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ABSTRACT

Object detection in Remote Sensing Images (RSI) is a crit-
ical task for numerous applications in Earth Observation
(EO). Differing from object detection in natural images, ob-
ject detection in remote sensing images faces challenges of
scarcity of annotated data and the presence of small objects
represented by only a few pixels. Multi-modal fusion has
been determined to enhance the accuracy by fusing data
from multiple modalities such as RGB, infrared (IR), li-
dar, and synthetic aperture radar (SAR). To this end, the
fusion of representations at the mid or late stage, produced
by parallel subnetworks, is dominant, with the disadvantages
of increasing computational complexity in the order of the
number of modalities and the creation of additional engi-
neering obstacles. Using the cross-attention mechanism, we
propose a novel multi-modal fusion strategy for mapping
relationships between different channels at the early stage,
enabling the construction of a coherent input by aligning
the different modalities. By addressing fusion in the early
stage, as opposed to mid or late-stage methods, our method
achieves competitive and even superior performance com-
pared to existing techniques. Additionally, we enhance the
SWIN transformer by integrating convolution layers into
the feed-forward of non-shifting blocks. This augmentation
strengthens the model’s capacity to merge separated win-
dows through local attention, thereby improving small object
detection. Extensive experiments prove the effectiveness of
the proposed multimodal fusion module and the architec-
ture, demonstrating their applicability to object detection in
multimodal aerial imagery. Our code is available at here.

Index Terms— Multimodal fusion, cross-channel atten-
tion, convolutional shifting window, object detection, remote
sensing imagery

1. INTRODUCTION

Object detection in Remote Sensing Images (RSI) including
aerial images is a critical task enabling the identification and
localization of objects within satellite or aerial imagery. It has
numerous applications for Earth Observation (EO) such as en-
vironmental monitoring, climate change, urban planning, and
military surveillance [1]. Given the availability of different

sensors onboard satellites and UAVs, multimodal fusion has
been an active area of interest for research. Given the smaller
object size and limitation of annotated data availability [2],
multimodal data has been used to improve the performance of
diverse computer vision tasks in RSI including object detec-
tion. Previous work has shown that using neural networks for
fusing multiple modalities has remarkable benefits for tasks
such as semantic segmentation [3], video description [4], and
action recognition [5].

Multimodal fusion methods can be classified according to
the stage at which the fusion is performed: early-stage fu-
sion, mid-stage fusion, and late-stage fusion [6]. Early-stage
fusion methods typically employ simple techniques like con-
catenation or averaging to integrate multimodal data at the
early stage of the model. Although early-stage fusions are
usually simple and easy to use, their performance lags behind
more sophisticated mid- or late-stage methods. In mid-stage
and late-stage fusion, modality features are extracted by in-
dependent feature extractors sub-networks, often referred to
as streams in the literature, before being fused. The key dis-
tinction between mid-stage and late-stage fusion lies in their
subsequent processing steps: in mid-stage fusion, the fused
features are further processed by a main network, whereas in
late-stage fusion, the feature extractor streams constitute the
entirety of the network.

Depending on the fusion technique employed, mul-
timodal fusion approaches can also be categorized into
aggregation-based, alignment-based, and attention-based
methods. Aggregation-based methods [7] rely on straight-
forward operations like concatenation and averaging to fuse
modalities, a process that can occur at any stage—early, mid,
or late. Alignment-based methods [5] leverage regularization
loss to align embeddings from different modalities, typi-
cally executed at the late stage of fusion. The more recent
attention-based methods [8, 4] utilize attention mechanisms
for fusion, commonly occurring at mid or late stages. A de-
tailed review of some related attention-based fusion methods
will be presented in the next section.

Despite the achievements and good results of these meth-
ods, several challenges persist. While aggregation-based
methods offer simplicity, they often overlook potential modal
misalignments and intra-modality dependencies. On the other
hand, alignment-based methods, while aimed at minimizing
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Fig. 1: An illustration of different fusion strategies. In contrast to mid-stage and late-stage fusions which involve fusion at the
feature level extracted by distinct parallel subnetworks, our approach targets fusion at the early stage.

alignment loss, may not adequately address intramodal in-
formation exchanges. Moreover, regardless of the fusion
approach, the use of subnetworks for feature extraction from
different modalities remains widespread. These subnetworks
are trained to extract modal features independently, with fu-
sion occurring in subsequent steps, as shown in Fig 1. This
family of methods increases computational complexity and
adds additional technical hurdles, such as determining the
optimal step and scale at which fusion is performed. This
challenge is particularly pronounced when the independent
parallel subnetworks are composed of recently developed
Vision Transformers (ViT) [9], where computational costs
increase quadratically. In addressing this issue, some works
choose CNN for modality-specific streams and propose to
use transformers for the multimodal fusion module [8]. This
integration of CNNs and ViTs also occurs for object detection
where existing fusion methods are mainly CNN-based [2, 8].

In this paper, we consider object detection in remote sens-
ing images with the presence of two modalities, RGB and
infrared (IR). We propose an early-stage multimodal cross-
attention fusion method based on the cross-attention mecha-
nism (Fig. 2). We show that different modalities can be fused
at the early stage without requiring additional independent
subnetworks for each modality. The key concept behind the
proposed method involves processing the three RGB channels
individually instead of considering them as a single modal-
ity. Notably, the absence of modality-specific subnetworks
enables scalability to accommodate any number of modali-
ties without a substantial increase in model size. Addition-
ally, this strategy proves effective in eliminating the need for
additional subnetworks dedicated to modality feature extrac-
tion. We demonstrate that the cross-channel attention fusion
can outperform or match the performance of state-of-the-art
mid-stage fusion based on the CNN backbone.

Additionally, we propose to use SWIN [10] as the main

backbone which uses the shifted window mechanism to en-
able the merging of neighboring patches separated by local
window attention. Given that this shifting mechanism is
only operative in half of the blocks, we propose augmenting
the Feed-Forward network (FFN) with a convolutional layer
while maintaining the same embedding dimension. This im-
provement aims to strengthen the network’s ability to capture
local information and facilitate the integration of neighboring
patches in different windows. Hereafter, we refer to these
blocks as convolutional-shifting blocks. Furthermore, we
show the necessity of this backbone improvement for the
proposed fusion strategy and we believe that this is due to the
rich information present in the fusion module output.

To summarize, the main contributions of this work are:
1) We introduce a new cross-channel attention module that
allows for the early alignment of different modalities.
2) We propose a convolutional-shifting window that incorpo-
rates convolutional layers in FFN to assist in merging sepa-
rated windows in local attention enhancing the detection per-
formance.
3) The extensive experiments demonstrate the superiority of
the proposed approach, highlighting its applicability for ob-
ject detection in multimodal aerial imagery.

2. RELATED WORK

Attention based multimodal fusion: Recently attention-
based multimodel fusion has caught attention. In contrast
to aggregation-based approaches, which rely on simple con-
catenation, attention-based fusion methods employ self and
cross-attention mechanisms to fuse modality features at the
mid or late-stage. Cross-modal attention is used to enrich
the main modality with lidar information in [8], while [11]
employs attention at various stages between two separate
branches for multi-modal fusion. Additionally, attention is



utilized in [4] for the mid-stage fusion of image and audio
modalities through the introduction of extra bottleneck to-
kens. Similarly, [12] introduces additional learnable fusion
tokens and aggregates modalities for token fusion using Bi-
LSTM.

Compared to aggregation-based methods, existing attention-
based approaches replace concatenation with more sophisti-
cated feature-level attention mechanisms. However, they
still require feature extractors for each modality. The dif-
ference between our proposed cross-channel attention fusion
and existing attention-based methods is that, in our proposed
method, fusion occurs before any substantial processing and
featurization.
Multimodal fusion for object detection: Over the past
decade, deep learning methods have been widely explored
for multimodal data fusion to improve object detection per-
formance. [7] is an aggregation-based method and its perfor-
mance is affected by the scale and stage at which aggregation
occurs, which is a common problem for mid-stage fusion
methods. [13] is an alignment-based method that aligns mul-
timodal features based on similarity regulation. One of the
limitations of this method is that it ignores modal-specific
information.

In terms of architectural design, a notable commonality
among these existing methods is their reliance on subnetwork
branches for feature extraction. Indeed, [14] explored early,
middle, and late-stage fusion using CNNs for object detection
and claimed that mid-stage fusion yielded the optimal per-
formance. The following works all followed this principle.
[15] uses the transformer self-attention mechanism for fusion
at multiple stages between two modality branches. Manish
et al. [2] proposed a real-time framework for object detec-
tion in multi-modal remote sensing imagery by performing a
mid-stage fusion of RGB and IR modalities. More recently,
Zhang et al. [16] proposed the CNN-based SuperYOLO and
studied various fusion strategies, including early-stage con-
catenation. It’s worth noting that their proposed multimodal
fusion also relies on subnetworks comprising squeeze and ex-
citation blocks [17] maintaining consistent input sizes. Differ-
ent from these methods, we propose cross-channel attention
fusion without the need for separate subnetworks. Further-
more, whereas the aforementioned methods consider RGB as
a unified modality, we opt to treat each color channel inde-
pendently. This approach enables us to leverage not only the
cross-information between two modalities (RGB and IR) but
also among all three RGB channels.
Window-based Vision Transformers/CNN. The landscape of
computer vision has undergone a substantial transformation
with the emergence of ViT [9], showcasing advancements
across a broad spectrum of visual tasks. However, while
ViTs exhibit commendable performance, they come with cer-
tain limitations, notably a substantial computational burden
and lack of sense of locality. To address these limitations,
[10] enhanced the vanilla ViTs by introducing hierarchical

architectures and localized windows. These enhancements
have found practical applications in single-modal aerial im-
age object detection [18]. Drawing from this body of work,
more recent approaches endeavor to combine the strengths of
CNNs with ViTs [19]. This combination capitalizes on the
respective advantages of both CNNs and ViTs, thus offering
promising prospects for computer vision applications such as
classification [19], and Face Presentation Attack Detection
(PAD) [20]. In this paper, we utilize SWIN architecture as
the main backbone, with an enhancement on joining the sep-
arated windows by incorporating a convolutional layer in the
feed-forward network of non-shifting blocks.
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RGB
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Cross-channel  attention

Fig. 2: Combining multimodal inputs using cross-channel at-
tention instead of simple channel-wise concatenation.

3. PROPOSED METHOD

3.1. Overall architecture

Illustrated in Fig 3, the proposed architecture is composed
of three components: the cross-channel attention fusion mod-
ule, a feature extraction backbone featuring SWIN-like blocks
enhanced with our proposed convolutional-shifting window
mechanism, and a YOLO-based detection head as employed
in [16]. The choice of this detection head is motivated by the
simplicity inherent in the one-step detection method, widely
adopted in the field, facilitating comparisons.

3.2. Cross-channel attention for multimodal fusion

We present our proposed cross-channel attention fusion mod-
ule in Fig 4. Considering XRGB ∈ RH×W×3, and XIR ∈
RH×W as RGB and IR modality image inputs respectively,
following the standard practice in ViT methodologies, each
channel (R, G, B, and IR) undergoes tokenization and patch
splitting. The resulting patched channels can be denoted re-
spectively as Xr, Xg, Xb, Xir ∈ RH

s ×W
s ×d where s represents

the patch size and d denotes the embedding dimension. Sub-
sequently, the obtained Xr, Xg, Xb, Xir are fused based on the
proposed cross-channel attention fusion module which relies
on the cross-attention mechanism. Mathematically, the at-
tention mechanism can be generally formulated as in equa-
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Fig. 3: (a) The overall architecture based on Swin-like backbone for multi-
modal object detection in RSI; (b) Convolutional-shifting window module.

Fig. 4: Cross-channel attention module for
RGB and IR images multimodal fusion.

tion (1):

Attention(Q,K, V ) = softmax
(
Q ·KT

√
d

)
· V (1)

where Q,K, V are the query, key, and value matrices and d is
the embedding dimension. Cross-attention and self-attention
represent two applications of the attention mechanism. Cross-
attention involves the asymmetric combination of two embed-
ding sequences, where one sequence acts as a query input,
while the other serves as key and value inputs, thereby cap-
turing the interdependence between the two sequences. We
demonstrate the effectiveness of cross-attention for fusion by
contrasting it with a fusion technique based on self-attention.
Detailed comparisons can be found in the experimental sec-
tion.

In our fusion process, we propose to apply cross-attention
individually to each channel (R, G, B, IR). Specifically, each
channel acts as a query, and one of the remaining channels is
chosen to fulfill both key and value roles in the cross-attention
mechanism. We select the complementary channel to mini-
mize its spectral proximity to the query channel. The formed
four pairs are (R, G), (G, B), (B, IR), and (IR, G). The fused
output comprises the concatenation of all these fused chan-
nels along with a residual branch. To streamline computa-
tional complexity, we omit the feed-forward network from the
cross-channel attention, as its role in altering the channel di-
mension is redundant within this context.

We highlight that, in our cross-channel attention frame-
work, we treat each channel as an independent modality, thus
incorporating the relationship between channels alongside in-
formation exchange with the IR modality. This decompo-
sition of RGB enables distinct fusion mechanisms for each
RGB channel and the IR modality, recognizing potential vari-
ations in their relationships. To illustrate this, we also tested a
cross-attention-based fusion technique treating RGB as a sin-
gle modality. Detailed comparisons are provided in the exper-
imental section. Moreover, we deliberately align the number
of output channels of the fusion module with the input chan-
nels. This choice ensures direct or indirect linkage among the

four channels. Additionally, it substantially reduces compu-
tational complexity.

3.3. Convolutional-shifting window-based backbone

We base our backbone on SWIN which adopts a hierarchical
approach with multiple stages. SWIN divides the input im-
age into non-overlapping patches at multiple scales, enabling
more efficient processing of both local and global informa-
tion. The hierarchical transformer architecture allows SWIN
to capture long-range dependencies while maintaining com-
putational efficiency. In our SWIN-based backbone, three
stages process the image at different scales starting from a
higher resolution scale to low resolution in the third stage.
Since the objects in RSI are often small and densely packed
into a few pixels, we choose a higher number of blocks in the
initial stage where the resolution remains high, while progres-
sively reducing the number of blocks in later stages decreas-
ing the resolution by a factor of 2. This backbone enables
us to learn hierarchical multi-resolution features in a fine-to-
coarse manner with a higher focus in the first stage for better
detection of small objects (see Fig 3 (a)).

In addition, a well-recognized limitation of window-
based Vision Transformers is their segregation of neighboring
patches across different windows. To address this challenge,
the SWIN Transformer introduces a shifting window mech-
anism, albeit restricted to only half of its blocks in a way
that each nonshifting block is followed by a shifting window
block. In our approach, we seek to enhance connectivity
across all blocks and imbue the architecture with a height-
ened sense of locality. To achieve this, we introduce an extra
convolutional layer with a kernel size of two by two posi-
tioned between two Fully Connected (FC) layers within the
FFN while keeping the embedding dimension fixed (the or-
ange block as shown in Fig 3 (b)). The use of a two-by-two
kernel size and a fixed dimension is intended to prevent an
increase in the computational complexity of the model. This
augmentation not only promotes greater coherence but also
enhances the network’s perception of spatial proximity.

The enhanced blocks can be utilized across all three stages



of the process. Through empirical investigation, we have de-
termined that the optimal performance is attained when the
enhanced blocks are deployed in stages 1 and 2. A compar-
ison of various combinations is provided in the experimental
section for further insight.

4. EXPERIMENTS

4.1. Experimental setup

We apply our proposed cross-channel attention to the task of
object detection in aerial images. We experiment with the
VEDAI dataset [25]. The dataset contains scenes captured
from the same altitude with a resolution of 12.5cm × 12.5cm
per pixel. Each image has 4 channels of RGB and IR. The
dataset consists of 1246 images having diverse backgrounds
containing highways, pastures, mountains, and urban areas.
The images come in both 1024×1024 and 512×512 sizes and
we have used the 512 × 512 images for all the experiments.
The task is to identify and localize 11 types of vehicles such
as car, pickup, truck, and camping. The dataset is divided
into 10 folds for cross-validation evaluation. Following the
same protocol as in SuperYOLO [16], we use the first folder
for the ablation studies, and all 10 folders for overall evalu-
ation compared with the state-of-the-art methods. The data
is augmented with Hue Saturation Value (HSV), multi-scale,
translation, left-right flip, and mosaic augmentation methods
similar to SuperYOLO. We considered eight classes in the
dataset and ignored classes that have under 50 instances in
the dataset.

We have used the standard Stochastic Gradient Descent
(SGD) [26] to optimize the network with a momentum of
0.937 and weight decay of 0.0005. The models were trained
for 300 epochs using one Nvidia A100 GPU. We used the
standard detection loss which combines localization, classifi-
cation, and confidence losses to train the model, and the per-
formances are evaluated using mAP50, i.e., detection metric
of mean Average Precision at IOU (Intersection over Union)
= 0.5 for all categories.

4.2. Cross-channel attention fusion module

We evaluate the performance of the proposed Cross-Channel
(CC) attention fusion module. To illustrate the effectiveness
of the cross-channel attention fusion, we designed two fu-
sion techniques based on vanilla self-attention and vanilla
cross-attention. For the vanilla self-attention fusion, after
the standard ViT patch encoding with separate projections,
the obtained embeddings of each modality are concatenated
before using a standard self-attention mechanism to perform
the fusion. The difference between this configuration and
the proposed cross-channel attention is that the self-attention
is used instead of the cross-attention and the RGB chan-
nels are treated jointly. For the vanilla cross-attention, the
cross-attention is used with two modalities (RGB and IR)

as separate inputs. Notably, this differs from the proposed
cross-channel attention fusion, where attention is applied at
the channel level within each modality. All the aforemen-
tioned attention mechanisms are employed in a multi-head
way.

We tested the proposed fusion module on two types of
backbone. We chose the CNN-based SuperYOLO’s backbone
and our enhanced SWIN-like backbone which is ViT-based.
For the CNN-based backbone, we compare the proposed fu-
sion method with pixel-level fusion and feature-level fusion,
both studied in SuperYOLO. For the ViT-based backbone,
we compare the proposed fusion method with the early-
stage concatenation method, vanilla self-attention fusion, and
vanilla cross-attention fusion. Performance with a single
modality is also presented as a reference. The results are
shown in Table 2.

For the CNN-based backbone, CC-attention fusion out-
performs the Pixel-level fusion and the Multimodal Feature-
level (MF) fusion used in SuperYOLO. For the ViT-based
backbone, the CC-attention fusion outperforms the RGB-IR
concatenation by 3.3% and improves by respectively 15% and
8% compared to the scenario where only IR or RGB images
are used. As expected, the proposed cross-channel attention
fusion method outperforms the two tested attention-based fu-
sion strategies. It’s also interesting to notice that the vanilla
cross-attention method outperforms the vanilla self-attention
method. These observations validate the advantages of cross-
attention and confirm the benefits of treating RGB channels
individually.

4.3. Convolutional-shifting window

We demonstrate the effectiveness of integrating the enhanced
convolutional-shifting window across three stages of the
backbone. We evaluate three scenarios to assess the impact.
Table 3 shows the results. We can see that when adding a
convolution layer inside the FFN in non-shifting blocks at
stage 1, the model outperforms the FFN without convolution
by 4.5% in terms of the mAP50. Furthermore, introducing
convolution at stages 1 and 2 gains 5.2% improvement.

4.4. Overall performance

The overall performance of our proposed approach is illus-
trated in Table 1. we can see that our proposed method
achieves competitive results and outperforms the state-of-
the-art CNN model by 0.3%. Additionally, our method out-
performs SuperYOLO in detecting difficult classes with the
least number of instances in the training set, namely the Boat,
Van, and Other classes. We also illustrate in Fig 5 a visual
comparison of our method and SuperYOLO for two different
scenes where only our method has successfully detected and
correctly classified the objects.



Method Car Pickup Camping Truck Other Tractor Boat Van mAP50
YOLOv3 [21] 84.57 72.68 67.13 61.96 43.04 65.24 37.10 58.29 61.26
YOLOv4 [22] 85.46 72.84 72.38 62.82 48.94 68.99 34.28 54.66 62.55
YOLOv5 [23] 84.33 72.95 70.09 61.15 49.94 67.35 38.71 56.65 62.65
YOLOrs [2] 84.15 78.27 68.81 52.60 46.75 67.88 21.47 57.91 59.73

YOLO-Fine [24] 79.68 74.49 77.09 80.97 37.33 70.65 60.84 63.56 68.83
SuperYOLO [16] 89.30 81.48 79.22 67.27 54.29 78.88 55.95 71.41 72.22

Ours 89.13 82.70 76.38 61.57 56.32 77.94 60.36 75.84 72.53

Table 1: Class-wise mean Average Precision mAP50 for our proposed method comparing to the state-of-art on VEDAI Dataset.

Architecture Fusion Method mAP50

CNN-based
(SuperYOLO)

Pixel fusion 76.90
MF fusion 77.73

CC attention 77.9

ViT-based
(Ours)

IR 63.79
RGB 70.55

RGB-IR concatenation 74.23
RGB-IR Vanilla self-attention 74.03

RGB-IR Vanilla cross-attention 75.64
RGB-IR CC attention 78.53

Table 2: The comparison of the proposed multi-channel at-
tention fusion module with other fusion methods with CNN-
based and ViT-based backbones on the VEDAI dataset (Fold-
1).

Backbone mAP50
Simple FFN 71.23

FFN with Conv2d in stage 1 75.75
FFN with Conv2d in stages 1,2 76.52

Table 3: Effect of the convolution in FFN at the 1st and the
2nd stages on the VEDAI dataset (Fold-1).

5. CONCLUSIONS

This paper introduces a new cross-channel attention multi-
modal fusion module that allows for aligning different modal-
ities by learning the relationship between different channels
at the early stage. The achieved results demonstrate the mod-
ule’s competitiveness compared to the mid-stage CNN-based
fusion methods. Moreover, we propose the convolutional-
shifting window, which incorporates convolutional layers
in a feedforward network of non-shifting blocks in SWIN.
This enhancement facilitates the joining of separated local
windows within the SWIN framework, thus augmenting the
model’s capability to localize and detect small objects. The
experiments provide evidence of the competitive and better
performance of the proposed approach compared to the mid-

   Groudtruth    SuperYOLO    Ours

Fig. 5: Visual results using our method and SuperYOLO.

stage fusion technique in the context of object detection using
multimodal aerial imagery. The results also emphasize the
utility of the convolutional-shifting window in enhancing the
model’s spatial awareness and object detection capabilities.

For future endeavors, exploring the algorithm’s applica-
bility across different modalities presents an intriguing av-
enue. Additionally, investigating pretraining strategies such
as self-supervised learning could further enhance the robust-
ness and performance of the method.
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