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Abstract
Multimodal Relation Extraction (MRE) has achieved great improve-
ments. However, modern MRE models are easily affected by irrele-
vant objects during multimodal alignment which are called error
sensitivity issues. The main reason is that visual features are not
fully aligned with textual features and the reasoning process may
suppress redundant and noisy information at the risk of losing
critical information. In light of this, we propose a Caption-Aware
Multimodal Relation Extraction Network with Mutual Information
Maximization (CAMIM). Specifically, we first generate detailed
image captions through the Large Language Model (LLM). Then,
the Caption-Aware Module (CAM) hierarchically aligns the fine-
grained visual entities and textual entities for reasoning. In addi-
tion, for preserving crucial information within different modalities,
we leverage a Mutual Information Maximization method to reg-
ulate the multimodal reasoning module. Experiments show that
our model outperforms the state-of-the-art MRE models on the
benchmark dataset MNRE. Further ablation studies prove the plug-
gable and effective performance of our Caption-Aware Module and
Mutual Information Maximization method. Our code is available at
https://github.com/zefanZhang-cn/CAMIM.
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1 Introduction
Relation Extraction (RE) as a significant study in information ex-
traction, aims to detect potential relations among entities in the
unstructured text and plays an important role in various applica-
tions [12, 32, 39, 43, 50, 59, 60, 62]. Previous studies mostly focus
on extracting information from a single textual modality [19, 24–
27]. With the popularity of multimodal learning and deep learning
[34, 46, 52–54, 66], research abilities that solely on text become lim-
ited [65, 67]. Multimodal Relation Extraction (MRE) methods are
proposed to significantly assist text-based models by using images
as additional inputs [6, 20, 48].

Early methods [3, 33, 35, 61] encode the text through RNN and
the image through CNN, studying how to incorporate the feature
of the whole image into a text representation. Many works [55, 57,
65] further validate that object-level visual fusion is more specific
and important for MRE. Recently, cross-modal pretraining seems
promising [18, 42]. Despite the remarkable results achieved by these
methods, there are still some challenges:

Error sensitivity issues. The multimodal reasoning and fusion
process will be interfered with by error sensitivity issues, which
means that irrelevant objects are incorporated into textual features
and directly harm the multimodal reasoning process. This problem
arises from inadequately detailed and accurate descriptions of vi-
sual entities during multimodal interaction, leading to the model
capturing incorrect entity relations. As shown in Figure 1, to infer
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Figure 1: An example of the Multimodal Relation Extraction.

the correct relation between "Meghan Markle" and "Harry", pre-
vious methods may capture the wrong person due to the lack of
detailed descriptions of "Meghan Markle" and "Harry", which may
affect the selection of model results.

Critical information loss issues. The multimodal reasoning
process needs to eliminate the influence of irrelevant image objects
and improve the efficiency of relation extraction [6]. However,
current methods [3, 6, 33, 35, 61] often overlook the preservation
of critical information during multimodal reasoning, potentially
leading to the loss of critical information during the suppression of
redundant and noisy data.

In our paper, we propose a Caption-Aware Multimodal Rela-
tion Extraction Network with Mutual Information Maximization
(CAMIM) to achieve the fine-grained multimodal alignment be-
tween images and text. Specifically, to tackle error sensitivity is-
sues, the Caption-AwareModule introduces detailed image captions
through Multimodal Large Language Model (MLLM) [4], which
has the instruction-following ability and the vision-understanding
ability in vision and language. Subsequently, we design a cross-
attention module to achieve fine-grained multimodal alignment
from sentence level and word level. Meanwhile, to tackle the loss
of crucial information during multimodal reasoning, we introduce
a Mutual Information Maximization method, which is often used
as a measure of the correlation between two random variables in
information theory. This method preserves task-related crucial in-
formation during themultimodal reasoning and supervises different
features respectively to ensure the integrity of crucial information.
Overall, we summarize the main contributions as follows:

1. We propose a Caption-Aware Multimodal Relation Extrac-
tion Network with Mutual Information Maximization (CAMIM).
The CAMIM introduces detailed image captions for fine-grained
multimodal alignment.

2. We introduce the idea of Mutual Information to preserve
crucial information during multimodal reasoning. To the best of
our knowledge, this paper is the first work to introduce mutual
information into multimodal relation extraction.

3. We evaluate our methods on the MRE dataset and demonstrate
their superiority compared to previous state-of-the-art baselines
and pluggability.

2 Related Work
2.1 Multimodal Relation Extraction
Relation Extraction (RE) [7, 31, 58] has gained much attention, re-
cently. Previous studies mainly focus on extracting relations from
single text modality [21–23]. Because visual features from images
could provide more clues for reasoning, Multimodal Relation Ex-
traction has been proposed and gained more attention. Recently,
several studies on multimodal relation extraction aim to utilize
relevant images for extracting better relations.

In the early stages, many works [3, 33, 35, 61] propose to encode
the text through RNN and encode the image through CNN, then es-
tablish the implicit interaction between twomodalities. Yu et al. [55],
Zhang et al. [57] propose leveraging regional-based image features
to represent objects in the image, exploiting fine-grained semantic
correspondences based on Transformer. Li et al. [30] propose a fine-
grained multimodal alignment approach with Transformer, which
aligns visual and textual objects in representation space. Wang et al.
[48] propose to retrieve textual evidence from the knowledge base
constructed based on Wikipedia. However, most methods ignore
the issue of interference from irrelevant objects in the image.

For the multimodal alignment, Sun et al. [42] propose RoBERT to
learn a text-image similarity score and filter out the irrelevant visual
representations. Chen et al. [6] propose a visual prefix-guided fusion
mechanism to remove irrelevant objects. For more fine-grained
alignment, Hu et al. [18] propose entity-object and relation-image
alignment pretraining tasks to improve MRE performance.

Although these methods make continuous progress, due to the
limited description of entities in the text, there is still a problem
of being easily affected by irrelevant objects during the process of
establishing associations with images, which can affect the selection
of model results. Hence, we propose to introduce a detailed image
caption to assist the model in completing the alignment operation
and facilitate the model’s reasoning ability.

2.2 Mutual Information
In information theory, Mutual Information (MI) is often used as a
measure of the dependency between two random variables. Early
methods, Tishby and Zaslavsky et al. [44] first propose the applica-
tion of information-theoretic objectives in deep neural networks.
However, at that time it may not be feasible, and variational infer-
ence provides a natural approach to approximate this problem.

To narrow the gap between traditional information theory prin-
ciples and deep learning, Alemi et al. [1] propose the Variational
Information Bottleneck (VIB) framework, which approximates the
information bottleneck (IB) constraints and enables the application
of information-theoretic objectives to deep neural networks. Since
then, Amjad and Geiger et al. [2] and He et al. [15] demonstrate
the effectiveness of maximizing mutual information in various con-
texts. However, it is almost impossible to directly estimate mutual
information in high-dimensional space, many studies attempt to
approximate the true values using variational bounds [5, 8, 38].
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Figure 2: Caption-Aware Multimodal Relation Extraction Network with Mutual Information Maximization (CAMIM).

Recently, Han et al. [14] propose a framework that hierarchically
maximizes the Mutual Information in unimodal input pairs and
between multimodal fusion results and unimodal input in the field
of multimodal sentiment analysis. Due to the excellent performance
of mutual information in many fields [14, 36, 40, 45], we propose to
introduce the idea of mutual information into MRE to maximize the
preservation of crucial information during multimodal reasoning.

3 Methodology
The Caption-Aware Multimodal Relation Extraction Network with
Mutual Information Maximization (CAMIM) is designed to achieve
fine-grained multimodal alignment and fusion. The whole frame-
work is shown in Figure 2. Specifically, the Caption-Aware Module
incorporates the detailed captions by Multimodal Large Language
Model (MLLM) [4] to achieve multimodal alignment from word
level and sentence level. In addition, Mutual Information is applied
to preserve crucial information. In the following sections, we will
provide a detailed description of each module.

3.1 Representation of Visual and Textual
Features

Firstly, the image contains several visual objects associated with
entities in the text, which can provide more semantic knowledge to
assist information extraction. Secondly, global image features may
express abstract concepts and often serve as weak learning signals.
Therefore, we use object-level visual data provided by Chen et al.
[6] as a supplement to the global image.

3.1.1 Visual Features. We leverage the visual grounding toolkit
to extract local visual objects with top m salience [51, 57], and
rescale the original image and object images to 224 × 224 followed
by Chen et al. [6] as the original imagesV and object images O.

Meanwhile, we leverage the translation image data generated
from textual information provided by Zheng et al. [64], which is
also processed through the visual grounding toolkit to obtain the
translation original imagesV𝑇 and translation object images O𝑇 .

As shown in Figure 2, for the multimodal relation extraction
task, we input the original images V and object images O into
ResNet50 [16] for encoding and then obtain the original images
feature 𝐹𝑉 and object images feature 𝐹𝑂 . We define Image Feature
𝐹𝐼 to represent them uniformly, such as Eq.(1):

𝐹𝐼 = {𝐹𝑉 , 𝐹𝑂 } . (1)

Similarly, we leverage ResNet50 to encode the translation origi-
nal imagesV𝑇 and translation object images O𝑇 , and then obtain
the translation original images feature 𝐹V𝑇

and translation object
images 𝐹O𝑇

. We define the Translation Feature 𝐹𝑇 to represent
them uniformly, such as Eq.(2):

𝐹𝑇 =
{
𝐹V𝑇

, 𝐹O𝑇

}
. (2)

3.1.2 Textual Features. Since the Translation Images are derived
from textual data, we directly leverage textual data as a detailed
description of the Translation Images. We believe that by concate-
nating with sentence-level features, the model can learn complete
semantic information, thereby achieving coarse-grained alignment.
Meanwhile, to learn fine-grained crucial information, we leverage
word-level features which can ensure the model selects the correct
information between different modalities. Hence, we leverage BERT
[11] to encode the text and obtain Sentence-Level Text Feature 𝑇𝑆
and Word-Level Text Feature 𝑇𝑊 .

However, due to the lack of detailed descriptions related to the
text in the image, we further leverage a Multimodal Large Language
Modal named QianWen from Alibaba Cloud and input original
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image V to generate a detailed caption C of the whole image to
assist the model in completing the alignment operation:

𝑝𝑟𝑜𝑚𝑝𝑡 = {Please give me a detailed description of the picture},
(3)

C = 𝑀𝐿𝐿𝑀 (𝑝𝑟𝑜𝑚𝑝𝑡,V), (4)
where 𝑀𝐿𝐿𝑀 (·) denotes the Multimodal Large Language Modal
and 𝑝𝑟𝑜𝑚𝑝𝑡 denotes the information that we want to generate.
Finally, we also encode caption C using BERT to obtain Sentence-
Level Caption Feature 𝐶𝑆 and Word-Level Caption Feature 𝐶𝑊 .

3.2 Caption-Aware Module
The main target of the Caption-Aware Module is to achieve better
alignment between different modalities. We leverage a two-level
alignment method, one is sentence-level feature alignment, and
the other is cross-attention-based word-level feature alignment.
Sentence-level features are used to align with the overall entity
relations in the images, while word-level features are utilized for
fine-grained alignment with visual entities.

3.2.1 Sentence-Level Features Alignment. To achieve align-
ment between different modalities, we leverage the Multi-Layer
Perceptron (MLP) to reduce the dimension of the Image Feature 𝐹𝐼 ,
and then concatenate it with the Sentence-Level Caption Feature
𝐶𝑆 to obtain the Sentence-Level Original Feature 𝑂𝑆 :

𝑂𝑆 = 𝐶𝑆 ⊕ (𝑀𝐿𝑃 (𝐹𝐼 )) , (5)

where𝑀𝐿𝑃 denotes the MLP layer and ⊕ indicates the concatena-
tion operation. Similarly, the Translation Feature 𝐹𝑇 is obtained
through the MLP layer, which is then concatenated with the 𝑇𝑆 to
obtain the Sentence-Level Generate Feature 𝐺𝑆 :

𝐺𝑆 = 𝑇𝑆 ⊕ (𝑀𝐿𝑃 (𝐹𝑇 )) . (6)

By concatenating with sentence-level features, the model learns
complete semantic information and achieves coarse-grained align-
ment. Therefore, we leverage word-level features to learn fine-
grained crucial information and achieve better alignment results.

3.2.2 Word-Level FeaturesAlignment. Wedesign a cross-attention
fusion method for the fusion of Sentence-Level Features and Word-
Level Features, respectively. As shown in Figure 3, we first perform
self-attention on the Sentence-Level Original Feature 𝑂𝑆 and the
Word-Level Caption Feature 𝐶𝑊 separately to obtain 𝐻1

𝑆
and 𝐻1

𝑊
,

and then use cross attention to guide the other features to obtain
𝐻2
𝑆
and 𝐻2

𝑊
:

𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡 (·) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
Q𝑙K𝑙

√
𝑑

)
V𝑙 , (7)

𝐻1
𝑆 = 𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡 (𝑂𝑆 ) , 𝐻1

𝑊 = 𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡 (𝐶𝑊 ) , (8)

whereQ𝑙 ,K𝑙 ,V𝑙 denotes the same level feature as query/key/value.

𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡 (·) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
Q𝑚K𝑛

√
𝑑

)
V𝑛, (9)

𝐻2
𝑆 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡 (𝑂𝑆 ,𝐶𝑊 ) , 𝐻2

𝑊 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡 (𝐶𝑊 ,𝑂𝑆 ) , (10)

where𝑚 and 𝑛 denote different level features. In 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡 (·), the
first input is as query, and the second input is as key and value.

Then, we concatenate the different outputs separately and pro-
cess them through normalization and linear layers to obtain the
final Original Feature 𝑂𝐹 :

𝑂𝐹 = 𝑀𝐿𝑃𝐻

[
𝐿𝑁

(
𝐻1
𝑆 ⊕ 𝐻2

𝑆

)
⊕ 𝐿𝑁

(
𝐻1
𝑊 ⊕ 𝐻2

𝑊

)]
, (11)

where 𝐿𝑁 denotes the layer normalization operation and 𝑀𝐿𝑃𝐻
denotes the MLP layer.

On the other hand, We leverage the same method to calculate the
Sentence-Level Generate Feature𝐺𝑆 and Word-Level Text Feature
𝑇𝑊 and obtain the final Generate Feature 𝐺𝐹 :

𝐻3
𝑆
= 𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡 (𝐺𝑆 ) , 𝐻3

𝑊
= 𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡 (𝑇𝑊 ) , (12)

𝐻4
𝑆 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡 (𝐺𝑆 ,𝑇𝑊 ) , 𝐻4

𝑊 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡 (𝑇𝑊 ,𝐺𝑆 ) , (13)

𝐺𝐹 = 𝑀𝐿𝑃𝐻

[
𝐿𝑁

(
𝐻3
𝑆
⊕ 𝐻4

𝑆

)
⊕ 𝐿𝑁

(
𝐻3
𝑊

⊕ 𝐻4
𝑊

)]
. (14)

We believe that fine-grained alignment between different modal-
ities can be achieved through the Caption-Aware Module. Then, we
feed the Original Feature𝑂𝐹 , Generate Feature𝐺𝐹 , and Word-Level
Text Feature 𝑇𝑊 together into the Fusion Module, ensuring that
the model learns crucial task-related information from the text.



Caption-Aware Multimodal Relation Extraction with Mutual Information Maximization MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

3.3 Fusion Module
Wefirst perform cross-attention calculations on theOriginal Feature
𝑂𝐹 and Word-Level Text Feature 𝑇𝑊 to obtain the Original Fusion
Feature 𝑂 𝑓 𝑖𝑛𝑎𝑙 . Then, we use the same method to calculate the
Generate Feature 𝐺𝐹 and Word-Level Text Feature 𝑇𝑊 to obtain
the Generate Fusion Feature 𝐺 𝑓 𝑖𝑛𝑎𝑙 :

𝑂 𝑓 𝑖𝑛𝑎𝑙 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡 (𝑂𝑆 ,𝑇𝑊 ) , (15)

𝐺 𝑓 𝑖𝑛𝑎𝑙 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡 (𝐺𝑆 ,𝑇𝑊 ) . (16)

Finally, we concatenate 𝑂 𝑓 𝑖𝑛𝑎𝑙 and 𝐺 𝑓 𝑖𝑛𝑎𝑙 through the MLP
layers𝑀𝐿𝑃𝑓 𝑖𝑛𝑎𝑙 and obtain the final fusion feature is 𝐹𝑓 𝑖𝑛𝑎𝑙 :

𝐹𝑓 𝑖𝑛𝑎𝑙 = 𝑀𝐿𝑃𝑓 𝑖𝑛𝑎𝑙

(
𝑂 𝑓 𝑖𝑛𝑎𝑙 ⊕ 𝐺 𝑓 𝑖𝑛𝑎𝑙

)
. (17)

3.4 Classifier
Based on the above description, we obtain the final representation
𝐹𝑓 𝑖𝑛𝑎𝑙 and conduct a classifier layer for the relation extraction
task. Additionally, we leverage Mutual Information (MI) to capture
crucial clues during reasoning.

3.4.1 Relation Extraction. The goal of the relation extraction
task is to predict the relation 𝑟 from the labels 𝐿 between the subject
entity and object entity. Specifically, we leverage a [CLS] head to
aggregate the probability distribution over the set of relation labels
𝐿 with the softmax function. Finally, we calculate the RE loss with
the cross-entropy loss function:

𝑝 (𝑟 |𝑋 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑋 ), (18)

L𝑟𝑒 = −
𝑛∑︁
𝑖=1

log
(
𝑝

(
𝑟 |𝐹𝑓 𝑖𝑛𝑎𝑙

))
. (19)

3.4.2 Mutual Information. To capture modality-invariant clues
between different modalities and ensure the integrity of crucial
information related to the task, we leverage MI maximization be-
tween𝑂 𝑓 𝑖𝑛𝑎𝑙 and𝐺 𝑓 𝑖𝑛𝑎𝑙 . Inspired by Oord et al. [37] and Han et al.
[14], we leverage a score function 𝑠 (·) that acts on the normalized
prediction and truth vectors to gauge their correlation:

𝑂 𝑓 𝑖𝑛𝑎𝑙 =
𝑂 𝑓 𝑖𝑛𝑎𝑙𝑂 𝑓 𝑖𝑛𝑎𝑙


2
,𝐺 𝑓 𝑖𝑛𝑎𝑙 =

𝐺 𝑓 𝑖𝑛𝑎𝑙𝐺 𝑓 𝑖𝑛𝑎𝑙


2
, (20)

𝑠 (𝑂 𝑓 𝑖𝑛𝑎𝑙 ,𝐺 𝑓 𝑖𝑛𝑎𝑙 ) = exp
(
𝑂 𝑓 𝑖𝑛𝑎𝑙

(
𝐺 𝑓 𝑖𝑛𝑎𝑙

)𝑇 )
, (21)

where ∥·∥2 denotes the Euclidean Norm that we obtain unit-length
vectors by dividing it because the model intends to stretch both
vectors to maximize the score without this normalization. Similarly,
we incorporate this score function into the Noise-Contrastive Esti-
mation framework [13] by treating all other representations of that
modality in the same batch as negative samples:

L𝑐𝑒 = −E
log

𝑠 (𝑂 𝑓 𝑖𝑛𝑎𝑙 ,𝐺
𝑖
𝑓 𝑖𝑛𝑎𝑙

)∑
𝐺

𝑗

𝑓 𝑖𝑛𝑎𝑙
∈𝐺𝑓 𝑖𝑛𝑎𝑙

𝑠 (𝑂 𝑓 𝑖𝑛𝑎𝑙 ,𝐺
𝑗

𝑓 𝑖𝑛𝑎𝑙
)

 , (22)

where 𝐺𝑖
𝑓 𝑖𝑛𝑎𝑙

denotes one representation of the Generate Fusion

Feature𝐺 𝑓 𝑖𝑛𝑎𝑙 in a batch and𝐺 𝑗

𝑓 𝑖𝑛𝑎𝑙
denotes other representations

of the 𝐺 𝑓 𝑖𝑛𝑎𝑙 in the same batch.
We ask the Generate Fusion Feature𝐺 𝑓 𝑖𝑛𝑎𝑙 to reversely predict

representations of the Original Fusion Feature 𝑂 𝑓 𝑖𝑛𝑎𝑙 to pass more
modality-invariant information to 𝐺 𝑓 𝑖𝑛𝑎𝑙 and improve the perfor-
mance of the model. Finally, we obtain the loss L𝑐𝑒 between the
two features.

Finally, we calculate the weighted sum of all these losses to
obtain the main loss for the final:

L𝑟 = L𝑟𝑒 + 𝛼L𝑐𝑒, (23)

where 𝛼 are hyper-parameter that control the impact of MI max-
imization, meanwhile, L𝑟 denotes the final loss of the relation
extraction task.

4 Experiments
In the following section, we conduct experiments to evaluate our
method on a multimodal relation extraction task MRE.

4.1 Datasets
We evaluate the model on MNRE [65], which contains 12,247 /
1,624 / 1,614 samples in train / dev / test sets, 9,201 images, and
23 relation types. In the case of MRE, a correct extraction of the
relation between two entities occurs when the predicted relation
type aligns with the gold standard. We adopt Accuracy, Precision,
Recall, and F1 as the evaluation metrics. For fair comparisons, our
method leverages ResNet50 [16] as the visual backbone and BERT-
base [11] as the textual encoder.

4.2 Implementation Details
For the textual encoder of our CAMIM model, we leverage the
BERT-Base default tokenizer with a max length of 128 to preprocess
data. For the visual of our CAMIM model, we leverage ResNet50 to
encode the original images and object images from Chen et al. [6]
and translation images from Zheng et al. [64].

All optimizations are performed with the AdamW optimizer
with a linear warmup of learning rate over the first 10% of gradient
updates to a maximum value, then linear decay over the remainder
of the training. And weight decay on all non-biased parameters is
set to 0.01. We set the number of image objects m to 3.

Remarkably, our model performs based on both HVPNeT [6] and
TMR [64], which are previous state-of-the-art methods. On the one
hand, we leverage the same settings as HVPNeT, in which we fix
the batch size as 32 and learning rates as 3e-5. We train the model
for 30 epochs and do an evaluation after the 8th epoch. Moreover,
the dimension of the hidden states d is set to 768. The prompt
length and prompt dimension remain consistent with the HVPNeT
settings. On the other hand, we fix the batch size as 16 and learning
rates as 2e-5 which are consistent with TMR. In particular, we train
the model for 8 epochs. The dimension of the hidden states d is set
to 768. For both HVPNeT and TMR, we leverage the same captions
and mutual information methods. Specifically, we set the caption
length to 40 and uniformly use a bert-base-uncased encoding. For
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Table 1: Accuracy (%) comparison on MNRE testing set, CAM means the Caption-Aware Module, MI denotes the Mutual
Information. TMR and HVPNeT get the best result when using the caption generated by MiniCPM V2.5 and QWenVL-Plus.

Methods MNRE
Accuracy Precision Recall F1

Text Models
BERT (2019) 74.42 58.58 60.25 59.40
PCNN (2015) 73.15 62.85 49.69 55.49
MTB (2019) 75.69 64.46 57.81 60.86
Text+ Image Models
MoRe (2022) 79.87 65.25 67.32 66.27
MEGA (2021) 80.05 64.51 68.44 66.41
IFAformer (2023) 92.38 82.59 80.78 81.67
HVPNeT (2022) 92.52 83.64 80.78 81.85
TSVFN (2023) 92.67 85.16 82.07 83.02
MMIB (2024) - 83.49 82.97 83.23
MRE-ISE (2023) 94.06 84.69 83.38 84.03
MRE (2023) 93.54 85.03 84.25 84.64
PROMU (2023) - 84.95 85.76 84.86
TMR (2023) - 90.48 87.66 89.05
HVPNeT + MI 92.13 84.96 80.31 82.57
HVPNeT + CAM 92.87 84.03 82.19 83.10
HVPNeT + CAM + MI 93.56 85.26 84.06 84.66
TMR + MI 94.92 91.33 87.19 89.21
TMR + CAM 95.35 91.04 88.91 89.96
TMR + CAM + MI 95.79 (+1.73) 91.73 (+1.25) 90.16 (+2.50) 90.94 (+1.89)

the calculation of mutual information, we set the hyper-parameter
𝛼 to 0.1 which is analyzed in 4.5.

4.3 Baselines
We compare our method with the following baselines for a compre-
hensive comparison. The baselines consist of two categories:

Text-based RE methods that traditionally leverage merely the
texts of MRE data.

• BERT [11]: It is the first fine-tuning-based representation
model that reduces the need for many heavily-engineered task-
specific architectures.

• PCNN [56]: It devises a piecewise max pooling layer to capture
structural information between different entities.

• MTB [41]: It builds task-agnostic relation representations
solely from the entity-linked text.

Multimodal RE methods that leverage both text and image
contents of MRE data.

• MoRe [48]: It injects knowledge-aware information into mul-
timodal studies using multimodal retrieval.

• MEGA [65]: It employs an efficient alignment strategy for
textual and visual graphs to classify textual relations more precisely.

• IFAformer [30]: It proposes a method with an implicit fine-
grained multimodal alignment based on Transformer.

• HVPNeT [6]: It treats visual representations as visual pre-
fixes that can be inserted to guide textual representations of error-
insensitive prediction decisions.

• TSVFN [63]: It combines the powerful modeling capabilities
of graph neural networks and transformers networks to fully fuse
critical information between visual and textual modalities.

• MMIB [9]: It introduces Information Bottleneck to remove
noise in different modalities and aligns multimodal data.

•MRE-ISE [49]: It introduces a novel idea of simultaneous infor-
mation subtraction and addition for multimodal relation extraction.

• MRE [20]: It uses cross-modal retrieval for obtaining mul-
timodal evidence to improve prediction accuracy and synthesize
visual and textual information for relational reasoning.

• PROMU [18]: It enables the extraction of self-supervised sig-
nals from massive unlabeled image-caption pairs to pretrain multi-
modal fusion modules.

•TMR [64]: It implementsmultimodal versions of back-translation
and high-resource bridging, which provide a multi-view to the mis-
alignment between modalities.

4.4 Main Results
The experimental results of our CAMIM model and all baselines on
the MNRE testing set are presented in Table 1. It is easy to see our
method outperforms other SOTA methods.

Firstly, we can find that incorporating the visual features is gener-
ally helpful for the relation extraction task by comparing the SOTA
multimodal approaches with their reliance on pure text-based base-
lines. Due to the short and ambiguous characteristics of texts in
social media, it is difficult to identify entities and their relations in
a limited context.

Secondly, our model outperforms HVPNeT and TMR, which
leverage hierarchical visual representations or multimodal versions
of back-translation and high-resource bridging on the MRE task.
The former is a typical baseline in the field of multimodal relation
extraction. We add Caption-Aware Module and Mutual Information
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Table 2: Ablation study of different MLLMs and VLMs. CapAcc means the caption accuracy (%), and CapLen means the mean
caption length.

MLLM LLM CapAcc CapLen HVPNeT+CAMMI TMR+CAMMI
Accuracy Precision Recall F1 Accuracy Precision Recall F1

BLIP2 [29] Flan-T5-XXL 83.28 9 92.50 83.23 82.19 82.70 94.86 89.42 89.84 89.63
InstructBLIP [10] Vicuna-7B 94.10 11 92.25 83.92 81.56 82.73 94.98 90.11 89.69 89.90
LLaVA-NeXT [28] LLaMA3-8B 93.11 19 92.69 84.46 82.34 83.39 95.16 90.71 88.44 89.56
QWenVL-Plus [4] Qwen-LM 88.63 28 93.56 85.26 84.06 84.66 95.57 91.41 89.84 90.62
CogVLM2 [47] LLaMA3-8B 92.90 49 92.93 83.54 83.28 83.41 95.53 91.11 89.69 90.39

MiniCPM V2.5 [17] LLaMA3-8B 93.98 67 92.94 84.06 84.06 84.06 95.79 91.73 90.16 90.94

0.90

0.89

0.88

0.9062

0.8868
0.8887

0.8856

0.84

0.83

0.82

0.8466

0.8291

0.8169

0.90

0.89

0.88

0.8934

0.9062

0.8943

(a) (b) (c)

0.8969

Figure 4: (a) Ablation study of Mutual Information based on TMR. O: original features, G: generate features, ⊕: concatenation,
T: text features, F: final fusion features, 𝑎&𝑏: MI between a and b. (b) Ablation study of caption alignment method on HVPNeT.
Specifically, W&S denote caption alignment methods that leverage both sentence-level features and word-level features,
S denotes only leverages sentence-level features, and W denotes only leverages word-level features. (c) Ablation study of
Hyperparameter 𝛼 based on TMR.

without changing any parameter settings. Specifically, we retain
the method of visual prefixes and only add captions to interact
with visual features during the prefix processing to achieve better
alignment. At the same time, we calculate the mutual information
between the final features and visual information to ensure the
model preserves crucial information related to the task. As shown
in Table 1, compared with the results of HVPNeT, the F1 score
increases from 81.85% to 84.66%.

Similarly, we further add the Caption-Aware Module and Mutual
Information to the newest SOTA method TMR. We retain the back-
translation data processing and align the caption with the original
images. At the same time, since the translation images are derived
from textual data, we leverage text as the caption of the translation
images. Additionally, to ensure the crucial information between
the original images and the translation images remains unchanged,
we leverage mutual information calculation for them. As shown
in Table 1, compared with the results of TMR, the F1 score still
increases from 89.05% to 90.94%.

Therefore, the results indicate that our method, which introduces
detailed captions of the whole image, and mutual information that
can capture modality-invariant clues among modalities, is helpful
for relation extraction tasks and can achieve stable and excellent
results. Note that our method is pluggable and can be applied to
other MRE models.

4.5 Ablation Study
In this section, we conduct extensive experiments with the vari-
ants of our model to analyze the effectiveness of each component.
As shown in Table 1, our baseline methods contain HVPNeT and
TMR. Hence, we ablate our Caption-Aware Module and Mutual
Information on both of them.

4.5.1 Captions generated by different MLLMs. We test differ-
ent captions generated by the six latest MLLMs (LLaVA-NeXT [28],
QWenVL-Plus [4], CogVLM2 [47], MiniCPMV2.5 [17], among them,
CogVLM2 and MiniCPM V2.5 are open-source multimodal models
at the GPT-4V level.) and VLMs (BLIP-2 [29], Instruct-BLIP[10]). We
invite graduate students with strong English proficiency to check
the accuracy of the generated captions in the test set.

1)The accuracy of the generated captions is shown in Table.2.
Due to the poorer language ability of BLIP-2, the accuracy of the
generated caption is lower, and there are often some grammar
errors. In MLLMs, the most common mistakes are hallucinatory
problems. Additionally, the model with the captions generated by
MLLMs performs better than those generated by VLMs because of
the more detailed captions. Even with a few hallucination mistakes,
our model could select the most relevant information related to the
head and tail entities.

2)The performance of MLLMs in our models. The captions gen-
erated by QwenVL-Plus are of appropriate length and contain sub-
stantial content, which has already achieved a notably good effect.
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Text: @DeMathaCatholic: Among the 
unsung heroed of DeMatha: Mr.Pham.
Head: Pham
Tail:   DeMatha
True: /per/org/member_of

w/o MI: /per/loc/place_of_residence
w/o Caption: /per/per/alternate_names
CAMIM: /per/org/member_of

Caption: Mr. Pham, a maintenance worker at St. Matha's
School, stands confidently in an indoor setting with white
walls and blue accents.

Text: @steve_garelick: Why it’s best not 
to cut off the Police in Central London.
Head: Police
Tail: Central London
True: /org/loc/locate_at
w/o MI: None
w/o Caption: None
CAMIM: /org/loc/locate_at

Caption: A nighttime dashcam view of a busy city street
with police van leading traffic, surrounded by various
vehicles, buildings, and a crane.

Case 1 Case 2

Figure 5: Several cases predicted by HVPNeT.

However, MiniCPM V2.5 and CogVLM2 further enrich the captions
by incorporating more detailed entities, such as clothing, actions,
and behaviors of individuals. The results showed that the impact
of the captions generated by MLLMs fluctuated within the normal
range. In addition, the TMR+CAMIM with more detailed captions
generated by MiniCPM V2.5 achieved the current best performance.

4.5.2 Caption-Aware Module. The ablation of Caption-Aware
Module. The results in Table 1 show the CAM can boost model per-
formance both in HVPNeT and TMR. It also demonstrates detailed
captions of the whole image can assist the model in completing the
alignment operation and facilitate inference of correct relation.

Furthermore, as shown in Figure 4 (b), we conduct ablation stud-
ies of caption alignment methods on HVPNeT. We can intuitively
observe that the method of aligning captions using both word-level
features and sentence-level features simultaneously gains better
results. However, using any level of feature alone does not gain a
satisfactory effect. Therefore, it can be illustrated that both word-
level features and sentence-level features contain crucial semantic
information and can assist the model in reasoning.

4.5.3 Mutual Information. In Table 1, the results indicate that
the introduction of mutual information can stably improve the
performance on two baselines.

Furthermore, as shown in Figure 4 (a), we conduct ablation stud-
ies of mutual information based on TMR (O&G denotes mutual
information calculation between the Original features and Gener-
ate features, (O⊕G)&F: Visual concatenation result and Final fusion
feature, T&F: Text feature and Final fusion feature, (O⊕G)&T: Vi-
sual concatenation result and Text feature.). We can observe signif-
icant differences in the calculation results of mutual information
between different features. The MI result between original features
and generated features is the most obvious which means that there
may lose some critical information during reasoning. The poor
performance of mutual information between different modalities
suggests that visual and textual modalities contain different-level
semantic information, highlighting the need for joint reasoning
after alignment.

Summarily, mutual information can assist the model in captur-
ing modality-invariant clues between different modalities, and the
more significant the semantic information differences contained
in modalities, the better the ability of the model to capture them.
Finally, as shown in Figure 4 (c), we conduct ablation studies of

hyperparameter 𝛼 in {0.05, 0.1, 0.3, 0.5}, which is used in mutual
information calculation. We can easily observe that the best effect
is achieved when the value is 0.1.

4.6 Case Analysis
We conduct a case study of the Caption-Aware Module (CAM) and
Mutual Information Maximization (MI) with HVPNeT, as shown in
Figure.5.

In case 1, it is difficult for the model to understand the exacted
relation between the head and tail entities, and it is easy to find the
correct relation under the guidance of the given caption.

In case 2, the model struggles to identify Dematha’s attributes
and picks the wrong relation without CAM. The detailed caption,
specifically "Mr. Pham, a school maintenance worker at St. Matha’s
school" guides the model to the right relation. Yet, irrelevant details
abound. Lacking MI, the model may get distracted by these irrele-
vant features. Here, the excessive indoor setting in the caption could
mislead the model to choose “place-of-residence” without MI to
preserve critical information within different modalities. Concisely,
CAM ensures multi-grained alignment as the model might
not comprehend all entities. Meanwhile, MI is necessary to
retain critical information across modalities since not every
caption sentence is relevant.

5 Conclusions
In this paper, to solve the error sensitivity issues and the critical in-
formation loss issues, we propose a Caption-Aware Multimodal Re-
lation Extraction Network with Mutual Information Maximization
(CAMIM). The Caption-Aware Module introduces detailed image
captions generated from the Multimodal Large Language Model
(MLLM) to achieve fine-grained alignment between visual and tex-
tual information. The Mutual Information Maximization method is
designed to preserve crucial information between different modali-
ties. Experiments show that our CAMIM model outperforms the
state-of-the-art multimodal relation extraction models.
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