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Abstract

Generating counterfactual facial images is an important tool for interpretable machine learn-
ing, fairness analysis, and understanding the causal relationships among facial attributes.
In this work, we propose a novel neuro-symbolic framework for causal editing, which in-
tegrates causal graph discovery, mask-guided counterfactual generation, and semantic in-
terpretation to produce facial images that are both realistic and causally consistent. We
first employ the Fast Causal Inference (FCI) algorithm to uncover latent causal relation-
ships among facial attributes, enabling the identification of direct and indirect factors for
target interventions. Using these causal graphs, we construct spatially informed masks that
guide a DDPM-based generative model, ensuring that only regions relevant to the causal
factors are modified. Finally, we leverage CLIP-based embeddings to provide logical, human-
understandable explanations of the semantic changes in the counterfactuals. Experiments
on CelebA and CelebA-HQ demonstrate that our approach produces high-fidelity coun-
terfactuals, achieves superior performance on sparsity and realism metrics, and mitigates
bias compared to state-of-the-art methods. This framework offers a principled approach to
causally grounded, interpretable facial image editing.

1 Introduction

Counterfactual reasoning has become an essential tool in interpretable and responsible machine learning
(Velazquez et al., 2023). By considering how changes in inputs would alter outputs, counterfactuals al-
low researchers and practitioners to explore “what-if” scenarios in a controlled and understandable man-
ner (Goyal et al., 2019). In the context of facial images, the goal extends beyond explaining a model’s
decision: it involves generating realistic, causally consistent counterfactual instances that reflect plausi-
ble alternative appearances or attributes. Unlike traditional counterfactual explanation methods, which
aim to minimally perturb inputs to reveal a model’s decision boundary, counterfactual generation focuses
on creating images that maintain fidelity to the underlying causal relationships among facial features.

Figure 1: Motivation scenario: a rejected visa photo. Our method
highlights the actual causal reasons, enhancing user understand-
ing.

Realism and causal consistency are criti-
cal in applications such as identity ver-
ification, biometric authentication, and
human-computer interaction, as shown
in Figure 1, an example in the visa ap-
plication scenario and consequences of
non-causal inference counterfactual gen-
eration. Existing image-based counter-
factual methods often treat all features
as independently manipulable, ignoring
dependencies between attributes (Jean-
neret et al., 2023; 2022). As a result, ed-
its may produce implausible or entangled
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changes. For example, altering hair colour might unintentionally modify perceived age or gender, and chang-
ing gender could introduce unrelated expressions. Such inconsistencies not only reduce trust in the generated
images but can also amplify dataset biases, undermining fairness in downstream tasks (Xu et al., 2020).

Several methods have been proposed for generating visual counterfactual explanations. The work in (Goyal
et al., 2019) developed a method for generating visual explanations with a counterfactual perspective. An-
other work that emphasises causal relation in counterfactual estimation is (Sanchez & Tsaftaris, 2022), a
deep structural causal model that leverages recent advancements in diffusion models that involve iteratively
sampling gradients from the marginal and conditional distributions that are part of the causal model. Peng
et al. (Peng et al., 2022) simplified the explanation of model-detected face swap images by introducing au-
tomatic methods to create more authentic and manipulated counterfactual versions. Similarly, (Hendricks
et al., 2018) introduced a phrase-critic model to enhance candidate explanations generated with inverted
phrases.

However, methods that do not account for causal dependencies can yield visually unrealistic or non-actionable
counterfactuals (Slack et al., 2021). De Sousa Ribeiro et al. (De Sousa Ribeiro et al., 2023) show that
incorporating a causal model helps distinguish true causes from spurious associations, enabling accurate,
high-fidelity counterfactual image generation. Similarly, Melistas et al. (Melistas et al., 2024) emphasise
that realistic image edits must respect causal relationships inherent to the data generation process. These
works demonstrate that causal models help isolate genuine causal factors and avoid spurious correlations.
Existing methods face limitations that hinder the generation of causally consistent and interpretable facial
counterfactuals. These gaps highlight the need for a framework that not only enforces causal consistency
during counterfactual generation but also provides human-understandable explanations.

To address these challenges, we propose a framework that explicitly incorporates causal knowledge into
the generation process. We introduce Facial Counterfactual Generation via Causal Mask-Guided Editing, a
method that first learns a causal graph over facial attributes and perceptible features. This graph identifies
direct causes and confounders, which then guide mask-based interventions during reverse diffusion. By
modifying only causally relevant regions while holding confounders fixed, our approach ensures that generated
counterfactuals are both realistic and semantically coherent. To further enhance interpretability, we leverage
CLIP-based embeddings to provide textual descriptions of the visual edits, allowing users to understand
which features were causally modified without implying an explanation of any specific model.

This work makes four primary contributions: (i) we shift the focus from counterfactual explanation to
the causally coherent generation of facial images in a neuro-symbolic generation framework, emphasizing
realistic and plausible outputs; (ii) we introduce a framework that learns causal structure over attributes
and applies mask-guided reverse diffusion to intervene selectively on direct causes; (iii) we provide visual and
textual outputs that narrate the applied edits, improving interpretability and user understanding; and (iv)
we demonstrate both quantitative and qualitative improvements in realism, sparsity, and causal consistency
compared to state-of-the-art baselines on CelebA and CelebA-HQ.

2 Literature Review

There are two primary research gaps and challenges motivating this work: first, the difficulty of accurately
discovering causal relationships among facial attributes in images; and second, the prevalence of stereotypical
biases in current generative models.

Causality in Facial Images Analysis The literature on causality in facial attributes has explored meth-
ods to improve model interpretability and achieve counterfactual fairness, particularly with respect to sen-
sitive attributes such as race and gender. While prior work has addressed fairness by explicitly modeling
the role of protected attributes (Mazumder & Singh, 2022), methods in facial attribute editing still face
important limitations. For example, Kang et al. (Kang et al., 2022) propose generating synthetic facial
replicas under factual and counterfactual assumptions using causal graph-based attribute translation, pro-
ducing realistic counterfactual images. However, their work focuses on generating facial replicas for fairness
evaluation rather than counterfactual explanations with emphasis on sparsity and causal consistency, which
is a fundamentally different objective from ours. Other approaches incorporate wavelet scattering trans-
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forms (Liu et al., 2024) and channel attention for efficient face attribute classification, while NCINet (Wang
& Boddeti, 2022) aims to identify causal relations from high-dimensional image representations.

Recent advances in diffusion-based counterfactual generation have made significant progress. Rasal et
al. (Rasal et al., 2025) propose semantic abduction mechanisms for diffusion models, introducing spatial,
semantic, and dynamic abduction to balance identity preservation with causal faithfulness during image
editing. Wu et al. (Wu et al., 2025) present Variational Causal Inference (VCI), a framework that enables
end-to-end counterfactual supervision during training with disentangled exogenous noise abduction. How-
ever, both approaches focus primarily on image editing quality—precise control over generated images and
identity preservation—and assume known causal graphs as input. In contrast, our work addresses inter-
pretable counterfactual explanations for fairness auditing and learns the causal structure from data via FCI,
which is critical for real-world settings where ground-truth causal graphs are unavailable.

Despite these advances, existing methods face several limitations that hinder their practical application for
causally consistent facial counterfactual generation. First, while some approaches build causal graphs to guide
attribute changes, they rarely integrate these graphs directly into the image generation process, resulting in
edits that may violate causal dependencies. Second, previous methods focus solely on visual output, without
providing interpretable or human-understandable explanations of the applied interventions. Third, many
causal discovery techniques rely on approximations that are sensitive to noise or missing variables, limiting
robustness and scalability to large, high-dimensional facial features.

Stereotyping in Generative Models Recent studies have highlighted significant concerns regarding
stereotyping in image generation models, particularly in text-to-image systems. For instance, Bianchi et
al. (Bianchi et al., 2023) demonstrated that widely accessible text-to-image models can amplify demographic
stereotypes at large scale, producing biased images even from neutral prompts. Similarly, Barve et al. Barve
et al. (2025) found that while prompt refinement can mitigate stereotypes, it often limits contextual align-
ment, indicating a trade-off between bias reduction and semantic accuracy. These issues underscore the need
for more nuanced approaches to address bias in generative models.

However, existing literature predominantly focuses on text-to-image models, leaving a gap in understanding
and mitigating bias in facial image generation. This oversight is particularly concerning given the widespread
use of facial images in sensitive applications such as identity verification and biometric assessments. The
lack of causal reasoning in current models often leads to unrealistic and biased facial edits, as they fail to
account for the interdependencies among facial attributes.

3 Methodology

In Figure 2, it illustrates our complete pipeline. Starting from facial attribute matrix D, FCI discovers causal
graph G. The reference and preliminary images are compared to construct mask M , which guides diffusion
to produce the final counterfactual.

Table 1: Edge types in a Partial Ancestral Graph (PAG) and their interpretations.
Edge Type Interpretation
(a) Vm → Vn Directed causal link from Vm to Vn (i.e., Vn is a child of

Vm).
(b) Vm◦→ Vn Rules out Vn as an ancestor of Vm; may reflect the pres-

ence of unmeasured confounders C.
(c) Vm ◦−◦ Vn Undetermined orientation; no d-separation (an un-

blocked path).
(d) Vm ↔ Vn Suggests an unobserved confounder between Vm and Vn.

3.1 Causal Graph Learning

To generate the causal graph, let D ∈ {0, 1}N×d be the data matrix of binary facial attributes, where each
row corresponds to an instance and each column to an attribute. Given D, we use the Fast Causal Inference
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Figure 2: Our proposed causal editing pipeline. Data preprocessing constructs facial attribute matrix D,
input to FCI. We assume d = 5, N = 10 for illustration. Using PAG G, we mask direct causes of target
Ql. The mask is obtained as binary difference between Iref

n and Iprelim
n , then filtered by causal structure to

produce counterfactual I ′
n. Color coding: red bold node = target attribute (Ql); red nodes with white

text = non-intervened attributes; grey nodes = direct causes DC(Ql) (inpainted regions). Mask: white =
inpainted/regenerated regions; black = preserved regions.

(FCI) algorithm Spirtes (2001) to estimate a Partial Ancestral Graph (PAG) over the d attributes. Unlike
conventional causal graphs, PAGs encode both directed causal edges and edges with uncertain orientation,
as summarised in Table 1.

Causal Graph Discovery. To ensure causally consistent counterfactual generation, we first uncover the
underlying causal structure among facial attributes. We compared established causal discovery algorithms,
focusing on the FCI (Spirtes, 2001). While Peter-Clark (PC) (Spirtes et al., 2000) may suggest simplistic
direct links, FCI uncovers richer, more nuanced structures that capture indirect effects and potential con-
founding relationships, allowing for more precise and valid interventions during counterfactual generation.
Ultimately, we adopted FCI for its superior handling of hidden confounders—unobserved variables that affect
multiple facial traits.

Mathematically, FCI employs chi-square tests to evaluate conditional dependencies between categorical vari-
ables:

χ2 =
∑ (O − E)2

E
, (1)

where O is the observed frequency of a category and E is the expected frequency under independence. Higher
χ2 values indicate stronger dependence, with significance determined via comparison to a critical value or a
p-value threshold of 0.05.

Our goal is to infer the causal structure among these attributes. Formally, we seek a graph G = (V, E), where
V = {X1, X2, . . . , Xd} is the set of nodes and E is the set of edges encoding causal relations.

Practical Advantages. FCI combines conceptual robustness with computational efficiency. Its use of
conditional independence tests avoids the heavy resource demands of deep learning-based causal discovery
methods, making it scalable for large facial attribute datasets. For a complete mathematical treatment of
FCI, see (Spirtes, 2001).

We provide extensive validation of the learned causal graph in Appendix 1, including synthetic ground-
truth recovery experiments, bootstrap stability analysis, and ablation studies demonstrating that causal
knowledge—not graph topology alone—drives our performance improvements.
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3.2 Reference Image Generation via Guided Diffusion

Notation. We use the following notation throughout this section: In (original image), Iref
n (reference

counterfactual with full guidance), Iprelim
n (preliminary counterfactual with weak guidance), I ′

n (final coun-
terfactual), Ql (target attribute), DC(Ql) (direct causes of Ql, identified as type (a) edges in the PAG), M
(binary mask), and λ (mask threshold).

The first stage of our counterfactual generation produces a reference image that achieves the desired target
attribute change without any causal constraints. Let In denote the original image and Ql the target attribute.
We use a guided DDPM to generate a reference counterfactual Iref

n :

xt−1 ∼ N
(
µθ(xt, t) + γ∇xt

log p(Ql|xt), σ2
t I

)
, (2)

where µθ(xt, t) is the predicted mean from the diffusion model, σ2
t is the variance schedule, and γ controls

the guidance strength toward the target attribute Ql.

This reference image serves as a minimally perturbed counterfactual that successfully flips the target label.
At this stage, edits are guided purely by the attribute change, and no causal reasoning is applied. The
image may include unrelated or unrealistic changes in other regions, which are addressed in the subsequent
mask-guided refinement.

3.3 Mask-Guided Counterfactual Generation with Causal Graphs

After obtaining Iref
n , we identify regions relevant for causal intervention through a two-step process illustrated

in Figure 2.

Step 1: Generating Reference and Preliminary Images.

1. Reference image Iref
n : Generated via guided diffusion toward the target attribute Ql with full

guidance strength γ.

2. Preliminary image Iprelim
n : Generated with weaker guidance to isolate attribute-specific changes,

serving as a baseline for comparison.

Step 2: Constructing the Causally-Filtered Mask. The difference between these images highlights
regions that changed due to the target attribute. We construct a binary mask M that incorporates both the
pixel-level difference and the learned causal structure:

Mi,j =
{

1, if |Iref
n (i, j)− Iprelim

n (i, j)| > λ and (i, j) ∈ DC(Ql)
0, otherwise

(3)

where λ is a threshold controlling sensitivity to changes (see Appendix 2 for sensitivity analysis), and
DC(Ql) denotes the spatial regions corresponding to direct causes of the target attribute Ql. Direct causes
are identified from the learned PAG as attributes connected to Ql via type (a) edges (→), representing direct
causal relations (Table 1).

Step 3: Causal Filtering. Using the PAG, we filter the mask to ensure only causally relevant regions
are modified:

• Direct cause regions (type (a) edges: →): Included in mask (white/inpainted)

• Confounder or indirect cause regions (bidirectional ↔, circle endpoints ◦→, ◦−◦): Excluded
from mask (black/preserved)
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Step 4: Counterfactual Generation. The mask is applied within the DDPM generative process:

I ′
n = G

(
do(In, M)

)
, (4)

where G is the DDPM and do(In, M) denotes intervening on In along the causally relevant regions defined
by M . This ensures that the final counterfactual I ′

n modifies only the direct causes of Ql while preserv-
ing confounded or unrelated attributes, resulting in both realistic and causally consistent counterfactual
explanations.

Scope of causal intervention. We emphasise that our framework performs causally-constrained
editing rather than formal pixel-level counterfactual inference. We conduct attribute-level do-
intervention—identifying direct causal parents from the PAG—and use this to constrain spatial editing
via the mask M . The ablation in Appendix 1 confirms that specific causal relationships, not graph topology
alone, drive our improvements.

3.4 Logical Interpretation

Figure 3: Our proposed counterfactual-to-text inter-
pretation model with CLIP-inspired image and text
encoder.

To provide a logical and human-understandable in-
terpretation of the generated counterfactuals, we
leverage CLIP (Radford et al., 2021) to map visual
changes into semantic descriptions, as illustrated in
Figure 3. Let In denote the original image and I ′

n

its counterfactual counterpart, and let T denote the
space of textual descriptions. CLIP provides en-
coders EI and ET that embed images and texts into
a shared d-dimensional space, enabling cross-modal
reasoning.

We first compute the normalised image embeddings:

e = EI(In), e′ = EI(I ′
n), (5)

and define the semantic transformation vector as

∆e = e′ − e. (6)

This vector captures the overall change induced by the counterfactual transformation in the semantic em-
bedding space.

To interpret these changes logically, we compare ∆e with a curated set of text embeddings {ET (di)}n
i=1,

where each di ∈ D ⊂ T represents an interpretable facial attribute or semantic concept. The relevance of
each description is quantified using cosine similarity:

S(di) = ∆e · ET (di)
∥∆e∥2 · ∥ET (di)∥2

. (7)

Descriptions with high alignment are selected as the logical explanations for the visual changes:

D∗ = {di ∈ D | S(di) > τ}, (8)

where τ is a similarity threshold.

This logical interpretation framework allows us to translate causal manipulations in the image into human-
readable semantic statements, providing transparent insights into which facial attributes were modified and
how these changes relate causally to the target attributes. By connecting visual counterfactuals to linguistic
concepts, we bridge the gap between low-level image transformations and high-level reasoning about attribute
causality.
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Figure 4: Correlations vs confounders in causal relationships of attribute “Smile” heatmap. The high purple
bar in correlation (“High_cheekbones” and “Mouth_Slightly_Open”) shows the conflict between highly
correlated attributes and the confounders the causal algorithm identifies. The conflict is that while causal
algorithms correctly identify confounders as indirect causes, traditional correlation-based models mistakenly
learn these confounders as direct predictors simply because they are correlated with the target attribute.

4 Experiments

We conducted all our experiments on two large facial datasets to evaluate the performance of our model.
Comparison is conducted with the current state-of-the-art counterfactual explanations model. Our exper-
imental pipeline was implemented using PyTorch 2.0.1, with computations accelerated by NVIDIA A-100
GPUs on a SLURM-managed computing cluster using CUDA 11.7. The diffusion process is performed with
500 steps, with timestep respacing to 50, a stochastic sampling fraction of 0.1, and an inpainting ratio of
0.15. The causal discovery component of our work leveraged the causal-learn library (Zheng et al., 2023), a
comprehensive Python package that implements both classical and cutting-edge causal discovery algorithms.

4.1 Datasets

Our work draws strength from the diversity and scale of the CelebA dataset (Liu et al., 2015), which
is a collection featuring over 200,000 facial images with 40 precisely annotated attributes. To ensure our
findings generalise across different image quality conditions, we also conducted experiments on CelebA-HQ
(Lee et al., 2020), which is a high-resolution counterpart featuring 30,000 meticulously detailed images of
1,000 celebrities. These two datasets together provide a sufficiently diverse and large sample, covering a
wide range of facial variations, attribute combinations, and image resolutions, making them well-suited for
robust evaluation of our counterfactual image generation method. Additionally, CelebA and CelebA-HQ are
standard benchmarks used by all baseline methods (ACE, DiME, STEEX, DiVE), enabling direct and fair
comparison. We also conducted the attribute correlation and analysed the class imbalance of the CelebA
dataset in Appendix 3.

4.2 Evaluation Metrics

Our evaluation methodology employs four complementary metrics, each capturing different aspects of coun-
terfactual quality.

Realism of Generated Counterfactuals: Fréchet Inception Distance (FID) serves as our primary gauge
of generated image quality, with lower scores indicating better quality and closer resemblance to real images.
Let µr, Σr be the mean and covariance of features from real images, and µg, Σg be the corresponding statistics
for generated images. FID is computed as:

FID = ∥µr − µg∥2
2 + Tr

(
Σr + Σg − 2(ΣrΣg)1/2

)
. (9)
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We supplement this with Scaled Fréchet Inception Distance (sFID), which adjusts the feature distri-
butions to better capture differences across attribute scales:

sFID = 1
d

d∑
k=1

(µk
r − µk

g)2 + (σk
r − σk

g )2

(σk
r )2 + ϵ

, (10)

where d is the feature dimension, µk and σk are the mean and standard deviation of the k-th feature, and ϵ
is a small constant for numerical stability.

Sparsity of Counterfactual Changes: We introduce Mean Number of Attributes Changed (MNAC)
to quantify how many facial attributes are modified in the counterfactual generation process. Let x denote
the original image and x̂ the generated counterfactual, with corresponding binary attribute vectors A(x) and
A(x̂). MNAC is defined as:

MNAC = 1
N

N∑
i=1

d∑
j=1

1
(
Aj(xi) ̸= Aj(x̂i)

)
, (11)

where N is the total number of test images, d is the number of attributes, and 1(·) is the indicator function.
Counterfactual explanations should exhibit minimal visual variations from the original image while achieving
the desired change in target attributes. Lower MNAC indicates sparser, more targeted modifications—a
desirable property for interpretable counterfactual explanations.

Identity Preservation: To ensure that counterfactual edits preserve the identity of the subject, we employ
Face Verification Accuracy (FVA) Cao et al. (2018); Jeanneret et al. (2023). FVA measures whether
the original image and its counterfactual are recognised as the same individual by a face verification network.
Specifically, we extract deep embeddings using ArcFace (Deng et al., 2019) and compute the cosine similarity
between the original and counterfactual image embeddings. FVA is defined as:

FVA = 1
N

N∑
i=1

1
(

cos
(
f(xi), f(x̂i)

)
> τ

)
, (12)

where f(·) denotes the ArcFace embedding function, cos(·, ·) is the cosine similarity, and τ is the verification
threshold. Higher FVA indicates better identity preservation. This metric is crucial for counterfactual
explanations, as meaningful explanations should modify only the target attribute while keeping the subject’s
identity intact.

Notably, we deliberately avoid using correlation-based metrics such as Correlation Difference (CD) because
our method is specifically designed to account for causal relationships rather than mere correlations between
facial attributes, as illustrated in Figure 4.

4.3 Baseline Methods

We compared our model with several state-of-the-art baselines for counterfactual explanation generation.
Adversarial Counterfactual visual Explanations (ACE) (Jeanneret et al., 2023) leverages adversar-
ial attacks on a diffusion model to refine counterfactual images, focusing on generating subtle yet effective
modifications that change the target attribute while maintaining realism. Steering Counterfactual Ex-
planations with Semantics (STEEX) Jacob et al. (2022) generates counterfactuals by steering the
latent representations of images in a pretrained generative model, guided by semantic attribute changes, al-
lowing controlled modifications of specific attributes while preserving other visual details. Diffusion Model
Counterfactual Explanations (DiME) Jeanneret et al. (2022) uses diffusion-based generative models to
produce realistic counterfactual images through iterative denoising of latent representations conditioned on
target attributes, enabling smooth transitions between original and modified attribute states. Counterfac-
tual Explanations with Diverse Valuable Explanations (DiVE) Rodríguez et al. (2021) focuses on
generating a diverse set of counterfactual explanations that are both visually plausible and informative, em-
ploying a diversity-promoting objective to ensure multiple counterfactuals for a given input capture different
plausible modifications.

8



Under review as submission to TMLR

Table 2: Quantitative results for CelebA and CelebAHQ datasets.
CelebA CelebAHQ

Smile Age Smile Age

Method FID↓ sFID↓ MNAC↓ FVA↑ FID↓ sFID↓ MNAC↓ FVA↑ FID↓ sFID↓ MNAC↓ FVA↑ FID↓ sFID↓ MNAC↓ FVA↑

STEEX (Jacob et al., 2022) 10.2 - 4.11 96.9 11.8 - 3.44 97.5 21.9 - 5.27 97.6 26.8 - 5.63 96.0
DiVE (Rodríguez et al., 2021) 29.4 - - 97.3 33.8 - 4.58 98.2 107.0 - 7.41 35.7 107.5 - 6.76 32.3
DiME (Jeanneret et al., 2022) 3.17 4.89 3.72 98.3 4.15 5.89 3.13 95.3 18.1 27.7 2.63 96.7 18.7 27.8 2.10 95.0
ACE ℓ1 (Jeanneret et al., 2023) 1.27 3.97 2.94 99.9 1.45 4.12 3.20 99.6 3.21 20.2 1.56 100.0 5.31 21.7 1.53 99.6
ACE ℓ2 (Jeanneret et al., 2023) 1.90 4.56 2.77 99.9 2.08 4.62 2.94 99.6 6.93 22.0 1.87 100.0 16.4 28.2 1.92 99.6

Ours 1.08 3.79 1.63 99.9 1.51 4.10 1.92 99.8 1.27 5.12 1.55 99.9 12.28 18.83 1.06 99.9

These baselines cover a wide spectrum of counterfactual generation paradigms, from adversarial refinement
and latent-space steering to diffusion-based synthesis and diversity-driven explanations, making them suitable
benchmarks for evaluating the performance of our proposed method.

4.4 Results and Discussions

We presented and discussed both the causal graph results as illustrated in Figure 5, 6 and the generated
counterfactual explanations images quantitative and qualitative evaluation are concluded in Table 2 and 3.

Figure 5: Partial Ancestral Graph (PAG) for target attributes
“Young” and “Smiling”. Blue: target attribute Ql; grey:
confounders C; white: related attributes I. Bidirectional
edges (↔) indicate unobserved confounders (e.g., Smiling ↔
Mouth_Open implies Smiling ← Cu → Mouth_Open). See
Table 1 for edge interpretations.

Figure 6: CelebA dataset causal relation of
the target variable (in blue) with the PC
algorithm. Note that the label in this graph
indicates the attribute class type without
specifying its actual binary class value in
CelebA.

4.4.1 Causal Graph Analysis

The learned causal structures are illustrated in Figure 5 (PAG) and Figure 6 (DAG obtained via the PC
algorithm). For the query labels “Young” and “Smile” as child nodes: For “Young”, the graph includes
a direct edge from “Gray Hair” to “Young”, while “Eyeglasses”, “Black Hair” and “Double Chin” appear
as indirect (upstream) factors. Because “Black Hair” and “Gray Hair” are mutually exclusive and may be
confounded with age-related appearance, we avoid direct interventions on these attributes when orientation
is uncertain. Accordingly, our masking targets regions associated with “Eyeglasses” and “Double Chin”. For
“Smile”, the graph indicates upstream influences from “Double Chin”, “High Cheekbones”, and “Gray Hair”.
We therefore apply masks to the corresponding regions when guiding the generation process, while avoiding
edits along edges marked as uncertain or confounded in the PAG.

4.4.2 Quantitative Results

As shown in Table 2, our model consistently outperforms prior methods across both CelebA and CelebAHQ
datasets. It achieves the lowest FID and sFID scores in most cases, especially for the “smile” attribute,
indicating superior image quality and more realistic feature preservation. Moreover, ours obtains significantly
better MNAC scores, highlighting enhanced diversity and causal disentanglement in the generated images.
Our analysis reveals that the classifier often relies on spurious correlations learned during training rather than
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Figure 7: Qualitative counterfactuals results for facial attributes demonstrate the effectiveness of our ap-
proach. For “Age”, the baseline often generates features correlated with aging, such as eye bags and glasses.
However, our causal graph analysis from Figure 5 indicates that “Bags Under Eyes” does not directly influ-
ence “Age”. For “Smile”, our method successfully disentangles correlated attributes like “High Cheekbones”
and “Opening Mouth”, providing more accurate and realistic counterfactual explanations. For additional
examples and higher-resolution images, please refer to the supplementary material. Zoom for best view.

causal relationships, resulting in lower MNAC values for these attributes, a limitation also acknowledged by
DiME (Jeanneret et al., 2022).

4.4.3 Qualitative Results

Figure 7 (more in Appendix 4) illustrates this, showing how the baseline’s counterfactuals for “young” often
include ageing cues like eye bags and glasses. Similarly, confounding influences are evident for “smile”,
with high cheekbones and open mouths being incorrectly emphasised. In contrast, our ageing effects appear
more realistic. Also, ours generates images with more noticeable heavy makeup than the baseline. In
contrast, our approach successfully corrected the classification by generating impactful counterfactuals. Our
method integrates causal knowledge to produce realistic, less biased counterfactual images, revealing the
classifier’s decision process. This enhances interpretability and utility in real-world applications where human
understanding is crucial. For example, the lines generated by baseline ACE in Figure 7 for age may be
confusing to the general public, as they represent ageing effects.

We present qualitative results for the “Heavy Makeup” and “Narrow Eyes” attributes in Figure 7 (a) and (b),
with additional bias evaluations in the supplementary materials. These attributes, often linked to sensitive
factors like gender and race, are not explicitly labeled in the dataset. Although not considered in prior
work, we find them important for uncovering potential biases and enhancing the fairness of counterfactual
explanations.

4.4.4 Fairness Evaluation

Table 4 presents bias metrics for different attribute pairs evaluated on the CelebA dataset. We used a
ResNeXt-50 classifier trained for 35 epochs to validate attribute intensity in generated counterfactual images.
Each row examines a specific attribute pair where the first attribute represents the protected group (e.g.,
Age, Gender) and the second denotes the unprivileged group (e.g., HighCheek, H.Makeup).

We evaluate fairness using two widely-adopted metrics: Disparate Impact (DI) and Statistical Parity
Difference (SPD).
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Table 3: Quantitative Assessment for CelebA.
H. Makeup and N. Eyes are heavy makeup and
narrow eyes attributes.

Attr. Gender H. Makeup N. Eyes
MNAC (↓)

ACE 3.95 5.18 3.44
Ours 3.91 5.18 2.84

sFID (↓)
ACE 7.56 11.29 4.04
Ours 7.42 10.98 4.44

Table 4: Quantitative bias metrics. Higher DI and lower
SPD indicate reduced bias.

CelebA DI (↑) SPD (↓)

Age-HighCheek ACE 2.37 0.019
Ours 2.52 0.011

Age-H.Makeup ACE 6.23 0.159
Ours 6.24 0.152

Gender-H.Makeup ACE 0.019 0.016
Ours 0.020 0.015

Disparate Impact (DI): DI measures the ratio of positive outcomes between the unprivileged and protected
groups. It is defined as:

DI = Pr(Ŷ = 1 | A = unprivileged)
Pr(Ŷ = 1 | A = protected)

, (13)

where Ŷ denotes the predicted attribute, and A represents the group membership. A DI value closer to 1
indicates equitable treatment, with higher values suggesting reduced bias against the unprivileged group.

Statistical Parity Difference (SPD): SPD quantifies the difference in positive prediction rates between
the protected and unprivileged groups:

SPD = Pr(Ŷ = 1 | A = protected)− Pr(Ŷ = 1 | A = unprivileged). (14)

Lower absolute values of SPD indicate smaller disparities, with SPD = 0 representing perfect statistical
parity.

We compare against ACE as it achieves the strongest performance on realism metrics among all baselines
(Table 2). Other baselines such as DiME and STEEX exhibit substantially weaker image quality (FID
> 3 for DiME, > 10 for STEEX), and evaluating fairness on lower-quality counterfactuals would conflate
generation quality issues with fairness metrics, making interpretation difficult.

Connection to Stereotype Bias Reduction: Stereotypes arise when spurious correlations are treated as
causal relationships. Our method reduces stereotype bias through three mechanisms:

1. Causal disentanglement: The learned PAG identifies direct causes versus spurious correlations.
For example, in Figure 7 (“age” column), baselines add “Double Chin” when aging (a correlated
but not causal attribute), while our PAG shows Double_Chin ↔ Age indicates confounding—so we
exclude this region from modification.

2. Mask-guided intervention: We only modify regions corresponding to direct causal parents. If
“Smiling” and “Female” are correlated but not causally related, our mask excludes gender-associated
regions, preventing inadvertent feminization (see Appendix 5).

3. Quantitative evidence: Table 4 shows improved DI (closer to 1.0) and SPD (closer to 0.0) com-
pared to baselines.

By filtering correlation from causation—only direct causal edges (→) are included while all other edge types
are excluded—our PAG prevents stereotyped attributes from propagating into counterfactuals.

Metrics for Measuring Stereotype Bias: DI and SPD directly quantify group fairness disparities. Ad-
ditionally, MNAC (Mean Number of Attribute Changes) indirectly measures stereotype bias: lower MNAC
indicates the model does not automatically add stereotypically correlated attributes when modifying the
target attribute. Our method achieves MNAC of 1.63 compared to 2.94 for baselines without causal con-
straints.

Our method consistently achieves lower SPD values and comparable or higher DI values across all evaluated
attribute pairs compared to the ACE baseline. This demonstrates that our approach effectively mitigates
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bias by reducing prediction disparities between different demographic groups while maintaining equitable
performance across attributes in counterfactual explanations. The improvement stems from our causal
disentanglement: by learning the PAG and restricting edits to direct causal parents only, we prevent spurious
correlations (which often encode societal biases) from propagating into the generated counterfactuals. In
other words, generated counterfactuals using our method exhibit a fairer distribution of attribute changes,
ensuring that the protected and unprivileged groups are treated more equitably.

4.4.5 Logical Interpretation

Table 5: CLIP-based semantic alignment evaluation comparing
FaCER with SOTA baseline.

Category Method Mean Sim. R@1 (%)

Smile ACE 6.22 49.09
FaCER (Ours) 5.91 72.95

Age ACE 4.45 62.98
FaCER (Ours) 5.03 61.34

To quantitatively assess the semantic
alignment between images and their cor-
responding text descriptions, we report
two evaluation metrics (Radford et al.,
2021; Faghri et al., 2018): Recall@1
(R@1) and mean similarity. R@1 mea-
sures whether the intended attribute
change is the top-detected semantic
change, reflecting how precisely the coun-
terfactual targets the desired modifica-
tion. Mean similarity denotes the average
CLIP similarity score between each image and its descriptive caption, measuring overall semantic alignment
(see example in Appendix 6).

We use CLIP (Radford et al., 2021) as our vision-language model due to its open-source availability, compu-
tational efficiency, and status as the standard embedding space for vision-language alignment tasks. Unlike
prior work that applies CLIP-based interpretation to arbitrary attribute changes, our approach grounds these
explanations in the learned causal structure—only direct causes identified by FCI are modified, ensuring that
semantic interpretations reflect causally meaningful edits rather than spurious correlations.

Table 5 compares FaCER against ACE, the strongest baseline on realism metrics. For Smile, FaCER achieves
substantially higher R@1 (72.95% vs. 49.09%), indicating that our counterfactuals more precisely target the
intended attribute as the primary semantic change. For Age, results are comparable (61.34% vs. 62.98%).
Notably, for Smile, FaCER achieves higher R@1 despite a lower mean similarity score (5.91 vs. 6.22). This
combination suggests that our method produces more focused, attribute-specific modifications: the counter-
factual changes are concentrated on the target attribute rather than introducing broader modifications that
may inflate similarity scores while affecting unintended attributes. This behaviour aligns with our goal of
generating minimal, interpretable counterfactual explanations—edits should change only what is causally
necessary.

5 Conclusion

We introduced a framework for causal editing of facial images that unifies causal discovery, mask-guided
counterfactual generation, and semantic interpretation. Motivated by the need for interpretable and causally
grounded visual reasoning, our approach employs the Fast Causal Inference (FCI) algorithm to uncover re-
lationships among facial attributes and uses spatially informed masks to guide a diffusion-based generator,
ensuring that only causally relevant regions are modified. Experiments on CelebA and CelebA-HQ show that
our method produces realistic, identity-preserving counterfactuals and surpasses state-of-the-art baselines
on sFID and MNAC metrics. The integration of CLIP-based semantic explanations further enhances inter-
pretability and supports fairness analysis. While our framework assumes reasonably accurate causal graphs,
which may not always hold in noisy real-world settings, it provides a principled foundation for interpretable
generative modelling. Future work will address uncertain causal structures and feature-level alternatives,
and extend our framework to broader domains such as medical imaging and scene understanding.

12



Under review as submission to TMLR

References
Saharsh Barve, Andy Mao, Jiayue Melissa Shi, Prerna Juneja, and Koustuv Saha. Can we debias social

stereotypes in ai-generated images? examining text-to-image outputs and user perceptions. arXiv preprint
arXiv:2505.20692, 2025.

Federico Bianchi, Pratyusha Kalluri, Esin Durmus, Faisal Ladhak, Myra Cheng, Debora Nozza, Tatsunori
Hashimoto, Dan Jurafsky, James Zou, and Aylin Caliskan. Easily accessible text-to-image generation
amplifies demographic stereotypes at large scale. In Proceedings of the 2023 ACM conference on fairness,
accountability, and transparency, pp. 1493–1504, 2023.

Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew Zisserman. Vggface2: A dataset for recognising
faces across pose and age. In IEEE International Conference on Automatic Face & Gesture Recognition,
2018.

Fabio De Sousa Ribeiro, Benoît Ding, Grzegorz Kruszewski, and Julia Kantorovitch. Structural causal
interventions on generative models. In Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 7745–7765. PMLR, 2023. URL
https://arxiv.org/abs/2306.08276.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for
deep face recognition. In CVPR, 2019.

Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja Fidler. Vse++: Improving visual-semantic
embeddings with hard negatives. 2018. URL https://github.com/fartashf/vsepp.

Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. Counterfactual visual
explanations. In International Conference on Machine Learning, pp. 2376–2384. PMLR, 2019.

Lisa Anne Hendricks, Ronghang Hu, Trevor Darrell, and Zeynep Akata. Grounding visual explanations. In
Proceedings of the European Conference on Computer Vision (ECCV), September 2018.

Paul Jacob, Éloi Zablocki, Hedi Ben-Younes, Mickaël Chen, Patrick Pérez, and Matthieu Cord. Steex:
steering counterfactual explanations with semantics. In European Conference on Computer Vision, pp.
387–403. Springer, 2022.

Guillaume Jeanneret, Loïc Simon, and Frédéric Jurie. Diffusion models for counterfactual explanations. In
Proceedings of the Asian Conference on Computer Vision, pp. 858–876, 2022.

Guillaume Jeanneret, Loïc Simon, and Frédéric Jurie. Adversarial counterfactual visual explanations. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16425–16435,
2023.

Yixue Kang, Yuchen Guo, Zhouxing Ren, Feng Zhang, Simon Dib, Vincent Y. F. Lee, and Nicu Sebe.
Causal inference-based explanations for fairness in facial image classifiers. Sensors, 22(2):654, 2022. URL
https://www.mdpi.com/1424-8220/22/2/654.

Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and interactive facial
image manipulation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Na Liu, Fan Zhang, Liang Chang, and Fuqing Duan. Scattering-based hybrid network for facial attribute
classification. Frontiers of Computer Science, 18(3):183313, 2024.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Pratik Mazumder and Pravendra Singh. Protected attribute guided representation learning for bias mitiga-
tion in limited data. Knowledge-Based Systems, 244:108449, 2022.

13

https://arxiv.org/abs/2306.08276
https://github.com/fartashf/vsepp
https://www.mdpi.com/1424-8220/22/2/654


Under review as submission to TMLR

Alexander Melistas, Nicolas Mayer, Toshihiko Takeuchi, and Severin Suter. Causal inverse graphics: Context-
aware modular causal counterfactual generation. In Advances in Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=uYT1SfrXiS.

Bo Peng, Siwei Lyu, Wei Wang, and Jing Dong. Counterfactual image enhancement for explanation of face
swap deepfakes. In Shiqi Yu, Zhaoxiang Zhang, Pong C. Yuen, Junwei Han, Tieniu Tan, Yike Guo,
Jianhuang Lai, and Jianguo Zhang (eds.), Pattern Recognition and Computer Vision, pp. 492–508, Cham,
2022. Springer Nature Switzerland.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pp. 8748–8763. PmLR,
2021.

Rajat Rasal, Avinash Kori, Fabio De Sousa Ribeiro, Tian Xia, and Ben Glocker. Diffusion counterfactual
generation with semantic abduction. In ICML, 2025.

Pau Rodríguez, Massimo Caccia, Alexandre Lacoste, Lee Zamparo, Issam Laradji, Laurent Charlin, and
David Vazquez. Beyond trivial counterfactual explanations with diverse valuable explanations. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1056–1065, 2021.

Pedro Sanchez and Sotirios A. Tsaftaris. Diffusion causal models for counterfactual estimation. In
First Conference on Causal Learning and Reasoning, 2022. URL https://openreview.net/forum?id=
LAAZLZIMN-o.

Dylan Slack, Himabindu Lakkaraju, Julie Shah, and Sorelle A. Friedler. Counterfactual explanations can be
manipulated. In Advances in Neural Information Processing Systems, volume 34, pp. 29511–29523, 2021.

Peter Spirtes. An anytime algorithm for causal inference. In Thomas S. Richardson and Tommi S. Jaakkola
(eds.), Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics, volume R3
of Proceedings of Machine Learning Research, pp. 278–285. PMLR, 04–07 Jan 2001. URL https://
proceedings.mlr.press/r3/spirtes01a.html. Reissued by PMLR on 31 March 2021.

Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, prediction, and search. MIT press, 2000.

Diego Velazquez, Pau Rodriguez, Alexandre Lacoste, Issam H Laradji, Xavier Roca, and Jordi Gonzàlez.
Explaining visual counterfactual explainers. Transactions on Machine Learning Research, 2023.

Lan Wang and Vishnu Naresh Boddeti. Do learned representations respect causal relationships? In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 264–274,
June 2022.

Yulun Wu, Louie McConnell, and Claudia Iriondo. Counterfactual generative modeling with variational
causal inference. In ICLR, 2025.

Tian Xu, Jennifer White, Sinan Kalkan, and Hatice Gunes. Investigating bias and fairness in facial expression
recognition. In Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings,
Part VI 16, pp. 506–523. Springer, 2020.

Yujia Zheng, Biwei Huang, Wei Chen, Joseph Ramsey, Mingming Gong, Ruichu Cai, Shohei Shimizu, Peter
Spirtes, and Kun Zhang. Causal-learn: Causal discovery in python. arXiv preprint arXiv:2307.16405,
2023.

14

https://openreview.net/forum?id=uYT1SfrXiS
https://openreview.net/forum?id=LAAZLZIMN-o
https://openreview.net/forum?id=LAAZLZIMN-o
https://proceedings.mlr.press/r3/spirtes01a.html
https://proceedings.mlr.press/r3/spirtes01a.html

	Introduction
	Literature Review
	Methodology
	Causal Graph Learning
	Reference Image Generation via Guided Diffusion
	Mask-Guided Counterfactual Generation with Causal Graphs
	Logical Interpretation

	Experiments
	Datasets
	Evaluation Metrics
	Baseline Methods
	Results and Discussions
	Causal Graph Analysis
	Quantitative Results
	Qualitative Results
	Fairness Evaluation
	Logical Interpretation


	Conclusion

