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Abstract

In this paper, we apply the self-attention from the state-of-the-art Transformer in
Attention Is All You Need [88] for the first time to a data-driven operator learning
problem related to partial differential equations. An effort is put together to explain
the heuristics of, and to improve the efficacy of the attention mechanism. By
employing the operator approximation theory in Hilbert spaces, it is demonstrated
for the first time that the softmax normalization in the scaled dot-product attention
is sufficient but not necessary. Without softmax, the approximation capacity of a
linearized Transformer variant can be proved to be comparable to a Petrov-Galerkin
projection layer-wise, and the estimate is independent with respect to the sequence
length. A new layer normalization scheme mimicking the Petrov-Galerkin projec-
tion is proposed to allow a scaling to propagate through attention layers, which
helps the model achieve remarkable accuracy in operator learning tasks with unnor-
malized data. Finally, we present three operator learning experiments, including
the viscid Burgers’ equation, an interface Darcy flow, and an inverse interface
coefficient identification problem. The newly proposed simple attention-based
operator learner, Galerkin Transformer, shows significant improvements in both
training cost and evaluation accuracy over its softmax-normalized counterparts.

1 Introduction

Partial differential equations (PDEs) arise from almost every multiphysics and biological systems,
from the interaction of atoms to the merge of galaxies, from the formation of cells to the change
of climate. Scientists and engineers have been working on approximating the governing PDEs of
these physical systems for centuries. The emergence of the computer-aided simulation facilitates
a cost-friendly way to study these challenging problems. Traditional methods, such as finite el-
ement/difference [20, 22], spectral methods [12], etc., leverage a discrete structure to reduce an
infinite dimensional operator map to a finite dimensional approximation problem. Meanwhile, in the
field practice of many scientific disciplines, substantial data for PDE-governed phenomena available
on discrete grids enable modern black-box models like Physics-Informed Neural Network (PINN)
[71, 62, 49] to exploit measurements on collocation points to approximate PDE solutions.

Nonetheless, for traditional methods or data-driven function learners such as PINN, given a PDE,
the focus is to approximate a single instance, for example, solving for an approximated solution
for one coefficient with a fixed boundary condition. A slight change to this coefficient invokes a
potentially expensive re-training of any data-driven function learners. In contrast, an operator learner
aims to learn a map between infinite-dimensional function spaces, which is much more difficult
yet rewarding. A well-trained operator learner can evaluate many instances without re-training or
collocation points, thus saving valuable resources, and poses itself as a more efficient approach in
the long run. Data-driven resolution-invariant operator learning is a booming new research direction
[60, 5, 56, 64, 90, 57, 61, 91, 37, 74]. The pioneering model, DeepONet [60], attributes architecturally
to a universal approximation theorem for operators [18]. Fourier Neural Operator (FNO) [57] notably
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shows an awing state-of-the-art performance outclassing classic models such as the one in [100] by
orders of magnitudes in certain benchmarks.

Under a supervised setting, an operator learner is trained with the operator’s input functions and
their responses to the inputs as targets. Since both functions are sampled at discrete grid points,
this is a special case of a seq2seq problem [81]. The current state-of-the-art seq2seq model
is the Transformer first introduced in [88]. As the heart and soul of the Transformer, the scaled
dot-product attention mechanism is capable of unearthing the hidden structure of an operator by
capturing long-range interactions. Inspired by many insightful pioneering work in Transformers
[50, 19, 75, 84, 96, 97, 95, 59, 76, 66], we have modified the attention mechanism minimally yet in a
mathematically profound manner to better serve the purpose of operator learning.

Among our new Hilbert space-inspired adaptations of the scaled dot-product attention, the first
and foremost change is: no softmax, or the approximation thereof. In the vanilla attention [88],
the softmax succeeding the matrix multiplication convexifies the weights for combining different
positions’ latent representations, which is regarded as an indispensable ingredient in the positive
kernel interpretation of the attention mechanism [84]. However, softmax acts globally in the sequence
length dimension for each row of the attention matrix, and further adds to the quadratic complexity
of the attention in the classic Transformer. Theory-wise, instead of viewing “row ≈ word” in the
Natural Language Processing (NLP) tradition, the columns of the query/keys/values are seen as
sampling of functions in Hilbert spaces on discretized grids. Thus, taking the softmax away allows
us to verify a discrete Ladyzhenskaya–Babuška–Brezzi (LBB) condition, which further amounts to
the proof that the newly proposed Galerkin-type attention can explicitly represent a Petrov-Galerkin
projection, and this approximation capacity is independent of the sequence length (Theorem 4.3).

Numerically, the softmax-free models save valuable computational resources, outperforming the
ones with the softmax in terms of training FLOP and memory consumption (Section 5). Yet in an
ablation study, the training becomes unstable for softmax-free models (Table 8). To remedy this, a new
Galerkin projection-type layer normalization scheme is proposed to act as a cheap diagonal alternative
to the normalizations explicitly derived in the proof of the Petrov-Galerkin interpretation (equation
(40)). Since a learnable scaling can now be propagated through the encoder layers, the attention-
based operator learner with this new layer normalization scheme exhibits better comprehension of
certain physical properties associated with the PDEs such as the energy decay. Combining with other
approximation theory-inspired tricks including a diagonally dominant rescaled initialization for the
projection matrices and a layer-wise enrichment of the positional encodings, the evaluation accuracies
in various operator learning tasks are boosted by a significant amount.

Main contributions. The main contributions of this work are summarized as follows.

• Attention without softmax. We propose a new simple self-attention operator and its linear
variant without the softmax normalization. Two new interpretations are offered, together with the
approximation capacity of the linear variant proved comparable to a Petrov-Galerkin projection.

• Operator learner for PDEs. We combine the newly proposed attention operators with the current
best state-of-the-art operator learner Fourier Neural Operator (FNO) [57] to significantly improve
its evaluation accuracy in PDE solution operator learning benchmark problems. Moreover, the
new model is capable of recovering coefficients based on noisy measurements that traditional
methods or FNO cannot accomplish.

• Experimental results. We present three benchmark problems to show that operator learners
using the newly proposed attentions are superior in computational/memory efficiency, as well
as in accuracy versus those with the conventional softmax normalization. The PyTorch codes to
reproduce our results are available as an open-source software. 1

2 Related Works

Operator learners related to PDEs. In [4, 5], certain kernel forms of the solution operator of
parametric PDEs are approximated using graph neural networks. The other concurrent notable
approach is DeepONet [60, 61]. [56] further improves the kernel approach by exploiting the multilevel
grid structure. [57] proposes a discretization-invariant operator learner to achieve a state-of-the-art

1https://github.com/scaomath/galerkin-transformer
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performance in certain benchmark problems. [90, 91] proposed a DeepONet roughly equivalent to an
additive attention, similar to the one in the Neural Turing Machine (NMT) in [7]. Model/dimension
reduction combined with neural nets is another popular approach to learn the solution operator for
parametric PDEs [10, 64, 55, 24]. Deep convolutional neural networks (DCNN) are widely applied
to learn the solution maps with a fixed discretization size [1, 9, 40, 36, 35, 100, 86]. Recently, DCNN
has been successfully applied in various inverse problems [35, 47] such as Electrical Impedance
Tomography (EIT). To our best knowledge, there is no work on data-driven approaches to an inverse
interface coefficient identification for a class of coefficients with random interface geometries.

Attention mechanism and variants. Aside from the ground-breaking scaled dot-product attention
in [88], earlier [7] proposed an additive content-based attention, however, with a vanishing gradient
problem due to multiple nonlinearity composition. [25] shows the first effort in removing the softmax
normalization in [7] after the projection, however, it still uses a Sigmoid nonlinearity before the
additive interpolation propagation stage, and performs worse than its softmax counterpart. The
current prevailing approach to linearize the attention leverages the assumption of the existence of a
feature map to approximate the softmax kernel [50, 19, 70]. Another type of linearization exploits
the low-rank nature of the matrix product using various methods such as sampling or projection
[73, 11, 79, 92], or fast multipole decomposition [65]. The conjecture in [75] inspires us to remove
the softmax overall. [76] first proposed the inverse sequence length scaling normalization for a
linear complexity attention without the softmax, however, the scaling normalization has not been
extensively studied in examples and performs worse.

Various studies on Transformers. The kernel interpretation in [84] inspires us to reformulate the
attention using the Galerkin projection. [95, Theorem 2] gives a theoretical foundation of removing
the softmax normalization to formulate the Fourier-type attention. The Nyström approximation
[97] essentially acknowledges the similarity between the attention matrix and an integral kernel.
[96, 66, 59] inspires us to try different layer normalization and the rescaled diagonally dominant
initialization schemes. The practices of enriching the latent representations with the positional
encoding recurrently in our work trace back to [2, 26], and more recently, contribute to the success
of AlphaFold 2 [48], as it is rewarding to exploit the universal approximation if the target has a
dependence ansatz in the coordinate frame and/or transformation group but hard to be explicitly
quantified. Other studies on adapting the attention mechanisms to conserve important physical
properties are in [82, 31, 44].

3 Operator learning related to PDEs

Closely following the setup in [56, 57], we consider a data-driven model to approximate a densely-
defined operator T : H1 → H2 between two Hilbert spaces with an underlying bounded spacial
domain Ω ⊂ Rm. The operator T to be learned is usually related to certain physical problems, of
which the formulation is to seek the solution to a PDE of the following two types.

Parametric PDE: given coefficient a ∈ A, and source f ∈ Y , find u ∈ X such that La(u) = f .

(i) To approximate the nonlinear mapping from the varying parameter a to the solution with a
fixed right-hand side, T : A → X , a 7→ u.

(ii) The inverse coefficient identification problem to recover the coefficient from a noisy measure-
ment ũ of the steady-state solution u, in this case, T : X → A, ũ 7→ a.

Nonlinear initial value problem: given u0 ∈ H0, find u ∈ C([0, T ];H) such that ∂tu+N(u) = 0.

(iii) Direct inference from the initial condition to the solution. T : H0 → H, u0(·) 7→ u(t1, ·) with
t1 � ∆t with t1 much greater than the step-size in traditional explicit integrator schemes.

Using (i) as an example, based on the given N observations {a(j), u(j)}Nj=1 and their approximations

{a(j)
h , u

(j)
h } defined at a discrete grid of size h� 1, the goal of our operator learning problem is to

build an approximation Tθ to T , such that Tθ(ah) is a good approximation to u = L−1
a f =: T (a) ≈

uh independent of the mesh size h, where ah and uh are in finite dimensional spaces Ah,Xh on this
grid. We further assume that a(j) ∼ ν for a measure ν compactly supported on A, and the sampled
data form a reasonably sized subset of A representative of field applications. The loss J (θ) is

J (θ) := Ea∼ν
[
‖
(
Tθ(a)− u‖2H + G(a, u; θ)

]
(1)
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and in practice is approximated using the sampled observations on a discrete grid

J (θ) ≈ 1

N

N∑
j=1

{∥∥(Tθ(a(j)
h

)
− u(j)

h

∥∥2

H + G
(
a

(j)
h , u

(j)
h ; θ

)}
. (2)

In example (i), ‖·‖H is the standard L2-norm, and G(a, u; θ) serves as a regularizer with strength γ
and is problem-dependent. In Darcy flow where La := −∇ · (a∇(·)), it is γ‖a∇(Tθ(a)− u)‖2L2(Ω),
since u ∈ H1+α(Ω) (α > 0 depends on the regularity of a) and a∇u ∈H(div; Ω) a priori. For the
evaluation metric, we drop the G(a, u; θ) term, and monitor the minimization of (2) using ‖ · ‖H.

4 Attention-based operator learner

Feature extractor. We assume the functions in both inputs and targets are sampled on a uniform
grid. In an operator learning problem on Ω ⊂ R1, a simple feedforward neural network (FFN) is used
as the feature extractor that is shared by every position (grid point).

Interpolation-based CNN. If Ω ⊂ R2, inspired by the multilevel graph kernel network in [56],
we use two 3-level interpolation-based CNNs (CiNN) as the feature extractor, but also as the
downsampling and upsampling layer, respectively, in which we refer to restrictions/prolongations
between the coarse/fine grids both as interpolations. For the full details of the network structure
please refer to Appendix B.

Recurrent enrichment of positional encoding. The Cartesian coordinates of the grid, on which
the attention operator’s input latent representation reside, are concatenated as additional feature
dimension(s) to the input, as well as to each latent representation in every attention head.

Problem-dependent decoder. The decoder is a problem-dependent admissible network that maps
the learned representations from the encoder back to the target dimension. For smooth and regular
solutions in H1+α(Ω), we opt for a 2-layer spectral convolution that is the core component in [57].
A simple pointwise feedforward neural network (FFN) is used for nonsmooth targets in L∞(Ω).

4.1 Simple self-attention encoder
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=
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(a)
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Figure 1: Comparison of the vanilla attention [88] with the Galerkin-type simple self-attention in a
single head; (a) in the standard softmax attention, the softmax is applied row-wise after the matrix
product matmul; (b) a mesh-weighted normalization allows an integration-based interpretation.

The encoder contains a stack of identical simple attention-based encoder layers. For simplicity, we
consider a single attention head that maps y ∈ Rn×d to another element in Rn×d, and define the
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trainable projection matrices, and the latent representations Q/K/V as follows.
WQ,WK ,WV ∈ Rd×d, and Q := yWQ, K := yWK , V := yWV . (3)

We propose the following simple attention that (i) uses a mesh (inverse sequence length)-weighted
normalization without softmax, (ii) allows a scaling to propagate through the encoder layers.

Attnsp : Rn×d → Rn×d, ỹ← y + Attn†(y), y 7→ ỹ + g(ỹ), (4)
where the head-wise normalizations are applied pre-dot-product: for † ∈ {f, g},

(Fourier-type attention) z = Attnf(y) := (Q̃K̃>)V/n, (5)

(Galerkin-type attention) z = Attng(y) := Q(K̃>Ṽ )/n, (6)
and �̃ denotes a trainable non-batch-based normalization. As in the classic Transformer [88], and
inspired by the Galerkin projection interpretation, we choose �̃ as the layer normalization Ln(�),
and g(·) as the standard 2-layer FFN identically applied on every position (grid point). In simple
attentions, the weight for each row of V , or column of Q in the linear variant, is not all positive
anymore. This can be viewed as a cheap alternative to the cosine similarity-based attention.
Remark 4.1. If we apply the regular layer normalization rule that eliminates any scaling:

y 7→ Ln
(
y + Attn†(y) + g

(
Ln(y + Attn†(y))

))
, where Attn†(y) := Q(K>V )/n, (7)

then this reduces to the efficient attention first proposed in [76].

4.1.1 Structure-preserving feature map as a function of positional encodings

Consider an operator learning problem with an underlying domain Ω ⊂ R1. {xi}ni=1 denotes
the set of grid points in the discretized Ω such that the weight 1/n = h is the mesh size. Let
ζq(·), φk(·), ψv(·) : Ω → R1×d denote the feature maps of Q,K, V , i.e., the i-th row of Q,K, V
written as qi = ζq(xi), ki = φk(xi), vi = ψv(xi). They are, in the NLP convention, viewed as the
feature (embedding) vector at the i-th position, respectively. The inter-position topological structure
such as continuity/differentiability in the same feature dimension is learned thus not explicit. The
following ansatz for Q/K/V in the same attention head is fundamental to our new interpretations.
Assumption 4.2. The columns of Q/K/V , respectively, contain the vector representations of the
learned basis functions spanning certain subspaces of the latent representation Hilbert spaces.

Using V ∈ Rn×d with a full column rank as an example, its columns contain potentially a set of bases
{vj(·)}dj=1 evaluated at the grid points (degrees of freedom, or DoFs). Similarly, the learned bases
whose DoFs form the columns of Q,K are denoted as {qj(·)}dj=1, {kj(·)}dj=1, as well as {zj(·)}dj=1

for the outputs in (5) and (6). To be specific, the j-th column of V , denoted by vj , then stands for
a vector representation of the j-th basis function evaluated at each grid point, i.e., its l-th position
stands for (vj)l = vj(xl). Consequently, the row vi = (v1(xi), . . . , vd(xi)) can be alternatively
viewed as the evaluation of a vector latent basis function at xi.

4.1.2 Fourier-type attention of a quadratic complexity
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Figure 2: A dissection of Fourier-type attention’s output. Both matmuls have complexity O(n2d).

In the Fourier-type attention (5), Q,K are assumed to be normalized for simplicity, the j-th column
(1 ≤ j ≤ d) in the i-th row (1 ≤ i ≤ n) of z is computed by (see Figure 2):

(zi)j = h(QK>)i• v
j = h

(
qi · k1, . . . , qi · kl, . . . , qi · kn

)> · vj
= h

n∑
l=1

(qi · kl)(vj)l ≈
∫

Ω

(
ζq(xi) · φk(ξ)

)
vj(ξ) dξ,

(8)
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where the h-weight facilitates the numerical quadrature interpretation of the inner product. Concate-
nating columns 1 ≤ j ≤ d yields the i-row zi of the output z: zi ≈

∫
Ω

(
ζq(xi) · φk(ξ)

)
ψv(ξ) dξ.

Therefore, without the softmax nonlinearity, the local dot-product attention output at i-th row
computes approximately an integral transform with a non-symmetric learnable kernel function
κ(x, ξ) := ζq(x)φk(ξ) evaluated at xi, whose approximation property has been studied in [95,
Theorem 2], yet without the logits technicality due to the removal of the softmax normalization.

After the skip-connection, if we further exploit the learnable nature of the method and assume
WV = diag{δ1, · · · , δd} such that δj 6= 0 for 1 ≤ j ≤ d, under Assumption 4.2:

δ−1
j vj(x) ≈ zj(x)−

∫
Ω

κ(x, ξ)vj(ξ) dξ, for j = 1, · · · , d, and x ∈ {xi}ni=1. (9)

This is the forward propagation of the Fredholm equation of the second-kind for each vj(·). When
using an explicit orthogonal expansion such as Fourier to solve for {vj(·)}dj=1, or to seek for a better
set of {vj(·)} in our case, it is long known being equivalent to the Nyström’s method with numerical
integrations [8] (similar to the h = 1/n weighted sum). Therefore, the successes of the random
Fourier features in [19, 70] and the Nyströmformer’s approximation [97] are not surprising.

Finally, we name this type of simple attention “Fourier” is due to the striking resemblance between
the scaled dot-product attention and a Fourier-type kernel [30] integral transform, since eventually the
target resides in a Hilbert space with an underlying spacial domain Ω, while the latent representation
space parallels a “frequency” domain on Ω∗. This also bridges the structural similarity of the scaled
dot-product attention with the Fourier Neural Operator [57] where the Fast Fourier Transform (FFT)
can be viewed as a non-learnable change of basis.

4.1.3 Galerkin-type attention of a linear complexity
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Figure 3: A dissection of Galerkin-type attention’s output. Both matmuls have complexity O(nd2).

For the Galerkin-type simple attention in (6), K,V are assumed to be normalized for simplicity, we
first consider the i-th entry in the j-th column zj of z (see Figure 3):

(zj)i = h q>i · (K>V )•j , (10)

which is the inner product of the i-th row of Q and the j-th column of K>V . Thus,

zj = h

( | | | |
q1 q2 · · · qn
| | | |

)>
(K>V )•j = h

(K>V )>•j

 q1

...
qd

> (11)

This reads as: (K>V )•j contains the coefficients for the linear combination of the vector represen-
tations {ql}dl=1 of the bases stored in Q’s column space to form the output z. Meanwhile, the j-th
column (K>V )•j of K>V consists the inner product of j-th column of V with every column of K.

zj = h

d∑
l=1

ql(K>V )lj , where (K>V )•j =
(
k1 · vj ,k2 · vj , · · · ,kd · vj

)>
. (12)

As a result, using Assumption 4.2, and for simplicity the latent Hilbert spaces Q,K,V are assumed
to be defined on the same spacial domain Ω, i.e., kl(·), vj(·) evaluated at every xi are simply their
vector representations kl (1 ≤ l ≤ d) and vj , we have the functions represented by the columns of
the output z can be then compactly written as: rewriting 〈vj , kl〉 := (K>V )lj

zj(x) :=

d∑
l=1

〈vj , kl〉 ql(x), for j = 1, · · · , d, and x ∈ {xi}ni=1, (13)
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where the bilinear form 〈·, ·〉 : V × K → R. (13) can be also written in a componentwise form:

zj(xi) := (zj)i = h

d∑
l=1

(kl · vj)(ql)i ≈
d∑
l=1

(∫
Ω

vj(ξ)kl(ξ) dξ

)
ql(xi). (14)

Therefore, when {�j(·)}dj=1, � ∈ {q, k, v} consist approximations to three sets of bases for potentially
different subspaces, and if we set the trial spaces as the column spaces of Q and the test space as that
of K, respectively, the forward propagation of the Galerkin-type attention is a recast of a learnable
Petrov–Galerkin-type projection (cf. Appendix D.1) for every basis represented by the columns of V .
While the form of (14) suggests the orthonormality of the basis represented by Q,K, V , as well as
being of full column ranks, the learnable nature of the method suggests otherwise (see Appendix D).
At last, we have the following strikingly simple yet powerful approximation result.
Theorem 4.3 (Céa-type lemma, simplified version). Consider a Hilbert space H defined on a
bounded domain Ω ⊂ Rm discretized by n grid points, and f ∈ H. y ∈ Rn×d is the current latent
representation for n > d > m and full column rank. Qh ⊂ Q ⊂ H and Vh ⊂ V ⊂ H are the
latent approximation subspaces spanned by basis functions with the columns of Q and V in (3) as
degrees of freedom, respectively, and 0 < dimQh = r ≤ dimVh = d. Let b(·, ·) : V ×Q → R be
a continuous bilinear form, and if for any fixed q ∈ Qh the functional norm of b(·, q) is bounded
below by c > 0, then there exists a learnable map gθ(·) that is the composition of the Galerkin-type
attention operator with an updated set of projection matrices {WQ,WK ,WV }, and a pointwise
universal approximator, such that for fh ∈ Qh being the best approximation of f in ‖ · ‖H it holds:

‖f − gθ(y)‖H ≤ c−1 min
q∈Qh

max
v∈Vh

|b(v, fh − q)|
‖v‖H

+ ‖f − fh‖H. (15)

Remarks on and interpretations of the best approximation result. Theorem 4.3 states that the
Galerkin-type attention has the architectural capacity to represent a quasi-optimal approximation in
‖ · ‖H in the current subspace Qh. For the mathematically rigorous complete set of notations and the
full details of the proof we refer the readers to Appendix D.3. Even though Theorem 4.3 is presented
for a single instance of f ∈ H for simplicity, the proof shows that the attention operator is fully
capable of simultaneously approximating a collection of functions (Appendix D.3.4).

Estimate (15) comes with great scalability with respect to the sequence length in that it all boils down
to whether c is independent of n in the lower bound of ‖b(·, q)‖V′h . The existence of an n-independent
lower bound is commonly known as the discrete version of the Ladyzhenskaya–Babuška–Brezzi
(LBB) condition [21, Chapter 6.12], also referred as the Banach-Nečas-Babuška (BNB) condition in
Galerkin methods on Banach spaces [29, Theorem 2.6].

As the cornerstone of the approximation to many PDEs, the discrete LBB condition establishes the
surjectivity of a map from Vh to Qh. In a simplified context (15) above of approximating functions
using this linear attention variant (Q: values, query, V : keys), it roughly translates to: for an incoming
“query” (function f in a Hilbert space), to deliver its best approximator in “value” (trial function
space), the “key” (test function space) has to be sufficiently rich such that there exists a key to unlock
every possible value.

Dynamic basis update. Another perspective is to interpret the Galerkin-type dot-product attention
(14) as a change of basis: essentially, the new set of basis is the column space of Q, and how to
linearly combine the bases in Q is based on the inner product (response) of the corresponding feature
dimension’s basis in V against every basis in K. From this perspective (Q: values, K: keys, V :
query), we have the following result of a layer-wise dynamical change of basis: through testing
against the “keys”, a latent representation is sought such that “query” (input trial space) and “values”
(output trial space) can achieve the minimum possible difference under a functional norm; for details
and the proof please refer to Appendix D.3.4.
Theorem 4.4 (layer-wise dynamic basis update, simple version). Under the same assumption as
Theorem 4.3, it is further assumed that b(·, q) is bounded below on Kh ⊂ K = V ⊂ H and
a(·, ·) : V × K → R is continuous. Then, there exists a set of projection matrices to update the value
space {q̃l(·)}dl=1 ⊂ Qh = span{ql(·)}dl=1, for zj ∈ Qh (j = 1, · · · , d) obtained through the basis
update rule (14), it holds∥∥a(vj , ·)− b(·, zj)

∥∥
K′h
≤ min
q∈Qh

max
k∈Kh

|a(vj , k)− b(k, q)|
‖k‖K

. (16)
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The role of feed-forward networks and positional encodings in the dynamic basis update. Due
to the presence of the concatenated coordinates x := ‖ni=1xi ∈ Rn×m to the latent representation
y, the pointwise subnetwork gs(·) : Rn×m → Rn×d of the nonlinear universal approximator (FFN)
in each attention block is one among many magics of the attention mechanism. In every attention
layer, the basis functions in Qh/Kh/Vh are being constantly enriched by span{wj ∈ Xh : wj(xi) =
(gs(x))ij , 1 ≤ j ≤ d} ⊂ H, thus being dynamically updated to try to capture how an operator
of interest responses to the subset of inputs. Despite the fact that the FFNs, when being viewed
as a class of functions, bear no linear structure within, the basis functions produced this way act
as a building block to characterize a linear space for a learnable projection. This heuristic shows
to be effective when the target is assumed to be a function of the (relative) positional encodings
(coordinates, transformation groups, etc.), in that this is incorporated in many other attention-based
learners with applications in physical sciences [82, 31, 44, 48].

5 Experiments

In this section we perform a numerical study the proposed Fourier Transformer (FT) with the
Fourier-type encoder, and the Galerkin Transformer (GT) with the Galerkin-type encoder, in various
PDE-related operator learning tasks. The models we compare our newly proposed models with
are the operator learners with the simple attention replaced by the standard softmax normalized
scaled dot-product attention (ST) [88], and a linear variant (LT) [76] in which two independent
softmax normalizations are applied on Q,K separately.2 The data are obtained courtesy of the PDE
benchmark under the MIT license.3 For full details of the training/evaluation and model structures
please refer to Appendix C.

Instead of the standard Xavier uniform initialization [34], inspired by the interpretations of Theorem
4.3 in Appendix D.3.4, we modify the initialization for the projection matrices slightly as follows

W �init ← ηU + δI, for � ∈ {Q,K, V }, (17)

where U = (xij) is a random matrix using the Xavier initialization with gain 1 such that xij ∼
U([−

√
3/d,

√
3/d]), and δ is a small positive number. In certain operator learning tasks, we

found that this tiny modification boosts the evaluation performance of models by up to 50% (see
Appendix C.2) and improves the training stability acting as a cheap remedy to the lack of a softmax
normalization. We note that similar tricks have been discovered concurrently in [23].

Unsurprisingly, when compared the memory usage and the speed of the networks (Table 1), the
Fourier-type attention features a 40%–50% reduction in memory versus the attention with a softmax
normalization. The Galerkin attention-based models have a similar memory profile with the standard
linear attention, it offers up to a 120% speed boost over the linear attention in certain tests.

Table 1: The memory usage/FLOP/complexity comparison of the models. Batch size: 4; the CUDA
mem (GB): the sum of the self_cuda_memory_usage; GFLOP: Giga FLOP for 1 backpropagation
(BP); both are from the PyTorch autograd profiler for 1 BP averaging from 1000 BPs; the mem
(GB) is recorded from nvidia-smi of the memory allocated for the active Python process during
profiling; the speed (iteration per second) is measured during training; the exponential operation is
assumed to have an explicit complexity of ce > 1 [14].

Example 1: n = 8192 Encoders only: n = 8192, d = 128, l = 10 Computational complexity
of the dot-product per layerMem CUDA Mem Speed GFLOP Mem CUDA Mem Speed GFLOP

ST 18.39 31.06 5.02 1393 18.53 31.34 4.12 1876 O(n2ced)
FT 10.05 22.92 6.10 1138 10.80 22.32 5.46 1610 O(n2d)
LT 2.55 2.31 12.70 606 2.73 2.66 10.98 773 O(n(d2 + ced))
GT 2.36 1.93 27.15 275 2.53 2.33 19.20 412 O(nd2)

The baseline models for each example are the best operator learner to-date, the state-of-the-art
Fourier Neural Operator (FNO) in [57] but without the original built-in batch normalization. All
attention-based models match the parameter quota of the baseline, and are trained using the loss in

2https://github.com/lucidrains/linear-attention-transformer
3https://github.com/zongyi-li/fourier_neural_operator
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(2) with the same 1cycle scheduler [78] for 100 epochs. For fairness, we have also included the
results for the standard softmax normalized models (ST and LT) using the new layer normalization
scheme in (5) and (6). We have retrained the baseline with the same 1cycle scheduler using the
code provided in [57], and listed the original baseline results using a step scheduler of 500 epochs of
training from [57] Example 5.1 and Example 5.2, respectively.

5.1 Example 1: viscous Burgers’ equation

In this example, we consider a benchmark problem of the viscous Burgers’ equation with a periodic
boundary condition on Ω := (0, 1) in [57]. The nonlinear operator to be learned is the discrete
approximations to the solution operator T : C0

p(Ω) ∩ L2(Ω) → C0
p(Ω) ∩H1(Ω), u0(·) 7→ u(·, 1).

The initial condition u0(·)’s are sampled following a Gaussian Random Field (GRF).

The result can be found in Table 2a. All attention-based operator learners achieve a resolution-
invariant performance similar with FNO1d in [57]. The new Galerkin projection-type layer normal-
ization scheme significantly outperforms the regular layer normalization rule in this example, in
which both inputs and targets are unnormalized. For full details please refer to Appendix C.2.

5.2 Example 2: Darcy flow

In this example, we consider another well-known benchmark −∇ · (a∇u) = f for u ∈ H1
0 (Ω) from

[10, 57, 56, 64], and the operator to be learned is the approximations to T : L∞(Ω)→ H1
0 (Ω), a 7→ u,

in which a is the coefficient with a random interface geometry, and u is the weak solution. Here
L∞(Ω) is a Banach space and cannot be compactly embedded in L2(Ω) (a Hilbert space), we choose
to avoid this technicality as the finite dimensional approximation space can be embedded in L2(Ω)
given that Ω is compact.

The result can be found in Table 2b. As the input/output are normalized, in contrast to Example 5.1,
the Galerkin projection-type layer normalization scheme does not significantly outperform the regular
layer normalization rule in this example. The attention-based operator learners achieve on average
30% to 50% better evaluation results than the baseline FNO2d (only on the fine grid) using the same
trainer. For full details please refer to Appendix C.3.

Table 2: (a) Evaluation relative error (×10−3) of Burgers’ equation 5.1. (b) Evaluation relative error
(×10−2) of Darcy interface problem 5.2.

(a)

n = 512 n = 2048 n = 8192

FNO1d [57] 15.8 14.6 13.9
FNO1d 1cycle 4.373 4.126 4.151
FT regular Ln 1.400 1.477 1.172
GT regular Ln 2.181 1.512 2.747
ST regular Ln 1.927 2.307 1.981
LT regular Ln 1.813 1.770 1.617
FT Ln on Q,K 1.135 1.123 1.071
GT Ln on K,V 1.203 1.150 1.025
ST Ln on Q,K 1.271 1.266 1.330
LT Ln on K,V 1.139 1.149 1.221

(b)

nf , nc = 141, 43 nf , nc = 211, 61

FNO2d [57] 1.09 1.09
FNO2d 1cycle 1.419 1.424
FT regular Ln 0.838 0.847
GT regular Ln 0.894 0.856
ST regular Ln 1.075 1.131
LT regular Ln 1.024 1.130
FT Ln on Q,K 0.873 0.921
GT Ln on K,V 0.839 0.844
ST Ln on Q,K 0.946 0.959
LT Ln on K,V 0.875 0.970

5.3 Example 3: inverse coefficient identification for Darcy flow

In this example, we consider an inverse coefficient identification problem based on the same data
used in Example 5.2. The input (solution) and the target (coefficient) are reversed from Example
5.2, and the noises are added to the input. The inverse problems in practice are a class of important
tasks in many scientific disciplines such as geological sciences and medical imaging but much
more difficult due to poor stability [51]. We aim to learn an approximation to an ill-posed operator
T : H1

0 (Ω) → L∞(Ω), u + εNν(u) 7→ a, where Nν(u) stands for noises related to the sampling
distribution and the data. ε = 0.01 means 1% of noise added in both training and evaluation, etc.
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The result can be found in Table 3. It is not surprising that FNO2d, an excellent smoother which
filters higher modes in the frequency domain, struggles in this example to recover targets consisting of
high-frequency traits (irregular interfaces) from low-frequency prevailing data (smooth solution due
to ellipticity). We note that, the current state-of-the-art methods [16] for inverse interface coefficient
identification need to carry numerous iterations to recover a single instance of a simple coefficient
with a regular interface, provided that a satisfactory denoising has done beforehand. The attention-
based operator learner has capacity to unearth structurally how this inverse operator’s responses on a
subset, with various benefits articulated in [56, 57, 5, 64, 10].

Table 3: Evaluation relative error (×10−2) of the inverse problem 5.3.

nf , nc = 141, 36 nf , nc = 211, 71

ε = 0 ε = 0.01 ε = 0.1 ε = 0 ε = 0.01 ε = 0.1

FNO2d (only nf ) 13.71 13.78 15.12 13.93 13.96 15.04
FNO2d (only nc) 14.17 14.31 17.30 13.60 13.69 16.04

FT regular Ln 1.799 2.467 6.814 1.563 2.704 8.110
GT regular Ln 2.026 2.536 6.659 1.732 2.775 8.024
ST regular Ln 2.434 3.106 7.431 2.069 3.365 8.918
LT regular Ln 2.254 3.194 9.056 2.063 3.544 9.874

FT Ln on Q,K 1.921 2.717 6.725 1.523 2.691 8.286
GT Ln on K,V 1.944 2.552 6.689 1.651 2.729 7.903
ST Ln on Q,K 2.160 2.807 6.995 1.889 3.123 8.788
LT Ln on K,V 2.360 3.196 8.656 2.136 3.539 9.622

6 Conclusion

We propose a general operator learner based on a simple attention mechanism. The network is versatile
and is able to approximate both the PDE solution operator and the inverse coefficient identification
operator. The evaluation accuracy on the benchmark problems surpasses the current best state-of-
the-art operator learner Fourier Neural Operator (FNO) in [57]. However, we acknowledge the
limitation of this work: (i) similar to other operator learners, the subspace, on which we aim to
learn the operator’s responses, may be infinite dimensional, but the operator must exhibit certain
low-dimensional attributes (e.g., smoothing property of the higher frequencies in GRF); (ii) it is not
efficient for the attention operator to be applied at the full resolution for a 2D problem, and this limits
the approximation to a nonsmooth subset such as functions in L∞; (iii) due to the order of the matrix
product, the proposed linear variant of the scaled dot-product attention is non-causal thus can only
apply to encoder-only applications.

7 Broader Impact

Our work introduces the state-of-the-art self-attention mechanism the first time to PDE-related
operator learning problems. The new interpretations of attentions invite numerical analysts to work
on a more complete and delicate approximation theory of the attention mechanism. We have proved
the Galerkin-type attention’s approximation capacity in an ideal Hilbertian setting. Numerically, the
new attention-based operator learner has capacity to approximate the difficult inverse coefficient
identification problem with an extremely noisy measurements, which was not attainable using
traditional iterative methods for nonlinear mappings. Thus, our method may pose a huge positive
impact in geoscience, medical imaging, etc. Moreover, traditionally the embeddings in Transformer-
based NLP models map the words to a high dimensional space, but the topological structure in the
same feature dimension between different positions are learned thereby not efficient. Our proof
provides a theoretical guide for the search of feature maps that preserve, or even create, structures
such as differentiability or physical invariance. Thus, it may contribute to the removal of the softmax
nonlinearity to speed up significantly the arduous training or pre-training of larger encoder-only
models such as BERT [27], etc. However, we do acknowledge that our research may negatively
impact on the effort of building a cleaner future for our planet, as inverse problems are widely studied
in reservoir detection, and we have demonstrated that the attention-based operator learner could
potentially help to discover new fossil fuel reservoirs due to its capacity to infer the coefficients from
noisy measurements.
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