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ABSTRACT

Recent advancements in Large Language Models (LLMs) have exhibited notable
efficacy in natural language processing (NLP) tasks across diverse domains. Their
prowess in integrating extensive knowledge has fueled interest in developing LLM-
based autonomous agents. Furthermore, in the realm of finance, there is a persistent
need to develop automated systems capable of transforming vast quantities of
real-time data into executable decisions, while fully understanding the critical
timing of various types of information. LLM agents with rational architecture,
compared with their Deep Reinforcement Learning (DRL) counterparts, exceed in
their ability to integrate textual data and interpretability in their decision-making
process. We introduce FINMEM, a novel LLM-based agent framework devised for
financial trading. It encompasses three core modules: Profiling, to customize the
agent’s characteristics; Memory, with layered message processing, to aid the agent
in assimilating hierarchical financial data; and Decision-making, to convert insights
gained from memories into investment decisions. Notably, FINMEM’s memory
module aligns closely with the cognitive structure of human traders, offering
robust interpretability and real-time tuning. Its adjustable cognitive span allows
for the retention of critical information beyond human perceptual limits, thereby
enhancing trading outcomes. This framework enables the agent to self-evolve its
professional knowledge, react agilely to new investment cues, and continuously
refine trading decisions in the volatile financial environment. We first compare
FINMEM with various algorithmic agents on a scalable real-world financial dataset,
underscoring its leading trading performance in stocks. We then fine-tuned the
agent’s perceptual span and character setting to achieve a significantly enhanced
trading performance. Collectively, FINMEM presents a cutting-edge LLM agent
framework for automated trading, boosting cumulative investment returns.

KEYWORDS: Large Language Model, Trading Algorithms, Deep Learning, Financial AI

1 INTRODUCTION

With the growing influx of diverse financial information from the market, human traders are over-
whelmed by data from multiple sources (Fang and Zhang (2016)). Consequently, it becomes more
difficult for traders to notice critical events affecting their trading decisions. To overcome the chal-
lenge, researchers have been consistently working on designing autonomous trading agent systems
that are able to integrate all necessary information with decent trading performance in various market
conditions.

Research in Deep Reinforcement Learning Agents (DRL) (Millea (2021)) has been a focal point
of attention in both the academic and industrial realms for years. Leveraging both Reinforcement
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Learning (RL) principles and deep learning, DRL agents effectively handle and learn from scalable
and diverse financial data, including stock prices, key financial indicators, and market sentiments.
However, certain inherent features of DRL algorithms exhibit notable deficiencies in financial
applications. Firstly, DRL agents lack interpretability in the rationale behind their decision-
making (Balhara et al. (2022)). Secondly, integrating textual data with numerical features,
crucial in finance, poses a challenge for DRL agents on convergence (Gershman and Ölveczky
(2020)). Thus, a backbone algorithm that offers transparent reasoning and effectively captures
investment-related textual insights is essential.

Recent advancements in Large Language Models (LLMs), like Generative Pre-trained Transformers
(GPTs) (OpenAI (2023)), have opened new avenues for developing trading agents, addressing past
limitations. These LLM-based agents can articulate reasons and outcomes from their immediate
observations. Their extensive pre-trained knowledge and ability to integrate diverse data sources,
including textual and numerical information, allow them to transcend the constraints of isolated
environments. This approach, when reinforced with well-designed prompt templates, markedly
improves decision-making in various sectors (Wang et al. (2023)). Notably, a growing body of
research has focused on utilizing LLMs to make informed trading decisions for stocks (Yang et al.
(2023); Wu et al. (2023)). However, in currently available approaches, LLMs primarily serve as
trading signal detectors with Question and Answering(QA) prompts rather than autonomous agents
with task-specific architecture for financial applications. In particular, they are missing a core
component that enables LLMs to fully manage the information timeliness of financial data and
prioritize critical events, which is memory.

To bridge this gap, we introduce FINMEM, a novel LLM-based autonomous trading agent. It excels
in processing multi-source financial data through a layered memory module and adapts to market
volatility by offering a self-adaptive character setting. Our concept draws from the Generative Agents
framework by Park et al.. The memory-based autonomous agent prioritizes events in a unified
memory stream, ranked by a linear combination of recency, relevancy, and importance. However,
Park et al.’s framework struggles with comprehending financial information with varying
timeliness and importance. Key challenges involve quantifying the distinct timeliness of data,
optimizing information retrieval, and providing detailed reflections to improve future decisions. To
tackle these challenges, we further propose FINMEM with the following improvements:

1) FINMEM maintains a modular approach similar to Park et al., but features novel design of
profiling and memory modules. FINMEM’s memory module innovatively incorporates working
memory and layered long-term memory components, ideal for stratified information processing,
which mirrors the human cognitive system Sweller (2012) and facilitates agile, real-time decisions
Sun (2004). 2) FINMEM can utilize its distinctive features to expand the agent’s perceptual
range beyond the human limitation to make well-informed trading decisions. Cognitive research
suggests that human working memory is limited to recalling five to nine events at once Miller (1956).
While this avoids information overload, it may lead to insufficient insight for accurate decision-
making. In contrast, FINMEM’s memory module transcends this constraint. It allows adjusting
cognitive load by selecting a flexible number of top-ranked events from each layer of its long-term
memory, allowing FINMEM to deliver superior trading decisions in data-rich contexts. 3) FINMEM
achieves impressive trading performance using training data that is limited in volume and spans
a short time period. Experiments show that training FINMEM with a timeframe much shorter than
that required by comparative models. This efficiency stems from optimally utilizing multi-source data
and capturing critical trading signals. Notably, FINMEM is effective even on smaller datasets and with
general-purpose LLMs, with its performance expected to enhance further with larger, higher-quality
financial datasets and LLMs fine-tuned for financial applications.

2 RELATED WORK

2.1 BACKBONE ALGORITHMS OF CONTEMPORARY AUTONOMOUS TRADING AGENTS

The development of trading agents has evolved over several decades, influenced by advancements
in technology, finance, and computational methodologies. Conventionally, a rule-based algorithm
for trading stocks is an automated strategy that operates based on a predefined set of rules (Chen
(2012); Vaidya (2020); Pätäri and Vilska (2014)). These rules are often derived from historical market
patterns and trading experience. Compared with rule-based algorithms that use predefined rules
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and conditions, Reinforcement Learning provides a way for agents to learn by interacting with an
environment and receiving feedback in the form of rewards or penalties. (Dang (2019); Jangmin et al.
(2006)). Deep learning models can be integrated with RL to handle large and complex state spaces,
like those in stock markets. Such models are often referred to as Deep Reinforcement Learning
(DRL) (Wu et al. (2020); Xiong et al. (2018)). For example, Deep Q-Network (DQN) (Shi et al.
(2021)), Advantage Actor-Critic (A2C) (Yang et al. (2020)), and Proximal Policy Optimization
(PPO) (Liu et al. (2020)) are popular algorithms for such tasks. Using DRL agents as automated
financial trading backbones, face two key issues: 1) A lack of interpretability, as their decisions,
rooted in complex computations and high-dimensional representations, are challenging to articulate
(Balhara et al. (2022)). 2) They struggle to efficiently utilize textual financial information due to the
complexity and computational demands of rich text embeddings (Devlin et al. (2018); Ethayarajh
(2019)). Consequently, DRL agents often rely on textual sentiment (Pricope (2021)), avoiding direct
embedding use (Chen and Huang (2021); Avramelou et al. (2023)), which leads to an incomplete
representation of essential market information contained in news and macroeconomic policies.

2.2 LLM AUTONOMOUS AGENTS

The new-generation LLMs, like Generative Pre-trained Transformer series (GPTs) (Radford et al.
(2018); OpenAI (2023)) and LLM Meta AI (Llamas) (Touvron et al. (2023)), stand out in diverse
tasks. As Wang et al. (2023) emphasizes, an architecture with profiling, memory, planning, and action
modules is essential for LLMs autonomous agents. There are cases of two modules (e.g., planning
and action modules) being integrated as one component (Park et al. (2023)). Among these modules,
the memory component is essential. Acting as the operational core, it aligns an agent’s actions with
real-world tasks. Research indicates that leveraging insights from cognitive science studies on human
memory (Wang et al. (2023); Sumers et al. (2023)) can enhance this alignment. While LLM agents
for domain-specific tasks have been extensively researched (Huang et al. (2023); Liffiton et al. (2023);
Park et al. (2022)), their application in financial trading remains underexplored. Existing studies in
this domain, such as Wu et al. (2023); Yang et al. (2023), often lack open-source availability or have
not considered an architecture specifically tailored to fit the unique environment of finance markets.
Thus, there’s significant value in further investigating advanced, transparent LLM agents for trading.

3 ARCHITECTURE OF FINMEM

3.1 PROFILING MODULE

The dynamic character of FINMEM, as depicted in Figure 4 of Appendix C, comprises two principal
components: firstly, a foundational professional knowledge base akin to a trading expert, and secondly,
an agent with three distinct investment risk inclinations. The first component includes two types of
information: an introduction to the primary trading sectors relevant to the company stock FINMEM
will trade in, and a concise overview of the historical financial performance of the specified ticker,
spanning from the beginning to the end of the training period.

The second component of FINMEM’s design, illustrated in Figure 4 of Appendix C, encompasses
three distinct risk inclination options: risk-seeking, risk-averse, and self-adaptive risk character. The
risk-seeking setting gears FINMEM towards an aggressive, high-reward approach, while the risk-
averse setting gears it towards a conservative, lower-risk strategy. A distinctive aspect of FINMEM
is its ability to dynamically alternate between these risk settings in response to current market
conditions. Specifically, it shifts risk preferences when the Cumulative Return falls to below zero
within a brief period, such as three days, and reversely. This flexible design functions as a protective
mechanism, mitigating prolonged downturns in the market environments. During the initial stage of
the training phase, FINMEM is configured with a chosen risk preference, each supplemented with
comprehensive textual explanations through LLM prompts. These guidelines shape how FINMEM
processes incoming messages and determines its subsequent actions in alignment with its designated
risk inclination. The system maintains a catalog of all risk inclinations and their detailed explanations
in a backlog, enabling seamless adaptation to different stocks by switching among these risk profiles
as needed. The dynamic character setting in FINME’s profiling module provides crucial context for
filtering and retrieving trading-relevant information and memory events, thus improving accurate
inferencing and adaptability to fluctuating market conditions.
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3.2 MEMORY MODULE

3.2.1 WORKING MEMORY

Working memory refers to the human cognitive system’s functions for temporary storage and di-
verse operations. FINMEM’s working memory encompasses three key operations: summarization,
observation, and reflection as depicted in the middle box of Figure 1.

Figure 1: Memory module structure of FINMEM with a detailed view of components,
operations, and workflow. The cognitive architectures of FINMEM’s memory module have two

core components – Working Memory and Layered Long-term Memory.

Summarization and Observation: FINMEM leverages external data to derive critical investment
insights and market sentiment. As illustrated in Figure 3(2) of Appendix A, in the summarization
operation, the system summarizes the original text input into compact yet informative paragraphs,
thereby enhancing processing efficiency and reducing inference costs. In the observation operation,
the agent observes market information and reacts differently in the training and test phase. In the
training phase, FINMEM has full access to stock price data within a given period. Upon receiving
trading inquiries, FINMEM focuses on the current day’s and the following day’s adjusted close price
difference. The observed price differences are used as market ground truth actions, with a positive
difference as "Buy" and vice versa. This design helps the agent align its evaluation to the true market
dynamics. In the testing phase, FINMEM loses the access to the future information. Its focus shifts to
historical price momentum, depending on a retrospective evaluation of the cumulative return from
the last M trading days to infer future market trends, which forces the system to adequately establish
logical connections between stock price trends and various financial information sources.

Reflection: Two types of reflections exist, immediate and extended reflection. (a) Immediate
reflection is activated upon receiving a daily trading inquiry for a specific ticker. Using LLM and
specific prompts exemplified in Figure 3 (2) of Appendix A , the agent merges market indications
and top-K-ranked events from each long-term memory layer. Market indications are derived from
the outcomes of the observation operation and differ between the training and testing phases. During
testing, this process yields three types of outputs: the trading direction (“Buy,” “Sell”, or “Hold”), the
underlying rationale for this decision, and the most influential memory events, along with their IDs
from each layer that informed the decision. In the training phase, specifying the trading direction
is unnecessary, as FINMEM is pre-informed about future stock trends. The top-K-ranked memory
events encapsulate key insights and sentiments derived from critical investment-related incoming
messages, all distilled by FINMEM’s advanced summarization capabilities. (b) Extended reflection
reevaluates outcomes for a ticker over a specified M -day look-back period with evidence of the profit
and loss for a given trade action. While immediate reflections enable direct trading execution and
record current feedback, extended reflections align the importance of each memory with the market
feedback (detailed in Section 3.2.2). The memory event associated with a profited trade will be
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rewarded by increasing the importance score and thus more likely to be selected, and vice versa.

3.2.2 LAYERED LONG-TERM MEMORY

FINMEM’s long-term memory organizes hierarchical financial data insights in a stratified structure,
as illustrated in the lower section of Figure 1. Drawing inspiration from the varying decay speeds in
the human cognitive system’s information processing layers (Craik and Lockhart (1972)), FINMEM
employs a layered structure to accommodate the diverse time sensitivities inherent to different types of
financial data. This structure categorizes summarized insights by their timeliness and decay rates. In-
sights are derived by the working memory’s summarization operation. Those directed to deeper layers
receive smaller decay rates, indicating longer retention, while those in shallower layers are assigned
larger decay rates for shorter retention. where p1+p2+p3 = 1, but their values vary by shallow, inter-
mediate, and deep processing. when shallow processing p1, p2, p3 = {0.8, 0.15, 0.05}, intermediate
processing, p1, p2, p3 = {0.05, 0.8, 0.15} and deep processing, p1, p2, p3 = {0.05, 0.15, 0.8}.

γE
l = SE

Recencyl
+ SE

Relevancyl
+ SE

Importancel
, (1) SE

Recencyl
= e

− δE

Ql , δE = tP − tE , (2)

where each memory event is only associated with one score and can only belong to a single layer.

Upon receiving an investment inquiry, FINMEM retrieves the top-K pivotal memory events from
each layer and channels them to the immediate reflection component of the working memory. These
events are chosen according to the descending order of their information retrieval score, denoted as
γE
l , where l belongs to the set shallow, intermediate, deep, as specified in Equation 3. E denotes a

given memory event. This score, adapted Park et al. (2023) but with modified recency and importance
computations, especially tailoring to handle data with various timelines. It encapsulates three metrics:
recency, relevancy, and importance. Individual metric scores exceeding 1.0 are scaled to the [0,1]
range before being summed. The modification is to achieve the layered processing function and
represent the various periodicity of the financial environment.

θl = (αl)
δE , l = shallow, intermediate, deep, (3) SE

Importancel
= vEl ∗ θl, (4)

Upon a trade inquiry P arrival in processing layer l via LLM prompt, the agent computes the recency
score SE

Recencyl
per Equation 2. SE

Recencyl
inversely correlates with the time gap between the inquiry

and the event’s memory timestamp, mirroring Ebbinghaus’s forgetting curve (?). The stability term
Ql in Equation 2 partially controls memory decay rates across layers, indicating longer memory
persistence in the long-term layer with a higher stability value. In the context of trading, company
annual reports, such as Form 10-Ks, are considered to have more extended timeliness compared
to daily financial news. Therefore, they are assigned a higher stability value and are categorized
within the deeper processing layer. This classification reflects their extended relevance and impact in
financial decision-making scenarios.

The relevancy score, denoted as SE
relevancyl

, quantifies the cosine similarity between embedding vectors.
These vectors are derived from the textual content of the memory event, mE, and the LLM prompt
query, mP, using OpenAI’s “text-embedding-ada-002” model, as depicted in Equation 5. The LLM
prompt query incorporates inputs related to trading inquiries and the trading agent’s character setting.

The importance score SE
Importancel

is computed using the value vEl from a uniform piecewise scoring
function (Formula 6), multiplied by degrading ratio θl (Formula 3) as per Equation 4. The likelihood
of higher vEl values increases from shallow to deep layers. θl measures the diminishing importance of
an event over time, which has a close form design of Park et al. (2023). But our approach tailors θl to
the stratified structure of long-term memory. It adopts unique exponential functions for each layer. The
base αl for each layer is a hyperparameter, set to follow the sequence: αshallow < αintermediate < αdeep.
These values correlate with the rate at which their importance degrades after a certain period,
providing another angle to measure importance variances across different memory types. Through
experimentation, we set αshallow = 0.9, αintermediate = 0.967 and αdeep = 0.988. This ensures that θl
decreases to a threshold score of 5 after intervals of 30, 90, and 365 days for shallow, intermediate,
and deep layers, respectively. The three-piece-wise functions for SE

Importancel
and SE

Recencyl
enable

FINMEM to have layered processing in the long-term memory component. Memory events are purged
when SE

Recencyl
is below 0.05 or SE

Importancel
is under 5 (pre-scaling).

SE
Relevancyl

=
mE ·mP

∥mE∥2 × ∥mP∥2
, (5) vEl =


40 with probability p1
60 with probability p2
80 with probability p3

(6)
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where δE refers to the time difference between the memory event occurrence and the trading inquiry
arrival. Qshallow = 14, Qintermediate = 90, and Qdeep = 365 correspond to day counts of two weeks, a
quarter, and a year for shallow, intermediate, and deep processing layers, respectively.

Furthermore, an access counter function oversees the transfer of memory events among layers,
ensuring that significant events influencing trading decisions ascend from shallower to deeper layers
for extended retention and recurrent access by FINMEM. Conversely, less pertinent events gradually
diminish. This process is facilitated by the LLM validation tool Guardrails AI 2, which monitors
critical memory IDs across different layers. An event identified as pivotal for investment success
receives an additional 5 points in its importance score SE

Importancel
. Upon meeting the criteria for

upgrading to a deeper layer, an event’s recency score SE
Recencyl

is reset to 1.0, emphasizing its
importance and preventing rapid decay. By implementing this access counter, FINMEM effectively
identifies and prioritizes key events, taking into account their nature and frequency of retrieval.

3.3 DECISION-MAKING MODULE

The decision-making module of FINMEM efficiently integrates operational outcomes from the
profiling and memory modules to support well-informed investment decisions, as depicted in Figure 3
(1) of Appendix A. In its daily trading decisions, FINMEM is asked to select from three distinct
actions for a single share of a specific stock by Guardrails AI text validation function: “Buy,” “Sell,”
or “Hold.” Additionally, the inputs and results required by FINMEM’s decision-making module vary
between its training and testing phases, with each phase’s specifics detailed as follows:

During the training phase, FINMEM accesses a wide array of multi-source information relevant to
the entire time period. When FINMEM is prompted with trading inquiries containing stock ticker
and date, as well as trader character-related texts, it observes the market ground labels mentioned
in the description about the observation operation in Section 3.2.1, which involve daily adjusted
close price differences between consecutive days, indicating “Buy” or “Sell” actions. Utilizing
these price change signals, FINMEM identifies and prioritizes the top-K memories, ranking them
based on retrieval scores from each long-term memory layer. This procedure enables FINMEM to
produce comprehensive reflections that provide a well-founded rationale and in-depth inference of
the correlation between market ground labels and the memories retrieved. Through repeated trading
operations, reflections, and memory events with significant impact, transition to a deeper memory
processing layer, getting preserved for guiding future investment decisions during the testing phase.

In the testing phase, where FINMEM cannot access future price data, it relies on the Cumulative
Return over the previous M trading days as market trends. To compensate for the absence of future
market price information, FINMEM utilizes enhanced reflections derived from immediate reflections
spanning a M -trading-day period as supplementary references. When faced with a specific trading
inquiry, FINMEM integrates insights from various sources, including historical Cumulative Return,
outcomes from extended reflection, and the Top-K retrieved memories. This comprehensive approach
enables FINMEM to execute well-informed trading decisions.

It should be noted that FINMEM generates executable actions exclusively in the immediate reflection
operation of the testing phase. Since the trading direction is guided by the actual price trend, the
training phase of FINMEM does not make investment decisions. Instead, this phase is dedicated
to accumulating trading experience through comparing market trends with incoming multi-source
financial messages. Additionally, during this phase, FINMEM develops a memory module enriched
with a comprehensive knowledge base, thereby evolving its capability for independent decision-
making in future trading activities.

4 EXPERIMENTS:

Our objective in this section is to assess the trading performance of FINMEM and underscore its
distinctive benefits by addressing the following research questions (RQs): RQ1: Does FINMEM
outperform contemporary leading algorithmic trading agents? RQ2: Are there tasks that challenge
other trading algorithms but are manageable by FINMEM? RQ3: Does equipping FINMEM with
different risk inclination choices truly differentiate its trading performance?

2Guardrails AI GitHub: https://github.com/guardrails-ai/guardrails
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Ticker Model Cumulative Return (%) Sharpe Ratio Daily Volatility (%) Annualized Volatility (%) Max Drawdown (%)

TSLA

Buy and Hold -18.6312 -0.5410 4.4084 69.9818 55.3208
FINMEM 61.7758* 2.6789 2.9522 46.8649 10.7996
Generative Agents 13.4636 0.5990 2.8774 45.6774 24.3177
FinGPT -7.4554 -0.2795 3.4145 54.2027 42.3993
A2C 13.7067 0.3979 4.4096 70.0009 52.3308
PPO 1.2877 0.0374 4.4110 70.0232 54.3264
DQN 33.3393 0.9694 4.4027 69.8900 52.0033

NFLX

Buy and Hold 35.5111 1.4109 3.1964 50.7410 20.9263
FINMEM 36.4485* 2.0168 2.2951 36.4342 15.8495
Generative Agents 32.0058 1.5965 2.5460 40.4168 16.9893
FinGPT 9.0090 0.4266 2.6819 42.5732 28.2705
A2C 14.6155 0.5788 3.2071 50.9112 25.0184
PPO 8.4121 0.3330 3.2086 50.9344 25.0184
DQN -12.2067 -0.4833 3.2078 50.9217 28.7017

AMZN

Buy and Hold -10.7739 -0.4980 2.7697 43.9674 33.6828
FINMEM 4.8850* 0.2327 2.6872 42.6576 22.9294
Generative Agents -13.9271 -0.9981 1.7864 28.3576 27.7334
FinGPT -29.6781 -2.1756 1.7464 27.7225 28.4838
A2C -6.3591 -0.2938 2.7706 43.9819 26.1275
PPO -8.4194 -0.3891 2.7702 43.9761 33.6828
DQN -29.9820 -1.3906 2.7603 43.8177 38.3740

MSFT

Buy and Hold 14.6949 0.8359 2.2326 35.4411 15.0097
FINMEM 23.2613* 1.4402 2.0512 32.5617 14.9889
Generative Agents -18.1031 -1.6057 1.4318 22.7285 24.2074
FinGPT 5.7356 0.4430 1.6442 26.1008 12.8459
A2C 0.4598 0.0261 2.2357 35.4913 23.6781
PPO 12.8067 0.7282 2.2333 35.4532 19.5355
DQN 14.7397 0.8385 2.2326 35.4408 25.1845

COIN

Buy and Hold -30.0071 -0.5150 6.7517 107.1795 60.5084
FINMEM 34.9832* 0.7170 5.6538 89.7515 35.7526
Generative Agents 3.4627 0.0896 4.4783 71.0908 32.0957
FinGPT -88.7805 -1.9507 5.2736 83.7153 73.5774

Table 1: Overall trading performance comparison during testing period between FINMEM and other
algorithmic agents.* indicates that the result of Wilcoxon signed-rank test is statistically significant.3

4.1 DATASET AND IMPLEMENTATION DETAILS:

We assessed FINMEM’s performance using multi-source financial data from 2021-08-15, to 2023-04-
25, sourced from reputable financial databases and APIs like Yahoo Finance (yfinance) and Alpaca
News API, detailed explained in Figure 3 of Appendix B. The stock tickers for our experiments
are detailed in Table 5 of Appendix D. These were selected because they are among those with the
highest volumes of accessible news text data, and they are spread across various trading sectors.

In the Trading Agents Comparison, FINMEM employs GPT-4-Turbo as its backbone LLM, with the
temperature parameter set at 0.7 to balance content consistency and creativity. Training occurred on
financial data spanning 2021-08-17 to 2022-10-05, followed by testing from 2022-10-06 to 2023-04-
10. The training period was chosen to account for the seasonal nature of corporate financial reporting
and the duration of data retention in FINMEM’s memory module. The selected training duration
ensures to include at least one publication cycle of either Form 10-Q (classified as intermediate
memory) or Form 10-K (regarded as deep memory), occasionally encompassing both. This strategy
ensures that the experiences retained in FINMEM are still influential during the testing phase for a
significant period. We limited the retrieval from each layer to the top 5 memory events. FINMEM
operated under three distinct risk inclination settings, and we report performance based on the setting
yielding the highest cumulative return in tests. To maintain consistency in the comparison, both
training and testing phases for the other two LLM-based agents were synchronized with FINMEM’s
train-test split. Parameters unique to these agents, not covered by FINMEM’s configuration, remained
as defined in their original source codes.

We also comprehensively evaluate FINMEM’s trading efficacy against a selection of leading DRL
trading agents, A2C, PPO, and DQN. Additionally, we compare FINMEM with two SOTA LLM-based
financial agents: FinGPT (Yang et al. (2023)) and Generative Agents(GA) (Park et al. (2022)) and the
Buy and Hold (B&H) benchmark strategy. Considering that DRL algorithms need extensive training
data for stable and converged results, and given our daily evaluation of trading performance, we
extended the DRL agents’ training period to roughly a 10-year span, from 2012-01-01 to 2022-10-05,
for a fair comparison. The testing period was kept consistent with the other models. The DRL
algorithms were implemented using Stable Baselines 3 (Raffin et al. (2021)). Our evaluation of
FINMEM’s investment performance versus other algorithmic trading agents uses five financial metrics:
Cumulative Return, Sharpe Ratio, Annualized Volatility, Daily Volatility, and Max Drawdown.
We averaged metrics across five trials in experiments and ablation studies. Metric details and

3The bold numbers in this and subsequent tables signify the best performance for the respective metrics.
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configurations are in Appendix E.

4.2 ALGORITHMIC TRADING AGENTS COMPARISON (RQ1 & RQ2)

In this experiment, we evaluate the stock trading effectiveness of FINMEM against competing models,
focusing on equities from five diverse trading sector companies: Tesla, Inc. (TSLA), Netflix, Inc.
(NFLX), Amazon.com, Inc. (AMZN), Microsoft Corporation (MSFT), and Coinbase Global, Inc.
(COIN). The consolidated performance of various algorithmic trading agents, based on five main
metrics, is presented in Table 1. Considering the critical role of Cumulative Return in measuring
trading success over time, detailed time series plots are provided in Appendix H. Notably, FINMEM’s
trading performance for COIN was solely compared with LLM trading agents and the baseline model.
This is attributed to COIN’s recent IPO in April 2021, which led to a lack of sufficient trading history
for generating stable results with DRL algorithms. These plots reveal the progression of Cumulative
Return for each company during the test phase, providing a comprehensive performance comparison.

In response to RQ1, the trading outcomes presented in Table 1 reveal that FINMEM outperforms all
other algorithmic trading agents and the B&H baseline strategy in terms of Cumulative Return and
Sharpe Ratio. FINMEM’s superiority is statistically significant when compared to the second-best
trading strategy. Specifically, for TSLA and NFLX, FINMEM’s strategy achieves Sharpe Ratios
exceeding 2.0 and Cumulative Returns surpassing 35% while maintaining the lowest Volatility and
Max Drawdown. These indicators underscore FINMEM’s ability to generate higher returns per unit of
risk. In the case of MSFT, FINMEM also records a Sharpe Ratio above 1.0 and a Cumulative Return
over 20%, coupled with relatively low Volatility and Max Drawdown, demonstrating its impressive
trading performance. For AMZN and COIN, FINMEM consistently delivers positive Cumulative
Returns and superior Sharpe Ratios, outperforming other strategies that yield negative values for
these metrics. Additionally, its Volatility and Max Drawdown are on the lower end. Hence, these
results collectively demonstrate FINMEM’s robust trading performance across a diverse range of
trading sectors. Specifically, FINMEM exhibits superior performance compared to the two other
LLM agents in our study, FinGPT and GA. This underscores the effectiveness of FINMEM’s unique
profiling and memory structure, which are particularly tailored for LLM agents dealing with financial
data, significantly enhancing their investment decision-making capabilities.

In response to RQ2, the main challenge for DRL trading agents is their need for extensive training
data over long periods, a requirement not met by stocks with brief historical records. As Table 1
indicates, FINMEM outperforms DRL agents, achieving superior results in shorter training times,
even when DRL agents are trained on data spanning nearly a decade. This attribute renders FINMEM
particularly beneficial for companies like COIN. with limited trading history, where DRL agents
often struggle with data insufficiency. Furthermore, FINMEM distinguishes itself among LLM-based
agents designed for brief training, as detailed in Appendix H.

To further evaluate FINMEM’s performance with limited training data, we compressed the training
period to 2021-08-17 to 2022-02-10, extending the testing phase to 2023-04-25, focusing on TSLA
due to its extensive news volume. FINMEM’s trading outcomes are detailed in Figure 7 of Appendix
H. Notably, with less than six months of daily data, including one Form 10-K and one Form 10-Q,
FINMEM achieved consistently high gains and the highest cumulative return on 2022-12-28.

The notable trading efficacy of FINMEM is largely due to its advanced profiling and memory module
design. This innovative architecture allows FINMEM to seamlessly assimilate and prioritize crucial
information from diverse data types, including textual and numerical inputs. The adaptability of its
profiling module in adjusting to different risk preferences is key to its success in both capitalizing
on market upswings and protecting investments during declines. A representative case is observed
with TSLA, where FINMEM’s optimal trading outcomes were achieved through a self-adaptive risk
mechanism. This mechanism endows FINMEM with the capability to adopt a cautious approach
in response to negative short-term cumulative returns, while switching to a more aggressive stance
during periods of positive returns, thereby avoiding excessive passivity. This self-adaptive risk
incliation has been largely effective across various stocks, with the exception of MSFT, as detailed in
Appendix F. For MSFT, embracing a risk-seeking approach aligned better with its overall bullish
market trend. Furthermore, the distinct functionalities of the memory module, such as differentiated
retention durations for various types of information and key memory transitions, empower FINMEM
to discern and retain critical data for informed investment strategies.
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Metric B&H Self-
Adaptive

Risk
Seeking

Risk
Averse

Cumulative
Return

(%)
-66.9497 54.6958 -19.4132 -12.4679

Sharpe
Ratio -2.0845 2.4960 -0.7866 -1.5783

Daily
Volatility

(%)
3.9527 2.7419 3.2722 1.7744

Annualized
Volatility

(%)
3.8050 2.5960 2.9236 0.9358

Max-
Drawdown

(%)
67.3269 12.5734 45.0001 15.9882

Table 2: Comparison of overall trading
performance during the testing period
with different risk inclinations setting.

Figure 2: Comparative Cumulative Return by different
risk inclination in FINMEM’s profiling module.

4.3 DYNAMIC CHARACTER DESIGN EVALUATION (RQ 3)

In the secone experiment, we focused on evaluating the influence of FINMEM’s profiling module
on its trading effectiveness. As depicted in Appendix F, we equipped FINMEM with three distinct
risk profiles: risk-seeking, risk-averse, and a self-adaptive character. We executed a comparative
analysis of FINMEM’s performance across these risk profiles, maintaining consistency in all other
settings as outlined in Section 4.1. We chose TSLA to conduct this assessment because it possesses
the largest amount of textual data, offering sufficient information to assess performance differences
among varying types of character design. This study was run with a more compact training period
from 2022-03-14 to 2022-06-15 and a testing period from 2022-06-16 to 2022-12-28. This shorter
duration was chosen for budgetary efficiency.

In response to RQ3, Table 2 delineates the varied trading performance across different risk profiles.
The self-adaptive profile enabled FINMEM to achieve the most favorable trading performance, as it
was the only one to secure a positive Cumulative Return and a Sharpe Ratio exceeding 2.0, along
with the least Max Drawdown.In contrast, the risk-seeking profile, while beneficial during a stable or
bullish market as evidenced by MSFT’s performance in Figure 8 of Appendix H, exhibited increased
volatility and a decline in the face of a market downturn. Under the self-adaptive risk option, FINMEM
shifts to a risk-averse setting. When the cumulative return over the past 3 days turned negative, it often
chose to maintain existing positions. This strategy led to a Cumulative Return trajectory that typically
trailed the market baseline, indicating a tendency towards excessive caution, which restrained trading
actions in a bullish market. Overall, the dynamic character options feature, especially the risk profiles,
equips FINMEM with flexible decision support in the varied market landscape.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce FINMEM, an innovative trading agent with an adjustable cognitive memory
and dynamic character design. This framework enhances trading performance using real-world
financial datasets, as evidenced by our experiments. FINMEM stands out with its human-like memory
and dynamic character, enabling effective handling of complex financial data and adaptability to new
scenarios. Its memory module surpasses other LLM trading agents in processing and organizing
financial data into an evolving long-term memory. The dynamic character design, coupled with
multiple risk profiles, empowers FINMEM to filter impactful financial data efficiently.

FINMEM excels in converting diverse financial data into effective investment strategies, benefiting
from reduced training times. This is particularly advantageous for trading with new companies.
Although currently using general-purpose LLMs, FINMEM is fully compatible with LLMs specifically
fine-tuned for financial applications. It is expected that FINMEM’s trading effectiveness will be
further enhanced through the use of a more extensive and higher-quality dataset, in conjunction with
LLMs that are specially designed for financial scenarios.
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A DECISION-MAKING MODULE WORKFLOW AND LLM PROMPT TEMPLATE

(1) Multi-sourced
 Input information

Summarize Observe

Retrieve

Essential
memory events
from each layer

Financial market
Facts

Investment decisions
and reflecting outcomes

Reflect

Sorting

LLMs                         ...           Ticker: TSLA         Current Date: 2023-01-24              Predicting Date: 2023-01-25
Summarize: 
Range: Long Documents such as company 10-K and 10-Q reports; daily market news 
Prompts: - 1)Summarize the contents: Summarize the provided documents/texts into a concise summary of {1000} tokens to extract key investment insights.
                 - 2)Summarize and interpret investment sentiment: The positive, neutral and negative scores are for understanding the 
                      investment sentiments, opinions, or emotions. They are ratios for proportions of text that fall in each category and can be added 
                      up to be 1... For example, positive news about a company can lift investor sentiment, encouraging more buying activity which in 
                      turn can push stock prices higher...
         

Observe:
Range: Stock trend changes based on adjusted daily closed prices.
Prompt: The information below provides a summary of stock price fluctuations over the previous few days, which is the "momentum" of a stock. It reflects
               the trend of a stock. Momentum is based on the idea that securities that have performed well in the past will continue to perform well, and
               conversely, securities that have performed poorly will continue to perform poorly.
               - training: On {2023-01-24}, the momentum of {TSLA}, indicated by the price difference between the current and the next trading day,
                               was an increase of {$5.4}.
               - testing: On {2023-01-24}, the historical momentum of {TSLA}, as measured by its cumulative logarithmic returns in the
                              past {3} days, was { 7.476%}.

(2)

Reflect: 
Range: Memory events retrieved from layered long term memory, daily market facts, interaction insights among extended and immediate reflection.
Prompt: 
- training: Given the following information, can you explain to me why the financial market fluctuation from current day to the next day behaves like 
                this? You need to provide summary information and the IDs of the information to support your summary.
- testing: Given the information, can you make an investment decision? Please consider the short-term, mid-term and long-term information, the reflection 
               information. Please also consider the momentum of the stock price.
                {When the cumulative returns are positive, you are a risk-seeking investor... And when the cumulative returns are 
                negative, you are a risk-averse investor...}
                Considering how many shares of the stock you as an investor are holding now, you should provide exactly one of the following 
                investment decisions: buy and sell. When it is hard to make a buy-or-sell decision, you could go with hold option. You also need to provide the IDs 
                of the information to support your decision.    
 

Layered Long-
term Memory

Trading decision: Buy. 
Reason: Given the shallow and intermediate memory messages, analysts are seeing the current low price as a buying opportunity (3357, 3404). The deep
memory information indicates a potential risk with Tesla trimming production (3417), but the reflection term information shows a robust financial performance
over the past 10 years (1). Furthermore, the investor holds only 1 share of TSLA, suggesting that buying more could potentially yield a good return in the
future.

Figure 3: (1) The decision-making module workflow of the FINMEM trading agent retrieves critical
memory events to inform specific decisions. (2) LLM prompt template used by FINMEM to interact

with incoming financial information.

B RAW DATA SOURCES

Data Sources

News data associated with ticker: News data is sourced from the Alpaca News API,
which utilizes Benzinga as its backend provider.

Form 10-Q, Part 1 Item 2 (Management’s Discussion and Analysis of Financial
Condition and Results of Operations): Quarterly reports (Form 10-Q) are required by
the U.S. Securities and Exchange Commission (SEC).

Form 10-k, Section 7 (Management’s Discussion and Analysis of Financial Condition
and Results of Operations): Annual reports (Form 10-K) are required by the U.S.
Securities and Exchange Commission (SEC), sourced from EDGAR, and downloaded
via SEC API.

Historical stock price: Daily open price, high price, close price, adjusted close price,
and volume data from Yahoo Finance.

Table 3: Raw data and memory warehouses of FINMEM
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C PROMPT TEMPLATE FOR FINMEM’S PROFILING MODULE

Figure 4: The prompt template for FINMEM’s profiling module. It includes two key elements of its
character setting: professional background knowledge and three distinct investment risk inclinations.

In the self-adaptive risk inclination option, the omitted texts align with the detailed descriptions
provided for the risk-seeking and risk-averse inclinations.

D DISTRIBUTION OF NEWS

Figure 5: The distribution of news in scraped from Alpaca News API for the five stocks in the
experiments
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E FORMULA OF CLASSIC FINANCIAL METRICS FOR EVALUATING TRADING
PERFORMANCE

Cumulative Return (Hull (2007)): Cumulative Return is a key trading performance metric because
it provides a comprehensive insight into investment performance, especially for strategies that
emphasize long-term growth and reinvestment. The effectiveness of different investment strategies is
evaluated based on their Cumulative Returns, which reflect the total change in value over time. In
this study, we compute Cumulative Returns over the specified period by summing daily logarithmic
returns, as outlined in Equation 7. This method is widely accepted in the finance area due to its ability
to precisely capture minor price fluctuations and symmetrically address gains and losses. In essence,
a higher Cumulative Return typically indicates a more effective strategy.

Cumulative Return =

n∑
t=1

ri

=

n∑
t=1

[
ln

(
pt+1

pt

)
· actiont

]
, (7)

where ri represents the logarithmic return for day t+ 1, pt is the closing price on day t, pt+1 is the
closing price on day t+ 1, and actiont denotes the trading decision made by the model for that day.
Sharpe Ratio (Sharpe (1994)): Sharpe Ratio is another core metric for evaluating investment
performance and adjusting returns for risk. It is calculated by dividing the portfolio’s average excess
return (Rp) over the risk-free rate (Rf ) by its volatility (σp), as shown in Equation 8. This metric
adjusts returns for risk, with a higher ratio indicating better risk-adjusted performance. Essential in
comparing different portfolios or strategies, it contextualizes performance against similar investments.
Although a Sharpe Ratio above 1 is typically considered favorable and above 2 as excellent, these
benchmarks can vary depending on the context of comparison.

Sharpe Ratio =
Rp −Rf

σp
(8)

Annualized Volatility and Daily Volatility(Cochrane (1988)): Annualized Volatility (Annum-
Volatility) is calculated as the Daily Volatility (standard deviation of daily logarithmic returns)
multiplied by the square root of the typical number of trading days in a year (252) as outlined in
Equation 9, is vital for assessing investment risk. This measure reflects the extent of fluctuation in a
security or market index’s returns over a year, indicating potential deviations from average returns.
It’s especially relevant for investors with specific risk profiles, such as those who are risk-averse, who
may prefer portfolios demonstrating lower annualized volatility.

Annum-Volatility = Daily Volatility ×
√
252 (9)

Max Drawdown (Ang and Chen (2003)): Max Drawdown is a metric for assessing risk. It represents
the most significant decrease in a portfolio’s value, from its highest (Ppeak) to its lowest point (Ptrough)
until a new peak emerges, detailed in Equation 10. Indicative of investment strategy robustness, a
smaller Max Drawdown suggests reduced risk.

Max Drawdown = max(
Ppeak − Ptrough

Ppeak
) (10)

F OPTIMAL RISK INCLINATION WITH DIFFERENT STOCKS

Figure 6: The optimal risk inclination for FINMEM when trading different stocks.
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G BASELINE AND COMPARATIVE MODELS:

We assess FINMEM’s trading performance in comparison to five advanced algorithmic agents and a
commonly accepted baseline trading strategy. Among these, three models employ Deep Reinforce-
ment Learning (DRL) approaches, while the remaining two are based on Large Language LLMs.
Brief descriptions of each are provided below:
Buy-and-Hold strategy (B&H):
A passive investment approach, where an investor purchases stocks and holds onto them for an
extended period regardless of market fluctuations, is commonly used as a baseline for comparison of
stock trading strategies.
DRL trading agents:
As the FINMEM is practiced and examined on the basis of single stock trading and discrete trading
actions, we choose three advanced DRL algorithms fitting into the same scenarios according to the
previous and shown expressive performance in the work of Liu et al. (2021; 2022). The DRL training
agents only take numeric features as inputs.

• Proximal Policy Optimization (PPO): PPO (Schulman et al. (2017)) is employed in stock
trading due to its stability and efficiency. One salient advantage of PPO is that it maintains a
balance between exploration and exploitation by bounding the policy update, preventing
drastic policy changes.

• Deep Q-Network (DQN): DQN (Mnih et al. (2013)) is an adaptation of Q-learning, that
can be used to optimize investment strategies. Unlike traditional Q-learning that relies on a
tabular approach for storing Q-values, DQN generalizes Q-value estimation across states
using deep learning, making it more scalable for complex trading environments.

• Advantage Actor-Critic (A2C): A2C (Mnih et al. (2016)) is applied to optimize trading
actions in the financial environment. It operates by simultaneously updating both the
policy (actor) and the value (critic) functions, providing a balance between exploration and
exploitation.

LLM trading agents:
We evaluate FINMEM against two LLM agents in the context of stock trading. The first LLM
agent, known for its proficiency in general-purpose tasks, serves as a baseline. The second agent,
a leading-edge LLM in trading, has been acclaimed for its promising performance in stock market
operations.

• General-purpose Generative Agents – GA: The generative AI agent by Park et al. (2022),
originally intended to simulate realistic human behavior and make everyday decisions, has
been adapted here for specific stock trading tasks. This agent’s architecture includes a
memory module that employs recency, relevance, and importance metrics to extract pivotal
memory events for informed decision-making. However, it does not provide a layered
memory module to effectively differentiate the time sensitivities unique to various types of
financial data. Additionally, although it features a profiling module to define agent attributes
like professional background, the model does not include a mechanism for self-adaptive risk
preference. In our experiments, we modified the original prompt template created by Park et
al., which was intended for general daily tasks, to suit financial investment tasks. The textual
elements of this revised template closely align with those of FINMEM, with the exception of
two components that are absent in this version of general-purpose Generative Agents.

• LLM trading agents – FINGPT: A novel open-source LLM framework specialized for
converting incoming textual and numeric information into informed financial decision-
making, introduced by Yang et al. (2023). It claims superiority over the traditional buy-and-
hold strategy.
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H CUMULATIVE RETURN COMPARISON OVER TIME OF FINMEM

Figure 7: Cumulative Return of FINMEM on trading Tesla, Inc. (TSLA) stock Over an Extended
Testing Period.

Figure 8: Cumulative return comparison over time between FINMEM and other algorithmic agents
across five stocks.
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Figure 9: Cumulative Return comparison over time between FINMEM and other algorithmic agents
on Coinbase Global, Inc. (COIN).

I FINMEM BACKBONE LLMS COMPARISON

Metric B&H GPT 3.5-Turbo GPT4 GPT4-Turbo davinci-003 Llama2-70b-chat
Cumulative Return (%) -66.9497 16.1501 62.6180 54.6958 1.6308 -52.7233

Sharpe Ratio -2.0845 2.1589 2.2251 2.4960 0.8515 -2.8532

Daily Volatility (%) 3.8050 0.8862 3.3339 2.5960 0.2269 2.1891

Annualized Volatility (%) 60.4020 14.0683 52.9237 41.2100 3.6018 34.7503

Max Drawdown (%) 67.3269 1.1073 17.4012 12.5734 0.8408 44.7168

Table 4: Comparison of trading performance during the testing period for FINMEM using different
LLMs as backbone algorithms.

In this study, we evaluated the trading performance of FINMEM using various LLMs as its backbone
algorithms. The LLMs under consideration included davinci-003, GPT 3.5-Turbo, GPT4, GPT4-
Turbo, and Llama2-70b-chat. The parameter settings were consistent with its optimal performance
in the comparative experiment detailed in Section 4.1, and the risk inclination was configured to be
self-adaptive. The evaluated ticker is TSLA as in the Section 4.3. The results of this evaluation are
compiled in Table 4.
The findings demonstrate that FINMEM, powered by GPT-4 and GPT-4 Turbo, delivered superior
trading results during the test phase. Specifically, GPT-4 recorded the highest cumulative return,
while GPT-4-Turbo exhibited the most favorable Sharpe Ratio. GPT 3.5-Turbo’s performance was
also noteworthy, following closely behind. As depicted in Figure 10, though slightly lower than
market baseline (B&H), FINMEM with GPT-4-Turbo led in cumulative returns before October
2022. This period was characterized by relative stability and a modest upward trend in TSLA stock.
After October 2022, with TSLA undergoing increased volatility and a notable downward trend, the
cumulative return trajectory for FINMEM with GPT-4-Turbo exhibited significantly lower volatility
and sustained stable returns not markedly lower than those of GPT-4. These results indicate that
GPT-4 Turbo is the most suitable backbone algorithm for FINMEM.
FINMEM configured with davinci-003 and Llama2-70b-chat exhibited the lowest Annualized Volatil-
ity and Max Drawdown, yet their Cumulative Return and Sharpe Ratio were underwhelming. As
illustrated in Figure 10, both models defaulted to a “Hold” strategy beyond a certain point during
periods of intense fluctuation in TSLA stock. The unsatisfactory performance of davinci-003 may be
attributed to its limited capability, as an earlier generation language model, to capture and understand
nuanced yet decisive information.
We selected Llama2-70b-chat as it was deemed to possess stronger in-context learning and instruction-
following capabilities compared to other Llama family models with fewer parameters, as noted in
Zhao et al. (2023). Nonetheless, in the context of stock trading, it still demonstrated challenges in
adequately comprehending key messages necessary for effective trading decisions. The comparatively
poorer performance of Llama2-70b-chat can also be attributed to its shorter context window, especially
when compared to the GPT models. When integrated with FINMEM, it needs to simplify prompts
and shorten the length of retrieved memory insights, which could potentially result in some loss of
context. The exceptional trading result demonstrated by GPT-4-Turbo across all models was a main
factor in choosing it as the backbone algorithm for FINMEM in our earlier comparative analysis with
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other algorithmic trading agents.

Figure 10: Comparison of overall Cumulative Returns over time for FINMEM using different LLMs
as backbone algorithms.

J IMPACT OF ADJUSTING THE CAPACITY OF FINMEM WORKING MEMORY

In this section, we explored whether appropriately tuning the memory retrieval bandwidth of FINMEM
could enhance its trading performance. This bandwidth is tied to the working memory’s capacity
within its memory module. As depicted in Figure 1, FINMEM retrieves the top-K memory events
from its long-term memory in response to a trading inquiry. By varying the K hyperparameter,
FINMEM can expand this capacity far beyond the human cognitive scope. We aimed to determine
whether such flexibility in adjusting memory bandwidth translates to improvements in FINMEM’s
performance.

Metric B&H Top 1 Top 3 Top 5 Top 10

Cumulative Return (%) -66.9497 52.0936 29.4430 54.6958 79.4448

Sharpe Ratio -2.0845 1.8642 1.1214 2.4960 2.7469

Daily Volatility (%) 3.8050 3.3105 3.1105 2.5960 3.4262

Annualized Volatility (%) 60.4020 52.5529 49.3779 41.2100 54.3891

Max Drawdown (%) 67.3269 25.2355 27.0972 12.5734 17.1360

Table 5: Comparison of overall trading performance during the testing period with different
configurations of working memory capacity.

As demonstrated in Table 5, we adjusted the hyperparameter K to alter the number of memory events
retrieved from shallow, intermediate, and deep long-term memory layers in FINMEM. We tested K
values of 1, 3, 5, and 10, exploring FINMEM’s working memory capabilities at levels below, near,
and above the human cognitive limit. For all these K settings, we maintained a self-adaptive risk
inclination, while other settings were consistent with those described in Section 4.1.
Across all K configurations, FINMEM outperformed the Buy & Hold baseline, indicating the
effectiveness of its memory module in processing diverse information and capturing critical events,
which subsequently enhanced its trading performance, as evidenced by positive Cumulative Returns
and Sharpe Ratios. Notably, higher K values, like 5 and 10, enabled FINMEM to achieve the best
Cumulative Returns and Sharpe Ratios exceeding 2.0. With K set to 1, FINMEM still performed
moderately well by capturing the most critical memory events of each layer.
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Figure 11: Cumulative Return over time for with different FINMEM working memory capacity.

An in-depth analysis in Figure 11, which shows the Cumulative Return over time for various K
settings, reveals that a K value of 5 is optimal for trading TSLA stock, consistently delivering robust
performance with the lowest Volatility and Max-Drawdown. Before mid-October 2022, when the
stock market was relatively stable and slightly upward, FINMEM’s trading actions aligned well with
market trends (referring to B&H) and avoided significant losses. During periods of high volatility and
continuous downturns (post-mid-October 2022), it maintained earnings by reducing “Buy” actions
and favoring more “Hold” and “Sell” strategies. However, setting K to 10, while effective during
market volatility, resulted in significant losses in stable market conditions. The issue may stem from
the disproportionately loose capacity constraints on incoming information relative to the volume
of incoming data. The broad memory retrieval bandwidth might have mixed trivial messages with
critical ones, hampering FINMEM’s decision precision. This challenge becomes especially evident
in neutral market conditions, where the influx of information includes a mix of varying market
sentiments and trends.
Appropriately tuning the number of memory events (Top-K in the FINMEM memory module can
significantly enhance its trading performance. The aforementioned study illustrates that FINMEM can
achieve optimal results by effectively assimilating key signals from a sufficient quantity of filtered
memories across each layer. However, the optimal value for K may vary depending on the volume
and quality of incoming information.
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