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Fig. 1: We show GELLO teleoperation systems built for three different types of robots: (A) two UR5s, (B) an xArm, and (C) a Franka.
The user can teleoperate the robot arms by controlling the GELLO devices. The bill of materials for each GELLO device is less than $300.

Abstract— Imitation learning from human demonstrations is
a powerful framework to teach robots new skills. However, the
performance of the learned policies is bottlenecked by the quality,
scale, and variety of the demonstration data. In this paper, we
aim to lower the barrier to collecting large and high-quality
human demonstration data by proposing GELLO, a general
framework for building low-cost and intuitive teleoperation
systems for robotic manipulation. Given a target robot arm,
we build a GELLO controller that has the same kinematic
structure as the target arm, leveraging 3D-printed parts and
off-the-shelf motors. GELLO is easy to build and intuitive to use.
Through an extensive user study, we show that GELLO enables
more reliable and efficient demonstration collection compared to
commonly used teleoperation devices in the imitation learning
literature such as VR controllers and 3D spacemouses. We
further demonstrate the capabilities of GELLO for performing
complex bi-manual and contact-rich manipulation tasks. To
make GELLO accessible to everyone, we have designed and built
GELLO systems for 3 commonly used robotic arms: Franka,
UR5, and xArm. All software and hardware will be open-sourced.

I. INTRODUCTION

In recent years, robotics has been through a remarkable
transformation driven by the increasing integration of data-
driven methods in every component, ranging from perception

to control. The ability to learn from diverse data helps robots
to generalize in wide scenarios which would be difficult
to achieve by a manually designed system. For robotic
manipulation, there has been great successes by learning
from human demonstration data [1], [2]. More recently, we
have seen that system performance continues to increase with
larger scale demonstration datasets and can even generalize
to open vocabulary language instructions [3], [4], [5], [6].
However, existing systems are bottlenecked by the dataset
size and the complexity and diversity of the tasks humans
can perform through a teleoperation system.

For manipulation tasks, commonly used teleoperation
systems capture control signals from input devices like 3D
mouse [7], VR controllers [8], [9], or cameras, these systems
abstract away the kinematic constraints on the robot and can
be unintuitive to new users. On the other hand, robotics has
a long history of teleoperation through bi-lateral devices [10],
where operators receive feedback, but are generally more
costly. More recently, the ALOHA system, although unilateral,
presents impressive teleoperation capabilities for fine-grained
manipulation tasks with low-cost hardware built using off-
the-shelf robot arms [11]. Nevertheless, the ALOHA system
is tailored to a specific robot arm and has a higher cost due



to having additional robot arms as controllers for the user.
In this paper, we introduce GELLO, a GEneraL, LOw-cost,

and intuitive teleoperation framework for robot manipulators.
GELLO is designed to be low-cost, easy to build, and intuitive
for humans to use. The key idea is to build miniature,
kinematically equivalent controllers with 3D-printed parts
and off-the-shelf motors as joint encoders. We clarify that the
ideas behind GELLO are not new, rather our contributions
can be summarized in the three points below:

1) We present practical implementations of GELLO as a
teleoperation system for three commonly used robot
arms with simple and low-cost designs.

2) We perform a comprehensive user study demonstrating
the system’s effectiveness compared to other prevalent
low-cost teleoperation systems in the literature.

3) We open-source the hardware and software needed to
replicate and operate GELLO to ensure accessibility1.

II. RELATED WORK

A. Teleoperation Systems for Manipulation

Low-cost Controllers. Teleoperation systems have a long-
standing history and various low-cost sensors have been
used to provide the interface for human-robot interaction.
Commonly used teleoperation systems include joysticks and
spacemouses [12], [13], [14], commercial VR controllers [15],
[16], [17], [18], RGB cameras [19], [20], [21], [22] or IMU
sensors [23], [24], [25], However due to the morphological
differences between these control devices and the robots,
the user often can only perform teleoperation in the more
abstracted end-effector space. The kinematic constraints of the
robot arms therefore are not perceived by the human operators.
This prevents the operator from precisely controlling the arm
near the areas of kinematic singularities, and self-collisions,
which reduces the demonstration throughput and increases
failures. Moreover, both VR and camera-based solutions can
suffer from occlusion and additional latency.

Notably, the recent ALOHA system showcases impressive
fine-grained bi-manual manipulation with Dynamixel-based
servo arms, where an additional two arms function as
controllers [11]. Similar to other more conventional but costly
teleoperation systems such as that of [26], [27], [28], the
teleoperation device is another fully-fledged robot arm, with
size and capability comparable to the manipulator arm, which
can increase the cost. In comparison, with GELLO, we use
low-cost components to design a scaled replica of the target
arm, resulting in an economical solution that still maintains
the advantages of using a kinematically isomorphic arm as
the controller.

Bilateral Teleoperation Systems. In contrast to unilateral
teleoperation approaches, bilateral teleoperation enables the
user to feel force feedback from the target arm. This is an
active area of research, with a wide range of methodologies.
One such approach uses additional robot arms that are
isomorphic to the target robots serving as controllers [26],
[27], [28], [29], [30], [31]. This approach enables environment

1Website https://wuphilipp.github.io/gello/

TABLE I: A cost comparison of the price of commonly used
teleoperation systems. We will show that GELLO compares favorably
to other low-cost options (spacemouse and VR) in our user study
while being orders of magnitudes cheaper than other options.

Teleop Device Approximate Cost

3D Mouse (SpaceNavigator[7]) $150
GELLO (Ours) $300
VR (Meta Quest 2) [9] $300
Robot-to-robot Teleop (e.g. UR5) $30,000
Haptic Device (Omega7 [36]) $40,000

feedback from the manipulator to be directly relayed back to
the joints of the control device. Also, the user can easily sense
the kinematic constraints of the robot arm as the controller arm
has the same kinematic constraints. Additionally, there have
been efforts to design 1-to-1 exoskeletons for teleoperation
purposes [32], [33], [34]. These systems, though effective,
are typically bespoke for specific robots, leading to a varied
design approach across different robot types. Another avenue
explored in the literature is the use of special input devices
with haptic feedback [35], [36]. While these devices offer a
tangible sense of the robot’s kinematic constraints, they often
have a very tight operation space and additionally require
translating the robot’s kinematic constraints into tangible force
feedback increasing system complexity. In contrast to these
approaches, our contribution presents a generalized framework
for designing affordable and easily accessible exoskeleton-like
unilateral controllers. We provide instances of our approach
for three widely-used robot arms. Our system, GELLO, stands
out for its affordability, portability, and replicability, reducing
the challenges associated with collecting quality teleoperated
human demonstrations.

B. Learning from Human Demonstrations

Learning from demonstrations has been a popular frame-
work for enabling robots to perform a wide range of tasks [3],
[4], [5], [15], [22], [37], [38]. Prior works have observed that
the performance of the learning system scales with the size
of the dataset. As such, there are substantial ongoing efforts
at collecting larger and larger datasets [39], [40]. However,
collecting human demonstrations can be expensive and time-
consuming. For example, the data collection process as done
in [3] spanned over 17 months with a team of researchers. On
the other hand, significant efforts have been made towards
better human-robot interaction to address the bottleneck. Some
examples include sharing control between the human and the
robot [12], or enabling a human to operate multiple robots
simultaneously [41]. These approaches are complementary
to our objective, which is to build teleoperation systems
that are more accessible and intuitive to use. Finally, a
promising direction is learning directly from human video
data [42], [43], [44], [45], [46]. While collecting videos of
humans performing the tasks directly is relatively inexpensive,
overcoming the morphology gap between robots and humans
remains challenging for policy learning.

https://wuphilipp.github.io/gello/


III. TELEOPERATION DEVICE DESIGN
The focus for the design of GELLO is to create an interface

that is both economically accessible and easy-to-use for users
aiming to render high-quality demonstrations in robot learning.
The primary design principles are summarized as follows:
Low-cost: We aim to show that a capable system can be
constructed at an affordable price, thus minimizing the entry
barrier. This is achieved through the use of economical
backdrivable servo motors, 3D printed components, and
a minimalist design, making it possible to construct a
teleoperation solution for under $300. A cost comparison
is shown in Table I. We will show that GELLO outperforms
other low-cost options in our user study while being much
cheaper than the other systems.
Capable: GELLO is designed to be easy to use for human
operators. We demonstrate GELLO’s capabilities on a range
of complex bi-manual manipulation and contact-rich tasks.
Portable: Diversity of demonstration data collected in differ-
ent tasks and environments is critical to the final performance
of the learning system. As such, we design GELLO to be
compact, and self-contained, facilitating easy transportation.
We show GELLO performing tasks across both lab and in-
the-wild environments.
Simple to replicate: The sourcing for parts is minimal
beyond off-the-shelf motors and 3D printing components. The
assembly process is also straightforward, requiring minimal
technical expertise.

We follow these design principles to make GELLO for three
types of robot arms, as shown in Figure 1. The instantiation
of our approach centers around critical components like motor
selection, kinematically equivalent structure, 3D printed parts,
and gravity compensation.

a) Servo selection: The critical component to enable
GELLO’s construction is the availability of low-cost, fully-
featured servos. Specifically, we used the DYNAMIXEL
XL330 series [47]. Despite their affordability, these servos
are equipped with high-resolution 12-bit encoders. These
encoders provide measurements of the servo’s position,
allowing accurate mapping of the controller’s configuration
to the target arm. In principle, a servo is not even necessary
for the construction of GELLO, as we only need to read joint
positions. However, in practice, a servo package provides an
easy off-the-shelf, self-contained solution that has an encoder
and communication protocol, simplifying construction, usage,
and maintenance. In addition, the servo actuator provides
resistance as the user backdrives it, which acts as natural
damping and improves stability for the user.

b) A scaled kinematically equivalent structure: We build
GELLO as a small-scale version of the target arm which
possesses a kinematically equivalent structure. This means that
the joints and links of GELLO correspond directly to those
of the target arm, allowing the user to control the GELLO
manipulator as if they were directly controlling the target
arm, as in kinesthetic teaching [48]. Target joint positions are
directly sent to the target arm for operation, avoiding the need
to compute inverse kinematics. The user can feel resistance
from the controller when the joints are close to kinematic

Fig. 2: This figure illustrates the trajectory of GELLO both
with and without gravity compensation. Top: Without gravity
compensation the elbow joint drops. This results in an unfavorable
joint configuration for subsequent tasks or even collision with
the table. Bottom: With gravity compensation in place, the elbow
exhibits minimal movement, leading to a more advantageous joint
configuration. We find that simple use of rubber bands or springs
are effective.

singularities or joint limits and is thus more aware of these
failures, leading to more reliable teleoperation. At the same
time, the miniature design makes the controller more portable
while still allowing the user to operate full-scale robot arms.

c) 3D printed parts: The use of 3D printed parts in
GELLO allows a high degree of customization, enabling
users to design and print parts that match the specific robot
hardware. 3D printing allows us to easily design GELLO
systems for 3 kinematically different robots. 3D printing
is also a cost-effective method of producing parts, further
contributing to the low-cost nature of GELLO.

d) Gravity compensation: Gravity compensation is a
necessary component of GELLO’s design. It counteracts the
force of gravity on the manipulator, making it easier for the
user to control. We employ rudimentary but effective passive
gravity compensation that involves the use of mechanical
components such as springs or rubber bands to offset the
weight of the manipulator. These components also acts as
a joint control regularizer. It ensures that the arm maintains
a “natural” posture. This prevents the arm from adopting
other kinematically viable yet unconventional positions, as
illustrated in Figure 2. We only add gravity compensation to
the joints that exhibit the most significant resistance against
gravity in the arm’s default resting position, which for the
UR design, is the second and third joint.



Fig. 3: We design and instantiate GELLO for 3 different robot arms. We experiment with GELLO across these three arms on a range of
tasks to qualitatively observe the teleportation behavior. GELLO’s portable and self-sufficient design enables us to gather data across a
wide range of environments.

Following these simple design principles, we instantiate and
test GELLO for 3 commonly used robot arms, the Universal
Robot UR5, uFactory xArm7, and Franka Panda. Example
tasks that we can perform with GELLO on the different
robots are illustrated in Figure 3.

IV. EXPERIMENTS

We conduct experiments to evaluate GELLO as a teleoper-
ation system. Quantitatively, we compare the performance of
GELLO with other common low cost teleoperation systems
used in the literature across 5 tasks exploring various aspects
of manipulation. Qualitatively, we study GELLO through tests
on robots from 3 different manufacturers across a variety of
manipulation tasks in diverse settings.

A. User Study Procedure

We conducted a user study involving 12 participants,
focusing on bi-manual robot teleoperation using two UR
robots to assess the comparative effectiveness of GELLO,

3D mouses, and VR controllers under controlled conditions.
An overview of our experimental study is shown in Figure 4,
where details of the 5 tasks we study are provided. Control
with a 3D mouse or VR controller requires additional tuning
of scale parameters that effect how sensitive the controller is
to human input. We tune each by testing the device across
the 5 tasks, insuring control to be sensitive enough to achieve
the fine grain USB insertion tasks while still being responsive
enough for quickly traversing across the workspace in the
banana hand off task.

Prior to experimenting with the teleoperation tools, each
user was granted a brief 6-minute orientation session, intro-
ducing them to the basics of the robot and teleoperation itself,
as well as the task requirements. To reduce potential biases, no
device-specific instructions were given in this orientation, and
video demonstrations of the task do not show any particular
device. This is then followed by the sequential introduction
of the 3 different teleoperation devices. Upon introducing



Fig. 4: An illustration of the experimental setup for our user study. The primary workspace of our experiments, indicated in green,
showcases the scene of a bimanual robot station comprising of two UR5 robots with the complete task suit. The figure details the five
tasks which are represented by the numerically labelled frames in blue: (1) Place a hat on a rack, (2) Open a case and fetch the sleeping
mask inside, (3) Hand over a banana to the kitchen area, (4) Fold a towel, and (5) Plug in a USB cable. These tasks are designed to
explore different teleoperation challenges such as articulated object interaction, large workspaces, deformable objects, and precise insertion.
The three different bimanual teleoperation devices are shown by the letter-labelled images: (A) GELLO, (B) VR (Meta Quest2) controllers,
and (C) 3D Mice (SpaceMouse). Each user attempts to accomplish the 5 tasks with all 3 teleoperation devices.

a new device, users were given a 5-minute practice phase,
allowing them to gain familiarity with the device and its usage.
Following the practice phase, the participants begin the task
execution phase, with a time limit of 45 seconds for the hat
task, and 90 seconds for the remaining tasks. This is repeated
for all 3 teleoperation devices. The order in which each
participant learns to use the three devices is randomized and
given by the experimenters. This eliminates any potential bias
from a fixed ordering. Users were instructed to solve the task
as best they could while avoiding self-collision or collision
with the environment. The robot will be stopped when failure
happens and the current task is terminated immediately. We
record the task success and failure mode or task completion
time as applicable. At the end, we have the user accomplish
the same tasks without a robot using their hands.

B. User Study Results

In Table II, we show the success rate across distinct tasks
for each teleoperation device. Using GELLO consistently

TABLE II: The task success rate for different teleoperation systems.
Ours archives the top success rate across the board.

Device Hat Mask Banana Towel USB Avg

Gello 0.92 0.92 1.0 0.92 0.83 0.92
3D Mice 0.75 0.58 0.67 0.58 0.58 0.63
VR 0.92 0.83 0.75 0.58 0.5 0.72

results in the top success rate. For the simplest task, which
only requires controlling a single arm, placing the hat on
the rack, GELLO and VR perform comparably. In more
complex tasks, such as the banana hand off which requires
both arms to maneuver across the large workspace, using
the spacemouse or the VR controllers leads to more failures
like self-collisions or hitting singularities, suggesting that
GELLO offers easier control in more broad use cases. For the
task of towel folding, GELLO also shows a large advantage
over the other two devices. We hypothesizes that this is
because GELLO offers more intuitive control and thus better



Fig. 5: Comparison with other teleoperation systems on the required duration for each task. For every combination of task and system, the
average completion time (smaller is better) is plotted only for successful trials. Colored dots indicates the completion time for each user
under each task-system pairing. Human, plotted in blue, gives a lower bound on teleoperation completion time, where the user directly
accomplished each task with their hands.

coordination between the two arms. Interestingly, for the task
of plugging in the USB cable, using GELLO also resulted in
a much higher success rate. This is despite VR or spacemouse
having the advantage of simplifying the problem by keeping
one controller static while focusing their attention on the
other, a common strategy users employed. In Table III, we
present a breakdown on the different failure modes for each
teleoperation system. Our observations suggest that, unlike
other devices that operate in Cartesian space, GELLO requires
minimal user expertise. This is further corroborated by the
lowest timeout count for GELLO in comparison to other
teleoperation systems. Furthermore, GELLO’s isomorphic
joint structure design ensures that teleoperation with GELLO
has the least collision risk.

Figure 5 provides a summary of the completion times
taken by each device across all five tasks, given successful
task execution. Utilizing GELLO results in consistently faster
completion times. This not only signifies that GELLO is
easier to use with a higher success rate but also, indicates
its efficiency; faster completion times would enable users to
achieve more successful operations in a given time frame.

C. Teleoperation System Capabilities
We further demonstrate the capabilities of GELLO on

more challenging manipulation tasks, including in real-world
environments. We show some of them in Figure 3 and put
more videos on our project website. These tasks include
contact-rich tasks, long-horizon tasks and challenging bi-
manual coordination tasks. Tasks like filling water bottles
require a certain payload on the robot arm and would be
difficult to perform for smaller arms to perform, such as
the ViperX arm used in the Aloha system [11]. GELLO
is also effective for 7 DOF arms, such as the Panda and
xArms, despite the extra degree of freedom. We find that the
kinematically equivalent structure enables a user to directly
manage the arm’s null space if required, which can be
advantageous when operating in cluttered spaces.

TABLE III: The failure count for each failure mode aggregated
across all 5 tasks. Each ✗ indicates a single failure of that type from
our trials. The “Other” category captures all other irrecoverable task
failure modes such as dropping the working item outside the reach
of the robots.

Failure Mode Gello 3D Mice VR

Timeout ✗ ✗✗✗✗✗✗✗✗✗ ✗✗✗✗✗
Self Collision ✗ ✗✗✗✗✗ ✗✗✗✗✗
Env Collision ✗✗✗ ✗✗✗✗✗✗ ✗✗✗✗✗✗
Other ✗✗ ✗

V. DISCUSSION

Due to limited output torque of the motors used, GELLO
does not provide force feedback to the users, which limits
GELLO’s capabilities when teleoperating for more contact-
rich tasks. We made this compromise to keep GELLO low-
cost, more accessible, and more applicable to all robot arms,
as bilateral devices also require force sensing capability for
the target robot. However, we hope to incorporate this as an
optional capability in the future for more advanced usage.

Our user study is limited to inexperienced users who are
only briefly taught about teleoperation and who only practiced
for a limited time. Additional training can significantly
improve the user’s proficiency in using teleoperation devices
and we leave such study to future work.

In this paper, we introduced GELLO, a general low-
cost teleoperation platform for manipulation. Our results
demonstrate its effectiveness through a user study on teleop-
eration with a bi-manual robot system using two UR5s. To
demonstrate versatility and make GELLO more accessible,
we design GELLO for 3 robots. We hope GELLO will lower
the barrier to collecting large and high-quality demonstration
datasets, and thus accelerate progress in robot learning.
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