

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE SELF-RE-WATERMARKING TRAP: FROM EXPLOIT TO RESILIENCE

Anonymous authors

Paper under double-blind review

ABSTRACT

Watermarking has been widely used for copyright protection of digital images. Deep learning-based watermarking systems have recently emerged as more robust and effective than traditional methods, offering improved fidelity and resilience against attacks. Among the various threats to deep learning-based watermarking systems, self-re-watermarking attacks represent a critical and underexplored challenge. In such attacks, the same encoder is maliciously reused to embed a new message into an already watermarked image. This process effectively prevents the original decoder from retrieving the original watermark without introducing perceptual artifacts. In this work, we make two key contributions. First, we introduce the self-re-watermarking threat model as a novel attack vector and demonstrate that existing state-of-the-art watermarking methods consistently fail under such attacks. Second, we develop a self-aware deep watermarking framework to defend against this threat. Our key insight for mitigating the risk of self-re-watermarking is to limit the sensitivity of the watermarking models to the inputs, thereby resisting re-embedding of new watermarks. To achieve this, we propose a self-aware deep watermarking framework that extends Lipschitz constraints to the watermarking process, regulating encoder-decoder sensitivity in a principled manner. In addition, the framework incorporates re-watermarking adversarial training, which further constrains sensitivity to distortions arising from re-embedding. The proposed method provides theoretical bounds on message recoverability under malicious encoder based re-watermarking and demonstrates strong empirical robustness against diverse scenarios of re-watermarking attempts. In addition, it maintains high visual fidelity and demonstrates competitive robustness against common image processing distortions compared to state-of-the-art watermarking methods. This work establishes a robust defense against both standard distortions and self-re-watermarking attacks. The implementation will be made publicly available in GitHub.

1 INTRODUCTION

Digital image watermarking plays a crucial role in preserving ownership and copyright protection for visual content distributed across digital platforms (Jia et al., 2021; Tancik et al., 2020; Luo et al., 2024). While modern deep learning (DL) based watermarking methods often outperform classical methods in terms of robustness and imperceptibility, they still remain vulnerable to adversarial attacks (Wang et al., 2021; Kinakh et al., 2024). One such threat is the re-watermarking attack, where an adversary embeds a new watermark into an already watermarked image, potentially causing the respective decoder to recover the second watermark instead of the original one. This attack transfers the ownership to an attacker, effectively allowing them to claim the image as their own and actively undermining the credibility of the watermarking systems.

Re-watermarking attacks in image watermarking systems can be broadly categorized into two types: (1) cross-model re-watermarking, where a different watermarking model embeds a new message into an already watermarked image (Chen et al., 2024b; Padhi et al., 2024a); and (2) self-re-watermarking, where the same encoder is directly reused to embed a new message. In cross-model re-watermarking, different embedding patterns between models typically allow both the original and the new watermarks to be independently recovered, making such attacks detectable via multi-decoder inconsistencies (Please refer to Appendix A for further details). In contrast, self-overwriting

054 poses a more severe threat. Since the same encoder is applied to an already watermarked image using
 055 the identical learned embedding function, it results in the removal of the original message, rendering
 056 it irretrievable. Such an attack hijacks the model’s own logic to overwrite ownership without leaving
 057 detectable artifacts.

058 To investigate the severity of this threat, we conducted an empirical study on state-of-the-art deep
 059 watermarking models in the literature (Huang et al., 2023; Zhu et al., 2018; Fernandez et al., 2022;
 060 Jia et al., 2021; Luo et al., 2024; Lu et al., 2025) and found that they consistently fail under self-
 061 overwriting attacks. This exposes a systemic vulnerability in current designs that highlights the need
 062 for deeper analysis. Most recent deep learning-based watermarking approaches predominantly lever-
 063 age encoder-decoder architectures trained to optimize for imperceptibility and robustness against
 064 common image processing distortions. However, these methods implicitly assume single-use em-
 065 bedding and do not account for repeated watermarking. While prior works have studied adversarial
 066 robustness for watermarking systems in the context of copyright protection (Chen et al., 2024a;
 067 Padhi et al., 2024a; Singh et al., 2024; Liu et al., 2022), to the best of our knowledge, none address
 068 the self-re-watermarking attack wherein the encoder is reused maliciously on watermarked content
 069 to re-embed a new watermark. To defend against self-re-watermarking attacks, the system must
 070 detect unauthorized overwriting and reliably recover the original watermark, ensuring ownership
 071 cannot be hijacked. Addressing this gap is critical for maintaining the integrity and trustworthiness
 072 of watermarking systems.

073 This work focuses on defending against a white-box adversary who has full access to the water-
 074 marking model, as these models cannot be assumed to remain protected indefinitely. Such access
 075 may result from model leakage, sharing, or reverse engineering. This scenario is particularly con-
 076 cerning because image owners may continue using the watermarking system without realizing that
 077 the model has been compromised. Even if the leaked model is later discarded, previously water-
 078 marked images remain vulnerable. Our motivation is further supported by recent research on model
 079 extraction (Rakin et al., 2022; Hu & Pang, 2021) and real-world model leakage incidents, such as
 080 the LLaMA case (Vincent, 2023). To this end, we propose a self-aware deep watermarking system
 081 designed to recover original messages even under self-overwriting. Our key insight is to develop a
 082 proactive watermarking framework that leverages a Lipschitz-constrained architecture (Cisse et al.,
 083 2017) to ensure reliable recovery of the original message even from overwritten images. We demon-
 084 strate that integrating these constraints directly into watermarking architectures offers a practical
 085 and effective approach to enhancing robustness against self-overwriting. This constraint ensures ro-
 086 bustness to structured distortions introduced by re-embedding. To comprehensively defend against
 087 white-box adversaries capable of crafting targeted perturbations to mislead the decoder, we also
 088 employ adversarial training restricted to small pixel-level changes. By jointly enforcing bounded
 089 sensitivity and adversarial robustness in the system, our framework effectively resists both self-
 090 overwriting and norm-bounded re-watermarking attacks, preserving message fidelity and invalidat-
 091 ing unauthorized re-use of the model. Although Lipschitz constraints have been studied previously
 092 in deep learning, integrating them into a watermarking system limits the encoder’s capacity to pre-
 093 serve visual fidelity and prevents the decoder from maintaining sufficient robustness. To address
 094 this, we implement adaptive loss-weighting strategies that simultaneously preserve fidelity, enhance
 095 robustness against image-processing attacks, and protect against self-re-watermarking.

096 The major contributions of this study can be summarized as follows :

- 097 • **Introduces the self-re-watermarking threat model** in image watermarking, where the
 098 encoder is reused to embed a new message into an already watermarked image. Systematic
 099 experiments show that existing deep watermarking systems fail under this attack, revealing
 100 a significant vulnerability.
- 101 • **Presents a novel watermarking framework** built on a Lipschitz-constrained en-
 102 coder-decoder architecture, enhanced with re-watermarking adversarial training and adap-
 103 tive loss weighting. This design jointly optimizes fidelity and robustness, addressing both
 104 overwrite attacks and common image-processing distortions within a unified objective.
- 105 • **Formally analyzes** the system’s bit-error rate under self-re-watermarking, using the same
 106 encoder. The work offers a theoretical bound for this attack class and complements it with
 107 extensive empirical evaluations to assess the system’s robustness under overwriting and
 108 various image-processing attacks.

108

2 RELATED WORK

110 To contextualize our study, this section reviews two core areas: advances in deep learning-based
111 watermarking and the evolving adversarial threats and countermeasures.
112113

2.1 DL BASED IMAGE WATERMARKING

115 Deep learning has become central to image watermarking, enabling models to balance impercepti-
116 bility and robustness. Early work by Baluja et al. (Baluja, 2017) proved the feasibility of DL-based
117 steganography, while HiDDeN (Zhu et al., 2018) introduced differentiable noise layers to simulate
118 distortions such as cropping and compression. To address non-differentiable or unknown distortions,
119 Luo et al. (2020) proposed a distortion-agnostic framework with adversarial training, and MBRS
120 (Jia et al., 2021) further improved robustness to JPEG by mixing real and simulated codecs. Other
121 advances include ARWGAN (Huang et al., 2023), which applied attention-based fusion, and Fer-
122 nandez et al. (Fernandez et al., 2022), who used self-supervised learning with DINO (Caron et al.,
123 2021) to target semantically meaningful regions, although such methods remain vulnerable to crop-
124 ping. Transformer-based designs such as WFormer (Luo et al., 2024) and security-focused schemes
125 like GANMarked (Singh et al., 2024) improved robustness and key protection, yet struggled against
126 forgery or adaptive attacks. Recently, Lu et al. (2025) developed VINE to address vulnerabilities in
127 watermarking against large-scale text-to-image models.
128129

2.2 ADVERSARIAL ATTACKS IN DL BASED IMAGE WATERMARKING

130 DL watermarking faces adversarial threats beyond removal attacks (Zhao et al., 2024; An et al.,
131 2024). A critical yet underexplored risk is *self-re-watermarking*, where an attacker reuses the en-
132 coder to embed a conflicting message into a watermarked image, creating false ownership claims.
133 Kinakh et al. (2024) showed that self-supervised methods are prone to unauthorized transfer, while
134 forgery-based strategies (Hu et al., 2025) can fabricate counterfeit ownership. These studies demon-
135 strate how adversarial pressure on watermarking systems is expanding in sophistication.
136137 Some studies have focused on defending against particular classes of adversarial attacks. For in-
138 stance, diffusion-based schemes (Zhu et al., 2024) embed adversarial watermarks to obstruct genera-
139 tive imitations. Recent dual watermarking efforts (Padhi et al., 2024b) attempt to resist model style-
140 transfer attacks. Other approaches target overwriting, such as high-frequency embedding (Chen
141 et al., 2024b) or dual-watermarking (Padhi et al., 2024a), but their scope is narrow. Overall, robust
142 countermeasures against self-re-watermarking remain absent. Building on this gap, we propose a
143 framework that reduces model sensitivity to input changes, preserving robustness to standard distor-
144 tions while resisting adversarial overwriting.
145146

3 THREAT MODEL: SELF-RE-WATERMARKING ADVERSARY

147 In this section, we first define the problem setup, the adversary’s capabilities and objectives, and
148 then proceed to the attack mechanisms.
149150

3.1 PROBLEM SETUP AND NOTATIONS

152 This work considers a white-box adversary O that has full access to the encoder E and decoder D .
153 The Encoder E takes in normalized real image $x \in \mathcal{X}$ and bipolar messages $m \in \widetilde{\mathcal{M}}$ to produce
154 watermarked images $x_w \in \mathcal{X}$, where $\mathcal{X} \subset [-1, 1]^{H \times W \times 3}$ and $\widetilde{\mathcal{M}} = \{-1, 1\}^L$. Meanwhile, the
155 Decoder D takes in $x_w \in \mathcal{X}$ and produces logits $Z \in \mathbb{R}^L$ which can be mapped to bit values.
156157

3.2 ADVERSARIAL CAPABILITIES

159 We consider a **white-box adversary** with full access to the model parameters and training proce-
160 dure, and resources to develop and train watermarking models of comparable complexity. Such an
161 adversary can launch three types of attacks. First, through **Encoder-Based Self-Re-Watermarking**
(O_{SRW}), the adversary can directly reuse the encoder to embed a new message into an already wa-

162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 termarked image. Second, using **Gradient-Based Adversarial Attack** (O_{GBA}), the adversary leverages the decoder’s gradients to generate a perturbation bounded by a maximum allowable pixel change that, when added to the watermarked image, compels the decoder to output a target message. Finally, with **Model Replication-Based Overwrite Attack** (O_{MR}), the adversary exploits knowledge of the training algorithm and loss functions to train a surrogate watermarking model, enabling them to embed a new watermark and overwrite the original one without requiring access to the original model parameters or training data.

3.3 ADVERSARIAL OBJECTIVES

172
 173
 174
 175
 In the context of these attack strategies, adversaries generally pursue two primary objectives. First, they aim to **overwrite the original message**, such that the decoder produces a target message. Second, these modifications are often constrained by **perceptual fidelity**, requiring that the re-watermarked image remains perceptually similar to the original watermarked image.

3.4 THE SELF OVERWRITING ATTACK

179
 180
 181
 182
 As the adversary has access to the encoder model and its parameters, they can directly embed an adversarial watermark $m' \in \widetilde{\mathcal{M}}$ into an already watermarked image x_w , resulting in a re-watermarked image $x_{w'} \in \mathcal{X}$. Formally, the process can be expressed as

$$x_{w'} = O_{SRW}(E(x, m); m') = E(x_w, m'), \quad \text{where } m' \neq m. \quad (1)$$

3.5 GRADIENT BASED ADVERSARIAL OVERWRITING

188
 189
 190
 191
 192
 193
 194
 Beyond maliciously reusing the encoder, we also consider a powerful adversary who is capable of creating a subtle perturbation ψ to fool the decoder while maintaining high visual fidelity. To achieve this, we formulate this attack as an iterative Projected Gradient Descent (PGD) optimization (Madry et al., 2017). At each iteration, the adversary updates the adversarial image, x_{adv} , to minimize the decoder’s binary cross-entropy with the target message $m_g \in \mathcal{M}$, projecting the perturbation onto an ℓ_∞ -norm ball of radius ϵ and clipping to valid pixel ranges. The detailed algorithmic procedure is given in **Algorithm 1**. Formally, this attack can be described as follows

$$x_{adv} = O_{GBA}(E(x, m); m_g) = E(x, m) + \psi \quad (2)$$

Algorithm 1 PGD Self-Overwrite Attack

201
Require:

202
 203
 204
 1: Watermarked image $x_w \in [-1, 1]^{B \times C \times H \times W}$, Target message bits $m_g \in \{0, 1\}^{B \times L}$, Decoder function D , Maximum perturbation ϵ , Step size α , Number of iterations T

205
Ensure: Adversarial image x_{adv}

206
 2: Initialize $x_{adv} \leftarrow x_w$

207
 3: **for** $i = 1$ to T **do**

208
 4: Compute logits: $Z \leftarrow D(x_{adv})$

209
 5: Compute loss: $\mathcal{L} = \text{BCEWithLogitsLoss}(Z, m_g)$

210
 6: Compute gradient: $g \leftarrow \nabla_{x_{adv}} \mathcal{L}$

211
 7: Gradient descent step with sign: $x_{adv} \leftarrow x_{adv} - \alpha \cdot \text{sign}(g)$

212
 8: Project perturbation back to ℓ_∞ ball: $\delta \leftarrow \text{clip}(x_{adv} - x_w, -\epsilon, \epsilon)$

213
 9: Clamp to valid image range: $x_{adv} \leftarrow \text{clip}(x_w + \delta, -1, 1)$

214
 10: **end for**

215
 11: **return** x_{adv}

216

4 PROPOSED METHODOLOGY

217

218 This section proposes a principled approach to resist self-re-watermarking attacks in watermarking
219 systems by jointly optimizing fidelity, nominal recovery, and robustness.
220

221

4.1 MODEL ARCHITECTURE

222

223 The proposed architecture is designed to be sufficiently expressive to embed messages within im-
224 ages while preserving their fidelity. Furthermore, it is carefully structured to ensure robustness
225 against self-overwriting attacks through Re-Watermarking Adversarial Training, thereby enabling
226 reliable message extraction, even after self-re-watermarking. The proposed architecture comprises
227 the following key components:
228

229 **Encoder:** We adopt a U-Net architecture (Ronneberger et al., 2015), a widely used design in water-
230 marking algorithms, to evaluate how bounded sensitivity can be adapted to such architectures. To
231 support multi-scale feature extraction, we incorporate an auxiliary ResNet-50 backbone (He et al.,
232 2016). The input to the encoder is constructed by concatenating the cover image $x \in \mathbb{R}^{3 \times H \times W}$
233 with the message $m \in \{-1, 1\}^L$. Prior to concatenation, the message undergoes spatial expansion
234 through spectrally normalized linear layers. This results in a 4-channel tensor input.
235

236 The encoder consists of four downsampling blocks augmented with skip connections from inter-
237 mediate ResNet layers. A bottleneck with spectral and group normalization connects to four up-
238 sampling blocks with skip connections and ReLU activations. A final spectrally normalized 1×1
239 convolution produces a residual image, which is added to the input image.
240

241 **Decoder:** The decoder is a convolutional neural network that recovers the embedded message from
242 the watermarked image. Each convolutional block comprises a spectrally normalized convolutional
243 layer with kernel size 3×3 , followed by group normalization (with 4 groups) and a ReLU activation.
244 Residual connection between the blocks, enhancing gradient flow and feature reuse. The final fully
245 connected layer produces the final message logits.
246

247 **Noise Model:** To simulate real-world distortions, we employ a differentiable noise model composed
248 of common image perturbations. At each training iteration, one perturbation is randomly sampled
249 from a pool that includes JPEG compression, Gaussian blur, dropout, cropout, cropping, horizontal,
250 vertical flips, scaling, and rotation. Each selected operation is applied with randomly sampled
251 parameters within plausible ranges.
252

253 **Post-Processing Module:** During inference, the watermarked image undergoes Gaussian blurring
254 followed by suppression of low-magnitude values to enhance the visual fidelity.
255

256

4.2 TRAINING OBJECTIVE

257

258 The training objective is designed to meet three goals: preserving image fidelity, ensuring reliable
259 nominal recovery of the embedded message, and maintaining robustness against self-overwriting
260 attacks. To achieve this, the system optimizes a composite loss with three components. First, the
261 fidelity loss enforces the watermarked image to remain visually consistent with the cover image. It
262 integrates both mean squared error and a perceptual similarity term, measured via LPIPS (Zhang
263 et al., 2018), given by:
264

265
$$\mathcal{L}_{\text{fid}} = \text{MSE}(x, x_w) + \lambda_{\text{lpipl}} \cdot \text{LPIPS}(x, x_w) \quad (3)$$
266

267 Second, the nominal recovery loss ensures reliable message extraction under benign conditions:
268

269
$$\mathcal{L}_{\text{rec}} = \text{BCE}(D(x_w), \phi(m)) \quad (4)$$
270

271 where the function ϕ maps m from its bipolar form to standard bit values. Third, the robustness
272 loss is designed to enhance resilience against overwriting attacks. Specifically, it penalizes decod-
273 ing errors when the system is confronted with re-watermarked images generated through malicious
274 encoder reuse, as well as adversarially perturbed inputs obtained via gradient-based optimization. It
275 is given by:
276

277
$$\mathcal{L}_{\text{rob}} = \text{BCE}(D(x_w), \phi(m)) \quad (5)$$
278

279 Thus, the full optimization problem can be formulated as:
280

281
$$\min_{\theta_E, \theta_D} \mathbb{E}_{x, m, m'} [\lambda_{\text{fid}} \cdot \mathcal{L}_{\text{fid}} + \lambda_{\text{rec}} \cdot \mathcal{L}_{\text{rec}} + \lambda_{\text{rob}} \cdot \mathcal{L}_{\text{rob}}] \quad (6)$$
282

270 where θ_E and θ_D are the parameters of E and D respectively. λ_{fid} , λ_{rec} , and λ_{rob} can be adaptively
 271 changed using the nominal bit recovery and the bit recovery of the original message after adversarial
 272 training as per Algorithm 2 in Appendix C.
 273

274 4.3 TRAINING PIPELINE

275 In this work, we construct a training pipeline that integrates noise modeling and adversarial simulations.
 276 During training, the encoder embeds a binary message into the cover image to produce a
 277 watermarked image. This image is then optionally passed through a noise model simulating com-
 278 mon distortions described under Subsection 4.1. The decoder attempts to recover the embedded
 279 message from the (possibly distorted) watermarked image. Figure 1 illustrates our training pipeline.
 280

281 A PGD-based adversarial overwriting scenario is also simulated during training. This forces the
 282 model to learn robustness against adaptive gradient-based attacks. Additionally, to further enhance
 283 resilience, a self-overwriting scenario is simulated by feeding the watermarked image back into
 284 the encoder to mimic an adversary attempting to re-embed a new message on top of the existing
 285 watermark. This encourages the model to maintain watermark integrity under repeated embedding
 286 attempts. Together, these training strategies ensure robustness against both gradient-based and self-
 287 overwriting adversarial manipulations. While these mechanisms offer strong empirical protection,
 288 the following section will formally analyze the system’s robustness under malicious encoder reuse.
 289

303 Figure 1: Overview of the training pipeline for the proposed system, illustrating both the standard
 304 watermarking process (black arrows) and the adversarial training loop (red arrows) used to ensure
 305 robustness against attacks.
 306

307 4.4 LIPSCHITZ CONSTRAINTS AND ASSUMPTIONS

308 1. **Decoder Lipschitzness** There exists an upper bound K_D such that for all images $x_1, x_2 \in$
 309 \mathcal{X} ,

$$310 \|D(x_1) - D(x_2)\|_\infty \leq K_D \|x_1 - x_2\|_\infty. \quad (7)$$

311 In practice, K_D can be a global constant (conservative) or a *data-dependent local estimate*
 312 measured along the path from watermarked image x_w to re-watermarked image $x_{w'}$:

$$313 K_{D,\text{loc}} := \frac{\|D(x_{w'}) - D(x_w)\|_\infty}{\|x_{w'} - x_w\|_\infty}. \quad (8)$$

314 2. **Positive clean margin.** The minimum signed margin across all images and bits, which
 315 guarantees that every bit is correctly decoded in the absence of an overwrite:

$$316 \Delta_{\min} := \inf_{x,m,i} \Delta_i(x, m) > 0 \quad \text{where} \quad \Delta_i(x, m) := m_i D_i(E(x, m)) \quad (9)$$

317 This quantity measures the worst-case “safety buffer” for the decoder logits, i.e., the small-
 318 est distance of any bit logit from zero under clean conditions.
 319

320 These assumptions facilitate a feasible robustness analysis. In practice, they are supported by archi-
 321 tectural constraints and training procedures. Supporting empirical evaluation of these quantities is
 322 detailed in Appendix B.4.
 323

324 4.5 THEORETICAL ANALYSIS
325

326 This subsection analyzes the decoder’s robustness to self-re-watermarking, deriving an error bound
327 and a theorem that upper-bounds the bit error rate (BER) between the decoded messages after re-
328 watermarking and the original messages. Formal proofs are provided in **Appendix B**. By defining
329 the nominal decoder error as $\varepsilon_{\text{rec}} = \sup_{x,m} \frac{1}{L} \sum_{i=1}^L \mathbf{1}(\text{sign}(D_i(x,m)) \neq m_i)$, the distortion
330 introduced due to overwriting as $\delta_\infty = \|x_{w'} - x_w\|_\infty$, the standard sign function as $\text{sign}(\cdot)$, and the
331 indicator function as $\mathbf{1}(\text{condition})$, we can state the following theorem.

332 **Theorem 1** (BER upper bound). *For a given triplet (x, m, m') with overwrite $x_{w'}$, the bit error rate
333 satisfies*

$$334 \quad \text{BER}(x, m, m') \leq \frac{1}{L} \sum_{i=1}^L \mathbf{1}(\Delta_i(x, m) \leq K_D \delta_\infty) + \varepsilon_{\text{rec}}. \quad (10)$$

337 *In particular, if $K_D \delta_\infty < \Delta_{\min}$, the overwriting process does not flip the bit, therefore*

$$338 \quad \text{BER}(x, m, m') \leq \varepsilon_{\text{rec}}. \quad (11)$$

339 **Corollary 1** (Local, data-dependent tightening). *Replacing K_D by the local, attack-path constant
340 $K_{D,\text{loc}}$ yields the tighter bound*

$$342 \quad \text{BER}(x, m, m') \leq \frac{1}{L} \sum_{i=1}^L \mathbf{1}(\Delta_i(x, m) \leq K_{D,\text{loc}} \delta_\infty) + \varepsilon_{\text{rec}}. \quad (12)$$

344 **Corollary 2** (Perfect recovery under margin condition). *If $\varepsilon_{\text{rec}} = 0$ and $K_D \delta_\infty < \Delta_{\min}$, then no
345 bits flip under overwrite, and hence*

$$346 \quad \text{BER}(x, m, m') = 0, \quad \forall (x, m, m'). \quad (13)$$

348 5 EXPERIMENTAL SETTING
349

351 This section outlines the datasets, evaluation metrics, baselines, and implementation details
352 used to validate the effectiveness of the proposed method. In our experiments, we consider
353 the following seven state-of-the-art studies: dwtDctSvd (Navas et al., 2008), HiDDeN (Zhu
354 et al., 2018), MBRS (Jia et al., 2021), SSL (Fernandez et al., 2022), ARWGAN Huang et al.
355 (2023), WFormer (Luo et al., 2024), and VINE(Lu et al., 2025)

356 5.1 TRAINING SETTING
357

358 We use a subset of the COCO dataset Lin et al. (2014) consisting of 20,000 training, 1,000 validation,
359 and 3,000 testing images. All RGB images are resized to 128×128 pixels and normalized with mean
360 $[0.5, 0.5, 0.5]$ and standard deviation $[0.5, 0.5, 0.5]$. Binary messages of length $L = 30$ bits are
361 randomly sampled for watermarks. We set λ_{lpips} as 0.5. Training and experiments were conducted
362 on a dual-socket Intel Xeon E5-2670 system and RTX A4000 GPU. The Lipschitz constraint was
363 enforced by applying spectral normalization to all convolutional and linear layers in the models.

364 5.2 EVALUATION METRICS
365

367 The performance of the proposed watermarking method is evaluated in terms of imperceptibility,
368 reflecting the preservation of visual quality, and robustness, indicating the resilience of the embed-
369 ded watermark to attacks and distortions. To assess imperceptibility, we report Peak Signal-to-Noise
370 Ratio (PSNR) and Structural Similarity Index Measure (SSIM) between cover and watermarked im-
371 ages, where higher values indicate better visual quality, and a PSNR above 30dB is generally con-
372 sidered to reflect acceptable imperceptibility Zhang et al. (2024); Subhedar & Mankar (2020). For
373 robustness evaluation, we measure three bit-accuracy metrics, computed per image and averaged
374 over the test set: $\text{ACC}_{\text{clean}}$ evaluates message recovery under normal, non-adversarial conditions;
375 ACC_{adv} measures the accuracy between the decoder output and the adversarial target message after
376 attacks such as self-overwriting or gradient-based perturbations; and ACC_{orig} quantifies the simi-
377 larity between the decoded message post-attack and the originally embedded watermark, indicating
378 how well the original watermark withstands adversarial manipulations. Higher values of $\text{ACC}_{\text{clean}}$,
379 ACC_{adv} , and ACC_{orig} indicate better message recovery.

378
379

5.3 SELF-RE-WATERMARKING ATTACK ON EXISTING WORK

380
381
382
383

In this subsection, we investigate the vulnerability of existing deep learning-based watermarking models to *self-re-watermarking attacks*. To systematically evaluate the robustness of watermarking models under self-re-watermarking, we design a controlled experimental protocol consisting of three key scenarios as described under Subsection 5.2

384
385
386
387
388
389
390
391
392
393
394395
396

Figure 2: Bit accuracy under self-re-watermarking attacks using their respective encoders

397
398
399
400
401
402
403
404
405
406
407
408
409

To visually compare our proposed model with other learning based SOTA models under self-re-watermarking attacks, we present scenario-wise box plots in Figure 2. The figure illustrates the distribution of bit accuracies over the test set, highlighting differences in overwrite robustness. High bit accuracy in the first two scenarios confirms effective watermark embedding and retrieval, while a low bit accuracy in the third scenario indicates successful erasure of the original watermark under self-overwrite attacks. Figure 2 shows that all SOTA models fail under malicious encoder reuse, whereas the proposed model withstands the attack and successfully recovers the original watermark even after an adversary attempts to re-embed a new one. Moreover, as shown in **Appendix I**, the re-watermarking process in our model visibly distorts the resulting image, preventing an adversary from gaining any advantage through iterative re-watermarking. Quantitatively, the average PSNR and SSIM between the watermarked and re-watermarked images are 10.21 dB and 0.66, respectively, indicating severe degradation. Figure 3 provides an illustration of the cover, watermarked, and re-watermarked images.

410
411
412
413
414
415
416
417
418419
420

Figure 3: Cover, watermarked, and re-watermarked images generated by our model, respectively.

421
422

5.4 EMPIRICAL EVALUATION OF THE THEORETICAL BOUND

423
424
425
426
427
428
429
430
431

This section empirically analyzes the theoretical bound of the system when re-watermarked using our Encoder, as this represents the most challenging attack conditions. As per the bound, we compare the minimum per-bit clean margin Δ_{\min} to the empirical Lipschitz-based theoretical lower bound $K_{D,loc}\delta_\infty$ to assess how well the bound reflects real-world behavior. It should be noted that this section analyzes only the most vulnerable bit, rather than all embedded bits. This evaluation examines both the theoretical and practical robustness in the worst-case scenario, making the resulting bound conservative. Figure 4a illustrates the relationship between the minimum-margin bit Δ_{\min} and the per-image overwrite bound $K_{D,loc}\delta_\infty$ across 3,000 images, along with the observed bit flips. Green points indicate bits correctly decoded after overwrite, while red points indicate flipped bits. As expected, all points above the line $K_{D,loc}\delta_\infty = \Delta_{\min}$ remain green, confirming that bits with

432 margins exceeding the bound are reliably robust. Below this threshold, we observe a mixture of
 433 green and red points.
 434

435 Figure 4b isolates only the flipped bits, which all fall below the $K_{D,loc}\delta_\infty = \Delta_{min}$ line, i.e., inside
 436 the region where the theorem predicts potential vulnerability. This demonstrates that the theoretical
 437 bound provides a conservative, yet informative, necessary condition for bit flips. The analysis shows
 438 that $K_{D,loc}\delta_\infty$ provides a conservative estimate for bit flips, while not all bits below the threshold
 439 actually flip, all observed flips occur within this region, which is consistent with the theoretical
 440 bound. While the bound predicts potential vulnerability, the majority of these bits still survive,
 441 showing that the theoretical estimate is conservative yet valid. These observations confirm that the
 442 bound provides a useful, conservative estimate of robustness while the trained decoder shows added
 443 resilience against self-overwriting.
 444

457 Figure 4: Scatter plot illustrating the relationship between $K_D \cdot \delta$ and the minimum distance Δ_{min}
 458 for watermark embedding. Each point represents an image sample. Green points represent unflipped
 459 bits, and red points represent flipped bits. The dashed line indicates the theoretical bound.
 460

461 5.5 ADVERSARIAL ATTACK EVALUATION

462 This subsection evaluates the robustness of the system under advanced adversarial scenarios. As
 463 discussed in Section 3.2, we assume an adversary capable of executing a PGD-based self-overwriting
 464 attack, implemented as detailed in Algorithm 1. Unlike malicious encoder reuse, the PGD attack
 465 iteratively applies small perturbations to mislead the decoder to output the target watermark.
 466

467 We simulate this attack using two configurations. The first, termed **PGD_{moderate}**, uses $\epsilon = 0.03$,
 468 $\alpha = 0.007$, and 50 iterations. The second, **PGD_{strong}**, is more aggressive, with $\epsilon = 0.04$, $\alpha = 0.01$,
 469 and 100 iterations. Figures 5a and 5b illustrate the effectiveness of these attacks across several
 470 state-of-the-art models, and demonstrate the robustness of the proposed model in preserving the
 471 watermark under both moderate and strong attack settings. The numerical values are presented in
 472 Table 1. Further analysis of the perturbation budget (ϵ), as detailed in **Appendix D.1**, reveals that
 473 the model’s performance starts to deteriorate as the perturbation budget increases. However, when
 474 this happens, the resulting image quality drops below 30dB, causing noticeable degradation, which
 475 makes the resulting image less valuable for any potential adversary.
 476

477 In addition, we consider an adversary who constructs a watermarking system using a similar archi-
 478 tecture to ours with a different dataset. In the first setting, the adversary uses the same losses as
 479 ours, denoted as *Baseline Adversarial Model (BAM)*. In the second, the adversary omits the robust-
 480 ness loss, optimizing only for imperceptibility and accuracy, denoted as *Ablated Model (AM)*. Visual
 481 quality and watermark extraction results of *BAM* and *AM* are reported in **Appendix D.2**. The ability
 482 of our decoder to recover the original watermark after attacks by these adversarial models demon-
 483 strates remarkable performance. Specifically, it achieves 100% accuracy against *BAM*, irrespective
 484 of whether a post-processing model is used, and against *AM* with post-processing, while achieving
 485 99% accuracy against *AM* without post-processing. This indicates that the proposed method consis-
 486 tently resists overwrite attempts. Furthermore, the encoder perceptually degrades re-watermarked
 487 images, preventing black box query-based API attacks from producing meaningful outputs.
 488

(a) Bit accuracy under PGD_{moderate} attack ($\epsilon = 0.03$, $\alpha = 0.007$, 50 iterations).(b) Bit accuracy under PGD_{strong} attack ($\epsilon = 0.04$, $\alpha = 0.01$, 100 iterations).

Figure 5: Comparison of bit accuracy under moderate and strong PGD attacks. The proposed model shows higher robustness compared to SOTA methods.

5.6 ROBUSTNESS TO NOISE AND DISTORTIONS

While our main goal is to defend against self-re-watermarking attacks, the watermark must also remain retrievable under common image distortions. Therefore, we evaluated the proposed model’s robustness against a standard set of such perturbations. As shown in Table 1, the proposed model maintains exceptionally high robustness across all tested distortions. **It achieves near-perfect bit recovery under Gaussian blur (99.66%), dropout (98.90%), cropout (98.14%), cropping (99.85%), and JPEG compression (95.06%).** Visual metrics such as PSNR (34.03 dB) and SSIM (0.97) confirm that the watermarked images are perceptually closer to the cover images. Further analysis on the robustness to different pixel-wise and geometric distortions is available in **Appendix F.1**. These results indicate that the model’s watermark embedding is robust to diverse transformations.

Table 1: Comparison of the proposed model with SOTA baselines across visual quality, robustness to image processing, and robustness to adversarial overwrite attacks.

Studies	Visual Quality		ACC _{clean} (%)					ACC _{orig} (%)		
	PSNR (dB)	SSIM	JPEG (50)	Gaussian Blur (2.0)	Dropout (30%)	Cropout (30%)	Crop (3.5%)	Self Re-embed	PGD Moderate	PGD Strong
dwtDctSvd	28.57	0.94	99.97	99.41	54.36	85.40	51.29	50.00	N/A	N/A
Hidden	33.55	0.92	63.00	96.00	93.00	94.00	88.00	51.29	52.03	51.45
MBRS	35.84	0.89	91.97	100.00	99.96	99.98	92.68	50.34	63.51	51.26
SSLW	33.10	0.94	83.01	98.96	88.11	79.66	50.73	49.90	49.81	49.81
ARWGAN	35.87	0.96	93.98	99.99	100.00	99.82	98.17	51.94	50.68	50.73
WFORMER	33.50	0.91	99.14	100.00	100.00	100.00	98.70	50.02	88.64	80.15
VINE	37.07	0.99	99.97	99.84	87.63	99.99	52.24	51.20	82.00	79.41
Proposed	34.03	0.97	95.06	99.66	98.90	98.14	99.85	100.00	99.95	99.37

6 CONCLUSION

This work introduces the self-re-watermarking threat model, an overlooked but critical vulnerability in image watermarking systems, where adversaries can reuse the encoder to overwrite embedded watermarks without perceptible changes. We demonstrated that existing watermarking methods are highly vulnerable to such an attack. To mitigate this attack, we introduce a robust watermarking framework that combines architectures with bounded sensitivity with re-watermarking adversarial training. Further, this work formally analyzes watermark recoverability and exhibits strong empirical resilience against both self-re-watermarking and norm-bounded re-watermarking attacks. In addition, it maintains high visual fidelity and robustness to standard pixel-wise and geometric distortions. A limitation of the current approach is that it focuses solely on self-re-watermarking attacks. Extending our approach to defend against different classes of adversarial attacks concurrently is a key direction for future research.

540 REFERENCES
541

542 Bang An, Mucong Ding, Tahseen Rabbani, Aakriti Agrawal, Yuancheng Xu, Chenghao Deng,
543 Sicheng Zhu, Abdirisak Mohamed, Yuxin Wen, Tom Goldstein, and Furong Huang. Waves:
544 benchmarking the robustness of image watermarks. In *Proceedings of the 41st International
545 Conference on Machine Learning*, ICML'24. JMLR.org, 2024.

546 Shumeet Baluja. Hiding images in plain sight: Deep steganography. In *Ad-
547 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
548 2017. URL [https://proceedings.neurips.cc/paper_files/paper/2017/
549 file/838e8afb1ca34354ac209f53d90c3a43-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2017/file/838e8afb1ca34354ac209f53d90c3a43-Paper.pdf).

550 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
551 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of
552 the International Conference on Computer Vision (ICCV)*, 2021.

553 Feiyu Chen, Wei Lin, Ziquan Liu, and Antoni B. Chan. A secure image watermarking framework
554 with statistical guarantees via adversarial attacks on secret key networks. In *Computer Vision –
555 ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceed-
556 ings, Part XL*, pp. 428–445, Berlin, Heidelberg, 2024a. Springer-Verlag. ISBN 978-3-031-73660-
557 5. doi: 10.1007/978-3-031-73661-2_24. URL https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/05695.pdf.

559 Huajie Chen, Tianqing Zhu, Chi Liu, Shui Yu, and Wanlei Zhou. High-Frequency Matters: At-
560 tack and Defense for Image-Processing Model Watermarking. *IEEE Transactions on Services
561 Computing*, 17(04):1565–1579, July 2024b. ISSN 1939-1374. doi: 10.1109/TSC.2024.3349784.
562 URL <https://doi.ieee.org/10.1109/TSC.2024.3349784>.

563 Zihan Chen, Yi Liang, Jinyu Wang, Chong Wang, Feng Chen, and Jiaya Zhang. Universal watermark
564 vaccine: Universal adversarial perturbations for watermark protection. In *Proceedings of the
565 Computer Vision and Pattern Recognition Workshops (CVPRW)*, pp. 393–402. IEEE, 2023.

566 Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
567 networks: improving robustness to adversarial examples. In *Proceedings of the 34th International
568 Conference on Machine Learning - Volume 70*, ICML'17, pp. 854–863. JMLR.org, 2017.

569 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
570 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
571 pp. 248–255. IEEE, 2009.

572 Pierre Fernandez, Alexandre Sablayrolles, Teddy Furon, Hervé Jégou, and Matthijs Douze. Wa-
573 termarking images in self-supervised latent spaces. In *2022 IEEE International Conference
574 on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 3054–3058, 2022. doi: 10.1109/
575 ICASSP43922.2022.9746058.

576 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
577 nition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
578 770–778, 2016. doi: 10.1109/CVPR.2016.90.

579 H. Hu and J. Pang. Stealing machine learning models: Attacks and countermeasures for generative
580 adversarial networks. In *Proceedings of the Annual Computer Security Applications Conference
581 (ACSAC '21)*, Virtual Event, USA, 2021. ACM. doi: 10.1145/3485832.3485838. URL <https://doi.org/10.1145/3485832.3485838>.

582 Yuepeng Hu, Zhengyuan Jiang, Moyang Guo, and Neil Zhenqiang Gong. A transfer attack to image
583 watermarks. In *The Thirteenth International Conference on Learning Representations*, 2025.
584 URL <https://openreview.net/forum?id=UchRjcf4z7>.

585 Jiangtao Huang, Ting Luo, Li Li, Gaobo Yang, Haiyong Xu, and Chin-Chen Chang. Arwgan:
586 Attention-guided robust image watermarking model based on gan. *IEEE Transactions on Instru-
587 mentation and Measurement*, 72:1–17, 2023. doi: 10.1109/TIM.2023.3285981.

588 Mark J Huiskes and Michael S Lew. The mir flickr retrieval evaluation. In *Proceedings of the 1st
589 ACM international conference on Multimedia information retrieval*, pp. 39–43. ACM, 2008.

594 Zhaoyang Jia, Han Fang, and Weiming Zhang. Mbrs: Enhancing robustness of dnn-based water-
 595 marking by mini-batch of real and simulated jpeg compression. In *Proceedings of the 29th ACM*
 596 *International Conference on Multimedia*, MM '21, pp. 41–49, New York, NY, USA, 2021. Asso-
 597 ciation for Computing Machinery. ISBN 9781450386517. doi: 10.1145/3474085.3475324. URL
 598 <https://doi.org/10.1145/3474085.3475324>.

599 Vitaliy Kinakh, Brian Pulfer, Yury Belousov, Pierre Fernandez, Teddy Furon, and Slava
 600 Voloshynovskiy. Evaluation of security of ml-based watermarking: Copy and removal attacks.
 601 In *2024 IEEE International Workshop on Information Forensics and Security (WIFS)*, pp. 1–6,
 602 2024. doi: 10.1109/WIFS61860.2024.10810685.

603 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 604 Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer*
 605 *Vision – ECCV 2014*, pp. 740–755, Cham, 2014. Springer International Publishing. ISBN 978-3-
 606 319-10602-1.

607 Xinwei Liu, Jian Liu, Yang Bai, Jindong Gu, Tao Chen, Xiaojun Jia, and Xiaochun Cao. Watermark
 608 vaccine: Adversarial attacks to prevent watermark removal. In Shai Avidan, Gabriel Brostow,
 609 Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner (eds.), *Computer Vision – ECCV*
 610 *2022*, pp. 1–17, Cham, 2022. Springer Nature Switzerland. ISBN 978-3-031-19781-9.

611 Yepeng Liu, Yiren Song, Hai Ci, Yu Zhang, Haofan Wang, Mike Zheng Shou, and Yuheng
 612 Bu. Image watermarks are removable using controllable regeneration from clean noise. In
 613 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=mDKx1fraAn>.

614 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
 615 In *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.

616 Shilin Lu, Zihan Zhou, Jiayou Lu, Yuanzhi Zhu, and Adams Wai-Kin Kong. Robust watermarking
 617 using generative priors against image editing: From benchmarking to advances. In *The Thirteenth*
 618 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=1608GCm8Wn>.

619 Ting Luo, Jun Wu, Zhouyan He, Haiyong Xu, Gangyi Jiang, and Chin-Chen Chang. Wformer:
 620 A transformer-based soft fusion model for robust image watermarking. *IEEE Transactions on*
 621 *Emerging Topics in Computational Intelligence*, 8(6):4179–4196, 2024. doi: 10.1109/TETCI.
 622 2024.3386916.

623 Xiyang Luo, Ruohan Zhan, Huiwen Chang, Feng Yang, and Peyman Milanfar. Distortion agnostic
 624 deep watermarking. In *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 625 (*CVPR*), pp. 13545–13554, 2020. doi: 10.1109/CVPR42600.2020.01356.

626 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 627 Towards deep learning models resistant to adversarial attacks. 06 2017. doi: 10.48550/arXiv.
 628 1706.06083.

629 K. A. Navas, Mathews Cherian Ajay, M. Lekshmi, Tammy S. Archana, and M. Sasikumar. Dwt-
 630 dct-svd based watermarking. In *2008 3rd International Conference on Communication Systems*
 631 *Software and Middleware and Workshops (COMSWARE '08)*, pp. 271–274, 2008. doi: 10.1109/
 632 COMSWA.2008.4554423.

633 Sudev Kumar Padhi, Archana Tiwari, and Sk. Subidh Ali. Deep learning-based dual watermarking
 634 for image copyright protection and authentication. *IEEE Transactions on Artificial Intelligence*,
 635 5(12):6134–6145, 2024a. doi: 10.1109/TAI.2024.3485519.

636 Sudev Kumar Padhi, Archana Tiwari, and Sk. Subidh Ali. Deep learning-based dual watermarking
 637 for image copyright protection and authentication. *IEEE Transactions on Artificial Intelligence*,
 638 5(12):6134–6145, 2024b. doi: 10.1109/TAI.2024.3485519.

639 Fabien A. P. Petitcolas, Ross J. Anderson, and Markus G. Kuhn. Attacks on copyright marking
 640 systems. In David Aucsmith (ed.), *Information Hiding*, pp. 218–238, Berlin, Heidelberg, 1998.
 641 Springer Berlin Heidelberg. ISBN 978-3-540-49380-8.

648 Adnan Siraj Rakin, Md Hafizul Islam Chowdhury, Fan Yao, and Deliang Fan. Deepsteal: Advanced
 649 model extractions leveraging efficient weight stealing in memories. In *2022 IEEE Symposium on*
 650 *Security and Privacy (SP)*, pp. 1157–1174, 2022. doi: 10.1109/SP46214.2022.9833743.

651

652 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 653 image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), *Medical Image Computing and Computer-Assisted Intervention – MICCAI*
 654 2015, pp. 234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4.

655

656 Himanshu Kumar Singh, Naman Baranwal, Kedar Nath Singh, and Amit Kumar Singh. Ganmarked:
 657 Using secure gan for information hiding in digital images. *IEEE Transactions on Consumer*
 658 *Electronics*, pp. 1–1, 2024. doi: 10.1109/TCE.2024.3406956.

659

660 Mansi S. Subhedar and Vijay H. Mankar. Secure image steganography using framelet transform and
 661 bidiagonal svd. *Multimedia Tools Appl.*, 79(3–4):1865–1886, January 2020. ISSN 1380-7501.
 662 doi: 10.1007/s11042-019-08221-9.

663

664 Matthew Tancik, Ben Mildenhall, and Ren Ng. Stegastamp: Invisible hyperlinks in physical photo-
 665 graphs. In *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 666 pp. 2114–2123, 2020. doi: 10.1109/CVPR42600.2020.00219.

667

668 James Vincent. Meta’s powerful ai language model has leaked online — what happens now?
 669 *The Verge*, March 2023. URL <https://www.theverge.com/2023/3/8/23629362/meta-ai-language-model-llama-leak-online-misuse>. Accessed: 2025-09-04.

670

671 Ruowei Wang, Chenguo Lin, Qijun Zhao, and Feiyu Zhu. Watermark faker: Towards forgery of
 672 digital image watermarking. In *2021 IEEE International Conference on Multimedia and Expo*
 673 (*ICME*), pp. 1–6, 2021. doi: 10.1109/ICME51207.2021.9428410.

674

675 Lijun Zhang, Xiao Liu, Antoni Viros i Martin, Cindy Xiong Bearfield, Yuriy Brun, and Hui Guan.
 676 Attack-resilient image watermarking using stable diffusion. In *The Thirty-eighth Annual Confer-
 677 ence on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=e6KrSouGHJ>.

678

679 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 680 effectiveness of deep features as a perceptual metric. In *2018 IEEE/CVF Conference on Computer*
 681 *Vision and Pattern Recognition*, pp. 586–595, 2018. doi: 10.1109/CVPR.2018.00068.

682

683 Xuandong Zhao, Kexun Zhang, Zihao Su, Saastha Vasan, Ilya Grishchenko, Christopher Kruegel,
 684 Giovanni Vigna, Yu-Xiang Wang, and Lei Li. Invisible image watermarks are provably removable
 685 using generative AI. In *The Thirty-eighth Annual Conference on Neural Information Processing*
 686 *Systems*, 2024. URL <https://openreview.net/forum?id=7hy5fy2OC6>.

687

688 Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with deep net-
 689 works. In *Computer Vision – ECCV 2018: 15th European Conference, Munich, Germany,
 690 September 8–14, 2018, Proceedings, Part XV*, pp. 682–697, Berlin, Heidelberg, 2018. Springer-
 691 Verlag. ISBN 978-3-030-01266-3. doi: 10.1007/978-3-030-01267-0_40. URL https://link.springer.com/chapter/10.1007/978-3-030-01267-0_40.

692

693 Peifei Zhu, Tsubasa Takahashi, and Hirokatsu Kataoka. Watermark-embedded Adversarial Ex-
 694 amples for Copyright Protection against Diffusion Models . In *2024 IEEE/CVF Conference*
 695 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 24420–24430, Los Alamitos, CA,
 696 USA, June 2024. IEEE Computer Society. doi: 10.1109/CVPR52733.2024.02305. URL
 697 <https://doi.ieee.org/10.1109/CVPR52733.2024.02305>.

698

699

700

701

APPENDIX

A ANALYSIS ON RE-WATERMARKING SCENARIOS

As outlined in the Introduction, re-watermarking can be divided into cross-model overwriting and self-re-watermarking. This section evaluates the effect of re-watermarking on four different baselines. Figure 6a shows Acc_{orig} , reflecting the ability of each decoder to recover the original watermark after re-watermarking across the four baseline models. The diagonal accuracies, representing the self-re-watermarking scenario, are noticeably low, with an average Acc_{orig} of approximately 50%, which corresponds to random guessing. As shown in the figure, this behavior is consistent across all models. In contrast, in most cross-model cases, the original message can still be recovered by the respective decoders. In addition, Figure 6b illustrates the average PSNR between watermarked and re-watermarked images. The PSNR values, all above 30dB, indicate that the degradation is imperceptible. This further underscores the seriousness of self-re-watermarking attacks, as the modifications are visually unnoticeable and effectively prevent the original watermark from being recovered.

(a) Average Acc_{orig} of watermarks decoded from re-watermarked images (b) Average PSNR (dB) between watermarked and re-watermarked images

Figure 6: Analysis of Overwriting Scenarios.

B PROOFS OF THEORETICAL RESULTS

B.1 PROBLEM SETUP AND NOTATION

Let:

- $\mathcal{X} \subset [-1, 1]^{H \times W \times 3}$ be the space of normalized RGB images.
- $\mathcal{M} = \{0, 1\}^L$ the binary message space and $\widetilde{\mathcal{M}} = \{-1, 1\}^L$ its bipolar version.
- $\mathbf{1}(\text{condition})$ denote the indicator function, equal to 1 if the condition is true and 0 otherwise.
- $\|\cdot\|_\infty$ denote the ℓ_∞ norm on images and vectors; unless otherwise stated, norms are ℓ_∞ .
- $m \in \widetilde{\mathcal{M}}$ the original watermark and $m' \in \mathcal{M}$ the adversary's target watermark.
- $x \in \mathcal{X}$ the clean input image; $x_w \in \mathcal{X}$ the watermarked image with m ; $x_{w'} \in \mathcal{X}$ the overwritten image.

756 **Encoder (E).**

757
$$E : \mathcal{X} \times \widetilde{\mathcal{M}} \rightarrow \mathcal{X}, \quad x_w = E(x, m). \quad (14)$$

760 **Decoder (D).**

761
$$D : \mathcal{X} \rightarrow \mathbb{R}^L, \quad \tilde{m}_i(x) = \text{sign}(D_i(x)) \in \{-1, 1\}. \quad (15)$$

763 (If a binary output is needed, use $\hat{m}_i(x) = \frac{1}{2}(\tilde{m}_i(x) + 1) \in \{0, 1\}$.)765 **Overwrite distortion.**

766
$$\delta_\infty = \|x_{w'} - x_w\|_\infty \quad (16)$$

768 **Clean logits and margins.**

770
$$\ell_i(x, m) := D_i(E(x, m)), \quad \Delta_i(x, m) := m_i \ell_i(x, m) \quad (17)$$

772 Thus $\Delta_i > 0$ means bit i is correctly signed on x_w with (signed) margin Δ_i .774 **Nominal decoder error.**

776
$$\varepsilon_{\text{rec}} = \sup_{x, m} \frac{1}{L} \sum_{i=1}^L \mathbf{1}(\text{sign}(\ell_i(x, m)) \neq m_i) \quad (18)$$

779 **Self-Overwriting Attack** The adversary can perform a *self-re-watermarking attack* \mathcal{O}_{SRW} by
780 overwriting an already watermarked image to produce x'_w :

782
$$x_{w'} = \mathcal{O}_{SRW}(E(x, m); m') = E(x_w, m'), \quad \text{where } m' \neq \phi(m) \quad (19)$$

785 **B.2 LIPSCHITZ CONSTRAINTS AND ASSUMPTIONS**786 1. **Decoder Lipschitzness (analysis norm ℓ_∞).** There exists an upper bound K_D such that
787 for all $x_1, x_2 \in \mathcal{X}$,

788
$$\|D(x_1) - D(x_2)\|_\infty \leq K_D \|x_1 - x_2\|_\infty \quad (20)$$

790 In practice, K_D^∞ can be a global constant (conservative) or a *data-dependent local estimate*
791 measured along the path from x_w to $x_{w'}$:

793
$$K_{D, \text{loc}} := \frac{\|D(x_{w'}) - D(x_w)\|_\infty}{\|x_{w'} - x_w\|_\infty} \quad (21)$$

795 2. **Positive clean margin.** The minimum signed margin across all images and bits, which
796 guarantees that every bit is correctly decoded in the absence of an overwrite:

798
$$\Delta_{\min} := \inf_{x, m, i} \Delta_i(x, m) > 0 \quad (22)$$

800 This quantity measures the worst-case ‘‘safety buffer’’ for the decoder logits, i.e., the small-
801 est distance of any bit logit from zero under clean conditions.803 In our watermarking framework, the assumptions of decoder Lipschitzness and positive clean
804 margins are incorporated and empirically enforced through architectural and training design. Spectral
805 normalization in all convolutional and linear layers of the models constrains the layer-wise operator
806 norms, effectively bounding the decoder’s sensitivity to input changes and supporting the Lipschitz
807 assumption. Positive clean margins are encouraged by the binary cross-entropy loss for nominal
808 recovery, adversarial robustness losses, and noise augmentations, which collectively push decoder
809 logits away from zero under both clean and perturbed conditions. These mechanisms ensure that the
assumptions hold empirically for the training and test distributions.

810 B.3 THEORETICAL ANALYSIS
811812 **Lemma 1** (Per-logit overwrite bound). *For any (x, m, m') and $x_{w'} = O(E(x, m); m')$,*

813
$$\|D(x_{w'}) - D(x_w)\|_\infty \leq K_D \delta_\infty \quad (23)$$

814

815 *Consequently, for each bit i ,*

816
$$|D_i(x_{w'}) - D_i(x_w)| \leq K_D \delta_\infty \quad (24)$$

817

818 *Proof.* As per assumption 1, the decoder D is K_D -Lipschitz with respect to the ℓ_∞ norm. Then for
819 any two inputs $x_1, x_2 \in \mathcal{X}$ we have
820

821
$$\|D(x_1) - D(x_2)\|_\infty \leq K_D \|x_1 - x_2\|_\infty$$

822

823 The overwrite distortion was defined as
824

825
$$\delta_\infty = \|x'_w - x_w\|_\infty$$

826

827 Therefore,

828
$$\|D(x'_w) - D(x_w)\|_\infty \leq K_D \delta_\infty$$

829

830 Since the ℓ_∞ norm of the decoder difference corresponds to the maximum per-bit logit deviation,
831 this inequality implies that every logit changes by at most $K_D \delta$ under overwriting. \square
832833 **Proposition 1** (Per-bit robust condition). *Let $\Delta_i = \Delta_i(x, m)$ be the clean margin of bit i . If*

834
$$\Delta_i > K_D \delta_\infty$$

835

836 *then bit i cannot flip under the overwrite, i.e.*

837
$$\text{sign}(D_i(x_{w'})) = \text{sign}(D_i(x_w)) = m_i$$

838

839 *Proof.* Write

840
$$D_i(x_{w'}) = D_i(x_w) + e_i$$

841

842 By Lemma 1, the perturbation is bounded:
843

844
$$|e_i| \leq K_D \delta_\infty.$$

845

846 Since the clean margin satisfies

847
$$m_i D_i(x_w) = \Delta_i > K_D \delta_\infty$$

848

849 we obtain

850
$$m_i D_i(x_{w'}) = m_i (D_i(x_w) + e_i) = \Delta_i + m_i e_i \geq \Delta_i - |e_i| > 0$$

851

852 Hence, the bit i 's sign remains unchanged under overwrite. \square
853854 **Theorem 1** (BER upper bound). *For a given triplet (x, m, m') with overwrite $x_{w'}$, the bit error rate
855 satisfies*

856
$$\text{BER}(x, m, m') \leq \frac{1}{L} \sum_{i=1}^L \mathbf{1}(\Delta_i(x, m) \leq K_D \delta_\infty) + \varepsilon_{\text{rec}} \quad (25)$$

857

858 *In particular, if $K_D \delta_\infty < \Delta_{\min}$, then*

859
$$\text{BER}(x, m, m') \leq \varepsilon_{\text{rec}} \quad (26)$$

860

861 *Proof.* Let

862
$$e_i = D_i(x_{w'}) - D_i(x_w), \quad \Delta_i = m_i D_i(x_w)$$

863

A bit i flips if

864
$$m_i D_i(x_{w'}) \leq 0$$

864 Substituting gives

865
$$m_i D_i(x_{w'}) = m_i(D_i(x_w) + e_i) = \Delta_i + m_i e_i$$

866 Thus, the flip condition is

867
$$\Delta_i + m_i e_i \leq 0 \implies |e_i| \geq \Delta_i$$

868 By Lemma 1, each logit deviation is bounded:

869
$$|e_i| \leq K_D \delta_\infty$$

870 Therefore, a *sufficient* condition for a possible flip is

871
$$\Delta_i \leq K_D \delta_\infty$$

872 Counting all such bits in the worst case and adding the nominal clean error rate yields the bound. If

873
$$K_D \delta_\infty < \Delta_{\min}$$

874 then no additional flips can occur beyond nominal errors. \square 875 **Corollary 1** (Local, data-dependent tightening). *Replacing K_D by the local, attack-path constant $K_{D,\text{loc}}(x_w \rightarrow x_{w'})$ yields the tighter bound*

876
$$\text{BER}(x, m, m') \leq \frac{1}{L} \sum_{i=1}^L \mathbf{1}(\Delta_i(x, m) \leq K_{D,\text{loc}} \delta_\infty) + \epsilon_{\text{rec}} \quad (27)$$

877 **Corollary 2** (Perfect recovery under margin condition). *If $\epsilon_{\text{rec}} = 0$ and*

878
$$K_D \delta_\infty < \Delta_{\min}$$

879 *then no bits flip under overwrite, and hence*

880
$$\text{BER}(x, m, m') = 0 \quad \text{for all } (x, m, m')$$

881

B.4 EMPIRICAL ESTIMATION OF KEY QUANTITIES

882 In this subsection, we empirically estimated δ_∞ , Δ_{\min} and $K_{D,\text{loc}}$ to validate the theoretical as-
883 sumption. All quantities were measured in the $\|\cdot\|_\infty$ norm for consistency with the formal analysis.
884 $K_{D,\text{loc}}$ was computed per image as defined in Equation 21. This estimation of the key quantities
885 of our system was done over 3000 sets of images when re-watermarked using our Encoder with
886 the post-processing module. The distributions for Δ_{\min} and $K_{D,\text{loc}}$ are given in Figures 7a and
887 7b respectively. Table 2 summarizes key statistics for the evaluation of Δ_i , $K_{D,\text{loc}}$, δ_∞ , and the
888 nominal decoder error over the dataset of 3,000 images. For each metric, the 5th percentile, me-
889 dian, and 95th percentile are reported in Table 2. The median margin $\Delta_{\min} = 3.41$ indicates that
890 the original watermarks are embedded with a strong separation, while the median local Lipschitz
891 constant $K_{D,\text{loc}} = 4.38$ quantifies the typical sensitivity of the decoder to image perturbations. The
892 average bit accuracy is near 100% after overwriting, as shown in Figure 2 across the dataset. This
893 demonstrates that the decoder reliably preserves the original message under self-re-watermarking
894 conditions.903 Table 2: **Summary statistics (5th percentile, median, 95th percentile) for Δ_i , $K_{D,\text{loc}}$, δ_∞ , and Nom-
904 inal Decoder Error.**905

Metric	5th Percentile	Median	95th Percentile
Δ_{\min}	1.8535	3.4048	4.6087
$K_{D,\text{loc}}$	3.0627	4.3764	5.9426
δ_∞	0.9999	1.000	1.000
ϵ_{rec}	0.000	0.000	0.000

913

C ADDITIONAL DETAILS ON EXPERIMENTAL SETTINGS

914
915 The value λ_{lips} was picked as 0.5, corresponding to empirical evaluation using trained models at
916 various λ_{lips} settings. The results with various λ_{lips} settings are given in Table 3. As per the
917 Table, λ_{lips} as 0.5 gives a good balance of visual fidelity and robustness. Moreover, the adaptive
918 weight adjustment algorithm used during our training is given in Algorithm 2.

(a) Distribution of Δ_{\min} over 3,000 images.(b) Distribution of $K_{D,loc}$ of the decoder.Figure 7: Comparison of Δ_{\min} and the empirical Lipschitz constant distributions.**Algorithm 2** Adaptive Weight Adjustment

Require: Epoch r , BER on clean decode ber_dec , BER after overwrite ber_over ,
 1: optional previous weights $prev_w$, smoothing factor s , max epochs R
Ensure: Updated weights $w = \{\lambda_{lpips}, \lambda_{rec}, \lambda_{rob}\}$

- 2: $dec_conf \leftarrow 1 - \min\left(\frac{ber_dec}{0.2}, 1\right)$
- 3: $over_conf \leftarrow \min\left(\frac{ber_over}{0.2}, 0.5\right)$
- 4: $trans_ready \leftarrow \frac{dec_conf + over_conf}{2}$
- 5: $epoch_prog \leftarrow \min\left(\frac{r+1}{R}, 1\right)$
- 6: $\alpha \leftarrow 0.5 \cdot epoch_prog + 0.5 \cdot trans_ready$
- 7: Define $\lambda_{lpips}(\alpha) \leftarrow 4.0 + 5.5 \cdot \alpha$
- 8: Define $\lambda_{rec}(\alpha) \leftarrow 6.0 - 3.5 \cdot \alpha$
- 9: Define $\lambda_{rob}(\alpha) \leftarrow 5.0 - 1.0 \cdot \alpha$
- 10: $target.lpips \leftarrow \lambda_{lpips}(\alpha)$
- 11: $target.rec \leftarrow \lambda_{rec}(\alpha)$
- 12: $target.rob \leftarrow \lambda_{rob}(\alpha)$
- 13: **if** $prev_w$ is None **then**
- 14: $prev_w \leftarrow target$
- 15: **end if**
- 16: **for all** $k \in \{\lambda_{lpips}, \lambda_{rec}, \lambda_{rob}\}$ **do**
- 17: $w[k] \leftarrow s \cdot prev_w[k] + (1 - s) \cdot target[k]$
- 18: **end for**
- 19: **return** w

972 Table 3: **LPIPS validation results: Visual Quality and Robustness under different distortions.**
973

λ_{LPIPS}	Visual Quality		ACC _{clean} (%)				
	PSNR (dB)	SSIM	JPEG (50)	Gaussian Blur (2.0)	Dropout (30%)	Cropout (30%)	Crop (3.5%)
0.3	32.39	0.97	99.63	99.90	99.93	99.88	99.61
0.5	34.03	0.97	95.06	99.66	98.90	98.14	99.85
0.7	39.51	0.99	88.08	99.15	99.48	99.53	92.06

978
979 C.1 ADVERSARIAL SETUP
980981 The PGD-based adversarial attack was scheduled using curriculum learning during training. Spec-
982 ifically, the perturbation budget (ϵ) and step size (α) are adaptively adjusted as training progresses.
983 Before the start epoch, both values remain near zero to ensure stability; between the start and ramp
984 epochs, ϵ and α increase linearly to their maximum values; and after the ramp phase, they are fixed at
985 their predefined maxima. The maximum perturbation budget was set to $\epsilon = 0.05$, and the maximum
986 step size was set to $\alpha = 0.009$. The number of iterations was fixed at 50 to balance computational
987 cost with providing the model sufficient exposure to a reasonable attack strength during training.
988 This gradual schedule enables the model to adapt progressively to stronger attacks while maintain-
989 ing training stability.990 C.2 SOURCE REPOSITORIES OF EVALUATED MODELS
991992 The SOTA models along with the weights evaluated in this work were obtained from the repositories
993 provided by the respective authors and used under their default configurations:
994995 1. HiDDeN: <https://github.com/ando-khachatryan/HiDDeN>
996 2. MBRS: <https://github.com/jzyustc/MBRS>
997 3. SSL: https://github.com/facebookresearch/ssl_watermarking
998 4. ARWGAN: <https://github.com/river-huang/ARWGAN>
999 5. WFORMER: <https://github.com/YuhangZhouCJY/WFormer>
1000 6. VINE: <https://github.com/Shilin-LU/VINE>
10011002 D PERFORMANCE AGAINST ADVERSARIAL SELF-RE-WATERMARKING
10031004 D.1 FURTHER ANALYSIS ON PERTURBATION BUDGET (ϵ) FOR THE PGD ATTACK
10051006 We selected the perturbation budget ϵ for the PGD-based attack such that the attacked image main-
1007 tains a minimum PSNR of 30 dB relative to the original watermarked image, corresponding to the
1008 threshold for acceptable imperceptibility(Subhedar & Mankar, 2020; Zhang et al., 2024). To de-
1009 termine this, we empirically evaluated the PSNR of the watermarked images under attacks with
1010 varying values of ϵ . We then identified the values of ϵ for which at least 90% of the attacked images
1011 had PSNR above 30 dB. From this subset, we chose the maximum ϵ to assess the robustness of our
1012 watermarking model against PGD-based attacks. The 10th percentile PSNR as a function of ϵ is
1013 shown in Figure 8a.
10141015 Figure 8b shows the bit accuracy under the PGD-based attack for varying values of the perturbation
1016 budget ϵ . As ϵ exceeds 0.05, the model’s performance begins to deteriorate and the bit accuracy
1017 decreases. Although increasing ϵ allows the adversary to attempt stronger perturbations, the original
1018 watermark remains partially recoverable, and the adversary is unable to fully embed the adversarial
1019 watermark.
10201021 D.2 ADVERSARIAL MODEL
10221023 We trained two adversarial models on the MIRFLICKR dataset using a learning rate of 0.01. The
1024 models differ in their use of the robustness loss:
1025

- **Baseline Adversarial Model (BAM):** Trained with the full algorithm, including the ro-
bustness loss term.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

(a) 10th percentile PSNR vs. PGD perturbation budget (ϵ). The dashed line indicates the 30 dB threshold used to select ϵ .

(b) Bit accuracy of original (ACC_{orig}) and adversarial watermark (ACC_{adv}) under PGD attack for varying ϵ .

Figure 8: Comparison of PSNR and watermark bit accuracy under varying PGD perturbation budgets.

- **Ablated Model (AM):** Trained using the same algorithm, but with the robustness loss component removed.

Table 4 reports the decoder’s ability to recover the original watermark after attacks from each adversarial model.

Table 4: ACC_{orig} of the proposed model after attacking with different overwriting models

Overwriting Model		ACC_{orig}
Algorithm	Post Processing	
BAM	✓	1.00
BAM	✗	1.00
AM	✓	1.00
AM	✗	0.99

The performance comparison of these models, including visual quality and the ability to recover *watermark1* (*WI*) both before and after self-re-watermarking, is presented in Table 5.

Table 5: The performance of the developed adversarial models in terms of visual quality and message recoverability.

Adversarial Model		Visual Quality		Bit Accuracy			
Model	Postprocess			PSNR	SSIM	ACC_{clean}	ACC_{orig}
BAM	✓	34.60	0.97	1.00	1.00		
BAM	✗	33.00	0.97	1.00	1.00		
AM	✓	41.81	0.99	1.00	0.50		
AM	✗	38.96	0.98	1.00	0.59		

E MULTI-STAGE RE-WATERMARKING ATTACK

This section extends the discussion beyond direct malicious use of the watermarking models by evaluating an adversary capable of performing multistage re-watermarking attacks. While our work in watermarking focuses on direct malicious re-use of encoders, real-world adversaries may attempt more sophisticated strategies, such as attacking watermarked images with image-processing attacks or sophisticated removal attacks and subsequently re-embedding a new one. Although *multi-stage*

1080 *overwriting*, in which the original watermark is first attempted to be removed and a new one em-
 1081 bedded, does not strictly fall under the standard Encoder-Based Self-Re-Watermarking attack, it
 1082 represents a realistic adversary strategy. In this section, we go beyond our adversarial scope by ex-
 1083 ploring such multi-stage removal and re-watermarking scenarios. This allows us to assess not only
 1084 whether watermarks can be overwritten but also whether subtle cues remain that enable ownership
 1085 verification even under complex adversarial manipulations.

1086

1087

1088 E.1 ANALYSIS ON IMAGE PROCESSING ATTACKS FOLLOWED BY RE-WATERMARKING

1089

1090 This subsection evaluates the effect of applying multiple image noise operations followed by re-
 1091 watermarking. We analyze the robustness of our model under a range of image processing attacks,
 1092 and the results are reported in Table 6. The findings show that our model remains robust under these
 1093 attacks, followed by self-rewatermarking.

1094

1095

Image Processing Attack	ACC _{orig}
JPEG(80)	95.09
Gaussian Blur (1.0)	99.99
Cropout (10%)	96.07
Dropout (10%)	99.96
Gaussian Noise (1.0)	100.00
Histogram Equalization	99.88
Crop (3.5%)	99.98
Rotate (10°)	94.33
Horizontal Flip	99.53
Vertical Flip	99.45

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107 Table 6: Analysis on various image-processing attacks followed by self-re-watermarking

1109

1110

1111

1112 E.2 ANALYSIS ON WATERMARK REMOVAL AND RE-WATERMARKING

1113

1114 In this scenario, an adversary first attempts to completely remove the watermark and then re-embeds
 1115 a new watermark using the same encoder. We empirically evaluated this scenario using CtrlRegen+
 1116 (Liu et al., 2025), a state-of-the-art method that demonstrates strong performance for removal at-
 1117 tack under both low and high-perturbation watermark settings. The method controls the amount
 1118 of removal by adjusting the step size. We evaluated our model at step sizes of 0.3, 0.5, and 0.7.
 1119 The corresponding results are presented in Table 7. The results indicate that overwriting can in-
 1120 deed be successful after the watermark is removed. However, the visual quality of the resulting
 1121 images is degraded, as evidenced by lower PSNR and SSIM between the watermarked images and
 1122 the removed-and-re-watermarked images. Figure 9 illustrates that although the semantic informa-
 1123 tion is preserved, the attacked images are blurred and lose color consistency compared with the
 1124 watermarked images. This is also highlighted by low SSIM scores. Figure 9 shows the watermarked
 1125 images with the attacked images at different step sizes (0.3, 0.5, 0.7). The removal of the watermark
 1126 also leaves behind faintly colored artifacts in the center of the image. This suggests that even if
 1127 the watermark is removed and re-embedded, the original owner can still detect perceptual changes,
 1128 providing a mechanism to assess whether the content has been altered.

1129

1130

1131

1132

1133

1134 It is important to note that the current study primarily focuses on the direct malicious re-use of en-
 1135 coders for self-re-watermarking attacks. The model’s performance under more complex multi-step
 1136 adversarial scenarios, involving removal followed by re-embedding, is not fully explored. Neverthe-
 1137 less, our preliminary evaluation demonstrates that perceptual degradation in such cases provides an
 1138 additional cue for ownership verification. Our future work will focus on exploring strategies to mit-
 1139 igate multi-step re-watermarking processes, such as adversarial removal followed by re-embedding
 1140 of the watermark.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

Figure 9: The effect of removal attack on watermarked images. The watermarked image is shown at the top. The attacked images corresponding to step sizes 0.3, 0.5, and 0.7 are displayed in rows 2, 3, and 4, respectively. Please zoom in for a closer look.

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Table 7: Performance metrics at different steps of removal attack

Step	ACC _{adv} (%)	ACC _{orig} (%)	PSNR	SSIM
0.3	78.34	68.11	23.27	0.72
0.5	87.41	56.97	21.85	0.65
0.7	90.83	53.00	20.50	0.59

F ADDITIONAL EXPERIMENTS

F.1 EVALUATION OF ROBUSTNESS AGAINST IMAGE PROCESSING ATTACKS

To complement this quantitative analysis, Figure 10 presents box plots of bit accuracy distributions under pixel-wise distortions (e.g., Gaussian noise, salt-and-pepper noise), while Figure 11 illustrates performance under geometric attacks (e.g., StirMark-style elastic deformation (Petitcolas et al., 1998), rotation, flipping, and scaling). The proposed model consistently shows low variance across the test images, underscoring its stability under real-world perturbations.

Figure 10: Bit accuracy distribution under pixel-wise distortions.

To further contextualize the robustness of the proposed model, we compared its performance against a baseline model that uses the same architecture but without spectral normalization. As shown in Figure 12, the proposed method consistently outperforms the baseline across varying intensities of JPEG compression, Gaussian blur, dropout, and cropping. The baseline exhibits a marked decline in accuracy as distortion severity increases, particularly under aggressive cropping and dropout. In contrast, the spectrally normalized model maintains stable performance under these conditions. This comparison reinforces the practical effectiveness of the proposed design in maintaining watermark integrity under diverse and challenging conditions. Further, Figures 10 and 11, demonstrate that the proposed model achieves higher median bit accuracy and exhibits significantly lower variance under different pixelwise and geometric perturbations.

Furthermore, the proposed model is evaluated on additional benchmark datasets, CelebA (Liu et al., 2015), MIRFLICKR-1M (Huiskes & Lew, 2008), and ImageNet (Deng et al., 2009), to assess its generalizability. For each dataset, 3,000 images were randomly sampled. The visual quality of the outputs and the model’s robustness against commonly studied image processing attacks are summarized in Table 8. The proposed model achieves consistently high visual quality across multiple datasets, with PSNR around 33–34 dB and SSIM near 0.96–0.97. It also demonstrates strong robustness to various distortions, maintaining over 94% accuracy under JPEG compression and over 99% under Gaussian blur, dropout, cropout, and small cropping, highlighting its generalizability across diverse image distributions.

Figure 11: Bit accuracy distribution under geometric distortions.

Table 8: Visual Quality and Robustness (%) across Datasets.

Studies	Visual Quality		ACC _{clean} (%)					ACC _{orig} (%)		
	PSNR (dB)	SSIM	JPEG (50)	Gaussian Blur (2.0)	Dropout (30%)	Cropout (30%)	Crop (3.5%)	Self Re-embed	PGD Moderate	PGD Strong
COCO	34.03	0.97	95.06	99.66	98.90	98.14	99.85	100.00	99.95	99.37
MIRFLICKR	33.48	0.96	94.46	99.48	98.81	97.75	99.68	100.00	99.76	98.85
CELEBA	34.55	0.96	95.17	99.74	98.57	97.95	99.91	99.87	99.23	99.10
ImageNet	33.65	0.97	94.65	99.58	98.71	97.73	99.80	100.00	99.81	99.09

Figure 12: Robustness evaluation under different distortions. (a) JPEG compression. (b) Gaussian blur. (c) Dropout. (d) Crop. (e) Cropout.

1350
1351

F.2 RESOURCE UTILIZATION

1352
1353
1354
1355
1356
1357
1358
1359

Table 9 presents a comparison of FLOPs and trainable parameters across several deep learning-based watermarking models. Despite the high parameter count (37.09M) from fully connected (FC) layers used for message up- and downsampling, the model’s computational cost remains low (7.73 GFLOPs), since most FLOPs are incurred by convolutions over spatial feature maps rather than the low-dimensional FC operations. Although training may take longer, the model provides fast inference and strong watermarking performance. Experimental analysis shows that encoding is achieved at 43.97 images per second, while decoding reaches 607.54 images per second under normal load conditions.

1360
1361

Table 9: Resource Utilization

1362
1363
1364
1365
1366
1367

MODEL	FLOPS (G)	Trainable Parameters (M)
HiDDeN	6.72	0.41
MBRS	13.35	5.80
ARWGAN	24.22	2.30
WFORMER	14.83	1.72
OURS	7.73	37.09

1368
1369

F.3 SCALABILITY TO HIGHER RESOLUTIONS

1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380

We further evaluated the proposed architecture using higher image resolution and payload size, setting the image dimensions to 256×256 and the payload to 64 bits. The empirical evaluation shows that the model’s performance remains consistent with that of the 128×128 , 30-bit configuration, thereby confirming the scalability of the proposed approach. The average visual quality was assessed using [PSNR \(32.72 dB\)](#) and [SSIM \(0.98\)](#). In addition, the model demonstrates the ability to withstand self-overwriting when the same encoder is used, ensuring reliable recovery of the original message even if it is overwritten. Furthermore, analysis under [PGD attacks](#) revealed that [99.94%](#) of the original message could be recovered at the moderate level, and [99.86% at the strong level](#). A detailed robustness evaluation against common image processing attacks is provided in Table 10.

1381
1382
1383
1384
1385
1386
1387

Table 10: Robustness performance comparison

JPEG (50)	Gaussian Blur (2.0)	Dropout (30%)	Cropout (30%)	Crop (3.5%)
99.06	99.78	96.28	98.24	97.63

1388
1389

F.4 CROSS MODEL RE-WATERMARKING

1390
1391
1392
1393

In this subsection, we analyze the robustness of our system to withstand cross-model overwriting. Table 11 reports Acc_{orig} after the images are encoded by different watermarking models. The results indicate that the original watermark can be effectively recovered by our model even under cross-model overwriting.

1394
1395
1396
1397
1398
1399
1400
1401

Model	ACC _{orig}
SSL	100.00
WFORMER	99.35
HiDDeN	99.23
MBRS	99.52
ARWGAN	99.23
VINE	100.00

1402
1403

Table 11: Robustness of our model to cross-model overwrites

1404
1405 F.5 ABLATION STUDY

1406 In this subsection, we evaluate the impact of the post-processing module as well as the contribution
 1407 of spectral normalization in the proposed system. We assess model performance both in terms
 1408 of visual quality and the decoder’s ability to recover the embedded watermark under benign and
 1409 attacked scenarios. The quantitative results are summarized in Table 12. The model trained without
 1410 spectral normalization can successfully recover the original watermark after an adversarial attack,
 1411 but fails to do so under self-re-watermarking. This further confirms that spectral constraints enhance
 1412 robustness and validate our design choices.

1413
1414 Table 12: Ablation Study Results

Model	Visual Quality		ACC _{clean}	ACC _{orig}		
	PSNR	SSIM		After Self OW	After moderate PGD	After strong PGD
Proposed	34.03	0.97	100.00	100.0	99.95	99.37
Proposed w/o Post Processing	31.82	0.96	100.00	100.00	100.00	99.99
Proposed w/o Spectral Norm	30.40	0.94	99.90	76.33	99.57	98.90

1419 Table 12 illustrates that although the post-processing module reduces message recoverability by a
 1420 very small margin, it provides a boost in visual quality. This suggests that the decision to use the
 1421 auxiliary post-processing module depends on the scenario in which the watermarked images are
 1422 used. It can be enabled for fidelity focused applications where visual quality is paramount and
 1423 can be disabled for security focused applications where robustness and forensic recoverability are
 1424 required.

1425
1426 G ANALYSIS ON THE BEHAVIOR OF THE SYSTEM

1427 In this section, we analyze the distortion that occurs when the Encoder attempts to apply a watermark
 1428 to an image that has already been watermarked. Fast Fourier Transform (FFT) analysis reveals that
 1429 such re-watermarking introduces significant high-frequency artifacts, indicating substantial distor-
 1430 tion. Similarly, pixel intensity histograms show a shift in the distribution toward brighter regions, re-
 1431 flecting altered image characteristics. This behavior is a direct consequence of the training pipeline,
 1432 which uses asymmetric optimization where the Encoder is guided by a Fidelity Loss to ensure the
 1433 initial watermark remains imperceptible, while the visual quality of the re-watermarked image is
 1434 not optimized. Instead, the re-watermarked image is treated as an adversarial case, with only the
 1435 Decoder being optimized via a Robustness Loss to successfully recover the original message from a
 1436 heavily distorted image.

1437 The images presented in Figures 13 and 14 serve as illustrative examples of this phenomenon.

1438
1439 H EXTENDED RELATED WORK

1440 To contextualize our study, this section reviews two core areas: advances in deep learning-based
 1441 watermarking and the evolving adversarial threats and countermeasures.

1442
1443 H.1 DL BASED IMAGE WATERMARKING

1444 Deep learning has become central to image watermarking, enabling models to learn optimal trade-
 1445 offs between imperceptibility and robustness. Early approaches, such as Baluja et al. (Baluja, 2017),
 1446 demonstrated the feasibility of steganography using DL, while HiDDeN (Zhu et al., 2018) intro-
 1447 duced differentiable noise layers during training to simulate distortions like cropping, compression,
 1448 and blurring. To address non-differentiable or unknown distortions, Luo et al. (Luo et al., 2020)
 1449 proposed a distortion-agnostic framework using adversarial training and channel coding. MBRS
 1450 (Jia et al., 2021) further improved robustness to JPEG compression by incorporating both real and
 1451 simulated codecs into the training loop. Other advances, such as ARWGAN (Huang et al., 2023)
 1452 employed attention-based feature fusion to improve robustness, though often at high computational
 1453 cost. Fernandez et al. (Fernandez et al., 2022) applied self-supervised learning with DINO (Caron
 1454 et al., 2021) to embed watermarks in semantically meaningful regions, improving removal and syn-
 1455 chronization resistance, but being vulnerable to cropping.

Figure 13: Comparison of the frequency components of the cover, watermarked, and re-watermarked images.

Figure 14: Histogram illustrating the distribution of pixels in the cover, watermarked, and re-watermarked images. All three exhibit a similar overall pattern, although the re-watermarked image shows a noticeable shift toward brighter pixel values.

1512 WFormer (Luo et al., 2024) leveraged Transformer-based encoding and soft fusion to improve ro-
 1513 bustness and imperceptibility across standard distortions, but did not address adversarial or security-
 1514 focused threats. Although VINE (Lu et al., 2025) developed a robust model against image editing,
 1515 the systematic vulnerability of self-re-watermarking still remains. GANMarked (Singh et al., 2024)
 1516 tackled security via key-based protection layers, offering some protection against unauthorized ex-
 1517 traction, but showing limited resilience to compression and forgery. Some recent dual watermarking
 1518 methods (Padhi et al., 2024b) and adversarially trained visible watermarks attempt to counter model
 1519 style-transfer attacks but lack robustness under encoder reuse. In contrast, VINE(Lu et al., 2025)
 1520 focuses on addressing the specific vulnerabilities introduced by large-scale text-to-image models by
 1521 utilizing a powerful generative prior and frequency-based surrogate attacks to embed watermarks
 1522 that are resistant to common image editing techniques.

1523 Despite recent progress, a key vulnerability remains underexplored: *self-re-watermarking*, where
 1524 the same encoder is maliciously reused to embed a new message into a watermarked image. Most
 1525 existing systems lack mechanisms to detect or resist such attacks due to open encoding pipelines.
 1526 This highlights the need to shift focus from decoder-side defenses to encoder-level robustness against
 1527 overwriting.

1528 **H.2 ADVERSARIAL ATTACKS IN DL BASED IMAGE WATERMARKING**

1529 Deep learning-based image watermarking systems face a range of adversarial threats that aim to
 1530 compromise their security guarantees. A significant yet underexplored risk is *self-re-watermarking*,
 1531 where an adversary reuses the encoder to embed a new message into an already watermarked image.
 1532 Unlike removal attacks (Zhao et al., 2024; An et al., 2024), which attempt to erase the embedded
 1533 watermark and thus invalidate ownership, re-watermarking introduces a conflicting ownership claim,
 1534 fundamentally undermining the reliability of watermark-based provenance.

1535 Kinakh et al. (2024) highlighted related risks by demonstrating that self-supervised watermarking
 1536 techniques are prone to unauthorized transfer, suggesting the availability of model-related informa-
 1537 tion itself as a potent attack vector. Further, existing literature has documented other adversarial
 1538 vectors against watermarking systems. Forgery-based threats (Hu et al., 2025) generate counterfeit
 1539 ownership claims. These studies collectively underscore that adversarial pressure on watermarking
 1540 systems is expanding in scope and sophistication.

1541 Defensive strategies have been proposed to mitigate watermarking threats. For example, diffusion-
 1542 based approaches (Zhu et al., 2024) introduce adversarial examples containing personalized water-
 1543 marks to obstruct unauthorized imitation by generative models. In addition, frameworks such as
 1544 Watermark Vaccine (Liu et al., 2022) and Universal Watermark Vaccine (Chen et al., 2023) lever-
 1545 age adversarial learning to immunize models against the removal of visible watermarks. However,
 1546 while much of this work focuses on defenses against removal attacks of visible watermarks, rel-
 1547 atively little attention has been paid to defenses against overwriting attacks. Among these, Chen
 1548 et al. (2024b) designed a scheme resistant to model-based overwriting, but its generalization beyond
 1549 that scenario is limited. Padhi et al. (2024a) proposed a dual-watermarking method that provides
 1550 robustness against surrogate overwriting attacks. Despite these efforts, robust countermeasures to
 1551 self-re-watermarking remain largely absent.

1552 Building on this analysis, we identify self-re-watermarking as a critical yet overlooked vulnerability
 1553 in existing watermarking systems. To directly address this gap, we propose a proactive framework
 1554 that limits the model’s sensitivity to input changes. This helps the developed models to defend
 1555 against self-overwriting while preserving robustness against conventional image processing attacks.
 1556 In doing so, our approach broadens the scope of watermarking defense beyond removal-centric
 1557 strategies and establishes resilience against the emerging threat of adversarial re-watermarking.

1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

1566 **I ADDITIONAL QUALITATIVE RESULTS**
15671568 This section presents visual examples of the original watermarked images alongside their re-
1569 watermark versions. These comparisons illustrate how the proposed method preserves the em-
1570 bedded message and maintains image quality even under self-overwriting attacks.
15711603 Figure 15: Qualitative Results: First column shows the original images, second column shows the
1604 watermark images, third column shows the re-watermarked images, and the fourth column shows the
1605 difference between watermark and re-watermarked images.
1606
16071608 **LARGE LANGUAGE MODEL USAGE**
16091610 Large language models were used solely to lightly polish the writing and improve grammar; they
1611 were not used for generating ideas.
1612
1613
1614
1615
1616
1617
1618
1619