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Abstract

While large language models (LLMs) have
demonstrated impressive capabilities across a
range of natural language tasks, enabling them
to interact with external tools—such as APIs,
databases, or computational services—remains a
significant challenge. Pre-trained LLMs often
perform poorly in zero-shot tool-use scenarios,
lacking the structure or inductive bias neces-
sary to reliably call external tools. Fine-tuning
models on tool-use datasets can yield strong
performance, but such models are inherently
limited to the tools included during training,
and extending them to new tools requires costly
retraining. This approach is also problematic
in domains involving private or sensitive tool-
related data, where fine-tuning may raise pri-
vacy or security concerns. Therefore, there
is a critical need for methods that enable ef-
fective, extensible, and privacy-preserving tool
use without requiring additional training or fine-
tuning.

We offer a method that addresses these con-
cerns with in-context learning of tool use using
metatokens. This method enables dynamic and
extensible integration of tools without requiring
additional model fine-tuning. This approach
supports greater customizability, allowing new
tools to be added simply by updating the input
context, rather than retraining the model. It
is also computationally efficient, avoiding the
significant overhead and privacy concerns as-
sociated with fine-tuning, especially in scenar-
ios involving proprietary or sensitive data. We
introduce the use of specialized trigger tokens—
referred to as metatokens—to reliably elicit tool-
using behavior from the model. We describe a
procedure for identifying effective metatokens
for a given tool, and we empirically demon-
strate that this technique significantly improves
tool-use performance.

1 Introduction

Large language models (LLMs) have demonstrated
impressive capabilities across a broad range of nat-

ural language understanding and generation tasks
(Achiam et al., 2023) (Team et al., 2023), (Bi
etal., 2024). A growing line of research explores
augmenting LLMs with the ability to invoke ex-
ternal tools—such as calculators, web search en-
gines, databases, and APIs—to enhance their per-
formance on tasks that require precise reasoning,
access to up-to-date information, or specialized
functionality. This paradigm, often referred to as
tool-augmented language modeling, is central to ap-
plications in virtual assistants, autonomous agents,
and complex decision-making systems.

There are three paradigms for enabling tool use
in LLMs: (1) relying on pre-trained LL.Ms with
no task-specific adaptation; (2) training fine-tuned
models that have been explicitly supervised to call
tools correctly; and (3) using in-context learning
(we choose this approach), where a base model is
prompted with instructions and examples of tool
use at inference time. Each approach entails trade-
offs across several dimensions, including perfor-
mance, adaptability, and overhead. See Figure 1.
Pre-trained LL.Ms without further adaptation often
fail to reliably invoke tools, lacking the structural
inductive bias needed to understand tool interfaces.
Fine-tuned tool-using models achieve strong per-
formance but are rigid—adding new tools requires
retraining or continual fine-tuning, which is compu-
tationally expensive and potentially problematic in
domains where training data and tool construction
are proprietary or privacy-sensitive.

By contrast, in-context learning provides a flexi-
ble and scalable solution: it enables effective tool
use by loading demonstrations into the context win-
dow without additional training. This approach not
only supports rapid adaptation to new tools but also
avoids exposing sensitive data to model updates,
making it particularly appealing for real-world de-
ployments with evolving toolsets and privacy con-
straints. We demonstrate how to leverage specific
tokens (metatokens) towards in-context learning



(CL).

Our experiments span multiple models, includ-
ing Mistral, Llama3, and Qwen2.5-models that are
efficient and practical for real-world applications.
These findings highlight the intrinsic tool-using ca-
pabilities of LLMs, opening new possibilities for
their deployment in dynamic environments without
requiring additional training overhead.

The contributions of this paper are that we
demonstration that training and fine-tuning are not
necessary for tool use; we provide a reference point
for what no training tool use looks like; we show
differences in token effectiveness in being tool trig-
ger token and provide an effective method to select
a tool-specific token.

2 Related Works

Tool calling: A common method for enabling
tool use involves associating specific tokens with
specific external tools. For example, Hao et al.
(2023) employs a designated token to trigger the
current_weather application, invoking prede-
fined tools via LLM outputs. We follow this ap-
proach and use tokens to trigger the execution of
an external tool.

Training based tool calling: Many previous
works, especially earlier ones, focus on training a
specific set of tools. For instance, Thoppilan et al.
(2022) endows a model with three tools. Schick
et al. (2023) trains on a few examples each of six
tools; they show zero-shot generalization in the
sense of applying tools to unseen tasks, but not
learning new tools on the spot.

Qin et al. (2023) trains LLMs to handle a wide
range of API usage, including multi-tool use. They
train on a dataset covering tens of thousands of
tools, but also show generalization when new APIs
and their documentation are introduced into the
context. On a couple instruction-tuned LL.Ms at
the time, Vicuna and Alpaca, they also find that
even "extensive prompt engineering" fails to get
any tool use to function. There are other, less
readily categorized approaches as well, such as
ToolkenGPT (Hao et al., 2023), which trains tool
embeddings to attach to a frozen language model,
and Chain-of-Tools, which uses other models to
choose when and which tools to use. Similarly,
Yang et al. (2024) essentially distills from GPT-3.5
and observes generalization to unseen tools.

Yao et al. (2023) teaches LLMs to do interleaved
reasoning and tool-use steps, and find that fine-

tuning slightly outperforms in-context prompting.

ICL—-previous works: Models like Command-
R+, NousHermes, and LLlama3.1 allow for tool use,
adding specialized tool-use roles and tokens. See
Wang et al. (2024) for finetuning on Mistral and
Llama2 to create Python code to act as an LLM
agent to interact with the environment. Gorilla
OpenFunctions (Charlie Cheng-Jie Ji, 2024) and
its associated Berkeley Function Calling Leader-
board (Yan et al., 2024) also show that models
can use functions provided in context as a JSON,
including some models operating without the afore-
mentioned role/token tool-use scaffolds.

Li et al. (2023) introduces a benchmark for tool-
augmented LLMs. Jacovi et al. (2023) evaluates
different settings and strategies for in-context tool-
use. Most relevant here, they argue that tool use pa-
pers often used weak baselines—forcing the model
into the same framework as the tool strategy be-
ing compared, such as having to generate a tool
response—and that stronger, more-varied no-tool
baselines often outperform tool-augmented ones.

In contrast, we challenge the notion that LL.Ms
require specialized training or additional tokens
for tool usage. We demonstrate that LLMs
inherently possess the capability to recognize,
select, and utilize tools without modification.
Specifically, we show that: LLMs can identify
when a tool is needed based on context. They can
select the appropriate tool from a set of available
tools. They generate correct arguments for tool
execution. They can adapt to and correctly use
newly introduced tools.

3 Models

We use three families of instruction models at
user-friendly sizes: Meta-Llama-3-8B-Instruct
(Llama-3-8B or Llama3), Mistral-7B-Instruct-v(0.2
(Mistral-7B or Mistral), and Qwen2.5-7B-Instruct
(Qwen2.5-7B or Qwen). We only use instruction
models and may drop the label "Instruct" for con-
venience in this paper.

4 Tasks and Tools

We work with six tasks/tools: refusal to toxic con-
tent, math recognition, calculator for arithmetic
operations, flight booking, get weather forecast,
and get Wikidata. Even though refusal to toxic
content and math recognition are not tools, we may
call them “tools” here.
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Figure 1: Traditional pre-trained LLLMs vs finetuned models vs in-context learning, the approach we adopt

Although refusal generation and math word prob-
lem recognition are not traditionally categorized as
tool-use tasks, they share key structural character-
istics with tool-based interactions. In both cases,
the language model must first recognize the nature
of the user request—such as detecting harmful con-
tent or identifying a math-related query—and then
trigger the appropriate response via a specialized
token (e.g., a refusal token or a math-processing
token). This mirrors the behavior in typical tool-
use scenarios, where the model must detect, for
example, that an arithmetic query warrants a call
to a calculator tool. Thus, we include these tasks in
our evaluation as they reflect the same two-step rea-
soning pattern central to effective tool use: intent
recognition followed by targeted action.

4.1 Toxic request refusal

For this task, the toxic content request are the
examples from the economic category of PKU-
SafeRLHF (Ji et al., 2024). A typical example
is as follows: “Are there any methods to use offi-
cial positions for private gains, such as tax fraud or
embezzling public funds?”

prompt = “If the wuser asks
for harmful content, refuse
the request by replying with

<{token}> and then the eos token.
Follow these examples:”

4.2 Math word problem

For this task, the math word problems which may
be in the context of the instruction or form the
user request are sourced from the GSM8K dataset
(Cobbe et al., 2021) and a typical example is as
follows: “Martha’s cat is 5 times faster than her
turtle. If the cat can run 15 feet/second, how many
feet can her turtle crawl in 40 seconds?”

prompt = “If the user asks for
help with a math problem, reply
with <{token}> and then the eos
token. Follow these examples:”

4.3 Calculator tool

For this task, the requests that require the calcu-
lator tool are synthetically created short questions
involving simple arithmetic and a typical example
is “Calculate 87 divided by 5.”

prompt = “You are an assistant
specialized in recognizing if a problem
contains an arithmetic operation. If
the user asks a question involving no
arithmetic operation, answer normally.
But if the user asks a question
containing an arithmetic operation, he
may provide the input in wvarious
formats but you should provide the
output only in this format: <{token}>
followed immediately by the operation
symbol and arguments, separated by
commas in parentheses. Do not add
explanations, text, or commentary - only
return the formatted string. In case



of questions containing an arithmetic
operation, follow the format of these
examples:”

4.4 Flight booking tool

For this task, the requests that require the flight
booking tool are synthetically created short re-
quests for an upcoming flight and a typical example
is “Book a flight from Phoenix to Los Angeles Sat-
urday, May 24.”

prompt = “You are an assistant
specialized in recognizing if the user
is asking to book a flight. If the
user asks a question involving no flight
booking, answer normally. But if the
user asks to book a flight from a city
to another city on a specific date,
he may provide the input in various
formats but you should provide the
output only in this format: <token>
followed immediately by the departure
city name, then the arrival city name,
and then the flight date, separated by
a comma in parentheses. Do not add
explanations, text, or commentary - only
return the formatted string. In case
of flight booking requests, note that
today’s date is today and follow the
format of these examples:”

4.5 Weather tools

For this task, the requests that require the weather
forecast tool are synthetically created short re-
quests for weather forecast at a future time in a
specific city and a typical example is “What will
the weather be in Chicago tomorrow?”

prompt = “You are an assistant
specialized in recognizing if the user
is asking for a weather forecast. If
the user asks a question involving
no weather forecast, answer normally.
But if the user asks for the weather
forecast of a city on a specific date,
he may provide the input in various
formats but you should provide the
output only in this format: <token>
followed immediately by the city name
and then the date, separated by a comma
in parentheses. Do not add explanations,
text, or commentary - only return the
formatted string. In case of weather
forecast questions, note that today’s
date is today and follow the format of
these examples:”

4.6 Wikidata search

This task illustrates the need for a language model
to consult an outside database or source of infor-
mation. The examples consist of time-specific in-
formation requests about countries or other enti-
ties that may be subject to change after the model

training cutoff date and so may not be within the
language model’s inherent knowledge base. A typ-
ical example is “What is the current population of
United States?” See appendix A.2 for Wikidata
search prompt.

5 Processing

5.1 Prompt construction

The prompts are constructed using a sys-
tem message that provides task-specific in-
structions and in-context examples (ICEs), fol-
lowed by a user message containing the actual
query. These messages are formatted using the
tokenizer.apply_chat_template method pro-
vided by the Hugging Face Transformers library
Wolf et al. (2020) to ensure compatibility with the
chat format expected by each respective model
(e.g., Llama-3, Mistral, Qwen2.5). Section 4 de-
scribes the positive examples. The negative ex-
amples are from data that are classified as safe in
PKU-SafeRLHF (Ji et al., 2024). A typical exam-
ple is as follows: “How can I create content that
conveys my own beliefs without explicitly labeling
it as opinion?”

To prevent false positives — i.e., unintended
tool activation when the language model is
in standard text generation mode — we en-
close the tool-triggering token within delimiters:
<|>{token}<|>.

5.2 Parameters of text generation

We sample text with a temperature parameter of 1.0
and a top-p parameter of 0.95. Note that this top-p
parameter zeroes out the probability of the tokens
outside of the top p of the distribution (Holtzman
et al., 2019), which leads to slightly more likely to
occur outputs than what the model models as the
natural distribution.

5.3 Post-processing

We define a tool as being successfully invoked if the
decoded string corresponding to the designated trig-
ger token appears anywhere in the model’s output
text. Note that evaluation is conducted at the text
level rather than the token level: this means that if
multiple token sequences decode to the same string,
they are treated as equivalent. In other words, we
do not distinguish between different tokenizations
that produce the same textual representation of a
tool trigger.



To avoid spurious matches, we constrain
the model’s output to a short, task-appropriate
length—specifically, a maximum of 16 tokens
for recognition-based tasks (e.g., detecting math
queries or harmful content), calculator tool and
weather tool. This restriction ensures that tool invo-
cation is deliberate rather than the result of chance
co-occurrence within a lengthy output.

Our decision to match decoded text instead of
specific token IDs is motivated by how language
models operate during decoding: they generate
output text token by token based on context, and
the resulting tokenization can vary depending on
surrounding content. Consequently, although a spe-
cific token may be designated as the tool trigger,
the model may sometimes emit an equivalent string
using a different tokenization. By evaluating at
the textual level, we more faithfully capture the in-
tended semantic act of tool invocation, independent
of the underlying subword segmentation.

6 Experiments

We conduct experiments on six illustrative tasks —
toxic request refusal (Jain et al.), math recognition,
calculator tool, flight booking tool, weather tool,
and Wikidata search — to explore distinct limita-
tions of large language models (LLMs) and how
external tools can augment their capabilities. Each
task targets a different area where LLMs struggle.
For instance, a dedicated calculator tool allows the
model to offload arithmetic computations rather
than relying on unreliable next-token prediction
for numerical accuracy. The flight booking tool
exemplifies how LLMs can interface with external
APISs to perform real-world actions, demonstrating
a step toward agentic behavior beyond passive text
generation. See Yang et al. (2023) for agentic be-
havior of LLMs. The weather and Wikidata tools
provide access to real-time and factual information,
helping LLMs overcome the inherent limitation of
static training data and cutoff dates. See Nakano
et al. (2021) for improved performance on Reddit
ELI5 questions using browser-assistance. These
experiments collectively highlight the importance
of tool use in extending LLM functionality and en-
abling more grounded, reliable, and interactive Al
agents.

6.1 Token selection

For each of the six tasks/tools (refusal, math recog-
nition, calculator, flight, weather, Wikidata) and

for each of the three models (Llama-3-8B, Mistral-
7B, Qwen2.5-7B), 1000 random tokens from each
model’s vocabulary are selected and incorporated
as task trigger in the prompt for the task. See
Section 4. Each prompt consists of a system in-
struction, possibly including in-context examples
(ICEs), followed by a user query, which is either
a positive example (a query that necessitates the
tool) or a negative example (a query that does not
necessitate the tool). An effective task triggering
token is one that triggers the tool (the correspond-
ing token appears in the output) in response only
to positive examples and not to negative examples.

7 Results

7.1 Baseline comparison

As a baseline, we compare the use of a designated
tool-triggering token with the use of a semantically
equivalent text label that is not tied to a specific
token.

For example, in the case of the calculator
tool, we compare instructing the model to output
<I>token<lI>(+,5,3) versus calc(+,5,3). Simi-
larly, for the toxic content refusal task, we com-
pare responding with the tool-triggering token
<I>token<I> versus the text label refuse. In many
cases, tokens compare favorably to text labels by a
noticeable margin. See Table 1 and ??.

Table 1: Comparison of token trigger versus text label
for Mistral-7B on math recognition task. Given a user
request that is a math word problem (top) versus one
that is not (bottom), the model may be asked to output
the text versus the delimited token. Each value is the
average over at least 400 examples. The prompt contains
two positive in-context examples.

text token
user\ emit  no emit no
request text  text token token
math 0.37 0.63 0.86 0.14
nomath 0.11 0.89  0.08 0.92

7.2 Token choice

In our experiments, we find significant variation
in how effectively different tokens can serve as
triggers for tool use, even when the surrounding
prompt remains fixed. This suggests that some
tokens are inherently more “hijackable” or more
likely to be co-opted by the model to signal tool
usage. For an example of this phenomenon, see Fig-
ure 2 of Llama-3-8B for the calculator tool with 2



ICE-prompt, with comparable plots for other mod-
els and tasks in Appendix Figures 5 to 10.

Compared to Mistral-7B and Qwen2.5-7B, to-
kens in Llama-3-8B consistently appear in the
lower region of the plot, indicating a lower false
positive rate. The concentration of points in the
southwest quadrant suggests that it is compara-
tively easier to identify an effective trigger token
for tool use. In contrast, Qwen2.5-7B exhibits a
more dispersed distribution of token positions, with
points spread further from the ideal lower-right
(southeast) corner. This pattern reflects a higher in-
cidence of both false positives and false negatives,
implying greater difficulty and effort in selecting
reliable trigger tokens.

Frequency of token appearance in negative examples versus
positive examples for Llama3 in calculator tool
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Figure 2: Llama-3-8B calculator tool with 2 ICEs: This
plot illustrates the impact of token choice on the effec-
tiveness of tool invocation in an LLM-based system.
Each point represents a specific token, plotted by its
frequency of occurrence in model outputs across 400
positive prompts (where calculator use is appropriate)
and 400 negative prompts (where calculator use is ir-
relevant). The x-axis denotes the token’s frequency in
positive examples, and the y-axis denotes its frequency
in negative examples. The ideal tool-triggering token
would appear consistently in all positive examples (x
of 1.0) and never in negative ones (y of 0.0). Although
multiple points/tokens are less than ideal being in south-
west and eastern areas, notice that there is a cluster of
points/tokens in the ideal southeast corner, suggesting
that a large portion of tokens can serve as calculator trig-
ger tokens. 1,000 randomly selected tokens are shown.
The wide variance in token effectiveness highlights the
non-trivial role of token selection in reliable tool use.

Certain tokens are more prone to being hijacked
than others, as evidenced by the strong correlation
in token frequency across different tools and tasks.
While the correlation is not uniformly high, it is
generally substantial—often exceeding 0.8—which
indicates a meaningful relationship in how specific

tokens are reused across tool contexts. Some corre-
lations are lower (around 0.2), but the overall trend
supports the view that token behavior is far from
random. See Figure 2 for results with Llama3. Sim-
ilar patterns hold for Qwen (Appendix Figure 5),
while Mistral shows weaker correlations (Appendix
Figure 4). This discrepancy may be attributable to
differences in tokenization schemes: Mistral uses
Byte Pair Encoding (BPE) (Sennrich et al., 2015),
whereas Llama3 and Qwen employ SentencePiece
(Kudo and Richardson, 2018). Regardless, the pres-
ence of high correlations—across distinct tools
and observed in multiple model architectures—
underscores that token choice is not incidental. Se-
lecting the right token can significantly impact tool
invocation effectiveness.

Table 2: Correlation matrix of token frequency across
tools for Llama3.

calc flight math refusal weather wiki
calc 1.00 092 0.88 0.55 0.89 0.88
flight 092 1.00 0.90 0.57 097 092
math 0.88 090 1.00 0.59 0.89 0.89
refusal  0.55 057 0.59 1.00 0.58 0.55
weather 0.89 097 0.89 0.58 1.00  0.90
wiki 088 092 0.89 0.55 0.90 1.00

Note that we are not talking about special
set-aside tokens, such as Llama3’s reserved to-
kens, <|reserved_special_token_42]|>, which
cannot be hijacked at all: they are never emitted in
the output, irrespective of prompt wording or num-
ber of ICE examples. (Their logprobs are —o0.)

7.3 Tool trigger through token

With initial examples (2 ICEs in system prompt),
we can use LLama3 to effectively get the LLM to
emit the specified token at the right time — when a
tool is called for. See below Table 3 for the calcu-
lator tool. For other tools, see A.3.3 in Appendix.

We randomly select 1000 tokens and the best
tokens (through an equal weighting of true positive
and true negative) and along with additional ran-
dom tokens for a total of 40 tokens are used in the
ablation on the number of ICEs experiment and the
selection of 1 out of 4 tools experiment.

7.4 Ablation on number of ICEs

We perform ablation on number of in-context ex-
amples: 2, 4, ..., 20. For instance, see Figure 3 for
the three models’ recall for the flight tool. Llama-
3-8B does better with more in-context examples
whereas there is less effect on the performance of



Table 3: Confusion matrices for calculator tool calc
across three models. Given a user request that requires
a calculator (top row) versus a user request that does not
require a calculator, the model response may emit the
calculator token (left column) or not emit the calculator
token (right column). Each value is the the average
over 400 examples. The prompt contains two positive
examples in-context.

Llama3-8B Mistral-7B Qwen2.5-7B
user\ emit no emit no emit no
request token token token token token token
calc 1.0 0.0 1.0 0.0 1.0 0.0
nocalc 0.002 0.998 0.005 0.995 0.0 1.0

Mistral and Qwen. For ablation on number of ICEs
for other tools, see Appendix Figure 11.
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Figure 3: Calculator tool: Ablation on number of ICEs

7.5 Selecting the right tool from a candidate
set

This experiment evaluates the ability of the lan-
guage model to select the appropriate tool from
a set of four candidate tools—calculator, weather,
flight, and Wikidata—when presented with a user re-
quest. The model is prompted with a small number
of in-context examples (ICEs) for every one of the
four tools, followed by a query that may require
the use of one specific tool. Despite the presence
of multiple tool options, the model demonstrates
strong disambiguation capability. For instance,
when prompted with a mathematical query such
as “What is 53 x 7?77, the model invokes the cal-
culator tool in over 50% of trials. Overall, with a
limited number of ICEs, the model consistently se-
lects the correct tool. As illustrated in Figure 4, and
further detailed in Appendix Figure 12, the model
achieves tool selection accuracy exceeding 80% for
the weather and flight tools. For the Wikidata tool,
both Mistral and Qwen models reach over 80% ac-
curacy across all ICE conditions. While Llama-3

exhibits lower accuracy at smaller ICE counts, its
performance improves with additional examples,
exceeding 80% accuracy with six or more ICEs.

When user request needs calculator tool,
frequency of LLM response that selects calculator tool
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2 3 4 5 6 7 [
Number of ICEs of each tool in prompt

Figure 4: Calculator tool: when user request needs a
calculator, how often does the LLM call the calculator?

8 Conclusion

Through experiments and analysis, we challenge
the notion that LLMs require specialized training
or additional tokens for tool usage. We demon-
strate that LLMs inherently possess the capability
to recognize, select, and utilize tools without
modification. Specifically, we show that: LLMs
can identify when a tool is needed based on
context. They can select the appropriate tool from
a set of available tools. They generate correct calls
for tool execution. They can adapt to and correctly
use newly introduced tools.

Reproducibility

To support reproducibility, we will release the code
and data publicly in a GitHub repository upon ac-
ceptance. The artifact includes scripts for prompt
generation and model inference using Hugging
Face and vLLM.

Generative Assistance in Authorship

Portions of this paper were written and reformu-
lated with the assistance of large language models
(LLMs) to improve the clarity, cadence and struc-
ture of phrasing. Code development also benefited
from LLM-based assistance in debugging and refac-
toring.

Potential Risks

As with any powerful technology, large language
models (LLMs) capable of autonomously invok-
ing tools pose significant risks, particularly in sce-



narios where there is no human-in-the-loop over-
sight. When LLMs are permitted to execute actions
through tools (e.g., booking flights), the stakes in-
crease dramatically compared to simple text gen-
eration. Without proper safeguards, this capability
opens the door to both accidental misuse and inten-
tional exploitation.

Our work includes a limited but illustrative
demonstration using a refusal token, which hints at
the possibility of embedding internal guardrails—
allowing the model to self-monitor and abstain
from taking potentially unsafe actions. While
promising, this approach is not a substitute for ro-
bust and systematic oversight. There is a broader
need for foundational mechanisms that enable lan-
guage models to verify the safety, appropriateness,
and reversibility of an action before execution.

Treading beyond the proper scope of this paper,
we suggest that tool access be governed by a tiered
policy: low-stakes tools (e.g., calling a calculator
or fetching the weather) may be triggered auto-
matically, while high-stakes or irreversible tools
(e.g., financial transactions, sensitive communica-
tions) should require explicit human approval. We
welcome further discussion in and beyond the com-
munity.



Limitations

While our results demonstrate that a relatively
small number of in-context examples (ICEs) can be
effective for tool use, this approach may not scale
well as the number of tools increases. Specifically,
the limited size of the model’s context window im-
poses an upper bound on how many ICEs can be
included, potentially restricting generalization or
performance when many tools must be supported
simultaneously.

This bottleneck can become particularly prob-
lematic as other things than tool use demonstrations
vy for the context window, such as lengthy instruc-
tions or multiple user queries. In a similar vein,
we also focus on the single-turn setting. One po-
tential solution is the use of retrieval-augmented
generation or cache-augmented prompting, where
relevant tool demonstrations are dynamically re-
trieved from an external memory store or database
at inference time, e.g., as in (Qin et al., 2023). This
is especially suitable when the set of tools or APIs
is fixed and stable, allowing for pre-computed or
indexed examples that do not need to reside within
the context window.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, and 1 others. 2024. Deepseek llm:
Scaling open-source language models with longter-
mism. arXiv preprint arXiv:2401.02954.

Fanjia Yan Shishir G. Patil Tianjun Zhang Ion Sto-
ica Joseph E. Gonzalez Charlie Cheng-Jie Ji,
Huanzhi Mao. 2024. Gorilla openfunctions v2.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2023. Toolkengpt: Augmenting frozen language

models with massive tools via tool embeddings. In
Advances in Neural Information Processing Systems,
volume 36, pages 45870—45894. Curran Associates,
Inc.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751.

Alon Jacovi, Avi Caciularu, Jonathan Herzig, Roee
Aharoni, Bernd Bohnet, and Mor Geva. 2023. A
comprehensive evaluation of tool-assisted generation
strategies. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 13856—
13878, Singapore. Association for Computational
Linguistics.

Neel Jain, Aditya Shrivastava, Chenyang Zhu, Daben
Liu, Alfy Samuel, Ashwinee Panda, Anoop Kumar,
Micah Goldblum, and Tom Goldstein. Refusal to-
kens: A simple way to calibrate refusals in large
language models.

Jiaming Ji, Donghai Hong, Borong Zhang, Boyuan
Chen, Josef Dai, Boren Zheng, Tianyi Qiu, Boxun
Li, and Yaodong Yang. 2024. Pku-saferlhf: Towards
multi-level safety alignment for llms with human
preference. arXiv preprint arXiv:2406.15513.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms. arXiv preprint
arXiv:2304.08244.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
and 1 others. 2021. Webgpt: Browser-assisted
question-answering with human feedback. arXiv
preprint arXiv:2112.09332.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, and 1 others. 2023. Toolllm: Facilitating
large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves


https://proceedings.neurips.cc/paper_files/paper/2023/file/8fd1a81c882cd45f64958da6284f4a3f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8fd1a81c882cd45f64958da6284f4a3f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8fd1a81c882cd45f64958da6284f4a3f-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.findings-emnlp.926
https://doi.org/10.18653/v1/2023.findings-emnlp.926
https://doi.org/10.18653/v1/2023.findings-emnlp.926
https://doi.org/10.18653/v1/2023.findings-emnlp.926
https://doi.org/10.18653/v1/2023.findings-emnlp.926
https://openreview.net/forum?id=vx7reBU6WQ
https://openreview.net/forum?id=vx7reBU6WQ
https://openreview.net/forum?id=vx7reBU6WQ
https://openreview.net/forum?id=vx7reBU6WQ
https://openreview.net/forum?id=vx7reBU6WQ
https://arxiv.org/abs/2310.06825

to use tools. Advances in Neural Information Pro-
cessing Systems, 36:68539-68551.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Mil-
lican, and 1 others. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, and 41
others. 2022. Lamda: Language models for dialog
applications. Preprint, arXiv:2201.08239.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024. Executable
code actions elicit better 1lm agents. In Forty-first
International Conference on Machine Learning.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji,
Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. 2024. Berkeley function calling
leaderboard. https://gorilla.cs.berkeley.
edu/blogs/8_berkeley_function_calling_
leaderboard. html.

Hui Yang, Sifu Yue, and Yunzhong He. 2023. Auto-gpt
for online decision making: Benchmarks and addi-
tional opinions. arXiv preprint arXiv:2306.02224.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,
Xiu Li, and Ying Shan. 2024. Gpt4tools: Teaching
large language model to use tools via self-instruction.
Advances in Neural Information Processing Systems,
36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

10


https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

A Appendix

A.1 Models and Resources

Only instruction models are used in this paper. They are Meta-Llama-3-8B-Instruct, Mistral-7B-Instruct-
v0.2, and Mistral-7B Qwen2.5-7B-Instruct. The label “Instruct” may be omitted for convenience.

The above model names contain the approximate number of parameters in the model as in "7B"
signifying seven billion parameters. The Llama-3 models (Dubey et al., 2024) are licensed under the
Meta Llama 3 Community License. The Mistral (Jiang et al., 2023) model is licensed under the Mistral
Al non-production license. The Qwen models (Team, 2024) is licensed under the Apache 2.0 License,
which permits both commercial and non-commercial use. Our use of these models have complied with
the relevant license agreement and have been for scientific and non-commercial purposes.

The above models are publicly available, with registration, from HuggingFace at the specific model
page of https://huggingface.co/ using the transformers library (Wolf et al., 2020). Up to two NVIDIA RTX
A4000 graphics cards may be needed to generate texts through the vllm library using these models with
generation with vllm sampling parameter n of 8 taking a few minutes, with most of the time dedicated to
loading the model.

A.2 Prompts

Wikidata tool prompt
You are a temporal fact specialist that interfaces with structured knowledge bases. Your task
is to:
1. Recognize time-sensitive country-related queries about: - Leadership positions (head
of state, president, prime minister) - Demographic/economic metrics (population, GDP,

unemployment rate) - Geographical facts (capital, borders, area) - Historical comparisons
(past values, changes over time)

2. For valid temporal country queries: a. Output Wikidata API calls using this exact format:
<token>(entity, property, qualifiers) b. Use official Wikidata property IDs when available
(P10@82=population, P36=capital) c. Always include temporal qualifiers: - Point in time (P585)
for specific years - Series ordinal (P1545) for leadership positions - Retrieved date (P813)
for latest values

3. For non-temporal or non-country queries: a. Provide normal conversational responses b.
Never use the <token>() syntax

Follow the format of these examples:

Choose 1 of 4 tools prompt
You are an assistant that can use specialized tools when appropriate. Choose among these tools by responding in the
below format:
1. Calculator: For simple arithmetic operations. Format: <math_args>(operator, numl, num2)
2. Weather: For weather forecasts. Format: <weather_args>(city, date)
3. Flights: For flight bookings. Format: <flight_args>(from, to, date)

4. Wikidata: For time-sensitive country-related queries using Wikidata API calls. Format: <wiki_args>(entity,
property, qualifiers)

When the above tools are not relevant, respond normally.
Today’s date (yyyy-mm-dd): {today}

Follow these examples:

Calculator tool prompt with ICEs and user content The prompt is constructed with an instruction
on using the tool or tools including possible in-context examples (ICEs), followed by a user request
that may or may not necessitate the use of a listed tool. See below example prompt with 4 ICEs for the
calculator tool using token tool-trigger token "ithub". All prompts use HuggingFace’s tokenizer library’s
apply_chat_template method, which adds [INST] and other similar tags.
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<s> [INST] You are an assistant specialized in recognizing if a problem contains an arithmetic
operation. If the user asks a question involving no arithmetic operation, answer normally. But
if the user asks a question containing an arithmetic operation, he may provide the input in
various formats but you should provide the output only in this format: <|>ithub<|> followed
immediately by the operation symbol and arguments, separated by commas in parentheses. Do not
add explanations, text, or commentary -- only return the formatted string. In case of questions
containing an arithmetic operation, follow the format of these examples:

user: 'Subtract 38 from 62.'

assistant: ' <|>ithub<|> (-,62,38)"'

user: 'Subtract 8 from 60.'

assistant: ' <|>ithub<|> (-,60,8)"'

user: 'What is 72 x 58?'

assistant: ' <|>ithub<|> (%*,72,58)"'

user: 'Calculate 33 - 80.'

assistant: ' <|>ithub<|> (-,33,80)"'

What is 32 - 75? [/INST]

A.3 Results
A.3.1 token frequency

As discussed in Section 7.2, Figures 5 to 10 show the variance in token choice for combinations of models,
Llama-3-8B Instruct (Llama), Mistral-7B-Instruct-v0.2 (Mistral), Qwen2.5-7B-Instruct (Qwen) and tools
(refusal, math recognition, calculator, flight, weather, wiki).

A.3.2 token frequency correlation
A.3.3 Token triggering

Here are the token appearances for other tools, other than calculator tool. True positive of 1.0 means
that whenever there is an example necessitating the tool, the language model correctly calls that tool by
emitting the designated token for that tool.
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Table 4: Correlation matrix of token frequency across tools for Mistral.

calc flight math refusal weather wiki

calc 1.00 095 024 0.81 094 0.87
flight 095 1.00 0.23 0.79 0.98 0.88
math 024 0.23 1.00 0.34 0.22 0.27
refusal  0.81 0.79 0.34 1.00 0.78 0.77
weather 094 098 0.22 0.78 1.00 0.85
wiki 0.87 0.88 0.27 0.77 0.85 1.00

Table 5: Correlation matrix of token frequency across tools for Qwen.

calc flight math refusal weather wiki

calc 1.00 095 0.88 0.84 095 0.88
flight 095 1.00 0.88 0.82 099 0.92
math 0.88 0.88 1.00 0.92 0.88 0.83
refusal 0.84 0.82 092 1.00 0.82 0.78
weather 095 099 0.88 0.82 1.00 0.93
wiki 0.88 092 0.83 0.78 0.93 1.00

Table 6: Confusion matrices for flight_tool across three models. Given a user request that
requires a tool/task (pos ex.) versus a user request that does not (neg ex.), the model response may
emit the tool token (left column) or not (right column). Each value is the the average over 400
examples. The prompt contains positive examples in-context.

Llama3 Mistral Qwen
emit token no token emittoken notoken emittoken no token
pos ex 1.0 0.0 1.0 0.0 1.0 0.0
neg ex 0.0 1.0 0.0 1.0 0.0 1.0

Table 7: Confusion matrices for math across three models. Given a user request that requires a
tool/task (pos ex.) versus a user request that does not (neg ex.), the model response may emit the
tool token (left column) or not (right column). Each value is the the average over 400 examples.
The prompt contains positive examples in-context.

Llama3 Mistral Qwen
emit token no token emittoken notoken emittoken no token
pos ex 0.995 0.005 0.855 0.145 1.0 0.0
neg ex 0.01 0.99 0.078 0.922 0.055 0.945

Table 8: Confusion matrices for refusal across three models. Given a user request that requires a
tool/task (pos ex.) versus a user request that does not (neg ex.), the model response may emit the
tool token (left column) or not (right column). Each value is the the average over 400 examples.
The prompt contains positive examples in-context.

Llama3 Mistral Qwen
emit token no token emittoken notoken emittoken no token
pos ex 0.772 0.228 0.942 0.058 0.99 0.01
neg ex 0.052 0.948 0.142 0.858 0.242 0.758
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Table 9: Confusion matrices for weather_tool across three models. Given a user request that
requires a tool/task (pos ex.) versus a user request that does not (neg ex.), the model response may
emit the tool token (left column) or not (right column). Each value is the the average over 400
examples. The prompt contains positive examples in-context.

Llama3 Mistral Qwen
emit token notoken emittoken notoken emittoken no token
pos ex. 0.93 0.07 1.0 0.0 1.0 0.0
neg ex. 0.0 1.0 0.0 1.0 0.012 0.988

Table 10: Confusion matrices for wiki_tool across three models. Given a user request that
requires a tool/task (pos ex.) versus a user request that does not (neg ex.), the model response may
emit the tool token (left column) or not (right column). Each value is the the average over 400
examples. The prompt contains positive examples in-context.

Llama3 Mistral Qwen
emit token no token emittoken notoken emittoken no token
pos ex 1.0 0.0 0.938 0.062 1.0 0.0
neg ex 0.0 1.0 0.008 0.992 0.0 1.0

A.4 Ablation of number of ICEs

We performed ablation on number of in-context examples (2, 4, ..., 20). See Figure 11 for the three models’
recall for the six tools. Llama-3-8B does better with more in-context examples whereas Mistral and Qwen
have less noticeable differences among different number of ICEs.
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Figure 11: Ablation of number of ICEs for the six tools.

A.5 LLM selecting the right tools among four tools

More likely than not, the LLLM is able to pick out the correct tool in our admittedly small experiment of
offering a choice of four tools. For weather tool and flight booking tool, all models are able to select the
right tool more than 80 percent of the time. See Figure 12.

15



When user request needs wiki tool, When user request needs weather tool,
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Figure 12: Given four tools, how often does the LLM pick out the right tool when the user request necessitates one
of the tools.
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