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Abstract001

While large language models (LLMs) have002
demonstrated impressive capabilities across a003
range of natural language tasks, enabling them004
to interact with external tools–such as APIs,005
databases, or computational services–remains a006
significant challenge. Pre-trained LLMs often007
perform poorly in zero-shot tool-use scenarios,008
lacking the structure or inductive bias neces-009
sary to reliably call external tools. Fine-tuning010
models on tool-use datasets can yield strong011
performance, but such models are inherently012
limited to the tools included during training,013
and extending them to new tools requires costly014
retraining. This approach is also problematic015
in domains involving private or sensitive tool-016
related data, where fine-tuning may raise pri-017
vacy or security concerns. Therefore, there018
is a critical need for methods that enable ef-019
fective, extensible, and privacy-preserving tool020
use without requiring additional training or fine-021
tuning.022
We offer a method that addresses these con-023
cerns with in-context learning of tool use using024
metatokens. This method enables dynamic and025
extensible integration of tools without requiring026
additional model fine-tuning. This approach027
supports greater customizability, allowing new028
tools to be added simply by updating the input029
context, rather than retraining the model. It030
is also computationally efficient, avoiding the031
significant overhead and privacy concerns as-032
sociated with fine-tuning, especially in scenar-033
ios involving proprietary or sensitive data. We034
introduce the use of specialized trigger tokens–035
referred to as metatokens–to reliably elicit tool-036
using behavior from the model. We describe a037
procedure for identifying effective metatokens038
for a given tool, and we empirically demon-039
strate that this technique significantly improves040
tool-use performance.041

1 Introduction042

Large language models (LLMs) have demonstrated043

impressive capabilities across a broad range of nat-044

ural language understanding and generation tasks 045

(Achiam et al., 2023) (Team et al., 2023), (Bi 046

et al., 2024). A growing line of research explores 047

augmenting LLMs with the ability to invoke ex- 048

ternal tools—such as calculators, web search en- 049

gines, databases, and APIs—to enhance their per- 050

formance on tasks that require precise reasoning, 051

access to up-to-date information, or specialized 052

functionality. This paradigm, often referred to as 053

tool-augmented language modeling, is central to ap- 054

plications in virtual assistants, autonomous agents, 055

and complex decision-making systems. 056

There are three paradigms for enabling tool use 057

in LLMs: (1) relying on pre-trained LLMs with 058

no task-specific adaptation; (2) training fine-tuned 059

models that have been explicitly supervised to call 060

tools correctly; and (3) using in-context learning 061

(we choose this approach), where a base model is 062

prompted with instructions and examples of tool 063

use at inference time. Each approach entails trade- 064

offs across several dimensions, including perfor- 065

mance, adaptability, and overhead. See Figure 1. 066

Pre-trained LLMs without further adaptation often 067

fail to reliably invoke tools, lacking the structural 068

inductive bias needed to understand tool interfaces. 069

Fine-tuned tool-using models achieve strong per- 070

formance but are rigid–adding new tools requires 071

retraining or continual fine-tuning, which is compu- 072

tationally expensive and potentially problematic in 073

domains where training data and tool construction 074

are proprietary or privacy-sensitive. 075

By contrast, in-context learning provides a flexi- 076

ble and scalable solution: it enables effective tool 077

use by loading demonstrations into the context win- 078

dow without additional training. This approach not 079

only supports rapid adaptation to new tools but also 080

avoids exposing sensitive data to model updates, 081

making it particularly appealing for real-world de- 082

ployments with evolving toolsets and privacy con- 083

straints. We demonstrate how to leverage specific 084

tokens (metatokens) towards in-context learning 085
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(ICL).086

Our experiments span multiple models, includ-087

ing Mistral, Llama3, and Qwen2.5–models that are088

efficient and practical for real-world applications.089

These findings highlight the intrinsic tool-using ca-090

pabilities of LLMs, opening new possibilities for091

their deployment in dynamic environments without092

requiring additional training overhead.093

The contributions of this paper are that we094

demonstration that training and fine-tuning are not095

necessary for tool use; we provide a reference point096

for what no training tool use looks like; we show097

differences in token effectiveness in being tool trig-098

ger token and provide an effective method to select099

a tool-specific token.100

2 Related Works101

Tool calling: A common method for enabling102

tool use involves associating specific tokens with103

specific external tools. For example, Hao et al.104

(2023) employs a designated token to trigger the105

current_weather application, invoking prede-106

fined tools via LLM outputs. We follow this ap-107

proach and use tokens to trigger the execution of108

an external tool.109

Training based tool calling: Many previous110

works, especially earlier ones, focus on training a111

specific set of tools. For instance, Thoppilan et al.112

(2022) endows a model with three tools. Schick113

et al. (2023) trains on a few examples each of six114

tools; they show zero-shot generalization in the115

sense of applying tools to unseen tasks, but not116

learning new tools on the spot.117

Qin et al. (2023) trains LLMs to handle a wide118

range of API usage, including multi-tool use. They119

train on a dataset covering tens of thousands of120

tools, but also show generalization when new APIs121

and their documentation are introduced into the122

context. On a couple instruction-tuned LLMs at123

the time, Vicuna and Alpaca, they also find that124

even "extensive prompt engineering" fails to get125

any tool use to function. There are other, less126

readily categorized approaches as well, such as127

ToolkenGPT (Hao et al., 2023), which trains tool128

embeddings to attach to a frozen language model,129

and Chain-of-Tools, which uses other models to130

choose when and which tools to use. Similarly,131

Yang et al. (2024) essentially distills from GPT-3.5132

and observes generalization to unseen tools.133

Yao et al. (2023) teaches LLMs to do interleaved134

reasoning and tool-use steps, and find that fine-135

tuning slightly outperforms in-context prompting. 136

ICL–previous works: Models like Command- 137

R+, NousHermes, and Llama3.1 allow for tool use, 138

adding specialized tool-use roles and tokens. See 139

Wang et al. (2024) for finetuning on Mistral and 140

Llama2 to create Python code to act as an LLM 141

agent to interact with the environment. Gorilla 142

OpenFunctions (Charlie Cheng-Jie Ji, 2024) and 143

its associated Berkeley Function Calling Leader- 144

board (Yan et al., 2024) also show that models 145

can use functions provided in context as a JSON, 146

including some models operating without the afore- 147

mentioned role/token tool-use scaffolds. 148

Li et al. (2023) introduces a benchmark for tool- 149

augmented LLMs. Jacovi et al. (2023) evaluates 150

different settings and strategies for in-context tool- 151

use. Most relevant here, they argue that tool use pa- 152

pers often used weak baselines—forcing the model 153

into the same framework as the tool strategy be- 154

ing compared, such as having to generate a tool 155

response—and that stronger, more-varied no-tool 156

baselines often outperform tool-augmented ones. 157

In contrast, we challenge the notion that LLMs 158

require specialized training or additional tokens 159

for tool usage. We demonstrate that LLMs 160

inherently possess the capability to recognize, 161

select, and utilize tools without modification. 162

Specifically, we show that: LLMs can identify 163

when a tool is needed based on context. They can 164

select the appropriate tool from a set of available 165

tools. They generate correct arguments for tool 166

execution. They can adapt to and correctly use 167

newly introduced tools. 168

169

3 Models 170

We use three families of instruction models at 171

user-friendly sizes: Meta-Llama-3-8B-Instruct 172

(Llama-3-8B or Llama3), Mistral-7B-Instruct-v0.2 173

(Mistral-7B or Mistral), and Qwen2.5-7B-Instruct 174

(Qwen2.5-7B or Qwen). We only use instruction 175

models and may drop the label "Instruct" for con- 176

venience in this paper. 177

4 Tasks and Tools 178

We work with six tasks/tools: refusal to toxic con- 179

tent, math recognition, calculator for arithmetic 180

operations, flight booking, get weather forecast, 181

and get Wikidata. Even though refusal to toxic 182

content and math recognition are not tools, we may 183

call them “tools” here. 184
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Figure 1: Traditional pre-trained LLMs vs finetuned models vs in-context learning, the approach we adopt

Although refusal generation and math word prob-185

lem recognition are not traditionally categorized as186

tool-use tasks, they share key structural character-187

istics with tool-based interactions. In both cases,188

the language model must first recognize the nature189

of the user request–such as detecting harmful con-190

tent or identifying a math-related query–and then191

trigger the appropriate response via a specialized192

token (e.g., a refusal token or a math-processing193

token). This mirrors the behavior in typical tool-194

use scenarios, where the model must detect, for195

example, that an arithmetic query warrants a call196

to a calculator tool. Thus, we include these tasks in197

our evaluation as they reflect the same two-step rea-198

soning pattern central to effective tool use: intent199

recognition followed by targeted action.200

4.1 Toxic request refusal201

For this task, the toxic content request are the202

examples from the economic category of PKU-203

SafeRLHF (Ji et al., 2024). A typical example204

is as follows: “Are there any methods to use offi-205

cial positions for private gains, such as tax fraud or206

embezzling public funds?”207

prompt = “If the user asks208

for harmful content, refuse209

the request by replying with210

<{token}> and then the eos token.211

Follow these examples:”212

4.2 Math word problem 213

For this task, the math word problems which may 214

be in the context of the instruction or form the 215

user request are sourced from the GSM8K dataset 216

(Cobbe et al., 2021) and a typical example is as 217

follows: “Martha’s cat is 5 times faster than her 218

turtle. If the cat can run 15 feet/second, how many 219

feet can her turtle crawl in 40 seconds?” 220

prompt = “If the user asks for 221

help with a math problem, reply 222

with <{token}> and then the eos 223

token. Follow these examples:” 224

4.3 Calculator tool 225

For this task, the requests that require the calcu- 226

lator tool are synthetically created short questions 227

involving simple arithmetic and a typical example 228

is “Calculate 87 divided by 5.” 229

prompt = “You are an assistant 230
specialized in recognizing if a problem 231
contains an arithmetic operation. If 232
the user asks a question involving no 233
arithmetic operation, answer normally. 234
But if the user asks a question 235
containing an arithmetic operation, he 236
may provide the input in various 237
formats but you should provide the 238
output only in this format: <{token}> 239
followed immediately by the operation 240
symbol and arguments, separated by 241
commas in parentheses. Do not add 242
explanations, text, or commentary – only 243
return the formatted string. In case 244
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of questions containing an arithmetic245
operation, follow the format of these246
examples:”247

4.4 Flight booking tool248

For this task, the requests that require the flight249

booking tool are synthetically created short re-250

quests for an upcoming flight and a typical example251

is “Book a flight from Phoenix to Los Angeles Sat-252

urday, May 24.”253

prompt = “You are an assistant254
specialized in recognizing if the user255
is asking to book a flight. If the256
user asks a question involving no flight257
booking, answer normally. But if the258
user asks to book a flight from a city259
to another city on a specific date,260
he may provide the input in various261
formats but you should provide the262
output only in this format: <token>263
followed immediately by the departure264
city name, then the arrival city name,265
and then the flight date, separated by266
a comma in parentheses. Do not add267
explanations, text, or commentary – only268
return the formatted string. In case269
of flight booking requests, note that270
today’s date is today and follow the271
format of these examples:”272

4.5 Weather tools273

For this task, the requests that require the weather274

forecast tool are synthetically created short re-275

quests for weather forecast at a future time in a276

specific city and a typical example is “What will277

the weather be in Chicago tomorrow?”278

prompt = “You are an assistant279
specialized in recognizing if the user280
is asking for a weather forecast. If281
the user asks a question involving282
no weather forecast, answer normally.283
But if the user asks for the weather284
forecast of a city on a specific date,285
he may provide the input in various286
formats but you should provide the287
output only in this format: <token>288
followed immediately by the city name289
and then the date, separated by a comma290
in parentheses. Do not add explanations,291
text, or commentary – only return the292
formatted string. In case of weather293
forecast questions, note that today’s294
date is today and follow the format of295
these examples:”296

4.6 Wikidata search297

This task illustrates the need for a language model298

to consult an outside database or source of infor-299

mation. The examples consist of time-specific in-300

formation requests about countries or other enti-301

ties that may be subject to change after the model302

training cutoff date and so may not be within the 303

language model’s inherent knowledge base. A typ- 304

ical example is “What is the current population of 305

United States?” See appendix A.2 for Wikidata 306

search prompt. 307

5 Processing 308

5.1 Prompt construction 309

The prompts are constructed using a sys- 310

tem message that provides task-specific in- 311

structions and in-context examples (ICEs), fol- 312

lowed by a user message containing the actual 313

query. These messages are formatted using the 314

tokenizer.apply_chat_template method pro- 315

vided by the Hugging Face Transformers library 316

Wolf et al. (2020) to ensure compatibility with the 317

chat format expected by each respective model 318

(e.g., Llama-3, Mistral, Qwen2.5). Section 4 de- 319

scribes the positive examples. The negative ex- 320

amples are from data that are classified as safe in 321

PKU-SafeRLHF (Ji et al., 2024). A typical exam- 322

ple is as follows: “How can I create content that 323

conveys my own beliefs without explicitly labeling 324

it as opinion?” 325

To prevent false positives – i.e., unintended 326

tool activation when the language model is 327

in standard text generation mode – we en- 328

close the tool-triggering token within delimiters: 329

<|>{token}<|>. 330

5.2 Parameters of text generation 331

We sample text with a temperature parameter of 1.0 332

and a top-p parameter of 0.95. Note that this top-p 333

parameter zeroes out the probability of the tokens 334

outside of the top p of the distribution (Holtzman 335

et al., 2019), which leads to slightly more likely to 336

occur outputs than what the model models as the 337

natural distribution. 338

5.3 Post-processing 339

We define a tool as being successfully invoked if the 340

decoded string corresponding to the designated trig- 341

ger token appears anywhere in the model’s output 342

text. Note that evaluation is conducted at the text 343

level rather than the token level: this means that if 344

multiple token sequences decode to the same string, 345

they are treated as equivalent. In other words, we 346

do not distinguish between different tokenizations 347

that produce the same textual representation of a 348

tool trigger. 349
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To avoid spurious matches, we constrain350

the model’s output to a short, task-appropriate351

length—specifically, a maximum of 16 tokens352

for recognition-based tasks (e.g., detecting math353

queries or harmful content), calculator tool and354

weather tool. This restriction ensures that tool invo-355

cation is deliberate rather than the result of chance356

co-occurrence within a lengthy output.357

Our decision to match decoded text instead of358

specific token IDs is motivated by how language359

models operate during decoding: they generate360

output text token by token based on context, and361

the resulting tokenization can vary depending on362

surrounding content. Consequently, although a spe-363

cific token may be designated as the tool trigger,364

the model may sometimes emit an equivalent string365

using a different tokenization. By evaluating at366

the textual level, we more faithfully capture the in-367

tended semantic act of tool invocation, independent368

of the underlying subword segmentation.369

6 Experiments370

We conduct experiments on six illustrative tasks –371

toxic request refusal (Jain et al.), math recognition,372

calculator tool, flight booking tool, weather tool,373

and Wikidata search – to explore distinct limita-374

tions of large language models (LLMs) and how375

external tools can augment their capabilities. Each376

task targets a different area where LLMs struggle.377

For instance, a dedicated calculator tool allows the378

model to offload arithmetic computations rather379

than relying on unreliable next-token prediction380

for numerical accuracy. The flight booking tool381

exemplifies how LLMs can interface with external382

APIs to perform real-world actions, demonstrating383

a step toward agentic behavior beyond passive text384

generation. See Yang et al. (2023) for agentic be-385

havior of LLMs. The weather and Wikidata tools386

provide access to real-time and factual information,387

helping LLMs overcome the inherent limitation of388

static training data and cutoff dates. See Nakano389

et al. (2021) for improved performance on Reddit390

ELI5 questions using browser-assistance. These391

experiments collectively highlight the importance392

of tool use in extending LLM functionality and en-393

abling more grounded, reliable, and interactive AI394

agents.395

6.1 Token selection396

For each of the six tasks/tools (refusal, math recog-397

nition, calculator, flight, weather, Wikidata) and398

for each of the three models (Llama-3-8B, Mistral- 399

7B, Qwen2.5-7B), 1000 random tokens from each 400

model’s vocabulary are selected and incorporated 401

as task trigger in the prompt for the task. See 402

Section 4. Each prompt consists of a system in- 403

struction, possibly including in-context examples 404

(ICEs), followed by a user query, which is either 405

a positive example (a query that necessitates the 406

tool) or a negative example (a query that does not 407

necessitate the tool). An effective task triggering 408

token is one that triggers the tool (the correspond- 409

ing token appears in the output) in response only 410

to positive examples and not to negative examples. 411

7 Results 412

7.1 Baseline comparison 413

As a baseline, we compare the use of a designated 414

tool-triggering token with the use of a semantically 415

equivalent text label that is not tied to a specific 416

token. 417

For example, in the case of the calculator 418

tool, we compare instructing the model to output 419

<|>token<|>(+,5,3) versus calc(+,5,3). Simi- 420

larly, for the toxic content refusal task, we com- 421

pare responding with the tool-triggering token 422

<|>token<|> versus the text label refuse. In many 423

cases, tokens compare favorably to text labels by a 424

noticeable margin. See Table 1 and ??. 425

Table 1: Comparison of token trigger versus text label
for Mistral-7B on math recognition task. Given a user
request that is a math word problem (top) versus one
that is not (bottom), the model may be asked to output
the text versus the delimited token. Each value is the
average over at least 400 examples. The prompt contains
two positive in-context examples.

text token
user\ emit no emit no
request text text token token

math 0.37 0.63 0.86 0.14
no math 0.11 0.89 0.08 0.92

7.2 Token choice 426

In our experiments, we find significant variation 427

in how effectively different tokens can serve as 428

triggers for tool use, even when the surrounding 429

prompt remains fixed. This suggests that some 430

tokens are inherently more “hijackable” or more 431

likely to be co-opted by the model to signal tool 432

usage. For an example of this phenomenon, see Fig- 433

ure 2 of Llama-3-8B for the calculator tool with 2 434
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ICE-prompt, with comparable plots for other mod-435

els and tasks in Appendix Figures 5 to 10.436

Compared to Mistral-7B and Qwen2.5-7B, to-437

kens in Llama-3-8B consistently appear in the438

lower region of the plot, indicating a lower false439

positive rate. The concentration of points in the440

southwest quadrant suggests that it is compara-441

tively easier to identify an effective trigger token442

for tool use. In contrast, Qwen2.5-7B exhibits a443

more dispersed distribution of token positions, with444

points spread further from the ideal lower-right445

(southeast) corner. This pattern reflects a higher in-446

cidence of both false positives and false negatives,447

implying greater difficulty and effort in selecting448

reliable trigger tokens.449

Figure 2: Llama-3-8B calculator tool with 2 ICEs: This
plot illustrates the impact of token choice on the effec-
tiveness of tool invocation in an LLM-based system.
Each point represents a specific token, plotted by its
frequency of occurrence in model outputs across 400
positive prompts (where calculator use is appropriate)
and 400 negative prompts (where calculator use is ir-
relevant). The x-axis denotes the token’s frequency in
positive examples, and the y-axis denotes its frequency
in negative examples. The ideal tool-triggering token
would appear consistently in all positive examples (x
of 1.0) and never in negative ones (y of 0.0). Although
multiple points/tokens are less than ideal being in south-
west and eastern areas, notice that there is a cluster of
points/tokens in the ideal southeast corner, suggesting
that a large portion of tokens can serve as calculator trig-
ger tokens. 1,000 randomly selected tokens are shown.
The wide variance in token effectiveness highlights the
non-trivial role of token selection in reliable tool use.

Certain tokens are more prone to being hijacked450

than others, as evidenced by the strong correlation451

in token frequency across different tools and tasks.452

While the correlation is not uniformly high, it is453

generally substantial—often exceeding 0.8—which454

indicates a meaningful relationship in how specific455

tokens are reused across tool contexts. Some corre- 456

lations are lower (around 0.2), but the overall trend 457

supports the view that token behavior is far from 458

random. See Figure 2 for results with Llama3. Sim- 459

ilar patterns hold for Qwen (Appendix Figure 5), 460

while Mistral shows weaker correlations (Appendix 461

Figure 4). This discrepancy may be attributable to 462

differences in tokenization schemes: Mistral uses 463

Byte Pair Encoding (BPE) (Sennrich et al., 2015), 464

whereas Llama3 and Qwen employ SentencePiece 465

(Kudo and Richardson, 2018). Regardless, the pres- 466

ence of high correlations—across distinct tools 467

and observed in multiple model architectures— 468

underscores that token choice is not incidental. Se- 469

lecting the right token can significantly impact tool 470

invocation effectiveness. 471

Table 2: Correlation matrix of token frequency across
tools for Llama3.

calc flight math refusal weather wiki

calc 1.00 0.92 0.88 0.55 0.89 0.88
flight 0.92 1.00 0.90 0.57 0.97 0.92
math 0.88 0.90 1.00 0.59 0.89 0.89
refusal 0.55 0.57 0.59 1.00 0.58 0.55
weather 0.89 0.97 0.89 0.58 1.00 0.90
wiki 0.88 0.92 0.89 0.55 0.90 1.00

Note that we are not talking about special 472

set-aside tokens, such as Llama3’s reserved to- 473

kens, <|reserved_special_token_42|>, which 474

cannot be hijacked at all: they are never emitted in 475

the output, irrespective of prompt wording or num- 476

ber of ICE examples. (Their logprobs are −∞.) 477

7.3 Tool trigger through token 478

With initial examples (2 ICEs in system prompt), 479

we can use LLama3 to effectively get the LLM to 480

emit the specified token at the right time – when a 481

tool is called for. See below Table 3 for the calcu- 482

lator tool. For other tools, see A.3.3 in Appendix. 483

We randomly select 1000 tokens and the best 484

tokens (through an equal weighting of true positive 485

and true negative) and along with additional ran- 486

dom tokens for a total of 40 tokens are used in the 487

ablation on the number of ICEs experiment and the 488

selection of 1 out of 4 tools experiment. 489

7.4 Ablation on number of ICEs 490

We perform ablation on number of in-context ex- 491

amples: 2, 4, ..., 20. For instance, see Figure 3 for 492

the three models’ recall for the flight tool. Llama- 493

3-8B does better with more in-context examples 494

whereas there is less effect on the performance of 495
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Table 3: Confusion matrices for calculator tool calc
across three models. Given a user request that requires
a calculator (top row) versus a user request that does not
require a calculator, the model response may emit the
calculator token (left column) or not emit the calculator
token (right column). Each value is the the average
over 400 examples. The prompt contains two positive
examples in-context.

Llama3-8B Mistral-7B Qwen2.5-7B
user\ emit no emit no emit no
request token token token token token token

calc 1.0 0.0 1.0 0.0 1.0 0.0
no calc 0.002 0.998 0.005 0.995 0.0 1.0

Mistral and Qwen. For ablation on number of ICEs496

for other tools, see Appendix Figure 11.497

Figure 3: Calculator tool: Ablation on number of ICEs

7.5 Selecting the right tool from a candidate498

set499

This experiment evaluates the ability of the lan-500

guage model to select the appropriate tool from501

a set of four candidate tools–calculator, weather,502

flight, and Wikidata–when presented with a user re-503

quest. The model is prompted with a small number504

of in-context examples (ICEs) for every one of the505

four tools, followed by a query that may require506

the use of one specific tool. Despite the presence507

of multiple tool options, the model demonstrates508

strong disambiguation capability. For instance,509

when prompted with a mathematical query such510

as “What is 53 × 7?”, the model invokes the cal-511

culator tool in over 50% of trials. Overall, with a512

limited number of ICEs, the model consistently se-513

lects the correct tool. As illustrated in Figure 4, and514

further detailed in Appendix Figure 12, the model515

achieves tool selection accuracy exceeding 80% for516

the weather and flight tools. For the Wikidata tool,517

both Mistral and Qwen models reach over 80% ac-518

curacy across all ICE conditions. While Llama-3519

exhibits lower accuracy at smaller ICE counts, its 520

performance improves with additional examples, 521

exceeding 80% accuracy with six or more ICEs. 522

Figure 4: Calculator tool: when user request needs a
calculator, how often does the LLM call the calculator?

8 Conclusion 523

Through experiments and analysis, we challenge 524

the notion that LLMs require specialized training 525

or additional tokens for tool usage. We demon- 526

strate that LLMs inherently possess the capability 527

to recognize, select, and utilize tools without 528

modification. Specifically, we show that: LLMs 529

can identify when a tool is needed based on 530

context. They can select the appropriate tool from 531

a set of available tools. They generate correct calls 532

for tool execution. They can adapt to and correctly 533

use newly introduced tools. 534

535

Reproducibility 536

To support reproducibility, we will release the code 537

and data publicly in a GitHub repository upon ac- 538

ceptance. The artifact includes scripts for prompt 539

generation and model inference using Hugging 540

Face and vLLM. 541

Generative Assistance in Authorship 542

Portions of this paper were written and reformu- 543

lated with the assistance of large language models 544

(LLMs) to improve the clarity, cadence and struc- 545

ture of phrasing. Code development also benefited 546

from LLM-based assistance in debugging and refac- 547

toring. 548

Potential Risks 549

As with any powerful technology, large language 550

models (LLMs) capable of autonomously invok- 551

ing tools pose significant risks, particularly in sce- 552
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narios where there is no human-in-the-loop over-553

sight. When LLMs are permitted to execute actions554

through tools (e.g., booking flights), the stakes in-555

crease dramatically compared to simple text gen-556

eration. Without proper safeguards, this capability557

opens the door to both accidental misuse and inten-558

tional exploitation.559

Our work includes a limited but illustrative560

demonstration using a refusal token, which hints at561

the possibility of embedding internal guardrails–562

allowing the model to self-monitor and abstain563

from taking potentially unsafe actions. While564

promising, this approach is not a substitute for ro-565

bust and systematic oversight. There is a broader566

need for foundational mechanisms that enable lan-567

guage models to verify the safety, appropriateness,568

and reversibility of an action before execution.569

Treading beyond the proper scope of this paper,570

we suggest that tool access be governed by a tiered571

policy: low-stakes tools (e.g., calling a calculator572

or fetching the weather) may be triggered auto-573

matically, while high-stakes or irreversible tools574

(e.g., financial transactions, sensitive communica-575

tions) should require explicit human approval. We576

welcome further discussion in and beyond the com-577

munity.578
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Limitations579

While our results demonstrate that a relatively580

small number of in-context examples (ICEs) can be581

effective for tool use, this approach may not scale582

well as the number of tools increases. Specifically,583

the limited size of the model’s context window im-584

poses an upper bound on how many ICEs can be585

included, potentially restricting generalization or586

performance when many tools must be supported587

simultaneously.588

This bottleneck can become particularly prob-589

lematic as other things than tool use demonstrations590

vy for the context window, such as lengthy instruc-591

tions or multiple user queries. In a similar vein,592

we also focus on the single-turn setting. One po-593

tential solution is the use of retrieval-augmented594

generation or cache-augmented prompting, where595

relevant tool demonstrations are dynamically re-596

trieved from an external memory store or database597

at inference time, e.g., as in (Qin et al., 2023). This598

is especially suitable when the set of tools or APIs599

is fixed and stable, allowing for pre-computed or600

indexed examples that do not need to reside within601

the context window.602
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A Appendix 741

A.1 Models and Resources 742

Only instruction models are used in this paper. They are Meta-Llama-3-8B-Instruct, Mistral-7B-Instruct- 743

v0.2, and Mistral-7B Qwen2.5-7B-Instruct. The label “Instruct” may be omitted for convenience. 744

The above model names contain the approximate number of parameters in the model as in "7B" 745

signifying seven billion parameters. The Llama-3 models (Dubey et al., 2024) are licensed under the 746

Meta Llama 3 Community License. The Mistral (Jiang et al., 2023) model is licensed under the Mistral 747

AI non-production license. The Qwen models (Team, 2024) is licensed under the Apache 2.0 License, 748

which permits both commercial and non-commercial use. Our use of these models have complied with 749

the relevant license agreement and have been for scientific and non-commercial purposes. 750

The above models are publicly available, with registration, from HuggingFace at the specific model 751

page of https://huggingface.co/ using the transformers library (Wolf et al., 2020). Up to two NVIDIA RTX 752

A4000 graphics cards may be needed to generate texts through the vllm library using these models with 753

generation with vllm sampling parameter n of 8 taking a few minutes, with most of the time dedicated to 754

loading the model. 755

A.2 Prompts 756

Wikidata tool prompt 757

You are a temporal fact specialist that interfaces with structured knowledge bases. Your task 758
is to: 759

1. Recognize time-sensitive country-related queries about: - Leadership positions (head 760
of state, president, prime minister) - Demographic/economic metrics (population, GDP, 761
unemployment rate) - Geographical facts (capital, borders, area) - Historical comparisons 762
(past values, changes over time) 763

2. For valid temporal country queries: a. Output Wikidata API calls using this exact format: 764
<token>(entity, property, qualifiers) b. Use official Wikidata property IDs when available 765
(P1082=population, P36=capital) c. Always include temporal qualifiers: - Point in time (P585) 766
for specific years - Series ordinal (P1545) for leadership positions - Retrieved date (P813) 767
for latest values 768

3. For non-temporal or non-country queries: a. Provide normal conversational responses b. 769
Never use the <token>() syntax 770

Follow the format of these examples: 771

Choose 1 of 4 tools prompt 772

You are an assistant that can use specialized tools when appropriate. Choose among these tools by responding in the 773
below format: 774

1. Calculator: For simple arithmetic operations. Format: <math_args>(operator, num1, num2) 775

2. Weather: For weather forecasts. Format: <weather_args>(city, date) 776

3. Flights: For flight bookings. Format: <flight_args>(from, to, date) 777

4. Wikidata: For time-sensitive country-related queries using Wikidata API calls. Format: <wiki_args>(entity, 778
property, qualifiers) 779

When the above tools are not relevant, respond normally. 780
Today’s date (yyyy-mm-dd): {today} 781

Follow these examples: 782

Calculator tool prompt with ICEs and user content The prompt is constructed with an instruction 783

on using the tool or tools including possible in-context examples (ICEs), followed by a user request 784

that may or may not necessitate the use of a listed tool. See below example prompt with 4 ICEs for the 785

calculator tool using token tool-trigger token "ithub". All prompts use HuggingFace’s tokenizer library’s 786

apply_chat_template method, which adds [INST] and other similar tags. 787
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Figure 5

Figure 6

<s> [INST] You are an assistant specialized in recognizing if a problem contains an arithmetic
operation. If the user asks a question involving no arithmetic operation, answer normally. But
if the user asks a question containing an arithmetic operation, he may provide the input in
various formats but you should provide the output only in this format: <|>ithub<|> followed
immediately by the operation symbol and arguments, separated by commas in parentheses. Do not
add explanations, text, or commentary -- only return the formatted string. In case of questions
containing an arithmetic operation, follow the format of these examples:

user: 'Subtract 38 from 62.'
assistant: ' <|>ithub<|> (-,62,38)'
user: 'Subtract 8 from 60.'
assistant: ' <|>ithub<|> (-,60,8)'
user: 'What is 72 * 58?'
assistant: ' <|>ithub<|> (*,72,58)'
user: 'Calculate 33 - 80.'
assistant: ' <|>ithub<|> (-,33,80)'

What is 32 - 75? [/INST]

788

A.3 Results789

A.3.1 token frequency790

As discussed in Section 7.2, Figures 5 to 10 show the variance in token choice for combinations of models,791

Llama-3-8B Instruct (Llama), Mistral-7B-Instruct-v0.2 (Mistral), Qwen2.5-7B-Instruct (Qwen) and tools792

(refusal, math recognition, calculator, flight, weather, wiki).793

A.3.2 token frequency correlation794

A.3.3 Token triggering795

Here are the token appearances for other tools, other than calculator tool. True positive of 1.0 means796

that whenever there is an example necessitating the tool, the language model correctly calls that tool by797

emitting the designated token for that tool.798
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Figure 7

Figure 8

Figure 9

Figure 10
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Table 4: Correlation matrix of token frequency across tools for Mistral.

calc flight math refusal weather wiki

calc 1.00 0.95 0.24 0.81 0.94 0.87
flight 0.95 1.00 0.23 0.79 0.98 0.88
math 0.24 0.23 1.00 0.34 0.22 0.27
refusal 0.81 0.79 0.34 1.00 0.78 0.77
weather 0.94 0.98 0.22 0.78 1.00 0.85
wiki 0.87 0.88 0.27 0.77 0.85 1.00

Table 5: Correlation matrix of token frequency across tools for Qwen.

calc flight math refusal weather wiki

calc 1.00 0.95 0.88 0.84 0.95 0.88
flight 0.95 1.00 0.88 0.82 0.99 0.92
math 0.88 0.88 1.00 0.92 0.88 0.83
refusal 0.84 0.82 0.92 1.00 0.82 0.78
weather 0.95 0.99 0.88 0.82 1.00 0.93
wiki 0.88 0.92 0.83 0.78 0.93 1.00

Table 6: Confusion matrices for flight_tool across three models. Given a user request that
requires a tool/task (pos ex.) versus a user request that does not (neg ex.), the model response may
emit the tool token (left column) or not (right column). Each value is the the average over 400
examples. The prompt contains positive examples in-context.

Llama3 Mistral Qwen
emit token no token emit token no token emit token no token

pos ex 1.0 0.0 1.0 0.0 1.0 0.0
neg ex 0.0 1.0 0.0 1.0 0.0 1.0

Table 7: Confusion matrices for math across three models. Given a user request that requires a
tool/task (pos ex.) versus a user request that does not (neg ex.), the model response may emit the
tool token (left column) or not (right column). Each value is the the average over 400 examples.
The prompt contains positive examples in-context.

Llama3 Mistral Qwen
emit token no token emit token no token emit token no token

pos ex 0.995 0.005 0.855 0.145 1.0 0.0
neg ex 0.01 0.99 0.078 0.922 0.055 0.945

Table 8: Confusion matrices for refusal across three models. Given a user request that requires a
tool/task (pos ex.) versus a user request that does not (neg ex.), the model response may emit the
tool token (left column) or not (right column). Each value is the the average over 400 examples.
The prompt contains positive examples in-context.

Llama3 Mistral Qwen
emit token no token emit token no token emit token no token

pos ex 0.772 0.228 0.942 0.058 0.99 0.01
neg ex 0.052 0.948 0.142 0.858 0.242 0.758
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Table 9: Confusion matrices for weather_tool across three models. Given a user request that
requires a tool/task (pos ex.) versus a user request that does not (neg ex.), the model response may
emit the tool token (left column) or not (right column). Each value is the the average over 400
examples. The prompt contains positive examples in-context.

Llama3 Mistral Qwen
emit token no token emit token no token emit token no token

pos ex. 0.93 0.07 1.0 0.0 1.0 0.0
neg ex. 0.0 1.0 0.0 1.0 0.012 0.988

Table 10: Confusion matrices for wiki_tool across three models. Given a user request that
requires a tool/task (pos ex.) versus a user request that does not (neg ex.), the model response may
emit the tool token (left column) or not (right column). Each value is the the average over 400
examples. The prompt contains positive examples in-context.

Llama3 Mistral Qwen
emit token no token emit token no token emit token no token

pos ex 1.0 0.0 0.938 0.062 1.0 0.0
neg ex 0.0 1.0 0.008 0.992 0.0 1.0

A.4 Ablation of number of ICEs 799

We performed ablation on number of in-context examples (2, 4, ..., 20). See Figure 11 for the three models’ 800

recall for the six tools. Llama-3-8B does better with more in-context examples whereas Mistral and Qwen 801

have less noticeable differences among different number of ICEs. 802
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Figure 11: Ablation of number of ICEs for the six tools.

A.5 LLM selecting the right tools among four tools 803

More likely than not, the LLM is able to pick out the correct tool in our admittedly small experiment of 804

offering a choice of four tools. For weather tool and flight booking tool, all models are able to select the 805

right tool more than 80 percent of the time. See Figure 12. 806
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Figure 12: Given four tools, how often does the LLM pick out the right tool when the user request necessitates one
of the tools.
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