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Abstract

With the rise of social media and the prolif-
eration of facial recognition surveillance, con-
cerns surrounding privacy have escalated signifi-
cantly. While numerous studies have concentrated
on safeguarding users against unauthorized face
recognition, a new and often overlooked issue
has emerged due to advances in facial restoration
techniques: traditional methods of facial obfus-
cation may no longer provide a secure shield, as
they can potentially expose anonymous informa-
tion to human perception. Our empirical study
shows that blind face restoration (BFR) models
can restore obfuscated faces with high probabil-
ity by simply retraining them on obfuscated (e.g.,
pixelated) faces. To address it, we propose a trans-
ferable adversarial obfuscation method for privacy
protection against BFR models. Specifically, we
observed a common characteristic among BFR
models, namely, their capability to approximate
an inverse mapping of a transformation from a
high-quality image domain to a low-quality image
domain. Leveraging this shared model attribute,
we have developed a domain-consistent adversar-
ial method for generating obfuscated images. In
essence, our method is designed to minimize over-
fitting to surrogate models during the perturbation
generation, thereby enhancing the generalization
of adversarial obfuscated facial images. Extensive
experiments on various BFR models demonstrate
the effectiveness and transferability of the pro-
posed method.
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1. Introduction
Recently, the rapid development of deep learning has ad-
vanced computer vision comprehensively. To train vision
models, a massive amount of data is being utilized, which
may contain sensitive or unauthorized data collection, thus
inevitably raising concerns about personal privacy invasion.
Face privacy protection, one of the most significant issues
among personal privacy has been studied promptly, and it
can be categorized into two: reliable defense and reliable
service. On the one hand, reliable defense (Cherepanova
et al., 2020; Shan et al., 2020; Yang et al., 2021b; Huang
et al., 2021; Tolosana et al., 2020; Sun et al., 2018)targets to
protect face images from unauthorized face analysis models
due to the widespread deployment of surveillance devices
and the popularity of social media at the moment. Adversar-
ial attacks are used to produce noise to defend against face
recognition. On the other hand, reliable service (Hukkelås
et al., 2019; Maximov et al., 2020; Gafni et al., 2019; Kuang
et al., 2021; Li et al., 2021; Wu et al., 2019; Chen et al.,
2021) takes advantage of generative models to produce mas-
sive realistic fake faces for computer vision tasks, which
avoids the possibility of access to real face data, leading
to reliably applying existing datasets for face-related tasks
such as face detection and recognition.

Although these studies mitigate face privacy eavesdropping
caused by unauthorized neural face recognition, the grow-
ing focus on privacy protection has overlooked another crit-
ical issue: privacy breach of obfuscated faces. In many
public settings, law enforcement agencies, and the media
anonymize unauthorized faces to protect privacy by opera-
tions like pixelation to influence perception purposely. How-
ever, recent work (Yang et al., 2020a; 2021a; Wang et al.,
2021; 2022; Zhou et al., 2022) on blind face restoration
(BFR) reveals that even low-quality face images that have
undergone complex degradation can be recovered to faces
with realistic details and rich identity information. Two ex-
amples of face privacy leakage are shown in Figure 1. Upon
processing mosaic images through BFR models, obfuscated
images are invalid and it is difficult for human observers to
differentiate between restored and unpixelated faces.

Contemporary anonymization methods for face privacy pro-
tection are limited to a great extent. Existing obfuscation
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methods are mainly based on low-level image processing,
such as blurring, pixelation, adding masks, and pixel replace-
ment. Among them, a few effective obfuscation methods
such as sticking black masks and markers are not pleasant
to human eyes, while techniques like pixelation which are
visually satisfying can be easily attacked by neural face
restoration models. Although high-quality de-identified im-
ages can be obtained by facial manipulation, face generation
models based on generative adversarial networks (GANs)
tend to have pitfalls within themselves. On the one hand, a
great number of real faces are required to train a preferable
model, which cannot avoid face authorization. On the other
hand, GANs are prone to be the inferred part of the training
data through collisions (Hu et al., 2021), thus compromising
face privacy in the training set.

To alleviate the above issues, we introduce a proactive de-
fense against blind face restoration by adding adversarial
perturbations to the obfuscated image. However, optimizing
perturbations directly using existing attack algorithms often
fails to generalize to other models. To overcome this limi-
tation, we propose to design the defense using the shared
characteristics of different BFR models. We observe that the
nature of the BFR model is learning how to map degraded
images back to corresponding high-quality ones. If the map-
ping from a high-quality image to a degraded-quality image
can be obtained, the BFR model can be approximated as an
inverse mapping. Despite the diverse structures and param-
eters of different BFR models, their underlying objective
remains consistent: to be a subset of the numerous reason-
able inverse mappings of the degradation transformation.
Capitalizing on this insight, we propose a domain-consistent
adversarial obfuscation approach (denoted as DomCo). This
method ensures the perturbation remains aligned with the
domain of the obfuscated face throughout the optimization
phase. We demonstrate from the perspective of gradient
propagation that the effectiveness of domain consistency is
derived from its ability to transform partial gradients into
those associated with the generalized characteristics of the
BFR model, enhancing the similarity of the gradients with
respect to the input across various BFR models. Expanding
on this analysis, we also employ domain-consistent data aug-
mentation to train the surrogate model to further stabilize
the gradient transformation, enhancing the transferability of
adversarially obfuscated faces.

We conduct extensive experiments on various BFR mod-
els and demonstrate that the proposed method can help
users generate anonymized images with high transferability.
Compared with baseline obfuscated images, the generated
anonymous faces have much lower perceptual similarity and
identity similarity after being restored, thus mitigating the
risk of privacy breaches due to blind face restoration.

2. Related Work
We cover related research on face privacy protection with a
focus on defenses against face analysis and reliable service
methods. we also pay attention to blind face restoration
methods that may inadvertently lead to privacy breaches.

2.1. Privacy Protection against Face Analysis

These researches focus on face analysis models and utilize
anonymization or so-called obfuscation to avoid illegal iden-
tification or tampering misuse. Classic obfuscation methods
aim to remove sensitive information from images, which
can reduce the performance of face recognition to some
extent (Wilber et al., 2016) Inspired by the observation
that face recognition systems are also vulnerable to adver-
sarial examples (Dong et al., 2019; Komkov & Petiushko,
2021; Yang et al., 2020b), adversarial attack-based meth-
ods (Cherepanova et al., 2020; Shan et al., 2020; Yang et al.,
2021b) add imperceptible perturbations to face images to
protect the user from unauthorized face recognition. Huang
et al. (Huang et al., 2021) also add noise to the face im-
age as an initiative defense, which deteriorates the quality
of the face editing, leading to user protection from deep-
fake (Tolosana et al., 2020). In this paper, we borrow the
idea of adversarial examples to generate anonymized faces.

2.2. Privacy Protection for Reliable Service

The ability to preserve privacy without compromising vari-
ous downstream tasks of face analysis is the main focus of
such research. With the emergence of generative adversar-
ial networks (GANs) or adversarial autoencoder (Hukkelås
et al., 2019; Maximov et al., 2020; Gafni et al., 2019; Kuang
et al., 2021; Li et al., 2021; Wu et al., 2019; Chen et al.,
2021), generative models are developed to generate anony-
mous faces. The technical means are mainly to modify face
attributes and styles or manipulate faces in the semantic
space to meet privacy requirements. For example, CIA-
GAN (Wu et al., 2019) fuses the identity information used
for guidance in the feature space to decode identity-specific
face images. The goal is to generate varied identities while
ensuring that the distribution of obfuscated faces aligns with
that of the original dataset so that privacy-preserving faces
can continue to be used for face detection and recognition.
However, these researches require a large number of real
faces to train the generation model to manipulate the real
face, which may involve additional privacy risks.

2.3. Blind Face Restoration

Blind face restoration (Li et al., 2018; Yang et al., 2020a;
2021a; Wang et al., 2021; Zhou et al., 2022; Wang et al.,
2022; 2023) is an emerging technique for recovering high-
quality faces from ambiguous counterparts, which aims to
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Figure 1. Some examples of personal face privacy breach. The pixelated image in the second column is transformed into a high-quality,
detail-rich face through different BFR models. Although there are some artifacts in the restored images, they are very similar to the
original face images. The privacy of the human face is completely exposed to the real world.

learn a restoration mapping from degraded faces to high-
quality faces. Li et al. (Li et al., 2018) model image
degradation as a combination of Gaussian blur, downsam-
pling, Gaussian noise, and JPEG compression. Most of the
subsequent studies use this as a basis to simulate degraded
data from real-world scenarios and then design better net-
work structures and training strategies. Yang et al. (Yang
et al., 2020a) design a collaborative suppression and replen-
ishment approach to end-to-end restoration. Menon et al.
(Menon et al., 2020), Yang et al. (Yang et al., 2021a),
Wang et al. (Wang et al., 2021), Zhou et al. (Zhou et al.,
2022) and Wang et al. (Wang et al., 2022) exploit the richer
generative prior, and the latter four yield surprising results.
However, the powerful efficacy of face restoration raises new
concerns that obfuscated face images are no longer secure.
In this paper, we work to mitigate this issue by allowing the
protected obfuscated faces to remain anonymous.

3. Methodology
In this section, we first formulate the problem, introduce
the protection goal, and describe the threat model. Then
we describe the proposed domain-consistent transferable
adversarial obfuscation approach in detail.

3.1. Preliminaries

3.1.1. PROBLEM FORMULATION

For an obfuscated face image x ∈ X generated by a de-
generate function T , we aim to design an anonymization
algorithm that generates a corresponding robust obfuscated
face xa = x + δ such that the BFR model is unable to
restore xa back to an identity-consistent, high-quality face
while trying to make xa visually consistent with x. The
generation of robust anonymized faces can be formalized as

the following optimization problem:

max L(z,R(xa)), s.t. S(x,xa) ≤ ε (1)

where z ∈ Z is the ground-truth face, L is a function that
measures the distance between the restored face and the real
face and is used to hinder the recovery of confused images.
S (·) can be any function including the lp norms used to
characterize the similarity between the original obfuscated
image and the deeply anonymized image.

3.1.2. THREAT MODEL

We concentrate on the privacy breach risk due to no-
reference BFR models, with a specific focus on the privacy
vulnerabilities of commonly used pixelated obfuscations.
We consider the privacy attack in the black-box scenario,
where the BFR model used by the attacker and the restora-
tion results are unknown to the user. This scenario is more
challenging and more practical than the white-box scenario.

3.1.3. GOAL OF PROTECTION

Proactive defense-hardened obfuscated face images have
the following two necessary properties.

• Unidentifiability. Not only does the face need to be
anonymous after deep obfuscation, but also the image
recovered by the face restoration model needs to have
the lowest possible resemblance to the real face and be
unrecognizable by the AI model.

• Transferability. In the real world, on the one hand, we
do not have access to the parameters of offline BFR
models, and on the other hand, fine-tuning anonymous
face images for a specific model may fail for other mod-
els. Therefore the anonymized faces should be able to
transfer across different black-box models without the
need for generating again.
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3.2. Domain-Consistent Adversarial Obfuscation

Motivation. For the optimization problem shown in Equa-
tion 1, classical gradient descent-based methods such as
PGD (Madry et al., 2018) or C&W-based joint optimiza-
tion (Carlini & Wagner, 2017) can be used to satisfy the
objective. However, directly applying these methods for
optimization often yields a locally optimal solution that
overfits the surrogate model and hinders the generalization
of the adversarially obfuscated image to other restoration
models. Creating transferable adversarial obfuscated faces
that are effective against various BFR models poses a sig-
nificant challenge. To tackle this issue, we first analyze the
BFR model to discern characteristics shared by different
models, so as to design a more general defense. Formally,
for a collection of high-quality (HQ) face images denoted
Z , low-quality (LQ) images set X can be generated by a
degradation function T (·) that is used to simulate real-world
degradation. T is usually defined as the set of a series of
corrupted transformations:

T (z) = [(z ⊗ kσ) ↓s +nζ ]JPEGq ↑s . (2)

where kσ denotes a Gaussian blur kernel with standard devi-
ation σ, ↓s and ↑s represent upsampling and downsampling,
respectively, where s is the scale factor, ⊗ denotes convo-
lution, nζ is the additive white Gaussian noise and JPEGq
stands for JPEG compression with quality factor q. The BFR
model is composed of multi-layer neural networks to remove
the degraded information and generate a high-definition face
image with a consistent identity. Most existing BFR mod-
els can be abstracted as a mapping R(·) : X → Z where
R(·) can be viewed as an inverse mapping of T . Thus
whatever structure and parameters BFR models have, they
realize similar functions. If we consider the degradation and
restoration as a black box and adapt this common function
from the input-output perspective, we can naturally enhance
the transferability of obfuscated face images.

Based on the above discussion we propose a domain-
consistent adversarial obfuscated image generation method,
capitalizing on the commonalities across these models. Def-
inition 3.1 and 3.2 elucidate the idea of a domain and the
criteria that should be required by a domain-consistent ad-
versarial obfuscated image.
Definition 3.1. Given two image sets X and Z , where X
belongs to the domain DT if there exists a transformation
T satisfying X = T (Z).
Definition 3.2. For an adversarial obfuscated image xa =
x + δ, where x = T (z) ∈ X is a face image belongs
to domain DT , δ is the adversarial perturbation. If there
exists a δz satisfying T (z + δz) − T (z) = δ, then δ is a
domain-consistent perturbation, xa is a domain-consistent
adversarial obfuscated image.

If the perturbations satisfy domain consistency, the opti-

mization process can be extended to the original input level
to develop attacks that adapt to the commonality. Since
the transformation T is a process that loses information, it
is not straightforward to determine the perturbations that
satisfy the domain consistency by solving the inverse of
T . To incorporate domain consistency conditions into the
optimization, we compute the perturbation in the Z domain
without designing intricate constraints. Consequently, the
optimization objective, as stated in Eq. 3, is reformulated as
follows:

max L(z,R(T (za))), s.t. S(x,xa) ≤ ε, (3)

where the final anonymized image xa = T (za).

The objective can be solved using common gradient attack
algorithms such as PGD. S can use Lp norm truncation
or any distance constraints such as mean square error loss.
In our approach, we constrain perturbations using percep-
tual distance and utilize Perceptual PGD (PPGD) (Laidlaw
et al., 2020) for optimization. The integration of generat-
ing domain-consistent adversarial samples into PPGD is
seamless, with further details provided in the appendix.

Domain consistency reduces overfitting. We illustrate
how domain-consistent perturbation generation methods
can mitigate overfitting to the surrogate model by analyzing
gradient propagation. In one step of the optimization, the
gradient of adversarial images in the high-quality domain is
calculated as follows:

∇zaL =
∂L

∂R(T (za))

∂R(T (za))

∂T (za)

∂T (za)

∂za
. (4)

For simplicity, we use △ to denote ∂R(T (za))
∂T (za)

∂T (za)
∂za

. In
the mosaic case, the gradient of the obfuscated image ends
up as follows:

δ = T (z +∇zaL)− T (z) = T (∇zaL). (5)

Eq. 4 and 5 show that domain consistency will addition-
ally project the chained perturbation back into the domain
DT . It is known that the product of the derivatives of a pair
of inverse functions is equal to 1 at the same point. How-
ever, T is a non-invertible function in the task of blind face
restoration. But R is a deterministic function and it can be
considered that R has learned a reasonable approximation
of one of the multiple inverse mappings of T . Consequently,
although the △ does not equal to I, as would be expected
with inverse functions, the projection process neutralizes
some of the non-robust gradients specifically associated
with the BFR model, enhancing perturbations to the com-
mon characteristics of the BFR model.

Compared to domain-consistent adversarial obfusca-
tion, vanilla domain-inconsistent perturbation gradient is
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∇xa
L = ∂L

∂R(xa)
∂R(xa)
∂(xa)

, the structure and parameters of the
BFR model are deeply involved in the gradient propagation,
which finally leads to the generated noise overfitting the
current BFR model.

3.3. Transferability Enhancement

Despite the domain-invariant adversarial paradigm reducing
overfitting to a surrogate BFR model, the transferability of
adversarial obfuscated images is still affected by the surro-
gate model. Equation 4 describes the computation of the
perturbation gradient in a single update, whereas the op-
timization is often repeated multiple times to enhance the
adversarial performance of the obfuscated image. If the
restoration model is not robust enough, a small change in za
can degrade the image quality of R(T (za)) heavily. This
mismatch results in a significant weakening of the effect of
△, and fails to effectively enhance the focus on the com-
monalities of BFR models. Thus selecting a BFR model
that exhibits higher robustness to the neighborhood of ob-
fuscated data points is crucial for serving as a surrogate
model. In this context, robustness pertains to the capacity
to handle adversarial low-quality images. Notably, adver-
sarial obfuscated faces generated using a robust BFR model
demonstrate higher transferability. This insight also aligns
with the findings in classification models (Springer et al.,
2021). We propose a domain-consistent data augmentation
technique to mitigate this problem.

Domain-consistent data augmentation. The idea of
domain-consistent data augmentation is to align with the
optimization process by placing the domain transformation
T after the data augmentation to simulate the generation
of domain-consistent adversarial perturbations. For mosaic
transformation, we add random Gaussian noise to high-
quality images for data augmentation, i.e., A(z) = z + σ.
There are two optional optimization objectives for aug-
mented training:

minLD (R(T (A(z))), A(z)) , (6)

minLD (R(T (A(z))), z) . (7)

Since the objective of the augmented training is to slow
down the speed of restored image distortions when subjected
to slight perturbations, the training objective described in
Eq. 7 will exhibit stronger perturbation suppression than Eq.
6, so we use Eq. 7 as the final training objective.

3.4. Loss Function

The key to the failure of the obfuscated image being recov-
ered is the design of the loss function L. We consider the
following loss functions.

• Content loss. The content loss calculates the L1 norm
of the ground-truth image and the restored images to

enlarge the distance of the face in the output space.

• Perceptual loss. Perceptual loss (Johnson et al.,
2016) computes the correlation between features and is
widely used to improve image quality in various image
generation tasks. In turn, it can be used to reduce the
texture and structural quality of the restored image.

• Task-guided face structure loss. The degree of disor-
ganization of the face structure is difficult to measure
with an explicit distance function. We therefore use
an additional task-specific model to implicitly char-
acterize the objective. Specifically, we design a face
structure loss based on the face parsing model P . For
an input face image z, the output Pz ∈ RC×H×W is a
19-channel tensor with the same size as the face image
where every channel represent the prediction probabil-
ity of different face attributes. The optimization goal
is to make the recovered face structure as chaotic as
possible, so the face structure loss is defined as the
probability of minimizing the correct labels at each
position of the face image:

Lstruc = − 1

HW

∑
H,W

∑
C

ŷ · P (za) ·M, (8)

where ŷ is a one-hot label vector of P (z) and M is a
binary mask where only the face region is 1 and the
rest of the positions are 0.

Compared to the first two loss functions, which tend to indis-
criminately enlarge the distance between the restored face
and the original face, Lstruc focuses more explicitly on the
structure of the face. This can reduce meaningless perturba-
tions, therefore we use Lstruc as the final loss function.

4. Experiments
4.1. Experimental Setting

Datasets. Following previous work, we use the
FFHQ (Karras et al., 2019) dataset and perform pixelation
to train the model to help them have better performance
in restoring the pixelated images. We resize the source
image from 512 × 512 to 32 × 32 by nearest neighbor
interpolation and resize it back to simulate the process of
the pixelation. We select 2,000 images from the training
set and test set of CelebA-HQ to form a test set of size
4,000, respectively, for evaluating the effectiveness of the
proposed method.

Blind face restoration models. We select five models
with excellent performance on face restoration, namely HI-
FaceGAN (Yang et al., 2020a), GPEN (Yang et al., 2021a),
GFPGAN (Wang et al., 2021), RestoreFormer (Wang et al.,
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Table 1. Comparison of the effectiveness of different obfuscation methods against BFR models. The surrogate model is the RestoreFormer
which does not use domain-consistent data augmentation.

Attacker Defense FID MS-SSIM LPIPS IDS LMD mPR mIoU

HIFaceGAN (Yang et al., 2020a)
Pixelate 5.04 0.9224 0.1100 0.72 4.91 0.872 0.867
PPGD 37.64 0.8600 0.1503 0.54 11.47 0.724 0.607
DomCo 165.18 0.7590 0.1962 0.25 83.41 0.323 0.247

GFPGAN (Wang et al., 2021)
Pixelate 7.14 0.9298 0.1071 0.70 4.66 0.861 0.769
PPGD 33.60 0.8787 0.1483 0.53 13.20 0.687 0.598
DomCo 115.37 0.8177 0.1859 0.33 40.74 0.374 0.304

GPEN (Yang et al., 2021a)
Pixelate 6.51 0.9251 0.1141 0.76 4.86 0.856 0.766
PPGD 73.67 0.8633 0.1623 0.55 15.84 0.702 0.602
DomCo 147.20 0.8061 0.1904 0.35 50.87 0.426 0.340

CodeFormer (Zhou et al., 2022)
Pixelate 6.47 0.9181 0.1045 0.65 4.94 0.845 0.740
PPGD 7.07 0.9126 0.1100 0.63 5.21 0.814 0.715
DomCo 74.35 0.8165 0.1596 0.32 25.22 0.512 0.410

RestoreFormer (Wang et al., 2022)
Pixelate 8.43 0.9352 0.0984 0.74 4.54 0.868 0.772
PPGD 179.09 0.7670 0.1935 0.19 73.94 0.107 0.083
DomCo 143.13 0.7834 0.1968 0.23 58.67 0.160 0.122
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Figure 2. Comparison of ROC curves of different methods.

2022) and CodeFormer (Zhou et al., 2022). We use the
suffix ‘−A’ to indicate the augmented models for simplic-
ity. Unless specifically stated, the models that appear are
unaugmented.

Evaluation metrics. To evaluate the effectiveness of ad-
versarially obfuscated faces, IDentity Similarity (IDS), Mul-
tiScale Structural Similarity (MS-SSIM) (Wang et al., 2003),
Frechet Inception Distances (FID) (Heusel et al., 2017) and
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al., 2018) as quantitative metrics are used. We calculate
the cosine similarity of the features drawn from the Arc-
Face (Deng et al., 2019) as the identity similarity. With the

ground-truth image as the reference, FID, MS-SSIM, and
LPIPS not only measure the quality of the restored image
but also indicate the difference with the reference image
in terms of similarity and statistics, aligning closely with
human visual perception. In addition, we also use the face
landmark distance (LMD), the mean intersection over union
(mIoU) over classes of the face region, and the mean pixel
recall (mPR) to measure the degree of disorder of restored
faces. For metrics with the help of reference images, calcu-
lations are confined to the facial region. In our task, larger
FID, LPIPS, and LMD indicate better defense performance,
while for the remaining metrics, a smaller value is better.

Implementation details. We optimized each adversarial
obfuscated image 20 times, using the bisection method to
project the perturbations, the maximum ϵ is 1.5, and the step
size defaults to 2ϵ

20 . The face region mask M is specified by
the labels of the clean face parsing map (Lee et al., 2020),
excluding the background, hair, ear, and neck parts.

4.2. Main Results

4.2.1. EVALUATION ON DOMAIN-CONSISTENT
OBFUSCATION

We first tested the effectiveness of adversarial obfuscated
faces generated by the proposed method (denoted as
DomCo) on the unaugmented model to defend BFR models.
Table 1 shows the ability of anonymized faces generated by
different obfuscation methods against different BFR mod-
els when RestoreFormer (Wang et al., 2022) is used as the
surrogate model.
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Table 2. Defense performance of different surrogate models trained with domain-consistent augmentation. The suffixes ”-GF” and ”-CF”
denote the GFPGAN and CodeFormer as the surrogate model, respectively. The gray rows are the results of augmented surrogate models.

Attacker Defense FID MS-SSIM LPIPS IDS LMD mPR mIoU

HIFaceGAN (Yang et al., 2020a)

DomCo-GF 155.03 0.7821 0.1869 0.32 59.49 0.496 0.392
+Aug 142.66 0.7435 0.1931 0.24 70.09 0.306 0.230
DomCo-CF 46.95 0.8442 0.1570 0.49 13.29 0.716 0.580
+Aug 74.43 0.7910 0.1775 0.36 27.10 0.559 0.430

GFPGAN (Wang et al., 2021)

DomCo-GF 176.77 0.7600 0.1911 0.24 73.55 0.143 0.114
+Aug 96.80 0.7794 0.1744 0.28 34.13 0.232 0.182
DomCo-CF 24.73 0.8810 0.1448 0.55 9.54 0.740 0.634
+Aug 38.51 0.8392 0.1618 0.43 15.14 0.614 0.498

GPEN (Yang et al., 2021a)

DomCo-GF 136.92 0.8279 0.1810 0.45 31.54 0.616 0.509
+Aug 136.02 0.7750 0.1897 0.29 48.49 0.322 0.250
DomCo-CF 54.04 0.8723 0.1536 0.59 10.04 0.764 0.646
+Aug 72.14 0.8227 0.1726 0.43 18.92 0.602 0.481

CodeFormer (Zhou et al., 2022)

DomCo-GF 42.06 0.8401 0.1451 0.39 13.93 0.655 0.532
+Aug 75.35 0.7985 0.1633 0.30 26.42 0.465 0.370
DomCo-CF 181.64 0.7331 0.1963 0.18 90.42 0.140 0.106
+Aug 48.36 0.8171 0.1569 0.35 20.82 0.544 0.430

RestoreFormer (Wang et al., 2022)

DomCo-GF 37.80 0.8776 0.1522 0.56 9.18 0.739 0.632
+Aug 68.70 0.8161 0.1702 0.35 20.99 0.418 0.333
DomCo-CF 13.66 0.9040 0.1265 0.64 6.12 0.810 0.698
+Aug 29.79 0.8567 0.1514 0.47 10.95 0.670 0.545

It can be intuitively seen that both DomCo and PPGD are
well defended against the white-box model RestoreFormer
and the restored face images show a significant decrease
in structural and perceptual similarity as well as in image
quality, indicating that the obfuscated information in the
images undermines the ability of the model to maintain
structural consistency. PPGD shows a significant perfor-
mance degradation when oriented to other models, while
the proposed method can maintain a similar defense per-
formance against other BFR models, proving the superior
generalization ability of DomCo.

In addition, we sampled 2,000 identity-differentiated face
images from the test set to further evaluate the effective-
ness of DomCo on face identity protection. Figure 2 shows
the ROC curves on the restored anonymized face images.
For most BFR models, anonymized faces generated by the
proposed method have lower face verification TAR at the
same FAR, indicating that DomCo effectively prevents the
restoration model from reconstructing the identity informa-
tion. Furthermore, other adversarial obfuscation methods
exhibit significant gaps in performance between black-box
models and white-box models. DomCo, by contrast, consis-
tently exhibits superior performance in defending a range
of BFR models, illustrating better transferability.

4.2.2. EFFECTIVENESS OF DOMAIN-CONSISTENT
AUGMENTATION

Table 2 illustrates the effect of domain-consistent data-
augmented training on the transferability of adversarially
obfuscated face images. The transferability of adversarially
obfuscated images generated by the surrogate model aug-
mented with domain-consistent data significantly improves,
leading to a greater reduction in image-level and feature-
level similarities, as well as a further increase in the degree
of disorder of the faces. This performance gain is even more
evident when GFPGAN is used as a surrogate model to
defend against RestoreFormer. The defensive performance
of the augmented model decreases in the white-box sce-
nario because the parameters of the augmented model have
changed compared to the original model. It is not strictly
a white-box defense, and the augmented model also helps
alleviate overfitting to the original model.

4.2.3. QUALITATIVE RESULTS

Figure 3 presents the restoration results of the obfuscated
face images generated by different approaches. The restored
images show varying degrees of degradation, and the distor-
tion of the adversarially obfuscated face image is acceptable.
The restored face exhibits a marked increase in confusion
and entanglement, leading to a significant displacement of
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Figure 3. Qualitative comparison of the restored results of obfuscated face images using different BFR models.

(a) Domain-Inconsistent (b) Domain-Consistent (c) Domain-Consistent Augmentation

Figure 4. The cosine similarity between perturbation gradients of blind face restoration models when using different defense paradigms.
CFormer and RFormer represent CodeFormer and RestoreFormer, respectively. In (c), GFPGAN and CodeFormer are trained with
domain-consistent data augmentation.

identity information. Furthermore, the proposed method
demonstrates superior defense capabilities against different
BFR models with better generalization performance com-
pared to the domain-inconsistent baseline method.

4.3. Ablation Study

4.3.1. DOMAIN-CONSISTENT GRADIENT ANALYSIS

To further understand the improvement of domain consis-
tency in the generalization of obfuscated images, we ana-
lyzed the gradients of the input images at the initial time
of optimization. Specifically, we utilized a subset of 100
images from the test set to calculate the gradients of the loss
on the input under various strategies using different surro-
gate models and compared their cosine similarity. Figure

4 illustrates the gradient similarity under different defense
paradigms. The results demonstrate that domain consistency
enhances the similarity of perturbation gradients between
surrogate models and strengthens the adaptation of perturba-
tions to model commonalities, while domain-consistent data
augmentation further stabilizes and amplifies this character-
istic. Note that even if the gradient attention remains similar,
the images generated by a more robust surrogate model will
have stronger obfuscation capability, as its outputs are less
susceptible to perturbations.

4.3.2. ANALYSIS OF LOSS FUNCTIONS

We conducted experiments using the content loss function
(denoted as Lc) and the perceptual loss function (denoted
as Lpercep) which uses the pre-trained VGG19 network (Si-
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Table 3. Defense performance when using different loss functions. The upper bound of the perturbation ϵ is uniformly set to 1. Values in
bold represent the best performance.

Attacker Loss FID MS-SSIM LPIPS IDS LMD mPR mIoU

HiFaceGAN (Yang et al., 2020a)

Lc 76.81 0.7845 0.1785 0.34 18.61 0.640 0.476
Lpercep 92.06 0.7867 0.1854 0.33 23.88 0.625 0.454
Lstruc 157.89 0.7666 0.1927 0.27 72.48 0.352 0.271

GFPGAN (Wang et al., 2021)

Lc 45.70 0.8224 0.1674 0.41 12.91 0.670 0.523
Lpercep 65.56 0.8292 0.1804 0.40 15.07 0.675 0.512
Lstruc 107.34 0.8253 0.1813 0.34 37.20 0.407 0.333

GPEN (Yang et al., 2021a)

Lc 86.64 0.8090 0.1788 0.42 15.90 0.684 0.527
Lpercep 104.15 0.8179 0.1877 0.41 17.93 0.698 0.519
Lstruc 138.52 0.8148 0.1860 0.37 43.64 0.460 0.370

CodeFormer (Zhou et al., 2022)

Lc 28.28 0.8273 0.1463 0.36 10.04 0.687 0.532
Lpercep 40.40 0.8287 0.1535 0.34 11.27 0.684 0.516
Lstruc 68.46 0.8213 0.1565 0.33 23.62 0.528 0.423

RestoreFormer (Wang et al., 2022)

Lc 51.32 0.7582 0.1910 0.37 13.11 0.623 0.445
Lpercep 93.62 0.8034 0.2017 0.38 16.58 0.647 0.458
Lstruc 136.82 0.7912 0.1929 0.25 53.69 0.180 0.140

monyan & Zisserman, 2015) as the feature extractor and
computes the Frobenius norm between the original image
features and the recovered image features. The step size
was fixed at 3/20 to ensure that ϵ could reach the bound
of 1. Table 3 compares the defensive performance when
using different loss functions. The results indicate that both
content-related losses are effective in reducing the quality
of the recovered images. The content loss is more effective
in reducing pixel-level similarity between restored and orig-
inal faces, as evidenced by lower MS-SSIM values, while
the perceptual loss achieves lower perceptual similarity by
widening the differences at the feature level. The proposed
face structure loss, on the other hand, has a more balanced
performance and is particularly effective in preventing iden-
tity and structure recovery. The results suggest that simply
reducing pixel-level or perceptual similarity is insufficient
to disrupt face structure, while disrupting face structure can
naturally reduce perceptibility.

5. Conclusion
This paper studied the risk of face privacy breaches from
blind face restoration. Our findings indicate that while cer-
tain obfuscation techniques may thwart human observers,
BFR models can decipher them with high accuracy. To alle-
viate this issue, we leveraged insights into the BFR model’s
inherent characteristics to develop a domain-consistent ad-
versarial obfuscation approach. By constraining the pertur-
bation to be within the same domain as the obfuscated image
throughout the optimization, we illustrate that the proposed
method can reduce the likelihood of overfitting from the

perspective of gradient similarity. Extensive experiments
across various BFR models demonstrate the effectiveness
of the proposed method in safeguarding face privacy. We
believe this research offers valuable insights for the future
development of protection for such privacy concerns.
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A. Domain-Consistent Optimization
According to PPGD (Laidlaw et al., 2020), we rewrite the optimization objective as follows:

max
δ

L(R(T (z + δ)))

s.t. d(T (z), T (za)) = ∥ϕ(T (z))− ϕ(T (za))∥2 ≤ ϵ
(9)

where ϕ is the flattened activations of AlexNet and the constant high-quality image z is omitted for simplicity. Let
f̂(z) := L(R(T (z))) for an input z ∈ Z and J be the Jacobian of ϕ(T (·)) at z and ∇f̂ be the gradient of f̂(·) at z. The
first-order approximation of (9) is

max
δ

f̂(z) + (∇f̂)⊤δ subject to ∥Jδ∥2 ≤ η, (10)

and can be solved in closed form.

It can be deduced that by adding an image transformation layer T before the BFR model and recognition model, we can
apply the algorithm in (Laidlaw et al., 2020) directly.

B. Experiments
B.1. Different Distance Constraints

We have tried different distance constraints, including the PGD approach with an lp norm constraint. Table 4 demonstrates
the effectiveness of the adversarial perturbed images generated under the l∞ norm. The obfuscation ability is weakened in
both white-box and transferability scenarios, which may be due to the optimization method based on perceptual distance
constraining the overall perceptibility, while l∞ norm restricts the magnitude of pixel modification.

Table 4. Defense performance when using the lp norm as the distance constraint. ϵ∞ = 8 and ϵ∞ = 16 indicate that the perturbation
bounds are L∞ = 8

255
and L∞ = 16

255
, respectively.

Attacker Budget FID MS-SSIM LPIPS IDS LMD mPR mIoU

HiFaceGAN (Yang et al., 2020a) ϵ∞ = 8 29.56 0.8570 0.1484 0.31 12.77 0.689 0.577
ϵ∞ = 16 120.11 0.7838 0.1906 0.30 46.02 0.451 0.360

GFPGAN (Wang et al., 2021) ϵ∞ = 8 22.07 0.8843 0.1425 0.53 11.34 0.687 0.595
ϵ∞ = 16 78.28 0.8220 0.1855 0.35 27.76 0.486 0.408

GPEN (Yang et al., 2021a) ϵ∞ = 8 38.84 0.8801 0.1472 0.58 10.62 0.719 0.620
ϵ∞ = 16 116.40 0.8114 0.1911 0.38 33.77 0.533 0.436

CodeFormer (Zhou et al., 2022) ϵ∞ = 8 13.71 0.8813 0.1230 0.50 8.18 0.724 0.612
ϵ∞ = 16 48.40 0.8366 0.1506 0.37 15.62 0.606 0.495

RestoreFormer (Wang et al., 2022) ϵ∞ = 8 29.20 0.8800 0.1412 0.49 12.08 0.630 0.531
ϵ∞ = 16 100.74 0.8006 0.1936 0.29 34.09 0.319 0.252

B.2. More Qualitative Results

In Fig. 5 we show more examples of generated adversarial obfuscated face images.

C. Discussion
C.1. Relationship with Classification Task

We demonstrate that domain consistency improves the generalizability of defenses (attacks as defenses) against image-to-
image-based blind face restoration models. This property may be able to explain adversarial transferability in other tasks. In
a wide range of tasks, the transformation of the domain DT may be unknown, so we consider the general form of domain
consistency, i.e., for x ∈ X , there exists a z ∈ Z aligned with the output that satisfies x = T (z) by a transformation T . In
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Figure 5. Qualitative results of obfuscated face images restored by different BFR models.

the classification task, since the domain transformation T is unknown, we can fit the T by an additional neural network
G. The input of G is the discriminative output of the model, and Z can be an output probability vector, a logits vector, or
an intermediate representation. It is easy to see that G can be considered as a generator, at which point perturbations are
projected onto low-dimensional manifolds, i.e., GAN-based attacks. This may explain why GAN-based adversarial samples
are more transferable than conventional methods (Bar Tal et al., 2023). We hope to provide insights to the future design of
generalized attack and defense methods for diverse tasks.

C.2. Limitation

To improve the transferability of adversarial obfuscated images, the DomCo approach compromises the imperceptibility
of perturbations. The perceptibility of the perturbation is influenced by many factors especially the choice of optimiza-
tion method and the loss function used. Domain-consistent adversarial obfuscation methods modulate the intermediate
perturbations during iterations, requiring a larger perturbation budget. As mentioned in GLAZE (Shan et al., 2023), the
image-to-image generative model needs to be reconstructed with features extracted from the input image, which will retain
more information from the original image, requiring a larger perturbation budget. For image-to-image-based models, the
perceptibility of the perturbation can be reduced by utilizing features that are salient to the attack target, or features of a
clean image, for instance, by setting the loss function to target the attack with a clean image target.

For methods of proactive defense, various countermeasures may emerge in the future. Theoretically, the generated adversarial
obfuscated face image patterns can be defeated to some extent by pairwise or adversarial training. However, attack and
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defense is a continual game, where stronger attacks motivate the development of more robust defenses. Studying obfuscated
face privacy protection in complex scenarios is also part of our future work. Additionally, there are some limitations inherent
in existing countermeasures. Adversarial training can decrease performance on clean images and incurs high training costs.
Moreover, diffusion-based methods require a careful equilibrium between fidelity and the realism of the outputs. Notably,
maintaining high fidelity may inadvertently conceal identity information, challenging the objective of identity preservation.

C.3. Discussion with Stronger Degenerate Operators

A stronger degenerate function can somewhat prevent restoration, however it will result in poorer visual quality. Table 5
compares the image quality of obfuscated face images generated by DomCo with those generated by stronger degenerate
operators. The reference image is the image processed by a 16x16 scale operator. It can be observed that the images
generated by the DomCo operator outperform the others in all metrics, demonstrating superior visual quality. Moreover,
degenerate operators of different strengths can be combined with DomCo to further enhance privacy.

Table 5. Comparison of obfuscated face image quality.

Obfuscation FID PSNR MS-SSIM LPIPS

20× 37.00 23.56 0.8108 0.1187
24× 45.80 22.57 0.7770 0.1396
28× 85.94 22.23 0.7527 0.1481
32× 116.66 22.53 0.7567 0.1282

DomCo 24.42 30.41 0.9287 0.0873

14


