
Choose a Transformer: Fourier or Galerkin

Shuhao Cao
Department of Mathematics and Statistics

Washington University in St. Louis
s.cao@wustl.edu

Abstract

In this paper, we apply the self-attention from the state-of-the-art Transformer in
Attention Is All You Need [88] for the first time to a data-driven operator learning
problem related to partial differential equations. An effort is put together to explain
the heuristics of, and to improve the efficacy of the attention mechanism. By
employing the operator approximation theory in Hilbert spaces, it is demonstrated
for the first time that the softmax normalization in the scaled dot-product attention
is sufficient but not necessary. Without softmax, the approximation capacity of a
linearized Transformer variant can be proved to be comparable to a Petrov-Galerkin
projection layer-wise, and the estimate is independent with respect to the sequence
length. A new layer normalization scheme mimicking the Petrov-Galerkin projec-
tion is proposed to allow a scaling to propagate through attention layers, which
helps the model achieve remarkable accuracy in operator learning tasks with unnor-
malized data. Finally, we present three operator learning experiments, including
the viscid Burgers’ equation, an interface Darcy flow, and an inverse interface
coefficient identification problem. The newly proposed simple attention-based
operator learner, Galerkin Transformer, shows significant improvements in both
training cost and evaluation accuracy over its softmax-normalized counterparts.

1 Introduction

Partial differential equations (PDEs) arise from almost every multiphysics and biological systems,
from the interaction of atoms to the merge of galaxies, from the formation of cells to the change
of climate. Scientists and engineers have been working on approximating the governing PDEs of
these physical systems for centuries. The emergence of the computer-aided simulation facilitates
a cost-friendly way to study these challenging problems. Traditional methods, such as finite el-
ement/difference [20, 22], spectral methods [12], etc., leverage a discrete structure to reduce an
infinite dimensional operator map to a finite dimensional approximation problem. Meanwhile, in the
field practice of many scientific disciplines, substantial data for PDE-governed phenomena available
on discrete grids enable modern black-box models like Physics-Informed Neural Network (PINN)
[71, 62, 49] to exploit measurements on collocation points to approximate PDE solutions.

Nonetheless, for traditional methods or data-driven function learners such as PINN, given a PDE,
the focus is to approximate a single instance, for example, solving for an approximated solution
for one coefficient with a fixed boundary condition. A slight change to this coefficient invokes a
potentially expensive re-training of any data-driven function learners. In contrast, an operator learner
aims to learn a map between infinite-dimensional function spaces, which is much more difficult
yet rewarding. A well-trained operator learner can evaluate many instances without re-training or
collocation points, thus saving valuable resources, and poses itself as a more efficient approach in
the long run. Data-driven resolution-invariant operator learning is a booming new research direction
[60, 5, 56, 64, 90, 57, 61, 91, 37, 74]. The pioneering model, DeepONet [60], attributes architecturally
to a universal approximation theorem for operators [18]. Fourier Neural Operator (FNO) [57] notably

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

shows an awing state-of-the-art performance outclassing classic models such as the one in [100] by
orders of magnitudes in certain benchmarks.

Under a supervised setting, an operator learner is trained with the operator’s input functions and
their responses to the inputs as targets. Since both functions are sampled at discrete grid points,
this is a special case of a seq2seq problem [81]. The current state-of-the-art seq2seq model
is the Transformer first introduced in [88]. As the heart and soul of the Transformer, the scaled
dot-product attention mechanism is capable of unearthing the hidden structure of an operator by
capturing long-range interactions. Inspired by many insightful pioneering work in Transformers
[50, 19, 75, 84, 96, 97, 95, 59, 76, 66], we have modified the attention mechanism minimally yet in a
mathematically profound manner to better serve the purpose of operator learning.

Among our new Hilbert space-inspired adaptations of the scaled dot-product attention, the first
and foremost change is: no softmax, or the approximation thereof. In the vanilla attention [88],
the softmax succeeding the matrix multiplication convexifies the weights for combining different
positions’ latent representations, which is regarded as an indispensable ingredient in the positive
kernel interpretation of the attention mechanism [84]. However, softmax acts globally in the sequence
length dimension for each row of the attention matrix, and further adds to the quadratic complexity
of the attention in the classic Transformer. Theory-wise, instead of viewing “row ≈ word” in the
Natural Language Processing (NLP) tradition, the columns of the query/keys/values are seen as
sampling of functions in Hilbert spaces on discretized grids. Thus, taking the softmax away allows
us to verify a discrete Ladyzhenskaya–Babuška–Brezzi (LBB) condition, which further amounts to
the proof that the newly proposed Galerkin-type attention can explicitly represent a Petrov-Galerkin
projection, and this approximation capacity is independent of the sequence length (Theorem 4.3).

Numerically, the softmax-free models save valuable computational resources, outperforming the
ones with the softmax in terms of training FLOP and memory consumption (Section 5). Yet in an
ablation study, the training becomes unstable for softmax-free models (Table 8). To remedy this, a new
Galerkin projection-type layer normalization scheme is proposed to act as a cheap diagonal alternative
to the normalizations explicitly derived in the proof of the Petrov-Galerkin interpretation (equation
(40)). Since a learnable scaling can now be propagated through the encoder layers, the attention-
based operator learner with this new layer normalization scheme exhibits better comprehension of
certain physical properties associated with the PDEs such as the energy decay. Combining with other
approximation theory-inspired tricks including a diagonally dominant rescaled initialization for the
projection matrices and a layer-wise enrichment of the positional encodings, the evaluation accuracies
in various operator learning tasks are boosted by a significant amount.

Main contributions. The main contributions of this work are summarized as follows.

• Attention without softmax. We propose a new simple self-attention operator and its linear
variant without the softmax normalization. Two new interpretations are offered, together with the
approximation capacity of the linear variant proved comparable to a Petrov-Galerkin projection.

• Operator learner for PDEs. We combine the newly proposed attention operators with the current
best state-of-the-art operator learner Fourier Neural Operator (FNO) [57] to significantly improve
its evaluation accuracy in PDE solution operator learning benchmark problems. Moreover, the
new model is capable of recovering coefficients based on noisy measurements that traditional
methods or FNO cannot accomplish.

• Experimental results. We present three benchmark problems to show that operator learners
using the newly proposed attentions are superior in computational/memory efficiency, as well
as in accuracy versus those with the conventional softmax normalization. The PyTorch codes to
reproduce our results are available as an open-source software. 1

2 Related Works

Operator learners related to PDEs. In [4, 5], certain kernel forms of the solution operator of
parametric PDEs are approximated using graph neural networks. The other concurrent notable
approach is DeepONet [60, 61]. [56] further improves the kernel approach by exploiting the multilevel
grid structure. [57] proposes a discretization-invariant operator learner to achieve a state-of-the-art

1https://github.com/scaomath/galerkin-transformer

2

https://github.com/scaomath/galerkin-transformer

performance in certain benchmark problems. [90, 91] proposed a DeepONet roughly equivalent to an
additive attention, similar to the one in the Neural Turing Machine (NMT) in [7]. Model/dimension
reduction combined with neural nets is another popular approach to learn the solution operator for
parametric PDEs [10, 64, 55, 24]. Deep convolutional neural networks (DCNN) are widely applied
to learn the solution maps with a fixed discretization size [1, 9, 40, 36, 35, 100, 86]. Recently, DCNN
has been successfully applied in various inverse problems [35, 47] such as Electrical Impedance
Tomography (EIT). To our best knowledge, there is no work on data-driven approaches to an inverse
interface coefficient identification for a class of coefficients with random interface geometries.

Attention mechanism and variants. Aside from the ground-breaking scaled dot-product attention
in [88], earlier [7] proposed an additive content-based attention, however, with a vanishing gradient
problem due to multiple nonlinearity composition. [25] shows the first effort in removing the softmax
normalization in [7] after the projection, however, it still uses a Sigmoid nonlinearity before the
additive interpolation propagation stage, and performs worse than its softmax counterpart. The
current prevailing approach to linearize the attention leverages the assumption of the existence of a
feature map to approximate the softmax kernel [50, 19, 70]. Another type of linearization exploits
the low-rank nature of the matrix product using various methods such as sampling or projection
[73, 11, 79, 92], or fast multipole decomposition [65]. The conjecture in [75] inspires us to remove
the softmax overall. [76] first proposed the inverse sequence length scaling normalization for a
linear complexity attention without the softmax, however, the scaling normalization has not been
extensively studied in examples and performs worse.

Various studies on Transformers. The kernel interpretation in [84] inspires us to reformulate the
attention using the Galerkin projection. [95, Theorem 2] gives a theoretical foundation of removing
the softmax normalization to formulate the Fourier-type attention. The Nyström approximation
[97] essentially acknowledges the similarity between the attention matrix and an integral kernel.
[96, 66, 59] inspires us to try different layer normalization and the rescaled diagonally dominant
initialization schemes. The practices of enriching the latent representations with the positional
encoding recurrently in our work trace back to [2, 26], and more recently, contribute to the success
of AlphaFold 2 [48], as it is rewarding to exploit the universal approximation if the target has a
dependence ansatz in the coordinate frame and/or transformation group but hard to be explicitly
quantified. Other studies on adapting the attention mechanisms to conserve important physical
properties are in [82, 31, 44].

3 Operator learning related to PDEs

Closely following the setup in [56, 57], we consider a data-driven model to approximate a densely-
defined operator T : H1 → H2 between two Hilbert spaces with an underlying bounded spacial
domain Ω ⊂ Rm. The operator T to be learned is usually related to certain physical problems, of
which the formulation is to seek the solution to a PDE of the following two types.

Parametric PDE: given coefficient a ∈ A, and source f ∈ Y , find u ∈ X such that La(u) = f .

(i) To approximate the nonlinear mapping from the varying parameter a to the solution with a
fixed right-hand side, T : A → X , a 7→ u.

(ii) The inverse coefficient identification problem to recover the coefficient from a noisy measure-
ment ũ of the steady-state solution u, in this case, T : X → A, ũ 7→ a.

Nonlinear initial value problem: given u0 ∈ H0, find u ∈ C([0, T];H) such that ∂tu+N(u) = 0.

(iii) Direct inference from the initial condition to the solution. T : H0 → H, u0(·) 7→ u(t1, ·) with
t1 � ∆t with t1 much greater than the step-size in traditional explicit integrator schemes.

Using (i) as an example, based on the given N observations {a(j), u(j)}Nj=1 and their approximations

{a(j)
h , u

(j)
h } defined at a discrete grid of size h� 1, the goal of our operator learning problem is to

build an approximation Tθ to T , such that Tθ(ah) is a good approximation to u = L−1
a f =: T (a) ≈

uh independent of the mesh size h, where ah and uh are in finite dimensional spaces Ah,Xh on this
grid. We further assume that a(j) ∼ ν for a measure ν compactly supported on A, and the sampled
data form a reasonably sized subset of A representative of field applications. The loss J (θ) is

J (θ) := Ea∼ν
[
‖
(
Tθ(a)− u‖2H + G(a, u; θ)

]
(1)

3

and in practice is approximated using the sampled observations on a discrete grid

J (θ) ≈ 1

N

N∑
j=1

{∥∥(Tθ(a(j)
h

)
− u(j)

h

∥∥2

H + G
(
a

(j)
h , u

(j)
h ; θ

)}
. (2)

In example (i), ‖·‖H is the standard L2-norm, and G(a, u; θ) serves as a regularizer with strength γ
and is problem-dependent. In Darcy flow where La := −∇ · (a∇(·)), it is γ‖a∇(Tθ(a)− u)‖2L2(Ω),
since u ∈ H1+α(Ω) (α > 0 depends on the regularity of a) and a∇u ∈H(div; Ω) a priori. For the
evaluation metric, we drop the G(a, u; θ) term, and monitor the minimization of (2) using ‖ · ‖H.

4 Attention-based operator learner

Feature extractor. We assume the functions in both inputs and targets are sampled on a uniform
grid. In an operator learning problem on Ω ⊂ R1, a simple feedforward neural network (FFN) is used
as the feature extractor that is shared by every position (grid point).

Interpolation-based CNN. If Ω ⊂ R2, inspired by the multilevel graph kernel network in [56],
we use two 3-level interpolation-based CNNs (CiNN) as the feature extractor, but also as the
downsampling and upsampling layer, respectively, in which we refer to restrictions/prolongations
between the coarse/fine grids both as interpolations. For the full details of the network structure
please refer to Appendix B.

Recurrent enrichment of positional encoding. The Cartesian coordinates of the grid, on which
the attention operator’s input latent representation reside, are concatenated as additional feature
dimension(s) to the input, as well as to each latent representation in every attention head.

Problem-dependent decoder. The decoder is a problem-dependent admissible network that maps
the learned representations from the encoder back to the target dimension. For smooth and regular
solutions in H1+α(Ω), we opt for a 2-layer spectral convolution that is the core component in [57].
A simple pointwise feedforward neural network (FFN) is used for nonsmooth targets in L∞(Ω).

4.1 Simple self-attention encoder

mm LN LN mm add FFN add softmax

=

=

=

(a)

mm

LN

LN

mm add FFN add

=

=

=

(b)

Figure 1: Comparison of the vanilla attention [88] with the Galerkin-type simple self-attention in a
single head; (a) in the standard softmax attention, the softmax is applied row-wise after the matrix
product matmul; (b) a mesh-weighted normalization allows an integration-based interpretation.

The encoder contains a stack of identical simple attention-based encoder layers. For simplicity, we
consider a single attention head that maps y ∈ Rn×d to another element in Rn×d, and define the

4

trainable projection matrices, and the latent representations Q/K/V as follows.
WQ,WK ,WV ∈ Rd×d, and Q := yWQ, K := yWK , V := yWV . (3)

We propose the following simple attention that (i) uses a mesh (inverse sequence length)-weighted
normalization without softmax, (ii) allows a scaling to propagate through the encoder layers.

Attnsp : Rn×d → Rn×d, ỹ← y + Attn†(y), y 7→ ỹ + g(ỹ), (4)
where the head-wise normalizations are applied pre-dot-product: for † ∈ {f, g},

(Fourier-type attention) z = Attnf(y) := (Q̃K̃>)V/n, (5)

(Galerkin-type attention) z = Attng(y) := Q(K̃>Ṽ)/n, (6)
and �̃ denotes a trainable non-batch-based normalization. As in the classic Transformer [88], and
inspired by the Galerkin projection interpretation, we choose �̃ as the layer normalization Ln(�),
and g(·) as the standard 2-layer FFN identically applied on every position (grid point). In simple
attentions, the weight for each row of V , or column of Q in the linear variant, is not all positive
anymore. This can be viewed as a cheap alternative to the cosine similarity-based attention.
Remark 4.1. If we apply the regular layer normalization rule that eliminates any scaling:

y 7→ Ln
(
y + Attn†(y) + g

(
Ln(y + Attn†(y))

))
, where Attn†(y) := Q(K>V)/n, (7)

then this reduces to the efficient attention first proposed in [76].

4.1.1 Structure-preserving feature map as a function of positional encodings

Consider an operator learning problem with an underlying domain Ω ⊂ R1. {xi}ni=1 denotes
the set of grid points in the discretized Ω such that the weight 1/n = h is the mesh size. Let
ζq(·), φk(·), ψv(·) : Ω → R1×d denote the feature maps of Q,K, V , i.e., the i-th row of Q,K, V
written as qi = ζq(xi), ki = φk(xi), vi = ψv(xi). They are, in the NLP convention, viewed as the
feature (embedding) vector at the i-th position, respectively. The inter-position topological structure
such as continuity/differentiability in the same feature dimension is learned thus not explicit. The
following ansatz for Q/K/V in the same attention head is fundamental to our new interpretations.
Assumption 4.2. The columns of Q/K/V , respectively, contain the vector representations of the
learned basis functions spanning certain subspaces of the latent representation Hilbert spaces.

Using V ∈ Rn×d with a full column rank as an example, its columns contain potentially a set of bases
{vj(·)}dj=1 evaluated at the grid points (degrees of freedom, or DoFs). Similarly, the learned bases
whose DoFs form the columns of Q,K are denoted as {qj(·)}dj=1, {kj(·)}dj=1, as well as {zj(·)}dj=1

for the outputs in (5) and (6). To be specific, the j-th column of V , denoted by vj , then stands for
a vector representation of the j-th basis function evaluated at each grid point, i.e., its l-th position
stands for (vj)l = vj(xl). Consequently, the row vi = (v1(xi), . . . , vd(xi)) can be alternatively
viewed as the evaluation of a vector latent basis function at xi.

4.1.2 Fourier-type attention of a quadratic complexity

-th row

-th row

-th
 c

ol
um

n

-th row

-th
 c

ol
um

n

-th
 c

ol
um

n

-th
 c

ol
um

n

-th
 c

ol
um

n

Figure 2: A dissection of Fourier-type attention’s output. Both matmuls have complexity O(n2d).

In the Fourier-type attention (5), Q,K are assumed to be normalized for simplicity, the j-th column
(1 ≤ j ≤ d) in the i-th row (1 ≤ i ≤ n) of z is computed by (see Figure 2):

(zi)j = h(QK>)i• v
j = h

(
qi · k1, . . . , qi · kl, . . . , qi · kn

)> · vj
= h

n∑
l=1

(qi · kl)(vj)l ≈
∫

Ω

(
ζq(xi) · φk(ξ)

)
vj(ξ) dξ,

(8)

5

where the h-weight facilitates the numerical quadrature interpretation of the inner product. Concate-
nating columns 1 ≤ j ≤ d yields the i-row zi of the output z: zi ≈

∫
Ω

(
ζq(xi) · φk(ξ)

)
ψv(ξ) dξ.

Therefore, without the softmax nonlinearity, the local dot-product attention output at i-th row
computes approximately an integral transform with a non-symmetric learnable kernel function
κ(x, ξ) := ζq(x)φk(ξ) evaluated at xi, whose approximation property has been studied in [95,
Theorem 2], yet without the logits technicality due to the removal of the softmax normalization.

After the skip-connection, if we further exploit the learnable nature of the method and assume
WV = diag{δ1, · · · , δd} such that δj 6= 0 for 1 ≤ j ≤ d, under Assumption 4.2:

δ−1
j vj(x) ≈ zj(x)−

∫
Ω

κ(x, ξ)vj(ξ) dξ, for j = 1, · · · , d, and x ∈ {xi}ni=1. (9)

This is the forward propagation of the Fredholm equation of the second-kind for each vj(·). When
using an explicit orthogonal expansion such as Fourier to solve for {vj(·)}dj=1, or to seek for a better
set of {vj(·)} in our case, it is long known being equivalent to the Nyström’s method with numerical
integrations [8] (similar to the h = 1/n weighted sum). Therefore, the successes of the random
Fourier features in [19, 70] and the Nyströmformer’s approximation [97] are not surprising.

Finally, we name this type of simple attention “Fourier” is due to the striking resemblance between
the scaled dot-product attention and a Fourier-type kernel [30] integral transform, since eventually the
target resides in a Hilbert space with an underlying spacial domain Ω, while the latent representation
space parallels a “frequency” domain on Ω∗. This also bridges the structural similarity of the scaled
dot-product attention with the Fourier Neural Operator [57] where the Fast Fourier Transform (FFT)
can be viewed as a non-learnable change of basis.

4.1.3 Galerkin-type attention of a linear complexity

-th row

-th row

-th
 c

ol
um

n

-th
 c

ol
um

n

-th
 c

ol
um

n -th
 c

ol
um

n

Figure 3: A dissection of Galerkin-type attention’s output. Both matmuls have complexity O(nd2).

For the Galerkin-type simple attention in (6), K,V are assumed to be normalized for simplicity, we
first consider the i-th entry in the j-th column zj of z (see Figure 3):

(zj)i = h q>i · (K>V)•j , (10)

which is the inner product of the i-th row of Q and the j-th column of K>V . Thus,

zj = h

(| | | |
q1 q2 · · · qn
| | | |

)>
(K>V)•j = h

(K>V)>•j

 q1

...
qd

> (11)

This reads as: (K>V)•j contains the coefficients for the linear combination of the vector represen-
tations {ql}dl=1 of the bases stored in Q’s column space to form the output z. Meanwhile, the j-th
column (K>V)•j of K>V consists the inner product of j-th column of V with every column of K.

zj = h

d∑
l=1

ql(K>V)lj , where (K>V)•j =
(
k1 · vj ,k2 · vj , · · · ,kd · vj

)>
. (12)

As a result, using Assumption 4.2, and for simplicity the latent Hilbert spaces Q,K,V are assumed
to be defined on the same spacial domain Ω, i.e., kl(·), vj(·) evaluated at every xi are simply their
vector representations kl (1 ≤ l ≤ d) and vj , we have the functions represented by the columns of
the output z can be then compactly written as: rewriting 〈vj , kl〉 := (K>V)lj

zj(x) :=

d∑
l=1

〈vj , kl〉 ql(x), for j = 1, · · · , d, and x ∈ {xi}ni=1, (13)

6

where the bilinear form 〈·, ·〉 : V × K → R. (13) can be also written in a componentwise form:

zj(xi) := (zj)i = h

d∑
l=1

(kl · vj)(ql)i ≈
d∑
l=1

(∫
Ω

vj(ξ)kl(ξ) dξ

)
ql(xi). (14)

Therefore, when {�j(·)}dj=1, � ∈ {q, k, v} consist approximations to three sets of bases for potentially
different subspaces, and if we set the trial spaces as the column spaces of Q and the test space as that
of K, respectively, the forward propagation of the Galerkin-type attention is a recast of a learnable
Petrov–Galerkin-type projection (cf. Appendix D.1) for every basis represented by the columns of V .
While the form of (14) suggests the orthonormality of the basis represented by Q,K, V , as well as
being of full column ranks, the learnable nature of the method suggests otherwise (see Appendix D).
At last, we have the following strikingly simple yet powerful approximation result.
Theorem 4.3 (Céa-type lemma, simplified version). Consider a Hilbert space H defined on a
bounded domain Ω ⊂ Rm discretized by n grid points, and f ∈ H. y ∈ Rn×d is the current latent
representation for n > d > m and full column rank. Qh ⊂ Q ⊂ H and Vh ⊂ V ⊂ H are the
latent approximation subspaces spanned by basis functions with the columns of Q and V in (3) as
degrees of freedom, respectively, and 0 < dimQh = r ≤ dimVh = d. Let b(·, ·) : V ×Q → R be
a continuous bilinear form, and if for any fixed q ∈ Qh the functional norm of b(·, q) is bounded
below by c > 0, then there exists a learnable map gθ(·) that is the composition of the Galerkin-type
attention operator with an updated set of projection matrices {WQ,WK ,WV }, and a pointwise
universal approximator, such that for fh ∈ Qh being the best approximation of f in ‖ · ‖H it holds:

‖f − gθ(y)‖H ≤ c−1 min
q∈Qh

max
v∈Vh

|b(v, fh − q)|
‖v‖H

+ ‖f − fh‖H. (15)

Remarks on and interpretations of the best approximation result. Theorem 4.3 states that the
Galerkin-type attention has the architectural capacity to represent a quasi-optimal approximation in
‖ · ‖H in the current subspace Qh. For the mathematically rigorous complete set of notations and the
full details of the proof we refer the readers to Appendix D.3. Even though Theorem 4.3 is presented
for a single instance of f ∈ H for simplicity, the proof shows that the attention operator is fully
capable of simultaneously approximating a collection of functions (Appendix D.3.4).

Estimate (15) comes with great scalability with respect to the sequence length in that it all boils down
to whether c is independent of n in the lower bound of ‖b(·, q)‖V′h . The existence of an n-independent
lower bound is commonly known as the discrete version of the Ladyzhenskaya–Babuška–Brezzi
(LBB) condition [21, Chapter 6.12], also referred as the Banach-Nečas-Babuška (BNB) condition in
Galerkin methods on Banach spaces [29, Theorem 2.6].

As the cornerstone of the approximation to many PDEs, the discrete LBB condition establishes the
surjectivity of a map from Vh to Qh. In a simplified context (15) above of approximating functions
using this linear attention variant (Q: values, query, V : keys), it roughly translates to: for an incoming
“query” (function f in a Hilbert space), to deliver its best approximator in “value” (trial function
space), the “key” (test function space) has to be sufficiently rich such that there exists a key to unlock
every possible value.

Dynamic basis update. Another perspective is to interpret the Galerkin-type dot-product attention
(14) as a change of basis: essentially, the new set of basis is the column space of Q, and how to
linearly combine the bases in Q is based on the inner product (response) of the corresponding feature
dimension’s basis in V against every basis in K. From this perspective (Q: values, K: keys, V :
query), we have the following result of a layer-wise dynamical change of basis: through testing
against the “keys”, a latent representation is sought such that “query” (input trial space) and “values”
(output trial space) can achieve the minimum possible difference under a functional norm; for details
and the proof please refer to Appendix D.3.4.
Theorem 4.4 (layer-wise dynamic basis update, simple version). Under the same assumption as
Theorem 4.3, it is further assumed that b(·, q) is bounded below on Kh ⊂ K = V ⊂ H and
a(·, ·) : V × K → R is continuous. Then, there exists a set of projection matrices to update the value
space {q̃l(·)}dl=1 ⊂ Qh = span{ql(·)}dl=1, for zj ∈ Qh (j = 1, · · · , d) obtained through the basis
update rule (14), it holds∥∥a(vj , ·)− b(·, zj)

∥∥
K′h
≤ min
q∈Qh

max
k∈Kh

|a(vj , k)− b(k, q)|
‖k‖K

. (16)

7

The role of feed-forward networks and positional encodings in the dynamic basis update. Due
to the presence of the concatenated coordinates x := ‖ni=1xi ∈ Rn×m to the latent representation
y, the pointwise subnetwork gs(·) : Rn×m → Rn×d of the nonlinear universal approximator (FFN)
in each attention block is one among many magics of the attention mechanism. In every attention
layer, the basis functions in Qh/Kh/Vh are being constantly enriched by span{wj ∈ Xh : wj(xi) =
(gs(x))ij , 1 ≤ j ≤ d} ⊂ H, thus being dynamically updated to try to capture how an operator
of interest responses to the subset of inputs. Despite the fact that the FFNs, when being viewed
as a class of functions, bear no linear structure within, the basis functions produced this way act
as a building block to characterize a linear space for a learnable projection. This heuristic shows
to be effective when the target is assumed to be a function of the (relative) positional encodings
(coordinates, transformation groups, etc.), in that this is incorporated in many other attention-based
learners with applications in physical sciences [82, 31, 44, 48].

5 Experiments

In this section we perform a numerical study the proposed Fourier Transformer (FT) with the
Fourier-type encoder, and the Galerkin Transformer (GT) with the Galerkin-type encoder, in various
PDE-related operator learning tasks. The models we compare our newly proposed models with
are the operator learners with the simple attention replaced by the standard softmax normalized
scaled dot-product attention (ST) [88], and a linear variant (LT) [76] in which two independent
softmax normalizations are applied on Q,K separately.2 The data are obtained courtesy of the PDE
benchmark under the MIT license.3 For full details of the training/evaluation and model structures
please refer to Appendix C.

Instead of the standard Xavier uniform initialization [34], inspired by the interpretations of Theorem
4.3 in Appendix D.3.4, we modify the initialization for the projection matrices slightly as follows

W �init ← ηU + δI, for � ∈ {Q,K, V }, (17)

where U = (xij) is a random matrix using the Xavier initialization with gain 1 such that xij ∼
U([−

√
3/d,

√
3/d]), and δ is a small positive number. In certain operator learning tasks, we

found that this tiny modification boosts the evaluation performance of models by up to 50% (see
Appendix C.2) and improves the training stability acting as a cheap remedy to the lack of a softmax
normalization. We note that similar tricks have been discovered concurrently in [23].

Unsurprisingly, when compared the memory usage and the speed of the networks (Table 1), the
Fourier-type attention features a 40%–50% reduction in memory versus the attention with a softmax
normalization. The Galerkin attention-based models have a similar memory profile with the standard
linear attention, it offers up to a 120% speed boost over the linear attention in certain tests.

Table 1: The memory usage/FLOP/complexity comparison of the models. Batch size: 4; the CUDA
mem (GB): the sum of the self_cuda_memory_usage; GFLOP: Giga FLOP for 1 backpropagation
(BP); both are from the PyTorch autograd profiler for 1 BP averaging from 1000 BPs; the mem
(GB) is recorded from nvidia-smi of the memory allocated for the active Python process during
profiling; the speed (iteration per second) is measured during training; the exponential operation is
assumed to have an explicit complexity of ce > 1 [14].

Example 1: n = 8192 Encoders only: n = 8192, d = 128, l = 10 Computational complexity
of the dot-product per layerMem CUDA Mem Speed GFLOP Mem CUDA Mem Speed GFLOP

ST 18.39 31.06 5.02 1393 18.53 31.34 4.12 1876 O(n2ced)
FT 10.05 22.92 6.10 1138 10.80 22.32 5.46 1610 O(n2d)
LT 2.55 2.31 12.70 606 2.73 2.66 10.98 773 O(n(d2 + ced))
GT 2.36 1.93 27.15 275 2.53 2.33 19.20 412 O(nd2)

The baseline models for each example are the best operator learner to-date, the state-of-the-art
Fourier Neural Operator (FNO) in [57] but without the original built-in batch normalization. All
attention-based models match the parameter quota of the baseline, and are trained using the loss in

2https://github.com/lucidrains/linear-attention-transformer
3https://github.com/zongyi-li/fourier_neural_operator

8

https://github.com/lucidrains/linear-attention-transformer
https://github.com/zongyi-li/fourier_neural_operator

(2) with the same 1cycle scheduler [78] for 100 epochs. For fairness, we have also included the
results for the standard softmax normalized models (ST and LT) using the new layer normalization
scheme in (5) and (6). We have retrained the baseline with the same 1cycle scheduler using the
code provided in [57], and listed the original baseline results using a step scheduler of 500 epochs of
training from [57] Example 5.1 and Example 5.2, respectively.

5.1 Example 1: viscous Burgers’ equation

In this example, we consider a benchmark problem of the viscous Burgers’ equation with a periodic
boundary condition on Ω := (0, 1) in [57]. The nonlinear operator to be learned is the discrete
approximations to the solution operator T : C0

p(Ω) ∩ L2(Ω) → C0
p(Ω) ∩H1(Ω), u0(·) 7→ u(·, 1).

The initial condition u0(·)’s are sampled following a Gaussian Random Field (GRF).

The result can be found in Table 2a. All attention-based operator learners achieve a resolution-
invariant performance similar with FNO1d in [57]. The new Galerkin projection-type layer normal-
ization scheme significantly outperforms the regular layer normalization rule in this example, in
which both inputs and targets are unnormalized. For full details please refer to Appendix C.2.

5.2 Example 2: Darcy flow

In this example, we consider another well-known benchmark −∇ · (a∇u) = f for u ∈ H1
0 (Ω) from

[10, 57, 56, 64], and the operator to be learned is the approximations to T : L∞(Ω)→ H1
0 (Ω), a 7→ u,

in which a is the coefficient with a random interface geometry, and u is the weak solution. Here
L∞(Ω) is a Banach space and cannot be compactly embedded in L2(Ω) (a Hilbert space), we choose
to avoid this technicality as the finite dimensional approximation space can be embedded in L2(Ω)
given that Ω is compact.

The result can be found in Table 2b. As the input/output are normalized, in contrast to Example 5.1,
the Galerkin projection-type layer normalization scheme does not significantly outperform the regular
layer normalization rule in this example. The attention-based operator learners achieve on average
30% to 50% better evaluation results than the baseline FNO2d (only on the fine grid) using the same
trainer. For full details please refer to Appendix C.3.

Table 2: (a) Evaluation relative error (×10−3) of Burgers’ equation 5.1. (b) Evaluation relative error
(×10−2) of Darcy interface problem 5.2.

(a)

n = 512 n = 2048 n = 8192

FNO1d [57] 15.8 14.6 13.9
FNO1d 1cycle 4.373 4.126 4.151
FT regular Ln 1.400 1.477 1.172
GT regular Ln 2.181 1.512 2.747
ST regular Ln 1.927 2.307 1.981
LT regular Ln 1.813 1.770 1.617
FT Ln on Q,K 1.135 1.123 1.071
GT Ln on K,V 1.203 1.150 1.025
ST Ln on Q,K 1.271 1.266 1.330
LT Ln on K,V 1.139 1.149 1.221

(b)

nf , nc = 141, 43 nf , nc = 211, 61

FNO2d [57] 1.09 1.09
FNO2d 1cycle 1.419 1.424
FT regular Ln 0.838 0.847
GT regular Ln 0.894 0.856
ST regular Ln 1.075 1.131
LT regular Ln 1.024 1.130
FT Ln on Q,K 0.873 0.921
GT Ln on K,V 0.839 0.844
ST Ln on Q,K 0.946 0.959
LT Ln on K,V 0.875 0.970

5.3 Example 3: inverse coefficient identification for Darcy flow

In this example, we consider an inverse coefficient identification problem based on the same data
used in Example 5.2. The input (solution) and the target (coefficient) are reversed from Example
5.2, and the noises are added to the input. The inverse problems in practice are a class of important
tasks in many scientific disciplines such as geological sciences and medical imaging but much
more difficult due to poor stability [51]. We aim to learn an approximation to an ill-posed operator
T : H1

0 (Ω) → L∞(Ω), u + εNν(u) 7→ a, where Nν(u) stands for noises related to the sampling
distribution and the data. ε = 0.01 means 1% of noise added in both training and evaluation, etc.

9

The result can be found in Table 3. It is not surprising that FNO2d, an excellent smoother which
filters higher modes in the frequency domain, struggles in this example to recover targets consisting of
high-frequency traits (irregular interfaces) from low-frequency prevailing data (smooth solution due
to ellipticity). We note that, the current state-of-the-art methods [16] for inverse interface coefficient
identification need to carry numerous iterations to recover a single instance of a simple coefficient
with a regular interface, provided that a satisfactory denoising has done beforehand. The attention-
based operator learner has capacity to unearth structurally how this inverse operator’s responses on a
subset, with various benefits articulated in [56, 57, 5, 64, 10].

Table 3: Evaluation relative error (×10−2) of the inverse problem 5.3.

nf , nc = 141, 36 nf , nc = 211, 71

ε = 0 ε = 0.01 ε = 0.1 ε = 0 ε = 0.01 ε = 0.1

FNO2d (only nf) 13.71 13.78 15.12 13.93 13.96 15.04
FNO2d (only nc) 14.17 14.31 17.30 13.60 13.69 16.04

FT regular Ln 1.799 2.467 6.814 1.563 2.704 8.110
GT regular Ln 2.026 2.536 6.659 1.732 2.775 8.024
ST regular Ln 2.434 3.106 7.431 2.069 3.365 8.918
LT regular Ln 2.254 3.194 9.056 2.063 3.544 9.874

FT Ln on Q,K 1.921 2.717 6.725 1.523 2.691 8.286
GT Ln on K,V 1.944 2.552 6.689 1.651 2.729 7.903
ST Ln on Q,K 2.160 2.807 6.995 1.889 3.123 8.788
LT Ln on K,V 2.360 3.196 8.656 2.136 3.539 9.622

6 Conclusion

We propose a general operator learner based on a simple attention mechanism. The network is versatile
and is able to approximate both the PDE solution operator and the inverse coefficient identification
operator. The evaluation accuracy on the benchmark problems surpasses the current best state-of-
the-art operator learner Fourier Neural Operator (FNO) in [57]. However, we acknowledge the
limitation of this work: (i) similar to other operator learners, the subspace, on which we aim to
learn the operator’s responses, may be infinite dimensional, but the operator must exhibit certain
low-dimensional attributes (e.g., smoothing property of the higher frequencies in GRF); (ii) it is not
efficient for the attention operator to be applied at the full resolution for a 2D problem, and this limits
the approximation to a nonsmooth subset such as functions in L∞; (iii) due to the order of the matrix
product, the proposed linear variant of the scaled dot-product attention is non-causal thus can only
apply to encoder-only applications.

7 Broader Impact

Our work introduces the state-of-the-art self-attention mechanism the first time to PDE-related
operator learning problems. The new interpretations of attentions invite numerical analysts to work
on a more complete and delicate approximation theory of the attention mechanism. We have proved
the Galerkin-type attention’s approximation capacity in an ideal Hilbertian setting. Numerically, the
new attention-based operator learner has capacity to approximate the difficult inverse coefficient
identification problem with an extremely noisy measurements, which was not attainable using
traditional iterative methods for nonlinear mappings. Thus, our method may pose a huge positive
impact in geoscience, medical imaging, etc. Moreover, traditionally the embeddings in Transformer-
based NLP models map the words to a high dimensional space, but the topological structure in the
same feature dimension between different positions are learned thereby not efficient. Our proof
provides a theoretical guide for the search of feature maps that preserve, or even create, structures
such as differentiability or physical invariance. Thus, it may contribute to the removal of the softmax
nonlinearity to speed up significantly the arduous training or pre-training of larger encoder-only
models such as BERT [27], etc. However, we do acknowledge that our research may negatively
impact on the effort of building a cleaner future for our planet, as inverse problems are widely studied
in reservoir detection, and we have demonstrated that the attention-based operator learner could
potentially help to discover new fossil fuel reservoirs due to its capacity to infer the coefficients from
noisy measurements.

10

Acknowledgments and Disclosure of Funding

The hardware to perform this work is kindly donated by Andromeda Saving Fund. The first author was
supported in part by the National Science Foundation under grants DMS-1913080 and DMS-2136075.
No additional revenues are related to this work. We would like to thank the anonymous reviewers and
the area chair for the suggestions on improving this article. We would like to thank Dr. Long Chen
(Univ of California Irvine) for the inspiration of and encouragement on the initial conceiving of this
paper, as well as numerous constructive advices on revising this paper, not mentioning his persistent
dedication of making publicly available tutorials [17] on writing beautiful vectorized code. 4 We
would like to thank Dr. Ari Stern (Washington Univ in St. Louis) for the help on the relocation during
the COVID-19 pandemic. We would like to thank Dr. Likai Chen (Washington Univ in St. Louis) for
the invitation to the Stats and Data Sci seminar at WashU that resulted the reboot of this study. 5 We
would like to thank Dr. Ruchi Guo (Univ of California Irvine) and Dr. Yuanzhe Xi (Emory Univ) for
the invaluable feedbacks on the choice of the numerical experiments. We would like to thank the
Kaggle community, including but not limited to Jean-François Puget (CPMP@Kaggle) for sharing a
simple Graph Transformer in TensorFlow,6 Murakami Akira (mrkmakr@Kaggle) for sharing a Graph
Transformer with a CNN feature extractor in Tensorflow, 7 and Cher Keng Heng (hengck23@Kaggle)
for sharing a Graph Transformer in PyTorch.8 We would like to thank daslab@Stanford, OpenVaccine,
and Eterna for hosting the COVID-19 mRNA Vaccine competition and Deng Lab (Univ of Georgia)
for collaborating in this competition. We would like to thank CHAMPS (Chemistry and Mathematics
in Phase Space) for hosting the J-coupling quantum chemistry competition and Corey Levinson
(Eligo Energy, LLC) for collaborating in this competition. We would like to thank Zongyi Li (Caltech)
for sharing some early dev code in the updated PyTorch fft interface and the comments on the
viscosity of the Burgers’ equation. We would like to thank Ziteng Pang (Univ of Michigan) and
Tianyang Lin (Fudan Univ) to update us with various references on Transformers. We would like to
thank Joel Schlosser (Facebook) to incorporate our change to the PyTorch transformer module to
simplify our testing pipeline. We would be grateful to the PyTorch community for selflessly code
sharing, including Phil Wang(lucidrains@github) and Harvard NLP group [52]. We would like to
thank the chebfun [28] for integrating powerful tools into a simple interface to solve PDEs. We
would like to thank Dr. Yannic Kilcher (ykilcher@twitter) and Dr. Hung-yi Lee (National Taiwan
Univ) for frequently covering the newest research on Transformers in video formats. We would also
like to thank the Python community [87, 68] for sharing and developing the tools that enabled this
work, including PyTorch [69], NumPy [39], SciPy [89], Plotly [45] Seaborn [93], Matplotlib [43],
and the Python team for Visual Studio Code. We would like to thank draw.io [46] for providing
an easy and powerful interface for producing vector format diagrams. For details please refer to the
documents of every function that is not built from the ground up in our open-source software library.9

4https://github.com/lyc102/ifem
5Transformer: A Dissection from an Amateur Applied Mathematician
6https://www.kaggle.com/cpmpml/graph-transfomer
7https://www.kaggle.com/mrkmakr/covid-ae-pretrain-gnn-attn-cnn
8https://www.kaggle.com/c/stanford-covid-vaccine/discussion/183518
9https://github.com/scaomath/galerkin-transformer

11

https://github.com/lyc102/ifem
https://math.wustl.edu/events/statistics-and-data-science-seminar-transformer-dissection-amateur-applied-mathematician
https://www.kaggle.com/cpmpml/graph-transfomer
https://www.kaggle.com/mrkmakr/covid-ae-pretrain-gnn-attn-cnn
https://www.kaggle.com/c/stanford-covid-vaccine/discussion/183518
https://github.com/scaomath/galerkin-transformer

References
[1] Jonas Adler and Ozan Öktem. Solving ill-posed inverse problems using iterative deep neural networks.

Inverse Problems, 33(12):124007, 2017.

[2] Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones. Character-level language
modeling with deeper self-attention. Proceedings of the AAAI Conference on Artificial Intelligence, 33
(01):3159–3166, Jul. 2019.

[3] Giovanni Alessandrini. An identification problem for an elliptic equation in two variables. Annali di
matematica pura ed applicata, 145(1):265–295, 1986.

[4] Ferran Alet, Adarsh Keshav Jeewajee, Maria Bauza Villalonga, Alberto Rodriguez, Tomas Lozano-Perez,
and Leslie Kaelbling. Graph element networks: adaptive, structured computation and memory. In
International Conference on Machine Learning, pages 212–222. PMLR, 2019.

[5] Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Nikola Kovachki, Zongyi Li,
Burigede Liu, and Andrew Stuart. Neural operator: Graph kernel network for partial differential equations.
In ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations, 2020.

[6] Daniel Arndt, Wolfgang Bangerth, Bruno Blais, Thomas C. Clevenger, Marc Fehling, Alexander V.
Grayver, Timo Heister, Luca Heltai, Martin Kronbichler, Matthias Maier, Peter Munch, Jean-Paul Pelteret,
Reza Rastak, Ignacio Thomas, Bruno Turcksin, Zhuoran Wang, and David Wells. The deal.II library,
version 9.2. Journal of Numerical Mathematics, 28(3):131–146, 2020.

[7] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning
to align and translate. In 3rd International Conference on Learning Representations, ICLR 2015, 2015.

[8] Jean-Paul Berrut and Manfred R Trummer. Equivalence of Nyström’s method and Fourier methods for
the numerical solution of Fredholm integral equations. Mathematics of computation, 48(178):617–623,
1987.

[9] Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Prediction of
aerodynamic flow fields using convolutional neural networks. Computational Mechanics, 64(2):525–545,
2019.

[10] Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduction
and neural networks for parametric PDEs. arXiv preprint arXiv:2005.03180, 2020.

[11] Guy Blanc and Steffen Rendle. Adaptive sampled softmax with kernel based sampling. In International
Conference on Machine Learning, pages 590–599. PMLR, 2018.

[12] Ronald Newbold Bracewell and Ronald N Bracewell. The Fourier transform and its applications, volume
31999. McGraw-Hill New York, 1986.

[13] Susanne C Brenner and Ridgway Scott. The mathematical theory of finite element methods, volume 15.
Springer, 2008.

[14] Richard P Brent. Multiple-precision zero-finding methods and the complexity of elementary function
evaluation. In Analytic computational complexity, pages 151–176. Elsevier, 1976.

[15] Shuhao Cao, Long Chen, and Ruchi Guo. A virtual finite element method for two dimensional Maxwell
interface problems with a background unfitted mesh. Mathematical Models and Methods in Applied
Sciences, to appear, 2021.

[16] Tony F Chan and Xue-Cheng Tai. Identification of discontinuous coefficients in elliptic problems using
total variation regularization. SIAM Journal on Scientific Computing, 25(3):881–904, 2003.

[17] Long Chen. iFEM: an integrated finite element methods package in MATLAB. Technical report, 2008.

[18] Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks with
arbitrary activation functions and its application to dynamical systems. IEEE Transactions on Neural
Networks, 6(4):911–917, 1995.

[19] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Benjamin
Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with Performers. In International
Conference on Learning Representations (ICLR), 2021.

12

[20] Philippe G Ciarlet. The finite element method for elliptic problems. SIAM, 2002.

[21] Philippe G Ciarlet. Linear and nonlinear functional analysis with applications, volume 130. SIAM, 2013.

[22] Richard Courant, Kurt Friedrichs, and Hans Lewy. On the partial difference equations of mathematical
physics. IBM journal of Research and Development, 11(2):215–234, 1967.

[23] Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. The devil is in the detail: Simple tricks improve
systematic generalization of transformers. In Proc. Conf. on Empirical Methods in Natural Language
Processing (EMNLP), Punta Cana, Dominican Republic, November 2021.

[24] Niccolò Dal Santo, Simone Deparis, and Luca Pegolotti. Data driven approximation of parametrized pdes
by reduced basis and neural networks. Journal of Computational Physics, 416:109550, 2020.

[25] Alexandre de Brébisson and Pascal Vincent. A cheap linear attention mechanism with fast lookups and
fixed-size representations. arXiv preprint arXiv:1609.05866, 2016.

[26] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019.

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1, pages 4171–4186. Association for Computational Linguistics, 2019.

[28] Tobin A Driscoll, Nicholas Hale, and Lloyd N Trefethen. Chebfun guide, 2014.

[29] Alexandre Ern and Jean-Luc Guermond. Theory and Practice of Finite Elements. Springer, 2004.

[30] Charles Fox. The G and H functions as symmetrical Fourier kernels. Transactions of the American
Mathematical Society, 98(3):395–429, 1961.

[31] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. SE(3)-Transformers: 3D Roto-
Translation Equivariant Attention Networks. In Advances in Neural Information Processing Systems,
volume 33, pages 1970–1981, 2020.

[32] D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Order. Classics in
Mathematics. Springer Berlin Heidelberg, 2001. ISBN 9783540411604.

[33] Vivette Girault and P-A Raviart. Finite element approximation of the Navier-Stokes equations. Lecture
Notes in Mathematics, Berlin Springer Verlag, 749, 1979.

[34] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, volume 9 of Proceedings of Machine Learning Research, pages 249–256, Chia Laguna Resort,
Sardinia, Italy, 13–15 May 2010. PMLR.

[35] Ruchi Guo and Jiahua Jiang. Construct deep neural networks based on direct sampling methods for
solving electrical impedance tomography. SIAM Journal on Scientific Computing, 43(3):B678–B711,
2021.

[36] Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow approximation.
In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining, pages 481–490, 2016.

[37] Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
equations. arXiv preprint arXiv:2109.13459, 2021.

[38] W. Hackbusch. Multi-Grid Methods and Applications. Springer Series in Computational Mathematics.
Springer Berlin Heidelberg, 2013. ISBN 9783662024270.

[39] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río,
Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, September 2020.

[40] Juncai He and Jinchao Xu. Mgnet: A unified framework of multigrid and convolutional neural network.
Science China Mathematics, 62(7):1331–1354, 2019.

13

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks.
In European conference on computer vision, pages 630–645. Springer, 2016.

[42] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

[43] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90–95,
2007.

[44] Michael J Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, and Hyunjik
Kim. LieTransformer: equivariant self-attention for Lie groups. pages 4533–4543, 2021.

[45] Plotly Technologies Inc. plotly, 2015.

[46] JGraph. draw.io, 2021.

[47] Jiahua Jiang, Yi Li, and Ruchi Guo. Learn an index operator by cnn for solving diffusive optical
tomography: a deep direct sampling method. arXiv preprint arXiv:2104.07703, 2021.

[48] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure
prediction with AlphaFold. Nature, 596(7873):583–589, 2021.

[49] George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 2021.

[50] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are RNNs:
Fast autoregressive transformers with linear attention. In International Conference on Machine Learning,
pages 5156–5165. PMLR, 2020.

[51] A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems. Applied Mathematical
Sciences. Springer New York, 2011. ISBN 9781441984746.

[52] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M. Rush. OpenNMT: Open-
Source Toolkit for Neural Machine Translation. In Proc. ACL, 2017.

[53] Peter D Lax and Robert D Richtmyer. Survey of the stability of linear finite difference equations.
Communications on pure and applied mathematics, 9(2):267–293, 1956.

[54] James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. FNet: Mixing tokens with
Fourier transforms. arXiv preprint arXiv:2105.03824, 2021.

[55] Sijing Li, Zhiwen Zhang, and Hongkai Zhao. A data-driven approach for multiscale elliptic PDEs with
random coefficients based on intrinsic dimension reduction. Multiscale Modeling & Simulation, 18(3):
1242–1271, 2020.

[56] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differential
equations. In Advances in Neural Information Processing Systems, volume 33, pages 6755–6766, 2020.

[57] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. In International Conference on Learning Representations, 2021.

[58] Hongzhou Lin and Stefanie Jegelka. Resnet with one-neuron hidden layers is a universal approximator.
Advances in Neural Information Processing Systems (NIPS 2018), 31:6169–6178, 2018.

[59] Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Pretrained transformers as universal
computation engines. arXiv preprint arXiv:2103.05247, 2021.

[60] Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for identi-
fying differential equations based on the universal approximation theorem of operators. arXiv preprint
arXiv:1910.03193, 2019.

[61] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear
operators via deeponet based on the universal approximation theorem of operators. Nature Machine
Intelligence, 3(3):218–229, 2021.

[62] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library for
solving differential equations. SIAM Review, 63(1):208–228, 2021.

14

[63] Peter Monk et al. Finite element methods for Maxwell’s equations. Oxford University Press, 2003.

[64] Nicholas H Nelsen and Andrew M Stuart. The random feature model for input-output maps between
banach spaces. SIAM Journal on Scientific Computing, 43(5):A3212–A3243, 2021.

[65] Tan M. Nguyen, Vai Suliafu, Stanley J. Osher, Long Chen, and Bao Wang. FMMformer: Efficient
and Flexible Transformer via Decomposed Near-field and Far-field Attention. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

[66] Toan Q Nguyen and Julian Salazar. Transformers without tears: Improving the normalization of self-
attention. arXiv preprint arXiv:1910.05895, 2019.

[67] Akifumi Okuno, Tetsuya Hada, and Hidetoshi Shimodaira. A probabilistic framework for multi-view
feature learning with many-to-many associations via neural networks. In International Conference on
Machine Learning, pages 3888–3897. PMLR, 2018.

[68] Travis E. Oliphant. Python for scientific computing. Computing in Science Engineering, 9(3):10–20,
2007.

[69] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems 32 (NeurIPS 2019), pages 8024–8035, 2019.

[70] Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah Smith, and Lingpeng Kong. Random
feature attention. In International Conference on Learning Representations, 2021.

[71] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, 2019.

[72] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

[73] Ankit Singh Rawat, Jiecao Chen, Felix Xinnan X Yu, Ananda Theertha Suresh, and Sanjiv Kumar.
Sampled softmax with random fourier features. In Advances in Neural Information Processing Systems,
volume 32, 2019.

[74] Nicholas Roberts, Mikhail Khodak, Tri Dao, Liam Li, Christopher Ré, and Ameet Talwalkar. Rethinking
neural operations for diverse tasks. arXiv preprint arXiv:2103.15798, 2021.

[75] Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers, 2021.

[76] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention: Attention
with linear complexities. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 3531–3539, 2021.

[77] Jonathan W Siegel and Jinchao Xu. Approximation rates for neural networks with general activation
functions. Neural Networks, 128:313–321, 2020.

[78] Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using large
learning rates. In Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications,
volume 11006, page 1100612. International Society for Optics and Photonics, 2019.

[79] Kyungwoo Song, Yohan Jung, Dongjun Kim, and Il-Chul Moon. Implicit kernel attention. Proceedings
of the AAAI Conference on Artificial Intelligence, 35(11):9713–9721, May 2021.

[80] Ari Stern. Banach space projections and Petrov–Galerkin estimates. Numerische Mathematik, 130(1):
125–133, 2015.

[81] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks. In
Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2,
NIPS’14, page 3104–3112, Cambridge, MA, USA, 2014. MIT Press.

[82] Kai Sheng Tai, Peter Bailis, and Gregory Valiant. Equivariant transformer networks. In International
Conference on Machine Learning, pages 6086–6095. PMLR, 2019.

15

[83] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,
Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. MLP-mixer: An all-MLP
architecture for vision. arXiv preprint arXiv:2105.01601, 2021.

[84] Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhutdinov.
Transformer dissection: An unified understanding for transformer’s attention via the lens of kernel. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4344–4353,
Hong Kong, China, November 2019.

[85] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient
for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[86] Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simulation
with continuous convolutions. In International Conference on Learning Representations, 2020.

[87] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA,
2009. ISBN 1441412697.

[88] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems (NIPS 2017), volume 30, 2017.

[89] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

[90] Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies in
physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081, 2021.

[91] Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed DeepOnets. arXiv preprint arXiv:2103.10974, 2021.

[92] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[93] Michael L. Waskom. seaborn: statistical data visualization. Journal of Open Source Software, 6(60):
3021, 2021.

[94] H. Whitney. Geometric Integration Theory. Princeton Legacy Library. Princeton University Press, 2015.
ISBN 9781400877577.

[95] Matthew A Wright and Joseph E Gonzalez. Transformers are deep infinite-dimensional non-Mercer
binary kernel machines. arXiv preprint arXiv:2106.01506, 2021.

[96] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture. In International
Conference on Machine Learning, pages 10524–10533. PMLR, 2020.

[97] Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and Vikas
Singh. Nyströmformer: A Nyström-based algorithm for approximating self-attention. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(16):14138–14148, May 2021.

[98] Jinchao Xu and Ludmil Zikatanov. Algebraic multigrid methods. Acta Numerica, 26:591–721, 2017.

[99] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In International Conference on
Learning Representations, 2020.

[100] Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks for surrogate
modeling and uncertainty quantification. Journal of Computational Physics, 366:415–447, 2018.

16

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] In Section 6 and in each
experiment’s detailed description in Appendix C.3 and C.4.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] In Section
7.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] The key

assumption of the new interpretations of the attention mechanism is in Assumption
4.2. Due to the page limit, the assumptions and settings are fully elaborated in a
mathematical rigorous fashion in Appendix D for the proof of Theorem 4.3.

(b) Did you include complete proofs of all theoretical results? [Yes] In Appendix D.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main
experimental results (either in the supplemental material or as a URL)? [Yes]
The data are publicly available. For instruction to reproduce our result please re-
fer to README.md in https://github.com/scaomath/galerkin-transformer/
tree/main/examples.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We include all details in the supplemental material Appendix B
and C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We found that our method is numerically seed-invariant,
and we have reported the error bands in Appendix C.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please refer to Appendix C.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Multiple creators of

or contributing work to the dataset used in our work are cited [57, 5, 56, 64]. The code
base we have implemented our model upon is in the footnote of Section 5, and cited in
the Acknowledgement [52]. In the publicly available code repository, in the document
of every function, we have credited every author we can find for even a small code
snippet, if that function is not built from ground up by us.

(b) Did you mention the license of the assets? [Yes] In Section 5.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

The full code base to replicate our results is publicly available as an open-source
software.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] The data is obtained from https://github.com/zongyi-li/
fourier_neural_operator with the MIT license as well as the consent from the
author per a personal communication.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

17

https://github.com/scaomath/galerkin-transformer/tree/main/examples
https://github.com/scaomath/galerkin-transformer/tree/main/examples
https://github.com/zongyi-li/fourier_neural_operator
https://github.com/zongyi-li/fourier_neural_operator

