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Abstract
Counterfactual examples are widely used in001
natural language processing (NLP) as valuable002
data to improve models, and in explainable ar-003
tificial intelligence (XAI) to understand model004
behavior. The automated generation of coun-005
terfactual examples remains a challenging task006
even for large language models (LLMs), de-007
spite their impressive performance on many008
tasks. In this paper, we first introduce ZEROCF,009
a faithful approach for leveraging important010
words derived from feature attribution methods011
to generate counterfactual examples in a zero-012
shot setting. Second, we present a new frame-013
work, FITCF1, which further verifies aforemen-014
tioned counterfactuals by label flip verification015
and then inserts them as demonstrations for016
few-shot prompting, outperforming two state-017
of-the-art baselines. Through ablation studies,018
we identify the importance of each of FITCF’s019
core components in improving the quality of020
counterfactuals, as assessed through flip rate,021
perplexity, and similarity measures. Further-022
more, we show the effectiveness of LIME and023
Integrated Gradients as backbone attribution024
methods for FITCF and find that the number of025
demonstrations has the largest effect on perfor-026
mance. Finally, we reveal a strong correlation027
between the faithfulness of feature attribution028
scores and the quality of generated counterfac-029
tuals.030

1 Introduction031

The advent of increasingly complex and opaque032

LLMs has triggered a critical need for explainabil-033

ity and interpretability of such models. Counter-034

factuals, which are minimally edited inputs that035

yield different predictions compared to reference036

inputs (Miller, 2019; Ross et al., 2021; Madsen037

et al., 2022) are widely used in XAI and NLP. Ap-038

plications include creating new data points for im-039

proving models in terms of performance (Kaushik040

1Code: https://anonymous.4open.science/r/FitCF

Figure 1: Given an instance x from the AG News
dataset classified as “sci/tech”, our ZEROCF approach
generates few-shot examples, whose important words
are determined by LIME for a BERT model. FITCF then
generates a counterfactual x̃ on this basis. The edits to
original instance x are highlighted in orange, yielding x̃
which is classified as “business”.

et al., 2020; Sachdeva et al., 2024) and robustness 041

(Gardner et al., 2020; Ross et al., 2021) and under- 042

standing the black-box nature of models (Wu et al., 043

2021; Wang et al., 2024). Crowd-sourcing counter- 044

factuals can be costly, inefficient, and impractical 045

(Chen et al., 2023), particularly in specialized do- 046

main such as medicine. LLM-based counterfactual 047

generation offers a more efficient and scalable al- 048

ternative. Despite advancements in counterfactual 049

generation techniques and the demonstrated versa- 050

tility of LLMs across tasks (Wu et al., 2021; Bhan 051

et al., 2023; Li et al., 2024), the efficacy of LLMs 052
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in producing high-quality counterfactuals in a zero-053

shot setting, as well as the effective construction054

of valid counterfactuals as demonstrations to en-055

able few-shot prompting, remains an open question056

(Bhattacharjee et al., 2024b). Additionally, the057

combination of widely used interpretability meth-058

ods, with the goal to exploit their combined ben-059

efits, has been insufficiently explored within XAI060

research (Treviso et al., 2023; Baeumel et al., 2023;061

Bhan et al., 2023).062

To this end, we first present ZEROCF, a method063

to combine feature importance with counterfactual064

generation by leveraging important words identi-065

fied through feature attribution scores for a fine-066

tuned BERT (Devlin et al., 2019) on the target067

dataset, evaluated on four representative feature im-068

portance methods (§4.4). The generation of coun-069

terfactuals with ZEROCF is performed by prompt-070

ing LLMs with extracted important words in a zero-071

shot setting without any auxiliary counterfactual072

data (§3.1). We then propose the FITCF framework073

(Figure 1), which uses ZEROCF-generated coun-074

terfactuals following a label flip verification step075

as demonstrations for few-shot prompting without076

relying on human-crafted examples (§3.2).077

Secondly, we evaluate ZEROCF and FITCF on078

two NLP tasks - news topic classification and sen-079

timent analysis - using two baselines, POLYJUICE080

(Wu et al., 2021) and FIZLE (Bhattacharjee et al.,081

2024b). The automatic evaluation employs three082

automated metrics: Label flip rate, fluency, and edit083

distance. Both ZEROCF and FITCF significantly084

outperform POLYJUICE, with ZEROCF surpassing085

FIZLE in most cases and FITCF consistently ex-086

ceeding both baselines and ZEROCF.087

Thirdly, we perform ablation studies on three088

key components of FITCF: (1) Important words;089

(2) the number of demonstrations; (3) label flip090

verification. The results reveal that all three compo-091

nents contribute positively to improving the qual-092

ity of counterfactuals, as measured by label flip093

rate, fluency, and edit distance, with the number094

of demonstrations being the most influential. In095

addition, FITCF exhibits greater robustness and096

achieves higher overall quality when combined097

with LIME and SHAP compared to its combina-098

tion with Gradient and Integrated Gradients.099

Lastly, we conduct a correlation analysis be-100

tween the quality of generated counterfactuals and101

the faithfulness of feature attribution scores as used102

in ZEROCF and FITCF. The analysis reveals that103

LIME and SHAP can produce more faithful fea-104

ture attribution scores compared to Gradient and 105

Integrated Gradients. Furthermore, we observe a 106

strong correlation between the faithfulness of these 107

feature attribution scores and the quality of coun- 108

terfactuals generated by FITCF. 109

2 Related Work 110

Counterfactual Generation MICE generates 111

contrastive edits that change the prediction to 112

a given contrast prediction (Ross et al., 2021). 113

POLYJUICE uses a fine-tuned GPT-2 (Radford et al., 114

2019) to specify the type of edit needed to generate 115

counterfactual examples (Wu et al., 2021). DISCO 116

(Chen et al., 2023) uses the GPT-3 fill-in-the-blank 117

mode (Brown et al., 2020), which is not available in 118

most open-source LLMs (Chen et al., 2023). Bhat- 119

tacharjee et al. (2024a) identify the latent features 120

in the input text and the input features associated 121

with the latent features to generate counterfactual 122

examples, which is criticized due to the additional 123

level of complexity with no significant performance 124

gain (Delaunay et al., 2024). FIZLE (Bhattacharjee 125

et al., 2024b) shares the most similarity with FITCF 126

and uses LLMs as pseudo-oracles to generate coun- 127

terfactuals with the assistance of LLM-generated 128

important words in a zero-shot setting. 129

Combination of Interpretability Methods Re- 130

cent works have explored the possibility to com- 131

bine different XAI methods. Wang et al. (2021) 132

propose a feature importance-aware attack, which 133

disrupts important features that consistently influ- 134

ence the model’s decisions. Gressel et al. (2023) 135

identify perturbations in the feature space to pro- 136

duce evasion attacks. Treviso et al. (2023) present 137

the framework, CREST, to generate counterfactual 138

examples by combining rationalization with span- 139

level masked language modeling. Krishna et al. 140

(2023) employ various post-hoc explanations for 141

rationalization, extending beyond counterfactuals, 142

in contrast to CREST. Bhan et al. (2023) propose a 143

method to determine impactful input tokens with 144

respect to generated counterfactual examples. In 145

contrast, FITCF uses feature importance to guide 146

counterfactual example generation. 147

3 Methodology 148

3.1 ZEROCF 149

Bhattacharjee et al. (2024b) introduced FIZLE, 150

which generates counterfactuals in a zero-shot set- 151

ting by prompting the LLM with important words 152
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Figure 2: The upper part of the figure illustrates how counterfactuals are generated by ZEROCF using important
words extracted by the explainer (BERT) through various feature important methods (Gradient, Integrated Gradients,
LIME, SHAP). Lower part of the figure shows the pipeline of FITCF involving demonstrations selection, automatic
construction of counterfactual examples by ZEROCF, label flip verification, and counterfactual generation.

identified by the LLM itself. However, these ex-153

tracted words may be unfaithful or hallucinated (Li154

et al., 2023)2. To address this limitation, we pro-155

pose ZEROCF (Figure 2; examples are provided in156

Table 7), which relies on the most attributed words157

based on feature attribution scores determined by158

various explanation methods for the predictions of159

a BERT model fine-tuned on the target dataset. Fea-160

ture importance involves determining how signifi-161

cant an input feature is for a given output (Madsen162

et al., 2022), which we find to enhance the counter-163

factual generation process (§6.1).164

Prediction Given an input x from the dataset D,165

we leverage a BERT model MD fine-tuned on D3166

to obtain the prediction ypred for the given input x:167

ypred = MD(x) (1)168

Feature Attribution Scores Then we deploy an169

explainer E with access to the model MD, which170

employs various feature importance methods f171

(§4.4) to acquire feature attributions scores s based172

on the prediction ypred and the given input x:173

s = E(x, ypred, f,MD) (2)174

2Applying Llama3-8B with FIZLE on AG News, we find
that for 64.5% of the instances, a subset of generated important
words is hallucinated, i.e., absent from the original input.

3Detailed information, e.g., accuracy, about the deployed
BERT models is provided in Appendix B.

Counterfactual Generation Finally, we identify 175

the top-attributed words4 w based on feature attri- 176

bution scores s and deploy an LLM L in a zero-shot 177

setting to generate the counterfactual x̃ with the 178

prompt p (§A.1), which consists of task instruction 179

i, words w, the prediction ypred, and the input x: 180

x̃ = L(p) (3) 181

3.2 FITCF 182

While ZEROCF mitigates the issue of hallucinated 183

important words extracted by the LLM, the coun- 184

terfactuals generated by ZEROCF may fail to flip 185

the prediction, e.g., due to the limited capability 186

of zero-shot prompting (Brown et al., 2020). To 187

address it, we propose FITCF (Figure 1, Figure 2), 188

inspired by Auto-CoT (Zhang et al., 2023), which 189

combines two interpretability methods, feature im- 190

portance and counterfactual examples, leveraging 191

their complementary advantages and automatically 192

constructs demonstrations by ZEROCF incorporat- 193

ing label-flip verification. Verified demonstrations 194

subsequently enable few-shot prompting in FITCF. 195

top-k Examples Sampling In order to diversify 196

demonstration selection (An et al., 2023; Zhang 197

et al., 2023) and construct demonstrations auto- 198

matically, we first convert all instances from the 199

4The top attributed words are further post-processed by
replacing the “[CLS]” and “[SEP]” special tokens if any, with
the subsequent attributed words and by merging tokenized
subwords if one of them is a top attributed word.
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dataset D into sentence embeddings using SBERT5,200

and then apply k-means clustering on these sen-201

tence embeddings to form c clusters6. Afterwards,202

we select a total of k instances which are closest203

to the centroid of each cluster7. In such a way, we204

diversify the demonstrations, potentially mitigating205

any misleading effects caused by ZEROCF, which206

may produce flawed counterfactuals. Finally, ZE-207

ROCF is employed to generate counterfactuals for208

the k selected instances using simple heuristics.209

Label Flip Verification Subsequently, in order210

to validate the generated counterfactuals and to pre-211

vent incorrect counterfactuals from misleading the212

LLM (Turpin et al., 2023), we employ the same213

BERT model MD (§3.1) to make predictions on k214

generated counterfactuals C = {x̃1, x̃2, ..., x̃k} and215

the original input X = {x1, x2, ..., xk} individu-216

ally and assess whether the labels are inconsistent:217

∀i ∈ {1, 2, · · · , k} : ŷxi = MD(xi) (4)218
219

∀i ∈ {1, 2, · · · , k} : ŷx̃i = MD(x̃i) (5)220

The generated counterfactuals x̃i, where the pre-221

dicted labels remain consistent ŷx̃i = ŷxi , are ex-222

cluded from the demonstrations for further process223

to ensure the validity of the generated counterfac-224

tuals. In the end, we obtain m counterfactuals,225

where m ≤ k. To maintain a consistent number226

of demonstrations (ℓ) for each input, if m < ℓ,227

additional examples are iteratively selected based228

on their proximity to the cluster centroid, until the229

required number of demonstrations is achieved.230

Counterfactual Generation For a given input x,231

ℓ input-counterfactual pairs generated by ZEROCF232

are used as demonstrations, along with important233

words w extracted based on the feature attribution234

scores s generated by BERT (§3.1), to prompt the235

LLM to generate the counterfactual for the input x236

in a few-shot setting (Figure 2, §A.2).237

3.3 Considerations for Choice of Models238

In ZEROCF, feature attributions are generated for a239

BERT model’s predictions, based on which impor-240

tant words are then extracted(§3.1). Moreover, in241

FITCF, the same BERT model serves as a label flip242

verifier (§3.2). We emphasize that any model ca-243

pable of performing classification tasks effectively244

5https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

6Clustering visualizations are given in Appendix C.
7Selected examples and their corresponding counterfactu-

als for a given instance are provided in Appendix D.

can be used as a label flip verifier or for generating 245

feature attribution scores8. 246

4 Experimental Setup 247

4.1 Baselines 248

We employ the following two approaches as base- 249

lines for FITCF. 250

Polyjuice POLYJUICE allows users to control per- 251

turbation types and deploys a GPT-29 to generate 252

counterfactuals by framing the task as a conditional 253

text generation problem (Wu et al., 2021). 254

FIZLE FIZLE employs an LLM to identify im- 255

portant words and prompts the LLM with these 256

words in a zero-shot setting to generate counterfac- 257

tuals (Bhattacharjee et al., 2024b). 258

4.2 Dataset 259

Following Nguyen et al. (2024); Bhattacharjee et al. 260

(2024b), we demonstrate the validity of ZEROCF 261

and FITCF by applying them to two NLP tasks: 262

News topic classification and sentiment analysis10. 263

AG News AG News (Zhang et al., 2015) con- 264

tains news articles created by combining the titles 265

and description fields of articles from four cate- 266

gories: World, Sports, Business, and Sci/Tech. 267

SST2 SST2 (Socher et al., 2013) is part of the 268

larger Stanford Sentiment Treebank and focuses 269

specifically on binary sentiment classification of 270

natural language movie reviews. Each sentence is 271

labeled as either negative or positive. 272

4.3 Models for Counterfactual generation 273

We select three open source state-of-the-art in- 274

struction fine-tuned LLMs with increasing param- 275

eter sizes11: Llama3-8B (AI@Meta, 2024), and 276

Qwen2.5-{32B,72B} (Team, 2024). 277

8For encoder-only architectures like the BERT model em-
ployed in our study, tools like FERRET (Attanasio et al., 2023)
can be used to derive feature attribution scores (§4.4). For
encoder-decoder or decoder-only architectures, tools like IN-
SEQ (Sarti et al., 2023) can generate such scores.

9Although POLYJUICE utilizes a relatively small model,
GPT-2, for generating counterfactuals, we fairly consider it
a suitable baseline for FITCF, since the deployed GPT-2 is
fine-tuned on a counterfactual example dataset.

10Details on label distributions and example instances from
the datasets used can be found in Appendix E.

11More details about deployed models and inference time
are provided in Appendix F.
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4.4 Feature Importance278

FERRET (Attanasio et al., 2023) is a framework that279

provides post-hoc explanations for LLMs and can280

evaluate these explanations based on faithfulness281

and plausibility. We use FERRET to generate fea-282

ture attribution scores, selecting the following fea-283

ture importance methods f : Gradient (Simonyan284

et al., 2014), LIME (Ribeiro et al., 2016), Inte-285

grated Gradients (Sundararajan et al., 2017), and286

SHAP (Lundberg and Lee, 2017).287

5 Evaluation288

5.1 Automatic Evaluation289

The generated counterfactuals are evaluated using290

the following three automated metrics.291

Soft Label Flip Rate The Soft Label Flip Rate292

(SLFR) measures the frequency at which newly293

perturbed examples alter the original label to a294

different label (Ge et al., 2021; Nguyen et al., 2024;295

Bhattacharjee et al., 2024a). For a dataset with N296

instances, we calculate SLFR as follows:297

SLFR =
1

N

N∑
n=1

1(y
′
k ̸= yk)298

where 1 is the indicator function, yk is the original299

label and y
′
k is the predicted label after the pertur-300

bation. Note that we use the same LLM for both301

counterfactual generation and classification12.302

Perplexity Perplexity (PPL) is defined as the ex-303

ponential of the average negative log-likelihood304

of a sequence. PPL can measure the natural-305

ness of the text distribution and how fluently the306

model can output the next word given the previ-307

ous words (Fan et al., 2018). Given a sequence308

X = (x0, x1, · · · , xt), PPL of X is calculated as:309

PPL(X) = exp

{
1

t

t∑
i

log pθ(xi|x<i)

}
310

Following Wang et al. (2023); Nguyen et al. (2024);311

Bhattacharjee et al. (2024b), we deploy GPT-2 to312

calculate PPL in our experiments due to its proven313

effectiveness in capturing such text distributions.314

Textual Similarity (TS) The counterfactual x̃315

should be as similar as the original input x (Madaan316

et al., 2021), where lower distances indicate greater317

12The accuracy and error rate of the deployed LLMs, along
with the prompt instruction used are provided in Appendix G.

similarity. We use normalized word-level Leven- 318

shtein distances d to capture all edits, which is 319

widely used by the research community (Ross et al., 320

2021; Treviso et al., 2023): 321

TS =
1

N

N∑
i=1

d(xi, x̃i)

|xi|
(6) 322

5.2 Ablation Study 323

As illustrated in Figure 2, FITCF comprises three 324

core components: Important words; demonstra- 325

tions; and label flip verification. Accordingly, 326

we conduct a comprehensive ablation study to 327

evaluate the importance of each component indi- 328

vidually. The experiments are conducted using 329

Qwen2.5-72B, as Qwen2.5-72B particularly strug- 330

gles to generate high-quality counterfactual exam- 331

ples compared to Llama3-8B and Qwen2.5-32B 332

(Table 1, Table 3). 333

5.2.1 Effect of Important Words 334

To assess the contribution of important words 335

identified by BERT using different feature impor- 336

tance methods to counterfactual generation, we 337

conduct the experiment using FITCF omitting any 338

pre-identified important words. 339

5.2.2 Effect of Number of Demonstrations 340

In FITCF, as c clusters are obtained through clus- 341

tering, and due to the difficulty and complexity of 342

counterfactual example generation, we set the num- 343

ber of demonstrations to twice the number of clus- 344

ters (2c) for each dataset (§3.2; Figure 4), which 345

results in 10 demonstrations for AG News and 8 346

for SST2, respectively. To examine the effect of 347

the number of demonstrations and assess the neces- 348

sity of doubling the number of demonstrations to 349

2c, we further evaluate the quality of counterfactual 350

examples generated by FITCF, with the number of 351

demonstrations set to the number of clusters (c). 352

5.2.3 Effect of Label Flip Verification 353

To ensure the validity of the selected demonstra- 354

tions and prevent incorrect examples from mislead- 355

ing the LLM (Rubin et al., 2022; Turpin et al., 356

2023), FITCF incorporates a label flip verifier 357

(§3.2). This verifier is implemented using a fine- 358

tuned BERT model (Table 6) trained on the target 359

dataset. To assess the impact of label flip verifica- 360

tion, we conduct an ablation study by excluding 361

label flip verification for comparative analysis. 362
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M
od

el Dataset AG News (PPL = 95.72) SST2 (PPL = 309.53)
Approach Method SLFR ↑ PPL ↓ TS ↓ SLFR ↑ PPL ↓ TS ↓

GP
T2 POLYJUICE - 18.60% 121.76 0.50 29.00% 258.32 0.71

Ll
am

a3
-8

B
FIZLE - 93.50% 123.67 0.61 95.50% 202.22 0.52

ZEROCF Gradient 93.50% 102.56 0.38 97.50% 239.15 0.46
ZEROCF IG 95.50% 109.09 0.27 99.50% 222.51 0.42
ZEROCF LIME 97.50% 107.72 0.39 97.00% 264.91 0.42
ZEROCF SHAP 98.00% 99.08 0.27 94.00% 204.76 0.46
FITCF Gradient 94.50% 86.90 0.21 99.80% 159.57 0.47
FITCF IG 96.00% 87.67 0.23 100.00% 161.88 0.48
FITCF LIME 95.50% 75.15 0.19 100.00% 151.22 0.48
FITCF SHAP 94.00% 260.57 0.21 100.00% 157.36 0.49

Qw
en

2.
5-

32
B

FIZLE - 49.00% 53.07 1.14 86.80% 167.51 0.66
ZEROCF Gradient 68.00% 62.63 2.10 70.50% 205.06 0.48
ZEROCF IG 51.00% 60.45 0.76 91.00% 222.57 0.64
ZEROCF LIME 56.00% 63.75 0.84 90.50% 576.59 0.62
ZEROCF SHAP 55.50% 61.68 0.79 93.00% 191.00 0.60
FITCF Gradient 56.00% 62.97 0.73 89.00% 214.25 0.51
FITCF IG 57.50% 57.01 0.68 90.50% 221.64 0.49
FITCF LIME 56.00% 57.45 0.79 89.50% 174.34 0.52
FITCF SHAP 62.00% 57.64 0.78 89.50% 157.09 0.52

Qw
en

2.
5-

72
B

FIZLE - 21.50% 84.09 0.22 92.00% 257.91 0.43
ZEROCF Gradient 16.67% 74.19 0.21 88.50% 263.47 0.34
ZEROCF IG 24.50% 92.47 0.22 92.00% 281.10 0.46
ZEROCF LIME 23.00% 72.73 0.71 85.00% 289.20 0.30
ZEROCF SHAP 25.00% 73.92 0.74 86.50% 319.60 0.22
FITCF Gradient 77.00% 62.13 0.99 96.00% 595.71 0.38
FITCF IG 42.00% 63.54 0.33 95.00% 207.55 0.39
FITCF LIME 45.00% 61.54 0.35 96.50% 240.94 0.41
FITCF SHAP 38.96% 67.28 0.34 96.50% 590.94 0.39

Table 1: Automatic evaluation results of counterfactuals generated by FIZLE, ZEROCF, and FITCF with Llama3-8B,
Qwen2.5-32B, and Qwen2.5-72B using Soft Label Flip Rate (SLFR), Perplexity (PPL), and Textual Similarity (TS)
on AG News and SST2. Bold faced values indicate for each approach, which feature importance method is the
best performing according to the respective metric.

5.3 Correlation Analysis363

As we deploy various feature importance meth-364

ods to generate counterfactuals synergistically (Fig-365

ure 2), which can then be applied as demonstrations366

in FITCF, we investigate the correlation between367

the quality of the feature attribution scores and the368

quality of generated counterfactuals. The feature369

attribution scores are evaluated based on faithful-370

ness using FERRET (Attanasio et al., 2023). For371

faithfulness evaluation, we employ three metrics:372

comprehensiveness, sufficiency (DeYoung et al.,373

2020) and Kendall’s τ correlation with Leave-One-374

Out token removal (Jain and Wallace, 2019).375

6 Results376

6.1 Automatic Evaluation377

Table 1 demonstrates that our proposed approaches,378

ZEROCF and FITCF, consistently outperform379

POLYJUICE easily, which exhibits relatively low380

SLFR. For AG News dataset using Qwen2.5-32B,381

the edit distance is comparatively higher than 382

that of POLYJUICE, and the other baseline, FIZLE, 383

also shows a larger edit distance compared to 384

POLYJUICE. For SST2 dataset, Qwen2.5-72B tends 385

to generate counterfactuals that are less natural and 386

fluent when leveraging ZEROCF and FITCF. Inter- 387

estingly, Llama3-8B, the smallest model among 388

all evaluated LLMs, achieves the best overall per- 389

formance. In contrast, Qwen2.5-72B generally 390

underperforms compared to both Llama3-8B and 391

Qwen2.5-32B, as Qwen2.5-72B has a stronger ca- 392

pability to discern the underlying context, making 393

it less prone to flipping labels (App. D, Table 10). 394

Additionally, we observe that ZEROCF does 395

not outperform FIZLE in some cases, e.g., with 396

Qwen2.5-72B on SST2 dataset. However, in most 397

cases, ZEROCF offers noticeable advantages in en- 398

hancing the quality of counterfactuals compared to 399

FIZLE. Furthermore, we find that Integrated Gra- 400

dients and SHAP contribute more positively to the 401
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Dataset Method SLFR PPL TS
A

G
N

ew
s Gradient 41.50% (↓35.50%) 67.85 (↓5.72) 0.36 (↑0.63)

IG 37.50% (↓4.50%) 67.85 (↓4.31) 0.37 (↑0.62)
LIME 40.68% (↓4.32%) 66.08 (↓2.54) 0.35 (↑0.02)
SHAP 37.00% (↓1.96%) 84.14 (↓16.86) 0.51 (↓0.17)

S
S

T2

Gradient 93.50% (↓2.50%) 214.27 (↑381.44) 0.42 (↓0.04)
IG 95.00% (- 0.00%) 214.27 (↓6.72) 0.42 (↓0.02)

LIME 95.50% (↓1.00%) 278.78 (↓37.84) 0.41 (-0.00)
SHAP 96.00% (↓0.50%) 290.57 (↑-300.37) 0.43 (↓0.04)

Table 2: Automatic evaluation results of counterfactuals
generated by FITCF using Qwen2.5-72B, with demon-
strations generated by ZEROCF without specifying im-
portant words.

Dataset Method SLFR PPL TS

A
G

N
ew

s Gradient 13.50% (↓63.50%) 66.74 (↓4.61) 0.27 (↑0.72)
IG 15.50% (↓22.00 %) 64.28 (↓0.74) 0.27 (↑0.06)

LIME 18.00% (↓27.00%) 68.28 (↓6.74) 0.27 (↓0.08)
SHAP 14.00% (↓24.96%) 64.06 (↑3.22) 0.28 (↑0.06)

S
S

T2

Gradient 89.00% (↓7.00%) 235.08 (↑360.63) 0.36 (↑0.02)
IG 93.50% (↓1.50 %) 266.09 (↓58.54) 0.39 (-0.00)

LIME 91.50% (↓5.00%) 250.70 (↓9.76) 0.39 (↑0.02)
SHAP 92.00% (↓4.50%) 583.42 (↑7.52) 0.38 (↑0.01)

Table 3: Automatic evaluation results of counterfactuals
generated by FITCF with Qwen2.5-72B using c demon-
strations.

quality of counterfactuals, on average13, compared402

to other feature importance methods.403

Importantly, FITCF emerges as the most effective404

method for generating high-quality counterfactuals,405

consistently outperforming both baselines and ZE-406

ROCF across all evaluated settings, underscoring its407

robustness and effectiveness. This demonstrates the408

advantage of combining feature importance with409

the counterfactual generation process. Under the410

FITCF framework, Integrated Gradients and LIME411

illustrate superior performance in generating coun-412

terfactuals compared to the other two approaches.413

6.2 Ablation Study414

The results of the ablation studies are presented415

in Table 2, 3, 4, where for PPL and TS, an up-416

ward (downward) arrow signifies that a decrease417

(increase) in the value corresponds to an improve-418

ment (deterioration) in both metrics.419

6.2.1 Effect of Important Words420

Table 2 shows that for AG News, SLFR decreases421

across all methods, with the most significant de-422

cline observed when using Gradient. Concur-423

rently, PPL improves and edit distances generally424

increases, suggesting that the generated counterfac-425

tuals diverge more from the original text, except426

when using SHAP. In contrast, for SST2, SLFR427

13We do not consider the number of times a feature impor-
tance method achieves the maximum value in tables, but rather
the average ranking of a method across all datasets.

Dataset Method SLFR PPL TS

A
G

N
ew

s Gradient 34.00% (↓43.00%) 63.27 (↓1.14) 0.33 (↑0.66)
IG 40.50% (↓1.50%) 64.65 (↓1.11) 0.35 (↓0.02)

LIME 42.50% (↓2.50%) 65.23 (↓3.69) 0.35 (- 0.00)
SHAP 34.00% (↓4.96%) 65.30 (↑1.98) 0.34 (- 0.00)

S
S

T2

Gradient 94.50% (↓1.50%) 222.52 (↑373.19) 0.36 (↑0.02)
IG 94.50% (↓2.00%) 240.11 (↓32.56) 0.39 (- 0.00)

LIME 96.00% (↓0.50%) 245.79 (↓4.85) 0.40 (↑0.01)
SHAP 94.50% (↓2.00%) 281.65 (↑309.29) 0.38 (↑0.01)

Table 4: Automatic evaluation results of counterfactuals
generated by FITCF using Qwen2.5-72B, without label
flip verification.

remains consistently high, with slight decreases. 428

PPL exhibited mixed results, with both notable in- 429

creases and decreases depending on the method, 430

reflecting variability in fluency. Meanwhile, edit 431

distance either decreases or remains unchanged. 432

Overall, FITCF with SHAP demonstrates the high- 433

est robustness when important words are not speci- 434

fied, whereas Gradient is particularly sensitive to 435

the inclusion of important words. 436

6.2.2 Effect of Number of Demonstrations 437

As shown in Table 3, we find that the number of 438

demonstrations plays an critical role in the perfor- 439

mance of FITCF. For AG News, SLFR declines 440

precipitously when the number of clusters (c) is 441

used as the number of demonstrations (§5.2.2), 442

while the edit distance shows a slight improvement. 443

In comparison, for SST2, the degree of SLFR di- 444

minishment is less conspicuous. 445

Furthermore, Table 3 reveals that in general, 446

FITCF with Integrated Gradients and SHAP ex- 447

hibits greater robustness compared to Gradient and 448

LIME. In particular, FITCF with Gradient demon- 449

strates the highest sensitivity, with a strong de- 450

cline in quality as the number of demonstrations 451

decreases. 452

6.2.3 Effect of Label Flip Verification 453

Table 4 divulges trends similar to those observed 454

in Table 2 (§6.2.1). Omitting label flip verification 455

leads to decreases in SLFR across both datasets, 456

highlighting the importance of this step. However, 457

skipping label flip verification occasionally results 458

in lower PPL for certain methods, suggesting im- 459

proved fluency in some cases. 460

Meanwhile, the decrease in SLFR is more pro- 461

nounced for AG News, particularly with the Gra- 462

dient method, which shows the largest SLFR drop 463

alongside increases in PPL. Conversely, Integrated 464

Gradients and LIME present minimal impact on 465

SLFR, indicating a relative reliance on label flip 466

verification to maintain consistent performance. 467
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M
od

el Dataset AG News SST2
Method comp. suff. τ (loo) comp. suff. τ (loo)

Ll
am

a3

Gradient 0.20 0.13 0.06 0.21 0.25 -0.03
IG 0.38 0.03 0.07 -0.52 0.05 0.22

LIME 0.61 -0.02 0.16 0.68 0.02 0.29
SHAP 0.62 -0.02 0.16 0.60 0.03 0.25

Qw
en

-3
2B Gradient 0.12 0.12 0.07 0.20 0.23 -0.03

IG 0.32 0.03 0.05 0.50 0.04 0.21
LIME 0.53 -0.01 0.12 0.67 0.01 0.29
SHAP 0.53 -0.01 0.08 0.59 0.02 0.25

Qw
en

-7
2B Gradient 0.12 0.12 0.07 0.20 0.23 -0.03

IG 0.32 0.03 0.05 0.50 0.04 0.21
LIME 0.53 -0.01 0.12 0.67 0.01 0.29
SHAP 0.53 -0.01 0.07 0.59 0.02 0.25

Table 5: Faithfulness evaluation results based on
Comprehensiveness (comp.), Sufficiency (suff.) and
Kendall’s τ correlation with Leave-One-Out token re-
moval (τ (loo)) for counterfactuals generated by FITCF
using Llama3-8B, Qwen2.5-32B, and Qwen2.5-72B on
AG News and SST2 datasets.

6.3 Discussion468

Important words identified through feature attribu-469

tion scores for BERT are more effective and less470

prone to hallucination for counterfactual genera-471

tion compared to those self-generated by LLMs.472

Through ablation studies on the three core compo-473

nents of FITCF, we conclude that the number of474

demonstrations generated by ZEROCF has the most475

significant impact on the performance of FITCF.476

While specifying important words and applying la-477

bel flip verification also contribute to FITCF’s effec-478

tiveness, their influence is less marked compared479

to the number of demonstrations. While SLFR de-480

creases across three tables, the edit distance gets481

improved overall, except for SST, where no impor-482

tant words are specified. This indicates that without483

a certain component, the counterfactuals generated484

by FITCF are generally less edited, resulting in485

less successful label flips. Moreover, FITCF with486

Gradient proves to be the least robust, showing sub-487

stantial drops in SLFR, when any of the three com-488

ponents is removed. In contrast, FITCF with LIME489

and SHAP demonstrate greater robustness and con-490

sistently produce high-quality counterfactuals.491

6.4 Correlation Analysis492

From Table 5, we discover that LIME and SHAP493

consistently outperform Gradient and Integrated494

Gradients in terms of comprehensiveness and τ495

(loo) across all models and datasets, which aligns496

with our findings in §6.3. In addition, the com-497

prehensiveness and sufficiency scores exhibit less498

variation across three models for AG News, though499

they are generally lower than those for SST2. In500

Figure 3: A Kendall’s tau (τ ) that quantifies the degree
of correspondence between the ranking of generated
counterfactuals’ quality and the ranking of feature attri-
bution evaluation results is reported.

contrast, τ (loo) scores for SST2 are slightly higher 501

compared to AG News. Furthermore, for AG 502

News, a strong correlation (τ = 1) is observed 503

in Figure 3 between the quality of generated coun- 504

terfactuals and sufficiency, while for SST2, both 505

comprehensive and τ (loo) demonstrate notable cor- 506

relations with counterfactual quality. We conclude 507

that the faithfulness of feature attribution scores 508

is generally strongly correlated with the quality of 509

counterfactuals generated with the auxiliary assis- 510

tance of extracted important words using FITCF. 511

7 Conclusion 512

We first introduced ZEROCF, an approach that lever- 513

ages important words derived from feature attribu- 514

tion methods for counterfactual example genera- 515

tion in a zero-shot setting. Building on this, we 516

proposed FITCF, a framework that automatically 517

constructs high-quality demonstrations using ZE- 518

ROCF, eliminating the need for human-annotated 519

ground truth for counterfactual generation. FITCF 520

validates counterfactuals via label flip verification 521

for their suitability as demonstrations in a few-shot 522

setting. Empirically, FITCF outperforms two base- 523

lines POLYJUICE and FIZLE, and our own ZEROCF. 524

Through ablation studies, we identified the three 525

core components of FITCF - number of demon- 526

strations, important words, and label flip verifica- 527

tion - as critical to enhancing counterfactual quality. 528

Moreover, we evaluated the faithfulness of feature 529

attribution scores and found that LIME and Inte- 530

grated Gradients are the most effective feature im- 531

portance methods for FITCF, consistently produc- 532

ing the most faithful feature attribution scores. Fi- 533

nally, our analysis revealed a strong correlation be- 534

tween the faithfulness of feature attribution scores 535

and the quality of the generated counterfactuals. 536
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Limitations537

We conducted experiments exclusively using538

datasets in English. In other languages, the cur-539

rent approach may not offer the same advantages.540

The deployed BERT models perform well on fine-541

tuned tasks (Table 6). However, the LLMs used542

are not as effective as classifiers compared to BERT543

models (Table 10) (Shin et al., 2020). The quality544

of the generated counterfactual examples may be545

affected by the fact that, given an instance, LLMs546

perceive the label as flipped, even though the actual547

label is not flipped.548

In ZEROCF and FITCF, feature attribution scores549

are determined by an explanation method for the550

predictions of a BERT model fine-tuned on the target551

dataset and the same BERT model is used to verify552

label flips. The potential contribution of other lan-553

guage models to performing both tasks in ZEROCF554

and FITCF, however, remains unexplored.555

Future work includes investigating the correla-556

tion between additional dimensions of feature attri-557

bution scores, such as plausibility, coherence and558

insightfulness, and the quality of counterfactuals559

through user studies (Domnich et al., 2024). We560

also plan to explore the potential of language mod-561

els with architectures beyond encoder-only models562

as a foundation for feature attributions to be used563

in ZEROCF and FITCF.564
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A Prompt Instruction847

A.1 Prompt for ZEROCF848

You are an excellent assistant for text849

editing. You are given an input from the850

{dataset} dataset, classified into one of851

{len(labels)} categories:852

{', '.join(labels)}. The input belongs to853

the '{prediction}' category.854

{important_words} might be important words855

leading to the '{prediction}' category.856

857

Your task is to make minimal changes on the858

below provided input to alter the859

prediction category by carefully860

considering provided important words.861

Please output only the edited input.862

863

Input: {input_text}864

A.2 Prompt for FITCF865

You are an excellent assistant for text866

editing. You are given an input from the867

{dataset} dataset, classified into one of868

{len(labels)} categories:869

{', '.join(labels)}. The input belongs to870

the '{prediction}' category.871

{important_words} might be important words872

leading to the '{prediction}' category.873

874

Your task is to make minimal changes on the875

input provided below to alter the876

prediction category to '{counterpart}' by877

carefully considering provided important878

words and examples. Please output the879

edited input only!880

881

Below are some examples consisting of882

original and edited input.883

884

[original input] {original_input_1}885

[edit input] {edit_input_1}886

...887

[original input] {input_text}888

[edit input]889

B Detailed Information of Deployed BERT890

Table 6 displays BERT models used for AG News891

and SST2 datasets with their validation accuracies.892

As both BERT models demonstrate strong perfor-893

mance in accuracy, we can use them as classifiers894

(§3.1) and label flip verifiers (§3.2).895

(a) AG News

(b) SST2

Figure 4: Visualization of clustering in AG News and
SST2, where stars denote cluster centroids.

C Visualization of Clustering 896

Figure 4 visualizes the clustering of sentence em- 897

beddings from AG News, and SST2 datasets, with 898

their dimensions reduced to two using PCA. The 899

illustrations suggest that generic patterns already 900

exist, with instances from various clusters contribut- 901

ing to these patterns. 902

D Demonstration Selection by FITCF 903

Table 7 shows the most similar demonstrations se- 904

lected from each cluster, as shown in Figure 4 for 905

the question “Rivals Try to Turn Tables on Charles 906

Schwab By MICHAEL LIEDTKE SAN FRAN- 907

CISCO (AP) – With its low prices and iconoclas- 908

tic attitude, discount stock broker Charles Schwab 909

Corp. (SCH) represented an annoying stone in Wall 910

Street’s wing-tipped shoes for decades...” from AG 911

News. 912

The decrease in SLFR performance while us- 913

ing a strong LLM can be attributed to the ad- 914

12



Dataset Model Accuracy Link

AG News textattack/bert-base-uncased-ag-news 93.03% https://huggingface.co/textattack/bert-base-uncased-ag-news
SST2 gchhablani/bert-base-cased-finetuned-sst2 92.32% https://huggingface.co/gchhablani/bert-base-cased-finetuned-sst2

Table 6: BERT models used for AG News and SST2 datasets, with accuracy validated on their respective testsets.

Text Counterfactual

Bovina ends two-year wait. Seventh-seeded Rus-
sian Elena Bovina won her first title in two years
by beating France’s Nathalie Dechy 6-2 2-6 7-5 in
the final of the Pilot Pen tournament.

Bovina ends two-year wait. Seventh-seeded Rus-
sian Elena Bovina won her first title in two years
by beating France’s Nathalie Dechy 6-2 2-6 7-5 in
the final of the International Event .

Wall St.’s Nest Egg - the Housing Sector NEW
YORK (Reuters) - If there were any doubts that
we’re still living in the era of the stay-at-home
economy, the rows of empty seats at the Athens
Olympics should help erase them.

The Olympics - the Housing Sector NEW YORK
(Reuters) - If there were any doubts that we’re still
living in the era of the stay-at-home economy, the
rows of empty seats at the Athens Olympics should
help erase them.

French Take Gold, Bronze in Single Kayak
ATHENS, Greece - Winning on whitewater runs in
the family for Frenchman Benoit Peschier, though
an Olympic gold is something new. Peschier pad-
dled his one-man kayak aggressively but penalty
free in both his semifinal and final runs on the man-
made Olympic ...

French Take Gold, Bronze in Single
Kayaking Competition ATHENS, Greece -

Winning on whitewater runs in the family for
Frenchman Benoit Peschier, though an Olympic
gold is something new. Peschier paddled his
one-man kayak aggressively but without penalty in
both his semifinal and final runs on the man-made
Olympic course .

Japanese Utility Plans IPO in October (AP) AP
- Electric Power Development Co., a former state-
run utility, said Friday it is planning an initial
public offering on the Tokyo Stock Exchange in
October, a deal that could be the country’s biggest
new stock listing in six years.

Electric Power Development Co., a former state-
run utility, is planning an initial public offering on
the Tokyo Stock Exchange in October, a deal that
could be the country’s biggest new stock listing in
six years.

Afghan women make brief Olympic debut Afghan
women made a short-lived debut in the Olympic
Games on Wednesday as 18-year-old judo wild-
card Friba Razayee was defeated after 45 seconds
of her first match in the under-70kg middleweight.

Afghan women make brief debut in
international relations as 18-year-old Friba

Razayee was defeated after 45 seconds of her first
match in the under-70kg middleweight.

Table 7: The most similar demonstrations selected from each cluster for the question “Rivals Try to Turn Tables on
Charles Schwab By MICHAEL LIEDTKE SAN FRANCISCO (AP) – With its low prices and iconoclastic attitude,
discount stock broker Charles Schwab Corp. (SCH) represented an annoying stone in Wall Street’s wing-tipped
shoes for decades...” from AG News. Corresponding counterfactuals are generated by Qwen2.5-72B using ZEROCF.
Differences are marked in bold and edits are highlighted in red .

vanced contextual understanding of such models,915

e.g., Qwen2.5-72B. These models are more adept916

at discerning the underlying context of inputs and917

therefore less likely to incorrectly flip labels. For918

instance, as shown in Table 7, the second exam-919

ple remains clearly related to business, as the920

main topic—Housing Sector—is still evident, even921

though “Wall St.’s Nest Egg” is replaced with “The922

Olympic”.923

E Dataset 924

E.1 Label Distribution 925

Figure 5 shows the label distributions of AG News 926

and SST2 validation sets. 927

E.2 Dataset Example 928

Figure 6 demonstrates example instances and gold 929

labels from AG News and SST2 datasets. 930
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(a) AG News

(b) SST2

Figure 5: Label distribution of AG News and SST2.

Figure 6: Example instances from AG News and SST2.

F Experiment 931

F.1 Models 932

Table 8 demonstrates LLMs that are used for ZE- 933

ROCF and FITCF. To reduce memory consump- 934

tion, we use a GPTQ-quantized version (Frantar 935

et al., 2023). All LLMs are directly downloaded 936

from Huggingface and run on a single NVIDIA 937

RTXA6000, A100 or H100 GPU. 938

F.2 Inference Time 939

Table 9 shows inference time for ZEROCF 940

and FITCF using Llama3-8B, Qwen2.5-32B and 941

Qwen2.5-32B on AG News and SST2. 942

G Calculation of Label Flip Rate 943

We use the same LLM to serve as both the flip la- 944

bel verifier and the counterfactual generator (§5.1). 945

To validate deployed LLMs’ classification perfor- 946

mance, we evaluate them on the AG News and 947

SST2 datasets. Subsequently, we detail the prompt 948

instructions used for flip label verification. 949

G.1 Classification Performance of LLMs 950

Table 10 displays the accuracy score and error rate 951

on AG News and SST2 datasets using Llama3-8B, 952

Qwen2.5-32B, and Qwen2.5-72B. Our findings in- 953

dicate that Qwen2.5-32B demonstrates the best 954

classification performance with the lowest error 955

rate, whereas Llama3-8B has the poorest classifi- 956

cation performance. Notably, Qwen2.5-72B is the 957

only LLM that generates predictions outside the 958

predefined labels on SST2. 959

G.2 Prompt Instruction 960

You are an excellent assistant for text 961

classification. You are provided with an 962
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Name Citation Size Link

Llama3 AI@Meta (2024) 8B https://huggingface.co/meta-llama/Meta-Llama-3-8B
Qwen2.5 Team (2024) 32B https://huggingface.co/Qwen/Qwen2.5-32B-Instruct-GPTQ-Int4
Qwen2.5 Team (2024) 72B https://huggingface.co/Qwen/Qwen2.5-72B-Instruct-GPTQ-Int4

Table 8: Three open sourced LLMs used in ZEROCF and FITCF.

AG News SST2
ZEROCF FITCF ZEROCF FITCF

Llama3-8B 8h 13h 2h 5h
Qwen2.5-32B 9h 17h 7h 12h
Qwen2.5-72B 38h 47h 8h 16h

Table 9: Inference time for ZEROCF and FITCF using
Llama3-8B, Qwen2.5-32B and Qwen2.5-32B on AG
News and SST2.

original and an edited instance from the963

{dataset_name} dataset. Each instance964

belongs to one of {len(labels)} categories:965

{', '.join(labels)}. Determine if the966

predicted classifications of the original967

and edited instances are different.968

[original instance] '{instance}'969

[edited instance] '{counterfactual}'970

Respond with 'yes' if they are different.971

Response with 'no' if they are the same.972

Answer 'yes' or 'no' only!973
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Dataset Model Accuracy Error Rate

AG
News

Llama3-8B 72.39% 0.70%
Qwen2.5-32B 80.73% 0.28%
Qwen2.5-72B 79.12% 0.47%

SST2
Llama3-8B 89.75% 0.00%

Qwen2.5-32B 94.61% 0.00%
Qwen2.5-72B 94.27% 0.11%

Table 10: Accuracy score and error rate on AG News and SST2 datasets across three runs on the validation set
using Llama3-8B, Qwen2.5-32B, and Qwen2.5-72B in a zero-shot setting. The error rate is calculated by counting
the number of instances where the predicted label falls outside the pre-defined label set.

16


	Introduction
	Related Work
	Methodology
	ZeroCF
	FitCF
	Considerations for Choice of Models

	Experimental Setup
	Baselines
	Dataset
	Models for Counterfactual generation
	Feature Importance

	Evaluation
	Automatic Evaluation
	Ablation Study
	Effect of Important Words
	Effect of Number of Demonstrations
	Effect of Label Flip Verification

	Correlation Analysis

	Results
	Automatic Evaluation
	Ablation Study
	Effect of Important Words
	Effect of Number of Demonstrations
	Effect of Label Flip Verification

	Discussion
	Correlation Analysis

	Conclusion
	Prompt Instruction
	Prompt for ZeroCF
	Prompt for FitCF

	Detailed Information of Deployed BERT
	Visualization of Clustering
	Demonstration Selection by FitCF
	Dataset
	Label Distribution
	Dataset Example

	Experiment
	Models
	Inference Time

	Calculation of Label Flip Rate
	Classification Performance of LLMs
	Prompt Instruction


