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Abstract

Customizing LLMs for a specific task involves001
distinguishing effective responses from erro-002
neous ones. This skill can be developed using003
supervised fine-tuning with extensive human004
preference data. However, obtaining expert-005
annotated preference data is expensive for most006
tasks. In this paper, we present a novel method007
to optimize LLMs using ranking metrics. This008
method trains the model to prioritize the best009
responses from a pool of candidates created for010
a particular task. Rather than a traditional full011
ordering, we advocate for a partial ordering,012
as achieving consensus on the perfect order of013
candidate responses can be challenging. Our014
partial ordering is more robust, less sensitive to015
noise, and can be achieved with limited human016
annotations or through heuristic methods. We017
test our system’s improved response generation018
ability using benchmark datasets, including the019
latest multi-document question answering task.020
We conduct ablation studies to understand cru-021
cial factors, such as how to gather candidate022
responses for specific tasks, determine their023
most suitable order, and balance supervised024
fine-tuning with ranking metrics. Our approach,025
named RESCUE, suggests a promising avenue026
for enhancing LLMs’ contextual understanding027
via response ranking.1028

1 Introduction029

A significant advantage of large language models030

(LLMs) is their ability to explain their predictions031

(Ziegler et al., 2020; Alkhamissi et al., 2023; Ludan032

et al., 2023; Li et al., 2023; Ye et al., 2023). For033

example, LLMs may suggest lab tests to doctors034

based on patient symptoms (Peng et al., 2023) or035

help financial analysts evaluate risks in their invest-036

ment portfolios (Romanko et al., 2023), providing037

explanations for each. As LLMs increasingly as-038

sist in decision-making across domains, examining039

the quality of their explanations becomes crucial.040

Previous studies indicate that the quality of model041

1We plan to release our source code and models publicly.

Insight: Studies have shown that when LLMs are confident in their 
responses, they not only provide accurate answers but also offer solid 
justifications. However, when they're uncertain, their explanations can 
falter or be completely hallucinated. (Sun et al., 2024)

Consider the NLI task for an example: 
[Premise]….. People in unusual striped clothing kneeling aim devices to the left.
[Hypothesis]…………………………..Some people are wearing unusual clothing.
[Label]……………………………………………………………………….Entailment

Candidate Explanations:
[Human-1] Unusual clothing and striped clothing could be the same.
……………………………………………………………………………… Entailment

[Model-2] The kneeling is different than the standing. Some people are wearing 
unusual clothing……………………………………………………….. Contradiction

[Model-3] The kneeling is not specified, the devices to the left are not specified, 
so the hypothesis does not logically follow………………………………… Neutral

[Model-4] The hypothesis is a direct restatement of the premise…… Entailment

Partial Order:          [Human-1] > [Model-4] > [Model-2] = [Model-3] 

Research Question: By leveraging this ordering to steer LLMs toward 
prioritizing correct answers, can we boost their task accuracy and the 
quality of their explanations? 

Figure 1: Accurate model predictions often come with high-
quality explanations. We build on this insight to rank candidate
responses, where human responses are placed above model
responses with correct labels, which in turn are prioritized
over incorrect responses. This hierarchy encourages the LLM
to generate explanations that lead to accurate labels.

explanations can vary, and they may mislead about 042

the true reason behind a model’s prediction (Burns 043

et al., 2022; Turpin et al., 2023). Therefore, it is 044

vital to improve LLMs’ explanation quality, along 045

with enhancing their task accuracy. 046

We focus on LLM responses that consist of a 047

predicted label and a detailed explanation. LLMs 048

should provide not only accurate labels but also 049

sound rationales to support their predictions. Expla- 050

nations can be generated through the model’s self- 051

reflection, using methods such as chain-of-thoughts 052

or tree-of-thoughts (Yao et al., 2022; Wei et al., 053

2023; Yao et al., 2023; Shinn et al., 2023). Expla- 054

nations can also be embedded in prompts to guide 055

LLMs in new tasks via in-context learning (Ye 056

et al., 2023). In this study, we take a step further 057

by exploring methods to train an open-source LLM 058

to effectively rank candidate responses, which we 059

acquire from diverse sources. Ranking responses 060
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enables the LLM to differentiate between sound061

and flawed explanations for a specific task, thereby062

enhancing response generation.063

Interestingly, accurate model predictions often064

come with high-quality explanations. Studies have065

shown that when LLMs are confident in their re-066

sponses, they not only provide accurate answers but067

also offer solid justifications. On the flip side, when068

they’re uncertain, their explanations can falter or069

be completely hallucinated (Singh et al., 2023; Liu070

et al., 2023a; Sun et al., 2024). Our paper builds on071

this insight to rank candidate responses. We place072

human responses above model responses with cor-073

rect labels, which in turn are prioritized over incor-074

rect responses. This hierarchy encourages the LLM075

to generate explanations comparable to humans’ or,076

at the very least, to produce explanations that lead077

to accurate labels.078

Our method benefits from requiring minimal ex-079

pert annotations, which is a frequent challenge in080

most domain-specific tasks. Unlike reinforcement081

learning with human feedback (RLHF; Ziegler et082

al., 2020) or direct preference optimization (DPO;083

Rafailov et al., 2023), which need extensive expert-084

annotated data, our approach is cost-effective and085

practical in resource-constrained situations. We em-086

ploy a partial ordering of LLM responses, which087

can be acquired with limited human annotations or088

through heuristic functions. This study’s contribu-089

tions are summarized as follows:090

• We seek to improve LLMs’ response generation.091

In training, we supplement each example with092

candidate responses, featuring a mix of accurate093

and inaccurate predictions, and sound and flawed094

explanations. For tasks with long contexts, we095

anchor responses in different parts of the context096

to increase diversity. LLM is trained to prioritize097

the best responses using the ranking metric.098

• We test our system’s response generation using099

the latest benchmarks, and conduct ablation stud-100

ies to understand crucial factors, such as how to101

gather candidate responses, determine their most102

suitable order, and balance supervised fine-tuning103

with ranking metrics. Our approach, named RES-104

CUE, offers a promising way to improve LLMs’105

contextual understanding via response ranking.106

2 Related Work107

Learning from Human Preferences Aligning108

LLM responses with human preferences ensures109

the models’ outputs are helpful, safe, and adhere to110

societal norms (Bai et al., 2022b; Liu et al., 2023b;111

Honovich et al., 2023; Wang et al., 2023; Rafailov 112

et al., 2023; Hejna et al., 2023). This research of- 113

ten involves humans performing pairwise or k-wise 114

comparisons on model outputs, which are used 115

to train a reward model (Ziegler et al., 2020; Bai 116

et al., 2022a; Ouyang et al., 2022; Ramamurthy 117

et al., 2023; Zhu et al., 2023). Recently, Rafailov et 118

al. (2023) introduce a new parameterization of the 119

reward model in RLHF that enables extraction of an 120

optimal policy in closed form. Unlike other meth- 121

ods, our study focuses on domain-specific tasks. 122

We guide LLMs to make accurate predictions and 123

generate sound explanations using the limited ex- 124

pert annotations available for those tasks. 125

Reasoning LLMs can improve their reasoning 126

through trial and error and self-improvement. For 127

example, chain-of-thoughts (Wei et al., 2023) al- 128

lows LLMs to break down complex tasks step by 129

step into more manageable parts. Tree-of-thoughts 130

(Yao et al., 2023) employs task decomposition via 131

a tree structure, guiding LLMs through various 132

steps and consider multiple thoughts within each 133

step. Reflexion (Shinn et al., 2023) combines dy- 134

namic memory and self-reflection to refine reason- 135

ing skills. However, pinpointing specific reasoning 136

errors remains a practical challenge. The distinc- 137

tion between sound and flawed explanations can 138

often be subtle and unclear during self-reflection. 139

Ranking Metrics A ranking objective allows 140

the model to prioritize the best candidates (Yuan 141

et al., 2023), improving its performance in tasks 142

like abstractive summarization and question an- 143

swering. For example, the BRIO training paradigm 144

(Liu et al., 2022) fine-tunes BART and T5 models 145

to generate reference summaries while using a rank- 146

ing mechanism to score candidate summaries. This 147

approach could be especially beneficial in retrieval 148

augmented generation (Hopkins and May, 2011; 149

Lewis et al., 2021; Nakano et al., 2022). We be- 150

lieve that explanations grounded on incorrect doc- 151

uments should be discounted and those grounded 152

in reference documents be promoted. Our method 153

leverages this insight to enhance the model’s ability 154

to generate contextually accurate explanations. 155

3 Our Approach: RESCUE 156

Let x ∼ D represent the prompt or context given 157

to the model, and y denote the model’s response to 158

prompt x. The response y comprises two parts: a 159

brief justification and a predicted label, separated 160

by the special symbol ‘####’. For example, in the 161

natural language inference task, it might be “Un- 162
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usual clothing and striped clothing could be the163

same. #### Entailment.” Supervised fine-tuning164

(SFT; Eq. (1)) is a primary method to improve task165

accuracy by training the model to generate human-166

written responses y∗. However, since the model167

has only been exposed to high-quality human re-168

sponses, its noise robustness remains unvalidated.169

Prior studies (Ziegler et al., 2020; Touvron et al.,170

2023) suggest that model performance can plateau171

quickly, potentially leading to overfitting.172

LSFT(θ) = − log πθ(y
∗|x) (1)173

We proposed to guide the model to prioritize174

valid responses over flawed ones and contextu-175

ally accurate responses over inaccurately grounded176

ones, using a ranking metric as illustrated in Eq. (2).177

Here, (x, y0, y1, b) ∼ S includes a prompt x, two178

candidate responses, and a binary variable b, where179

yb should be scored higher than y1−b. S represents180

a diverse set of candidate responses obtained from181

various sources. For example, responses could be182

acquired from open-source LLMs like Llama-2 or183

close-source LLMs like GPT-3.5, GPT-4 or Claude.184

Human-annotated responses can also be included185

in the collection when they are available.186

LRank(θ) = −E(x,y0,y1,b)∼S [ (2)187

max{0, log πθ(yb|x)− log πθ(y1−b|x)} ]188

We initiate πθ(y|x) from a base model ρ(y|x)189

and subsequently fine-tune it for a specific task with190

candidate responses. Particularly, πθ(y|x) is used191

to loosely represent length-normalized probabil-192

ity πθ(y|x) = 1
|y|λ

∑|y|
t=1 log πθ(yt|x, y<t), where193

λ > 0 is the scaling factor for length normalization.194

Our approach, RESCUE, uses a hyperparameter α195

to balance the impact of supervised fine-tuning and196

the ranking metric, as shown in Eq. (3).197

LRESCUE(θ) = LSFT(θ) + αLRank(θ) (3)198

Ranking Metrics vs. Rewards A reward model199

r(x, yi) assigns scores to a given prompt x and its200

corresponding response yi. As shown in Eq. (4), it201

allocates the full probability mass to the response202

yb chosen by human labelers. For this model to203

function, humans need to provide accurate pair-204

wise preference judgments. Nonetheless, achieving205

a consensus among human labelers regarding the206

perfect order of LLM responses can be a daunting207

task. The labelers often struggle to provide consis-208

tent, fine-grained labels (Touvron et al., 2023). As209

a result, allocating the entire probability mass, i.e.,210

logPθ(yb′ |x) to an incorrectly labeled response 211

yb′ can mislead the model and hinder the effective 212

training of the reward model. 213

LReward(r) =− E(x,{yi}i,b)∼S

[
log

er(x,yb)∑
i e

r(x,yi)

]
(4)

214

In contrast, our proposed ranking metrics offer 215

greater flexibility and robustness to inconsistencies 216

in human preferences. Our model not only prior- 217

itizes yb over other potential responses using the 218

equation max{0, logPθ(yb|x)− logPθ(y1−b|x)}, 219

but further allows minor deviations. For exam- 220

ple, the model can still assign a high probability to 221

a less-favored response logPθ(y1−b|x), provided 222

its probability difference from the top response 223

logPθ(yb|x) − logPθ(y1−b|x) remains minimal. 224

We also advocate for a partial ordering of LLM re- 225

sponses, partitioning them into groups. This group 226

ordering provides a hierarchical perspective, en- 227

abling the model to understand the relative impor- 228

tance of each group in a broader context. 229

4 Ranking LLM Responses 230

Candidate responses for a given prompt x, can be 231

organized into a strict order. OpenAI has employed 232

a team of trained human labelers to rank sets of 233

model outputs from best to worst to train a reward 234

model (Ziegler et al., 2020; Ouyang et al., 2022). 235

However, this method is quite expensive. We pro- 236

pose two cost-effective approaches to establish a 237

Partial Ordering (PO) of responses. 238

Our first method, (PO) Human Prioritization, 239

posits that human responses should take priority 240

over model responses, as they offer valid rationales 241

and accurate labels. (PO) Label Prioritization 242

places responses with correct labels above those 243

with incorrect labels, irrespective of whether they 244

are human or model-generated. This is because 245

rationales resulting in correct labels are more valu- 246

able than those leading to incorrect labels. The 247

latter may contain flawed reasoning that misguides 248

their predictions. Lastly, (PO) Human-Label Hy- 249

brid employs a fine-grained grouping. It places hu- 250

man responses above model responses with correct 251

labels, which are then prioritized over responses 252

with incorrect labels. This hierarchy is designed 253

to motivate the LLM to generate rationales com- 254

parable to humans’ or, at a minimum, to produce 255

rationales that lead to accurate labels. 256

Partial Orderings (PO) of responses offer en- 257

hanced flexibility and noise robustness. For exam- 258

ple, in developing Llama-2, Touvron et al. (2023) 259
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noted that even human labelers struggle to decide260

between two similar model responses, with anno-261

tations for such responses often hinging on subjec-262

tive judgement and nuanced details. By utilizing263

a partial order, we only incorporate the most clear-264

cut pairs of model outputs in the ranking metric,265

thereby improving the quality of response pairs266

used in model fine-tuning.267

For comparison, we examine two full ordering268

(FO) approaches. (FO) Similarity embeds each269

candidate response into a vector, which are then270

ranked based on their Cosine similarity to the vec-271

tor representing the human response. The second272

approach (FO) GPT-3.5-Turbo leverages the GPT-273

3.5-Turbo-0613 model to rank candidate responses.274

We instruct it to prioritize candidates with the same275

labels as the human response, but allowing it to276

decide whether this criterion is met. We compare277

full and partial ordering approaches in §6.278

5 Collecting Candidate Responses279

We enrich each example with a set of candidate re-280

sponses, targeting a mix that includes both accurate281

and inaccurate predictions, along with explanations282

that are both sound and flawed. We incorporate hu-283

man annotations into the mix when available. For284

tasks with long contexts, we anchor responses in285

different parts of the context to increase diversity.286

This enriched dataset is used to train our LLM to287

improve its response generation. Next, we outline288

two strategies for generating candidate responses.289

5.1 Responses Generated by Various LLMs290

We focus on the textual entailment task (Bowman291

et al., 2015; Chen et al., 2017; Camburu et al., 2018;292

Kumar and Talukdar, 2020) to illustrate our strat-293

egy. Specifically, the Stanford NLI dataset identi-294

fies relationships between sentence pairs as entail-295

ment, contradiction, or neutral. The e-SNLI dataset296

expands on SNLI by adding human-annotated ex-297

planations for these relationships, explaining why298

sentences are classified in certain ways (Camburu299

et al., 2018). Similarly, we require LLMs to both300

predict and rationalize their predictions. Our ap-301

proach then learns to prioritize accurate predictions302

and their model explanations, while downplaying303

explanations for inaccurate predictions.304

We gather diverse responses for this task from305

both open-source and proprietary LLMs. Specifi-306

cally, we sample three responses from Llama-2-7b,307

setting the temperature to 0.8 for diversity, and one308

from GPT-3.5-Turbo-0613, plus a human expla-309

nation, making five responses per prompt in total.310

Write a high-quality answer for the given question using only the provided 
search results (some of which might be irrelevant).

Document [1] (Title: Asian Americans in science and technology) Prize in 
physics for discovery of the subatomic particle J/ψ. Subrahmanyan 
Chandrasekhar shared... (Rest omitted)

Document [2] (Title: List of Nobel laureates in Physics) The first Nobel 
Prize in Physics was awarded in 1901 to Wilhelm Conrad Röntgen, of 
Germany, who received... (Rest omitted)

Document [3] (Title: Norwegian Americans) science, Ernest Lawrence 
won the Nobel Prize in Physics in 1939. Lars Onsager won the 1968 Nobel 
Prize in Chemistry... (Rest omitted)

Question: who got the first nobel prize in physics
Answer: 

In
pu

t C
on

te
xt

Response Anchored in Document [2], Providing the Correct Answer: 
The first Nobel Prize in Physics was awarded in 1901 to Wilhelm Conrad 
Röntgen for his discovery of X-rays.

Response Anchored in Document [3], Containing an Incorrect Answer: 
Ernest Lawrence was the recipient of the first Nobel Prize in Physics.

Desired Answer: Wilhelm Conrad Röntgen

R
es

po
ns

e

Figure 2: For the Multi-doc QA task, we anchor responses
in different parts of the context to produce a diverse set of
answers. We generate five candidate responses per instance,
one from the gold passage and four from random distractors.

Each response features a brief explanation of the 311

model’s reasoning and a predicted label, as shown 312

in Figure 1. 313

Response Flipping We propose a novel method 314

for collecting diverse responses from LLMs with- 315

out the need for repetitive response sampling. Our 316

method begins by inverting an LLM’s explanation 317

for a given response. For instance, if an LLM sug- 318

gests, “The to-go packages may not be from lunch. 319

#### Neutral,” we flip the explanation to, “The to- 320

go packages are likely from lunch.” This reversed 321

explanation then guides the LLM to assign a new 322

label, such as “#### Entailment.” 323

Our method uses GPT-4-0613 for reversing the 324

explanations, given its extraordinary generation ca- 325

pabilities. The prompt for inversion is: “Rewrite 326

the sentence to convey the opposite meaning: {Ex- 327

planation}.” Afterward, GPT-3.5-Turbo-0613 is 328

used to predict the appropriate label by combining 329

the original context with the inverted explanation. 330

This method offers an efficient way to generate 331

diverse responses with varying labels. 332

5.2 Responses Anchored in Various Passages 333

When dealing with long contexts, we can anchor 334

responses in different parts of the context to pro- 335

duce a diverse set of answers. An LLM can then 336

enhance its performance by discriminating among 337

these answers. For example, in the multi-document 338

question answering task (Multi-doc QA; Liu et al. 339

2023b), the LLM uses 10 to 30 Wikipedia passages 340

as input to answer questions. These questions come 341

from NaturalQuestions-Open (Kwiatkowski et al., 342
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2019), which contains historical Google queries343

and their human-annotated answers extracted from344

Wikipedia. Among the passages given to the model,345

only one has the answer, the rest are distractors. A346

retrieval system named Contriever (Izacard et al.,347

2022) is used to obtain distractor passages, which348

are most relevant to the question but do not contain349

the answers.350

We use Llama-2-7b to generate five diverse can-351

didate responses per instance, one from the gold352

passage and four from random distractors. Re-353

sponses containing the desired answer are marked354

correct, as illustrated in Figure 2. Here, we gener-355

ate two candidate responses “The first Nobel Prize356

in Physics was awarded in 1901 to Wilhelm Conrad357

Röntgen for his discovery of X-rays.” and “Ernest358

Lawrence was the recipient of the first Nobel Prize359

in Physics.” by feeding the model Documents [2]360

and [3] separately. Our Label-Prioritized approach361

ranks candidates with the desired answer higher362

than those without. Human-Label-Hybrid further363

prefers correct answers anchored in the gold pas-364

sage. In training, the model receives a question and365

10 Wikipedia passages, and learns to differentiate366

correct from incorrect responses. At test time, the367

fine-tuned model employs beam search to decode368

the optimal response.369

6 Experiments370

We have chosen Llama-2-7b as our base model371

for task-specific training. The Llama-2 series out-372

performs other open-source options, such as Fal-373

con (Almazrouei et al., 2023), Mistral (Jiang et al.,374

2023), Vicuna (Chiang et al., 2023) and MPT (Mo-375

saicML, 2023), on a number of tasks. Its 7b variant376

requires significantly less GPU memory, which is377

crucial for specific domains without the specialized378

infrastructure to serve larger models. We opt for the379

Llama-2-7b over Llama-2-7b-chat in this study380

due to our focus on non-dialogue tasks.381

We use AdamW (Loshchilov and Hutter, 2017)382

with a learning rate of 2e−5 and a cosine scheduler383

with a 0.03 warmup rate. Our training utilizes fully384

sharded data parallelism and BF16 mixed precision385

training, which is generally faster, consumes less386

memory, and is preferable for large models. Our ex-387

periments are conducted using 4xA100 GPUs, and388

task-specific training is limited to a single epoch for389

both supervised fine-tuning and response ranking.390

This is to mitigate the risk of multi-epoch degra-391

dation (Xue et al., 2023) and potential overfitting392

from repeated exposure to the training data. The393

batch size is set at B=64, the same configuration394

0 20 40 60 80 100

(PO) Label-Priotized 
vs. Llama-2-7B

(PO) Label-Priotized 
vs. Supervised Finetuning

(PO) Label-Priotized 
vs. (FO) Human Similarity

(PO) Label-Priotized
vs. (PO) Label-Priotized w/ Flip

76% 4% 20%

47% 18% 35%

39% 38% 23%

31% 46% 23%

win tie lose

Figure 3: Human evaluation results. Our partial ordering (PO)
with label prioritization outperforms the SFT model with an
overall win rate of 47%. While SFT shows comparable accu-
racy in automatic evaluation, it often relies on data artifacts for
predictions (Gururangan et al., 2018) and does not yield better
explanations. Our PO method also outperforms other methods
such as FO Similarity and the base Llama-2-7b model.

used for LLama-2 (Touvron et al., 2023). It is calcu- 395

lated as the product of three factors, B = g×b×D, 396

combining gradient accumulation steps (g = 16), 397

per-GPU batch size (b = 1 due to memory con- 398

straints), and the number of GPUs (D = 4). This 399

strategy allows us to handle a large number of can- 400

didates during response ranking. 401

6.1 Automatic Evaluation of NLI Accuracy 402

Our goal in this study is to enhance response gener- 403

ation with limited training data, which is a common 404

challenge in real-world scenarios where expert an- 405

notations are scarce, often limited to a few thousand 406

examples. We conduct our experiments using the 407

e-SNLI dataset (Camburu et al., 2018), which com- 408

prises 549,367 training examples. We intentionally 409

restrict our training to subsets of {2k, 5k, 10k, 20k} 410

samples, approximately 0.4% to 3.6% of the total 411

training set. We report the accuracy of all models 412

on the standard test set of 9,824 examples. 413

We evaluate a variety of models on this task. In 414

particular, we train the base model with human re- 415

sponses (SFT). We also explore two response rank- 416

ing strategies: full ordering (FO), which ranks can- 417

didate model responses by their semantic closeness 418

to human responses (Similarity) or as assessed by 419

GPT-3.5-Turbo, and partial ordering (PO), which 420

trains the base model to prioritize human responses 421

over those from models (Human Prioritization), 422

responses with correct labels over incorrect ones 423

(Label Prioritization), and a mix of both (Human- 424

Label Hybrid). Both FO and PO rely on our rank- 425

ing metric detailed in Eq.(3). 426

Table 1 presents task accuracy across various pro- 427

portions of training data. We observe that models 428

trained with ranking metrics and incorporating both 429

full and partial ordering strategies outperform those 430
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Proportion of Training Data w/ Res. Flip.
System 0.4% 0.9% 1.8% 3.6% AVG 0.4% 0.9%

BASELINE (SFT) Supervised Finetuning 77.45 85.56 87.33 87.94 84.57 – –
(FO) Similarity 81.01 86.69 86.53 86.38 85.15 ↑ 5.18 ↓ 0.26
(FO) GPT-3.5-Turbo 82.20 86.62 85.02 86.71 85.14 ↑ 3.09 ↓ 1.32

OURS (PO) Human Prioritization 80.70 87.11 87.06 86.26 85.28 ↑ 6.10 ↓ 1.30
(PO) Label Prioritization 81.97 87.27 88.16 87.97 86.34 ↑ 5.15 ↑ 0.61
(PO) Human-Label Hybrid 82.86 87.47 87.33 87.73 86.35 ↑ 4.88 ↑ 0.34

Table 1: Task accuracy of RESCUE on natural language inference, reported on the e-SNLI test set. We observe that models
trained with ranking metrics and incorporating both full and partial ordering strategies outperform those trained solely with SFT,
especially when working with a few thousand annotated examples. Our partial ordering strategies, namely label prioritization
and a hybrid of human and label prioritization, surpass full ordering methods.

trained solely with SFT, especially when working431

with a few thousand annotated examples. This in-432

dicates that training an LLM to rank responses can433

improve response generation and result in more434

accurate predictions of textual entailment relation-435

ships. The improvement is most notable when us-436

ing only 0.4% of the total training data, suggesting437

the advantage of ranking metrics in scenarios with438

extremely scarce training data.439

Our partial ordering strategies, namely label pri-440

oritization and a hybrid of human and label priori-441

tization, surpass full ordering methods. This could442

be because achieving consensus on full ordering of443

responses is challenging even for humans. This ap-444

proach may introduce variability in response rank-445

ing and destabilizes training. SFT begins to show446

improvement with 20k or more training examples,447

although gathering such extensive annotations is of-448

ten difficult for domain-specific tasks. Additionally,449

while flipping responses increases answer variety,450

it might cause a shift in the distribution of ranked451

responses. We find this technique consistently im-452

proves response generation only when training data453

is limited to 2k examples.454

Our models match state-of-the-art performance.455

E.g., Hsieh et al. (2023) achieved 89.51% accuracy456

using a 540B LLM with step-by-step distilling. By457

contrast, our models use only a fraction of the full458

training set with a 7B model. Without supervised459

fine-tuning, the base Llama-2-7b model yields a460

significantly lower accuracy of 33.31%. Next, we461

extend our evaluation to include human assessment462

of model explanations.463

6.2 Human Evaluation of Response Quality464

Human evaluation provides a holistic assessment465

of model responses. We compare several models,466

including our PO method with label prioritization,467

SFT, FO method with responses ranked their simi-468

larity to human responses, PO model with response 469

flipping, and the base model. These models were 470

trained with varying amounts of training data (0.4% 471

to 3.6%), and the highest performing model across 472

all data proportions was chosen for human evalu- 473

ation. An annotator evaluated responses for 100 474

randomly selected samples from the e-SNLI test 475

set, using win, tie and lose to rate each response 476

pair. Evaluations were based on label accuracy 477

and the quality of explanations. A quality explana- 478

tion should support the predict label with detailed 479

reasoning and show logical coherence. 480

As Figure 3 illustrates, our partial ordering (PO) 481

with label prioritization outperforms the SFT model 482

with an overall win rate of 47%. This advantage 483

stems from the PO models’ ability to distinguish be- 484

tween sound and flawed responses, thus improving 485

response generation. While SFT shows compara- 486

ble accuracy in automatic evaluation, it often relies 487

on data artifacts for predictions (Gururangan et al., 488

2018) and does not yield better explanations. Simi- 489

lar to findings from automatic evaluations, adding 490

response flipping does not surpass the original label 491

prioritization method. Our PO method also outper- 492

forms other methods such as FO Similarity and the 493

base Llama-2-7b model. 494

6.3 Evaluation of Multi-Document QA 495

The Multi-Doc QA task involves answering a given 496

question using a set of retrieved documents. Liu 497

et al. (2023c) found that LLMs exhibit a U-shaped 498

curve, depending on where the answer-containing 499

document is located within the input context and 500

highlighting difficulties in accessing relevant infor- 501

mation in the middle of long contexts. To mitigate 502

this, we incorporate response ranking. We generate 503

five candidate responses per question, one from the 504

correct document and four from distractors. We 505

then train the base model on 1k examples from the 506

6



5 Retrieved Documents 10 Retrieved Documents
Position of Gold Document 1st 3rd 5th AVG 1st 5th 10th AVG

Base Model (Llama-2-7b) 45.64 34.19 43.05 40.96 46.41 27.17 42.95 38.84
(PO) Label Prioritization 44.88 42.44 53.43 46.92 35.72 33.43 55.11 41.42

Table 2: Answer accuracy for the Multi-QA task. We evaluate two scenarios: the model receives 5 or 10 documents returned
by the retriever. We find that the PO method with label prioritization substantially improves model performance, as ranking
responses allows the LLM to more effectively identify relevant information, improving the U-shaped curve.
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Figure 4: (LEFT) The influence of different α on task accuracy. We find that optimal performance is achieved with an α value
between 0.01 to 0.1. (RIGHT) We conduct experiments with a varying number of candidate responses per prompt. Results
indicate that performance improvement can be achieved even with 3-4 candidate responses.

training set using our ranking metric (Eq. (2)). SFT507

is not used due to the absence of human-written508

explanations for this task. Our method is evaluated509

on a test set of 665 examples.510

Table 2 shows answer accuracy, measured as511

whether correct answers from the NaturalQuestions512

annotations appear in the generated responses. We513

evaluate two scenarios: the model receives 5 or 10514

documents returned by the retriever. The correct515

document is placed either at the beginning (1st po-516

sition), in the middle (3rd or 5th), or at the end (5th517

or 10th) of the document set. We find that the PO518

method with label prioritization substantially im-519

proves model performance, as ranking responses al-520

lows the LLM to more effectively identify relevant521

information, improving the U-shaped curve. Our522

findings also align with those of Liu et al. (2023c),523

who observed a recency bias in Llama-2-7b. With524

20 documents as input, they reported accuracies of525

about 25% at positions 1, 5, 10, 15, and 42% at po-526

sition 20. Upon examining the model’s responses,527

we observe that the model often answers questions528

by copying content, which tends to improve answer529

accuracy when the answer is located in the middle530

or end of the context.531

7 Discussion532

Balancing Coefficient Our approach uses a hy-533

perparameter α to balance the impact of supervised534

fine-tuning and the ranking metric. Figure 4 shows535

the influence of different α on task accuracy. We536

find that optimal performance is achieved with an α 537

value between 0.01 to 0.1. The results indicate that, 538

while supervised fine-tuning is pivotal for RES- 539

CUE, integrating the ranking metric enhances the 540

method’s robustness to noise. 541

Number of Candidate Responses We conduct 542

experiments with a varying number of candidate 543

responses per prompt, and the results are shown in 544

Figure 4. In our experiments, we are able to rank up 545

to five candidate responses using four Nvidia A100 546

GPUs. As the number of candidates increases, so 547

does the demand for additional GPU memory and 548

compute resources. Our experiments indicate that 549

performance improvement can be achieved even 550

with 3-4 candidate responses. Beyond that, RES- 551

CUE sees no further gains from increasing the num- 552

ber of responses. This saturation in performance 553

may be attributed to the noise in ranking. Moreover, 554

it highlights the challenges associated with ranking 555

a diverse set of responses differing in length and 556

style of rationales. 557

Scoring Candidate Responses We identify two 558

characteristics in human responses that distinguish 559

them from model responses. Firstly, they are more 560

concise and to the point. As indicated in Figure 6 561

(RIGHT), human responses are significantly shorter, 562

averaging 10 fewer tokens per response compared 563

to GPT-3.5’s responses. Secondly, we note that 564

LLM responses tend to use more common words, 565

yielding better fluency and generally smoother text 566
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Figure 5: LEFT figure shows the log probabilities of human responses, while MIDDLE and RIGHT figures present those
from Llama-2-7B and GPT-3.5-turbo-0613, respectively. We assign a length scaling factor, λ, of 0.85 to all model responses,
maintaining a λ of 1.0 for human responses. This approach effectively shifts the log probability score distributions of model
responses (colored in red) closer to those of human ones, thereby minimizing margin violations.
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Figure 6: (LEFT) The confusion matrix for the Llama-2-7B base model, where the x-axis represents the labels predicted by
Llama-2-7B, and the y-axis represents human labels. The results show Llama-2-7B’s tendency to predict neutral labels, as
indicated by the dark bar in the middle. (RIGHT) Candidate responses differ in length. We show the distribution of responses
from human annotators, Llama-2-7B, and GPT-3.5-turbo-0613 models. Human responses are the shortest, while GPT-3.5’s are
notably longer, containing on average 10 more tokens per response compared to human responses.

compared to human responses. These characteris-567

tics present challenges in ranking responses from568

diverse sources. Human responses, due to their569

brevity and unique word choice, often have lower570

length-normalized log probabilities than model re-571

sponses. This discrepancy leads to many margin572

violations during training using Eq. (2), and more573

parameter updates to ensure human responses score574

higher than model outputs.575

To mitigate this, we assign a length scaling fac-576

tor λ of 0.85 to all model responses, including577

those from Llama-2-7B and GPT-3.5-turbo-0613,578

maintaining a λ of 1.0 for human responses. This579

effectively shifts the log probability score distri-580

butions for model responses closer to human ones581

(Figure 5), reducing margin violations. We are also582

exploring adjusting the margin size and curriculum583

learning, which gradually increases the difficulty of584

training samples to reduce violations, as potential585

directions for future research.586

Central Tendency Bias LLMs such as Llama-587

2-7B and GPT-3.5 exhibit a central tendency588

bias (Goldfarb-Tarrant et al., 2020) in natural lan-589

guage inference. These models often predict Neu-590

tral labels, leaning towards the “center” of possible591

labels. Figure 6 presents the confusion matrix, with 592

the x-axis representing predicted labels by Llama- 593

2-7B and the y-axis showing human labels. The 594

results show Llama-2-7B’s tendency to predict neu- 595

tral labels (indicated by the dark bar in the middle) 596

and its avoidance of extreme labels like Entail- 597

ment or Contradiction. A plausible reason could 598

be Llama-2-7B’s inadequate world knowledge im- 599

pacting its task accuracy. Moreover, this tendency 600

might originate from the models being trained on 601

human annotations for instruction-following. They 602

frequently give hedging responses to fulfill help- 603

fulness and safety requirements, leading to outputs 604

that are more neutral and less assertive. 605

8 Conclusion 606

In this paper, we introduce RESCUE, an approach 607

that trains the LLM to prioritize sound responses 608

over erroneous ones, thereby enhancing overall task 609

accuracy and the quality of explanations. Accurate 610

model predictions often come with high-quality 611

explanations. We build on this insight to rank can- 612

didate responses using a partial ordering approach, 613

as achieving consensus on the perfect order of re- 614

sponses is challenging. RESCUE has demonstrated 615

competitive performance on benchmarks. 616
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Limitations617

Our approach focuses on optimizing LLMs through618

ranking metrics and partial ordering of candidate619

responses. We introduce two innovative strategies620

for generating candidates: collecting from diverse621

LLMs and anchoring responses in various parts of622

the context, showcasing its flexibility across bench-623

mark datasets. We note that organizing candidate624

responses can benefit from domain-specific criteria,625

such as sorting recommended lab tests for patients626

by the relevance of the answer, urgency, and cost.627

Further, our proposed approach prioritizes the best628

responses from a set of candidates, thereby improv-629

ing the task accuracy and the quality of generated630

explanations. With additional GPU resources, we631

can improve the variety and representation of candi-632

date responses or categorize them based on domain-633

specific attributes. Despite existing challenges, our634

approach offers a promising path for customizing635

LLMs for specialized applications.636
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