effectiveness, we conduct conventional
UE evaluations as shown in Table 6. We ob-
serve that while most baseline methods achieve
satisfactory results and introduce unlearnabil-
ity for randomly initialized models, our method
outperforms them and achieves lower test accu-
racy. These results highlight the broad appli-
cability of BAIT to both pre-trained backbones
and train-from-scratch backbones.

Visualization of Perturbed Samples. The im-
perceptibility of perturbations to human vision
serves as a key evaluation criterion for UEs.
Therefore, we visualize our perturbed images
on CIFAR-10 and make comparisons with ex-
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Table 7: Test accuracy (%) ↓ comparison against ImageNet-pretrained backbones on larger datasets,
including Flowers and ImageNet subset. Note that ImageNet∗ and ImageNet† denote two randomly
selected 100-class subsets of ImageNet with no overlapping classes.

Downstream Dataset Pretraining Prior EMN TUE REM LSP GUE Ours
Flowers ImageNet 44.36 46.63 43.91 47.76 45.18 24.91

ImageNet∗ ImageNet† 51.98 59.00 59.12 59.44 37.72 24.22

Table 8: Test accuracy (%) ↓ comparison against an ImageNet-pretrained ResNet-18 between our
method and baselines under defenses, where CIFAR-10 is utilized as the downstream dataset. “Or-
tho. Proj.” denotes the Orthogonal Projection Defense (Sandoval-Segura et al., 2023).

Method w/o Cutout CutMix Mixup Ortho. Proj.

Clean 84.10 83.25 83.06 84.14 74.55
EMN 61.82 51.60 54.71 68.70 43.89
TUE 82.72 81.54 81.35 82.69 70.47
REM 74.46 65.39 73.71 78.08 67.38
LSP 54.20 44.68 51.53 59.44 55.06
GUE 23.17 29.31 28.30 34.48 49.37
Ours 14.40 13.69 14.58 21.08 29.11

isting UE methods. As illustrated in Figure 2, we observe that the perturbations optimized by BAIT
are generally invisible to humans. We also provide more visualizations in Appendix E.1.

Evaluation on Larger Datasets. We add additional results on Flowers (Nilsback & Zisserman,
2008) and ImageNet to further demonstrate the effectiveness of our method on larger datasets. For
Flowers, we evaluate our perturbations against the standard ImageNet-pretrained ResNet-18. For
ImageNet, to avoid overlap between the pretraining and fine-tuning data since both originate from
ImageNet, we randomly select 100 classes from the full 1000-class ImageNet as the downstream
fine-tuning data, denoted as ImageNet∗. We then randomly select another 100 classes, with no over-
lap with ImageNet∗, to pretrain a ResNet-18 model and use it during evaluation. This pretraining
dataset is denoted as ImageNet†. As shown below in Table 7, our method outperforms baselines
with a clear margin, highlighting its effectiveness on larger datasets.

Resistance to Standard Defense Strategies. To evaluate the efficacy against both pretraining priors
and defense strategies, we train models on perturbed data with standard data transformations, includ-
ing Cutout (DeVries & Taylor, 2017), CutMix (Yun et al., 2019), and Mixup (Zhang et al., 2018),
as shown in Table 8. We find that these transformations exert little influence on the unlearnability
against pretrained backbones. We attribute this to the fact that pretraining priors already function as
a strong defense, enabling models to bypass the spurious correlations introduced by perturbations.
Nevertheless, our method remains effective and consistently outperforms baselines, underscoring its
superiority in countering pretraining priors even in the presence of additional defenses.

Resistance to Advanced Defense Strategies. We further evaluate our method with advanced de-
fenses, including JPEG compression (Liu et al., 2023) and Orthogonal Projection defense (Sandoval-
Segura et al., 2023). JPEG compression removes high-frequency components and introduces fre-
quency artifacts, making it a challenging perturbation scenario for unlearnable examples. Orthogo-
nal Projection defense aims at learning a linear model, then projects UEs to be orthogonal to linear
weights, which removes the most predictive dimensions of the data. Both evaluations are conducted
on the CIFAR-10 dataset with an ImageNet-pretrained ResNet-18 model. As shown in Table 8, we
observe that our method exhibits remarkable performance compared to comparative baselines when
applying orthogonal projection defenses. Moreover, as shown in Table 9, our method outperforms
baseline methods across all JPEG defenses with different compression quality levels 90, 80, and
70, etc. We observe that our method reduces clean test accuracy greatly and approximates random
guessing level until the JPEG quality is set to 10, while baseline methods fail to introduce unlearn-
ability even when the JPEG quality is set to higher values like 90. Considering images would be
distorted visibly with a strong JPEG compression quality of 10, we argue that our method exhibits
exceptional resistance against the JPEG defense.
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Table 9: Test accuracy (%) ↓ comparison against an ImageNet-pretrained ResNet-18 with JPEG
compression defense on CIFAR-10.

JPEG Compression 90 80 70 60 50 40 30 20 10

Clean 82.64 82.13 81.08 80.58 80.03 79.19 77.77 75.64 73.95
EMN 68.22 69.09 69.23 69.13 69.91 71.32 73.47 74.18 74.46
TUE 81.21 80.41 79.91 79.62 79.70 79.26 78.91 77.81 75.11
REM 77.15 77.29 78.08 78.17 78.34 78.55 78.33 78.14 75.33
LSP 55.47 57.24 59.56 61.43 63.48 63.84 64.86 68.53 71.00
GUE 60.94 65.59 66.73 66.86 68.39 69.18 70.11 72.33 72.88

Ours 15.91 16.47 16.70 16.96 17.12 18.93 20.41 27.48 68.08

4.4 QUALITATIVE ANALYSIS ON THE OPTIMIZATION PROCESS OF BAIT
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Figure 3: Training accuracy curve on CIFAR-10,
illustrating that BAIT successfully misleads the
ImageNet-pretrained surrogate model during per-
turbation optimization.

To provide further qualitative analyses regard-
ing the optimization of perturbations, we use
two variants of CIFAR-10 training samples to
test the surrogate model, namely the original
clean training samples and the perturbed train-
ing samples. During the optimization of BAIT,
we plot the accuracy curve of the pretrained sur-
rogate model fθ on both types of samples, as il-
lustrated in Figure 3. At the early stage of opti-
mization, the surrogate model benefits from its
inherent pretraining priors and acquires mean-
ingful semantics, as reflected by the simultane-
ous improvement of performance on both per-
turbed and clean training images. However,
as the optimization of perturbations, a diver-
gence emerges: the accuracy on perturbed im-
ages keeps rising, while the accuracy on the
corresponding clean images progressively de-
clines toward chance level. This indicates that
perturbations gradually mislead the real data-
label association guided by pretraining priors
and force the surrogate to rely on the spurious correlations between perturbations and labels, which
prevents models from learning real semantics and further demonstrates the effectiveness of BAIT.

5 CONCLUSION

In this paper, we reveal an overlooked yet fundamental vulnerability of unlearnable examples that
emerges when training starts from a pretrained backbone. We empirically show that the semantics-
label pathway derived from pretraining priors enables pretrained models to bypass the shortcuts
injected by UEs and acquire genuine semantics, even when data are protected by carefully crafted
perturbations. To counter these priors and construct UEs that remain effective against pretrained
backbones, we propose BAIT (Binding Artificial perturbations to Incorrect Targets), a novel bi-
level optimization framework. Specifically, the inner level injects perturbations to keep models
from learning the underlying real semantics, while the outer level enforces perturbed samples to
align with designated incorrect target labels, thereby establishing mislabel-perturbation bindings
that mislead pretraining priors and compel the model to rely on perturbations and the reconstructed
spurious perturbation-label correlations during training. To further stabilize optimization, we incor-
porate meta-learning and dynamically select the target incorrect labels with a curriculum learning
strategy. Extensive experiments across diverse backbones demonstrate that BAIT achieves superior
performance over state-of-the-art methods.

Limitations. This paper investigates the vulnerability of UEs against pretrained models within im-
age classification and designs a novel bi-level optimization framework. However, the transferability
from classification to other downstream tasks (e.g., segmentation) remains limited, as discussed in
Appendix F.3. Given the broad potential of cross-task transferability, we recognize this as an impor-
tant research direction and plan to explore it in future work.
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ETHICAL STATEMENT

This work is conducted in accordance with the ICLR Code of Ethics. Our study focuses on the
design of unlearnable examples as a data protection mechanism, aiming to safeguard individuals’
data from unauthorized exploitation in machine learning systems. All experiments are carried out
on publicly available datasets under their respective licenses, with no involvement of human sub-
jects or sensitive personal data. While techniques such as BAIT could, in principle, be misused
for adversarial purposes, we emphasize that our intent is to strengthen privacy-preserving learning
and to advance defenses against unauthorized model training. We report our methods and findings
transparently to foster reproducibility and responsible use.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. All datasets used in our
experiments are publicly available and described in detail in the main text. The implementation of
the proposed BAIT framework, including model architectures, training schedules, and evaluation
procedures, is fully documented, and the source code is provided in the supplementary materials.
Furthermore, additional hyperparameter settings are included in the implementation details to further
support reproducibility.
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APPENDIX

This appendix provides more comprehensive analyses of the vulnerability of UEs against fully-tuned
pretrained backbones and our proposed bi-level min-min optimization framework. It expands upon
the main paper by incorporating additional architectural details, extended empirical analyses, qual-
itative visualizations, and additional verification experiments, thereby offering a more in-depth and
more holistic understanding of the mechanism underlying our approach and the broader implications
for unlearnability research.

A THE USE OF LARGE LANGUAGE MODELS (LLMS).

We declare that Large Language Models were used exclusively for language polishing, including
correcting grammar, improving readability, and ensuring consistency in terminology. All core ideas,
empirical demonstration, experimental design, and result analyses were entirely conceived and con-
ducted by the authors.

B DISCUSSION ON PARAMETER UPDATES AND SEMANTIC LEARNING

B.1 DETAILS OF THE PARAMETER UPDATES ILLUSTRATION

In Figure 1c, we present the total parameter updates when models are training on clean data and
unlearnable data crafted by EMN and our method. We use the global maximum normalization to
process the parameter update data, with details shown below.

Given the six groups of parameter changes measured during training, we use the L2 norm to calculate
the parameter updates between epochs and denote the cumulative change of group k at epoch t as

v
(k)
t =

t∑
i=1

∥∆θ
(k)
i ∥2, (5)

where ∆θ
(k)
i represents the parameter update at epoch i for group k. Since v

(k)
t is monotonically

non-decreasing with respect to t, its maximum is attained at the final epoch T . Therefore, the global
normalization factor is defined as

M = max
1≤k≤6

v
(k)
T . (6)

The normalized cumulative change is then computed as

ṽ
(k)
t =

v
(k)
t

M
, ∀ t = 1, . . . , T, k = 1, . . . , 6. (7)

This normalization ensures that all curves are scaled into the interval [0, 1], facilitating a fair com-
parison of their relative growth dynamics during training.

B.2 RELATIONSHIP BETWEEN PARAMETER UPDATES AND SEMANTIC LEARNING

To further examine the relationship among parameter update magnitude, training duration, and
model performance (Ye et al., 2025), and to validate that effective UEs can reduce parameter up-
dates and limit the acquisition of semantics, we illustrate the training accuracy and testing accuracy
curves when pretrained models are fine-tuned on clean data and unlearnable data, as shown in Fig-
ure 4. We are particularly interested in examining how the accuracy curve evolves when fine-tuning
a pretrained model on UEs. As illustrated in Figure 4a, we observe that as the training accuracy
of EMN improves, the testing accuracy maintains a high level of more than 60%, showing that the
model fine-tuned on EMN-crafted unlearnable data actually learns real semantics. We also observe
a similar phenomenon with a randomly initialized model in Figure 4b. This is consistent with our
empirical findings in Figure 1c, where the parameter updates of EMN are larger than those of our
method and close to clean training. As for the accuracy curve of our method, the testing accuracy
is actually decreasing to chance level as the training accuracy increases, demonstrating that models
are not learning meaningful semantic knowledge. The parameter updates curve of our method in

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60
Epochs

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Train Acc (Clean)
Train Acc (EMN)
Train Acc (Ours)
Test Acc (Clean)
Test Acc (EMN)
Test Acc (Ours)

(a) Training starts from a pretrained model.
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(b) Training starts from a randomly initialized model.

Figure 4: Accuracy curves illustration during UE evaluation on CIFAR-10 with ResNet-18.

Table 10: The architecture of the perturbation generator.

Block Name Layer Number

Down-sampling layers

Conv
Conv (3 × 3)

× 6InstanceNorm
ReLU

Bottleneck layers

Residual

ReflectionPad

× 8

Conv (3 × 3)
BatchNorm

ReLU
ReflectionPad
Conv (3 × 3)
BatchNorm

Up-sampling layers

ConvTranspose
ConvTranspose (3 × 3)

× 5InstanceNorm
ReLU

ConvTranspose ConvTranspose (6 × 6) × 1Tanh

Figure 1c also stands for this claim, where it has fewer parameter updates compared to EMN and
clean training.

C THE ARCHITECTURE OF PERTURBATION GENERATOR

In the main paper, we devise a versatile transferable generator to produce transferable perturba-
tions and craft unlearnable examples. We denote our perturbation generator as G, which employs a
standard encoder-decoder architecture. This structure comprises three down-sampling convolution
layers, four residual blocks (He et al., 2016), and three transposed convolution layers. The detailed
architecture is shown in Table 10.

D FURTHER ANALYSIS ON PRETRAINING PRIORS AGAINST
UNLEARNABILITY

D.1 IMPACT OF PRETRAINING PRIORS AGAINST UNLEARNABILITY

To further examine the role of pretraining priors in unlearnability, we freeze individual layers of an
ImageNet-pretrained ResNet and analyze their impact on test accuracy. As shown in Figure 5, freez-
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Figure 5: Effect of each pretraining layer of ResNet-18 against unlearnability on CIFAR-10.

Table 11: Test accuracy change (∆Acc) on the original 1000-class ImageNet validation set when
the ImageNet-pretrained model is fine-tuned on CIFAR-10.

Fine-tuning Dataset Accuracy Variation (∆Acc)

Epoch 1 Epoch 2 · · · Epoch 60

Clean CIFAR-10 -36.45 -53.83 · · · -55.28
Unlearnable CIFAR-10 (Ours) -40.66 -55.11 · · · -55.35

ing layer 1 or layer 2 leads to an increase in test accuracy for several UE methods. This suggests
that when low-level priors, which typically encode pixels, edges, and textures, are preserved from
disruption by UEs, models are able to acquire more genuine semantics from the data. Notably, GUE
exhibits a pronounced accuracy surge when the first layer is frozen, indicating that its perturbations
mainly target shallow priors and thus become ineffective once these priors are fixed. In contrast,
our method remains relatively effective even when shallow layers are frozen. Furthermore, freezing
deeper layers, such as layer 3 and layer 4, results in a decrease in accuracy, suggesting that pertur-
bations are now having no choice but to disrupt shallow priors and consequently achieve stronger
unlearnability compared to the fully trainable pretrained scenario.

D.2 PERFORMANCE VARIATION ON ORIGINAL PRETRAINING DATA DURING FINE-TUNING

To discuss the relationship between pretraining data and fine-tuning data, we conduct additional
experiments to examine the performance variation on the original data during fine-tuning on the
downstream new data. We note that, due to catastrophic forgetting, fine-tuning a pretrained model
on downstream data is likely to cause a sharp decline in performance on the original data. To display
this reduction more clearly, we report the relative performance variation when models are fine-tuned
on either clean downstream data or our UEs. Specifically, we fine-tune the pretrained model on
CIFAR-10 while monitoring the variation in its performance on the original 1000-class ImageNet
dataset compared to its performance before fine-tuning. As shown in Table 11, we observe that
the accuracy reduction is similar for both clean and UE fine-tuning data. This indicates that the
observed performance decrease arises from catastrophic forgetting rather than from the unlearnable
perturbations. Therefore, we argue that our perturbations effectively protect downstream user data
without compromising the model’s overall capability or increasing the risk of catastrophic forgetting
during fine-tuning.
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Figure 6: More visualizations of the unlearnable examples crafted by BAIT on CIFAR-10, CIFAR-
100, and SVHN.

E MORE VISUALIZATIONS

E.1 VISUALIZATIONS ON UNLEARNABLE EXAMPLES

To further ensure the imperceptibility of our unlearnable examples, we provide additional visual-
izations on CIFAR-10, CIFAR-100, and SVHN, as illustrated in Figure 6. Across all datasets, the
perturbations remain visually subtle, generally exhibiting small magnitudes that do not degrade the
perceptual quality of the images. These results further confirm that the crafted perturbations main-
tain imperceptibility to human observers while still enforcing unlearnability on models.

E.2 T-SNE VISUALIZATIONS

To illustrate the superior effectiveness of our BAIT, we further present the t-SNE visualization
(Van der Maaten & Hinton, 2008), as shown in Figure 7. Our BAIT exhibits notable unlearnability
both against pretrained backbones and train-from-scratch backbones, which leads to the misclassifi-
cation of clean test samples by the classifier, thereby providing effective protection of real semantics
and demonstrating the applicability for practical applications.

F MORE EXPERIMENTS

F.1 PERFORMANCE WITH A RANDOMLY INITIALIZED SURROGATE

To further evaluate the generalizability of the proposed method, we optimize BAIT with a randomly
initialized surrogate model. We then evaluate its performance against the ImageNet-pretrained
ResNet-18 model on three distinct datasets, including CIFAR-10, CIFAR-100, and SVHN. As
shown in Table 12, our method outperforms baseline methods and exhibits strong capabilities in
rendering data unlearnable, which further demonstrates its effectiveness against pretraining priors.
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Clean (Train-from-Scratch) Ours (Train-from-Scratch)

Clean (Pretrained) Ours (Pretrained)

Figure 7: T-SNE visualization of classifier’s last layer features, where classifiers are trained on the
perturbed training set and tested on the clean test set. In the first row, models are trained on UEs in
a train-from-scratch manner. In the second row, models are trained on UEs with pretraining priors.

Table 12: Test accuracy (%) ↓ comparison against ImageNet-pretrained backbones on CIFAR-10
and CIFAR-100, with a randomly initialized surrogate model for perturbation optimization,

Dataset EMN TUE REM LSP GUE 14A Ours
CIFAR-10 61.82 82.72 74.46 54.20 23.17 65.70 15.97
CIFAR-100 55.53 55.20 55.22 36.98 54.09 33.67 22.83

SVHN 37.55 41.15 76.45 38.91 39.68 81.47 17.93

F.2 PERFORMANCE WITH VIT-BASED MODELS

To investigate whether larger models with more robust pretrained knowledge can exhibit superior
resistance to UEs, we have added additional evaluations against more advanced or larger models,
including Tiny-ViT (Wu et al., 2022), Swin Transformer Tiny (Liu et al., 2021), and ViT-B/16 (Doso-
vitskiy et al., 2021), on CIFAR-10 and CIFAR-100. We also evaluate the effectiveness of our method
with these ViT-based models. As shown in Table 13, these models indeed exhibit stronger robustness
when training with unlearnable data. For example, TUE achieves more than 90% test accuracy on
CIFAR-10, and GUE obtains over 80% test accuracy on CIFAR-100. Even so, we observe that our
method outperforms baselines clearly and still introduces unlearnability, which further demonstrates
the efficacy of our proposed BAIT framework.
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Table 13: Test accuracy (%) ↓ comparison against ImageNet-pretrained ViT models on CIFAR-10
and CIFAR-100 datasets.

Dataset Backbone EMN TUE REM LSP GUE Ours

CIFAR-10
Tiny-ViT 76.00 95.53 87.83 79.66 25.04 17.41

Swin Transformer Tiny 67.09 89.90 79.23 39.62 26.45 15.67
ViT-b/16 89.53 97.22 92.66 90.06 44.79 31.62

CIFAR-100
Tiny-ViT 40.72 47.47 52.39 44.93 81.40 23.64

Swin Transformer Tiny 39.12 40.89 53.85 53.99 86.85 19.16
ViT-b/16 57.63 51.53 75.09 65.68 86.26 23.30

F.3 CROSS-TASK TRANSFERABILITY

Table 14: Evaluation of cross-task transferability from classifica-
tion to segmentation on Pascal VOC 2012.

Method Pascal VOC 2012 Semantic (mIoU (%) ↓)
Aeroplane Bicycle Bird Boat Bottle

Clean 80.9 35.6 84.4 65.8 74.7
UnSeg 30.5 16.4 58.6 19.1 40.4
LSP 41.3 50.2 63.3 46.9 57.1
Ours 40.0 49.0 60.4 44.6 53.5

We conduct additional evalua-
tions on the transferability of
our method from classification
to a different image segmen-
tation task, with perturbations
optimized from the CIFAR-10
classification dataset. We note
that directly transferring per-
turbations may not be suit-
able since segmentation requires
dense, pixel-wise predictions,
whereas classification relies on
single, image-level labels. This discrepancy is likely to impact the effectiveness of UEs. Following
the evaluation setup of UnSeg (Sun et al., 2024), we conduct experiments on the Pascal VOC 2012
dataset (Everingham et al., 2010). Note that UnSeg is specifically designed for segmentation and is
considered to be a very strong baseline. We also evaluate the cross-task transferability of LSP (Yu
et al., 2022) for comparison. As shown in Table 14, we observe that although not explicitly designed
for cross-task transferability, our method can reduce the mIoU for several classes compared to clean
training, indicating that our method maintains certain unlearnability when transferred to other down-
stream tasks. Moreover, our method outperforms LSP across five classes, demonstrating superior
cross-task transferability compared with other classification-oriented UE baselines. We acknowl-
edge that there is still room for improvement in bridging the performance between our method and
the segmentation-specialist method UnSeg. Given the broad potential of cross-task UEs, we con-
sider this as an important future research direction.

F.4 VERIFICATION WITH DIFFERENT DATA PROTECTION RATIOS.

Although the standard UE setting applies perturbations to the entire training set, in practical sce-
narios, there may be only a portion of the data that is protected. To this end, following previous
UE studies (Huang et al., 2021; Yu et al., 2022; Sadasivan et al., 2023), we also explore the impact
of the data protection ratio on unlearnability. The experimental results are presented in Table 15.
We observe that mixing clean samples with poisoned samples leads to a small performance increase
compared to the clean training, indicating that models gain little semantic information from the UEs.
Moreover, we observe that our method successfully reduces the test accuracy slightly compared to
clean training at poison ratios of 10%, 20%, and 30%, and exhibits the smallest accuracy increase
compared to baseline methods at other poison ratios, demonstrating its superior effectiveness.
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Table 15: Test accuracy (%) ↓ under different poisoning ratios p against the ImageNet-pretrained
ResNet-18 model on CIFAR-10.

Poison Ratio r 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Clean (1− r) 83.13 82.97 82.20 81.40 80.02 78.40 76.96 73.88 67.57 −

EMN 83.58 83.41 83.32 83.08 83.04 82.37 81.24 80.52 77.28 61.82
TUE 83.87 83.83 83.81 83.79 83.54 83.43 83.39 83.03 82.97 82.72
REM 84.18 83.79 83.63 83.05 82.69 82.90 81.96 81.09 79.81 74.46
LSP 83.56 83.51 82.53 82.49 81.48 80.29 79.68 77.97 74.91 54.20
GUE 83.94 83.58 83.48 82.48 81.79 81.14 79.88 78.18 74.50 23.17

Ours 83.06 82.94 81.67 81.51 81.11 79.43 78.13 74.95 71.88 14.40
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