
BETTER THAN YOUR TEACHER: LLM AGENTS
THAT LEARN FROM PRIVILEGED AI FEEDBACK

Sanjiban Choudhury1,∗, Paloma Sodhi∗

ABSTRACT

While large language models (LLMs) show impressive decision-making abilities,
current methods lack a mechanism for automatic self-improvement from errors
during task execution. We propose LEAP, an iterative fine-tuning framework that
continually improves LLM agents using feedback from AI expert teachers. Our
key insight is to equip the expert teachers with a privileged state —information
available during training but hidden at test time. This allows even weak experts to
provide precise guidance, significantly improving the student agent’s performance
without access to privileged information at test time. We evaluate LEAP on multiple
decision-making benchmarks, including text-based games (ALFWorld), web navi-
gation (WebShop), and interactive coding (Intercode Bash). Our experiments show
that LEAP (1) outperforms behavior cloning and ReAct baselines (2) enables weak
student models (e.g., Llama3-8B) to exceed performance of strong teacher models
(GPT-4o), and (3) allows weak models to self-improve using privileged versions of
themselves. We provide a theoretical analysis showing that LEAP’s success hinges
on balancing privileged information with student’s realizability, which we empiri-
cally validate. Our code is available at https://leap-llm.github.io.

1 INTRODUCTION

Large language models (LLM) show impressive decision-making abilities across domains (Yao
et al., 2022b; Jimenez et al., 2023; Sodhi et al., 2024). However, they struggle to learn and recover
from errors encountered at test time (Madaan et al., 2024; Shinn et al., 2023). Prompting alone is
insufficient, as it requires manually specifying exceptions and examples (Khot et al., 2022), which is
difficult to scale and leads to intractably long context lengths (Liu et al., 2024).

We address the problem of fine-tuning LLM agents to improve their decision-making using online
interaction data. Imitation learning offers a sample-efficient way to train such models, where a
teacher corrects the student agent’s actions (Ross et al., 2011). However, finding an expert capable of
both demonstrating the task and correcting mistakes from any state the student visits is extremely
challenging (Chen et al., 2020). The expert must not only know how to complete the task but also
how to recover from the student’s errors, which is often more complex than simply performing the
original task (Walsman et al., 2022). For example, in a task like "Heat the mug and put it in the
cabinet," if the student places the wrong object in the microwave, the expert must first backtrack and
remove the incorrect object before proceeding with the task.

Our key insight is to equip the expert teacher with access to a privileged state — information useful
for solving the task but only available at train time (Vapnik et al., 2015). This includes hidden states
of a partially observable environment or intermediate subgoals. For a task "Heat the mug and put it in
the cabinet", the privileged state reveals the mug’s location and steps for heating it (Fig. 1). With
this knowledge, the expert first clears the microwave and then teaches the student effective search
strategies, like checking common mug locations. Over time, this enables the student to learn general
strategies for solving the task and recovering from errors, ultimately outperforming the expert, even
without access to the privileged state at test time.

We propose Learning from Experts with Access to Privilege (LEAP), an iterative learning algorithm
that fine-tunes LLM agents using privileged AI expert feedback. As shown in Fig. 1, LEAP begins

1Cornell University, NY, USA. ∗Equal contribution. Correspondence to: Sanjiban <sanjibanc@cornell.edu>,
Paloma <paloma.sodhi@gmail.com>

1

https://leap-llm.github.io

Task: Heat mug and put it in cabinet

LLM Student
Agent πi−1

reason ,
action

rt
at

LLM Expert
Teacher π E

Student
trajectory
rollouts

Model Training
(SFT/DPO)

observation ot
Environment ℰ

⟨$, %, &, ', r ⟩

Objective
You are given a trajectory
containing observations, reason,
actions generated by a student …
You are a teacher with access to
a "privileged state" containing
secret information to solve the
game that is hidden from the
student … Your goal is to
improve how the student solves
the game by improving their
reason and action …

Privileged State
Essential Objects:
- mug 1
- microwave 1 (to heat the mug)

Critical Locations:
- shelf 3 (to retrieve the mug)
- microwave 1 (to heat the mug)
...

st
πi ← SFT (⋃*i)

πi ← DPO(*i, πi−1)

Dataset *i

r̃0, ã 00)(h0, r0, a0,
r̃1, ã1)(h1, r1, a1,

r̃T , ãT)(hT , rT , aT ,
⋮

Output {
"timestep": ...,
"original_reason": ...,
"original_action": ...,
"corrected_reason": ...,
"corrected_action": … }

observation “..., you see nothing”
reason "I need to find a mug first.
The toaster might have a mug.”
action "go to toaster 1”

o2
r2
a2

observation “You pick up mug 1
from shelf 3.” reason “I have a mug
1. I will now go to cabinet to place the
mug.” action "go to cabinet 1”

o7
r7

a7

t=0
t=2 t=7

t=T

t=0
t=2 t=7

t=T

observation “..., you see nothing”
reason "I need to find a mug first. It's
more efficient to check places where
mugs are commonly found, like shelves
or cabinets” action "go to shelf 1”

o2
r̃2

ã2

observation “You pick up mug 1
from shelf 3.” reason "I need to
first heat the mug. I can do that at the
microwave or stovetop.”  
action "go to microwave 1”

o7
r̃7

ã7

r̃t , ãt ∼ π E (. |rt , at , ht , st)

Expert
corrections

rt , at ∼ πi−1(. |ht)

Figure 1: LEAP overview. LLM student agent interacts with the environment, generating a reason-action
trajectory (in orange) based on its policy πi−1. An expert teacher, with privileged state available only during
training, evaluates and corrects the trajectory (in green). These corrections update the learner’s policy to πi

through SFT/DPO training. Updated policy πi is then rolled out at test time without access to privileged state.

with a student agent trained on demonstration data (π0). During interactions, the student agent
generates trajectories, and the privileged expert (πE) identifies key time steps where corrections are
needed. The expert provides improved reason and action labels based on the privileged state, which
are then assembled into a dataset used to update the student model (πi ← πi−1). This process is
repeated iteratively, progressively improving the student agent’s performance.

Interestingly, we identify a key trade-off between leveraging privileged information and the student
agent’s realizability. While providing unrestricted privileged feedback allows for highly accurate
corrections, these are often too complex for the student to act on effectively. Conversely, limiting
feedback to what the student can easily process makes it realizable but often suboptimal. Our
theoretical and empirical analyses show that balancing these extremes is key, which we achieve by
introducing a constrained privileged expert that provides optimal yet realizable feedback.

Our key contributions are:

1. A novel iterative learning framework LEAP that fine-tunes LLM agents using privileged expert
feedback, balancing privileged information and realizability.

2. Theoretical and empirical analysis of the optimal trade-off between privileged information and
agent realizability.

3. Experimental validation on diverse interactive decision-making benchmarks: AlfWorld (Shridhar
et al., 2020b), WebShop (Yao et al., 2022a), and InterCode (Yang et al., 2024).

(a) LEAP consistently outperforms behavior cloning agents trained on gpt-4o or human
demonstrations, showing significant improvements on ALFWorld (65.7%→ 91.8%), Web-
Shop (29.4→ 61.8), and InterCode Bash (60.3%→ 71.8%).

(b) LEAP enables weaker models (e.g. Llama3-8B) to surpass stronger models (gpt-4o),
with improvements on ALFWorld (91.8% vs. 65.7%), WebShop (61.8 vs. 58.4), and
InterCode Bash (71.8% vs. 71.3%).

(c) Ablations that show LLM agents can self-improve using their privileged versions as teachers
(65.7% → 82.1%), explore the tradeoff between privileged information and realizability,
and compare supervised finetuning with preference optimization.

2 PRELIMINARIES

Problem Formulation: Decision-making LLMs. We frame decision-making as a Partially Observ-
able Markov Decision Process (POMDP) (Kaelbling et al., 1998) because real-world environments
often contain hidden or incomplete information. The POMDP is defined by the tuple ⟨S,A,O, T , r⟩,
where S represents the underlying state space of the environment, A the action space, O the observa-
tion space, T : S ×A → S the transition dynamics, and r : S ×A → R the reward function. The

2

true state st ∈ S is not fully observable; instead, the agent receives partial observations ot ∈ O at
each timestep. Hence it must rely on the history ht ∈ H of observation-actions to choose actions.

LLM-based agents are policies π ∈ Π, which predict both a reason ρt and an action at based on the
agent’s history ht. The reason ρt is expressed in natural language to justify action at. The history
ht = o1, a1, . . . , ot is the sequence of past observations and actions. The policy is (ρt, at) = π(ht).
While reinforcement learning (RL) for POMDPs is already challenging due to the large history space
H (Papadimitriou & Tsitsiklis, 1987), this is further exacerbated by the addition of reason space,
which is infinite and unconstrained. This makes RL impractical to run for LLM agents.

Interactive Imitation Learning with DAGGER. Imitation learning (IL) offers a promising alternative
to RL, by allowing the agent to mimic an expert teacher policy πE bypassing the need for complex
exploration. The gold-standard for imitation learning are interactive methods like DAGGER (Ross
et al., 2011) that query the teacher πE for on-policy corrections on states ht visited by the student.
However, for POMDPs, computing such corrections is intractable and strictly more challenging than
just solving the original task, often resulting in suboptimal feedback.

3 APPROACH

We present Learning from Experts with Access to Privilege (LEAP), a framework for iteratively
training an LLM agent through online AI feedback from a privileged expert (Fig. 1). Central to our
approach is the concept of a privileged expert teacher, which leverages access to privileged state
information to guide the student’s recovery from errors. The goal is to first train the agent to solve
the problem using this privileged state, but then distill the policy into a student that works from
observations alone. Such frameworks have been used extensively in robotics for training robots
in simulation and deploying in real world for applications like self-driving and legged locomotion
(Sec. 5). We build on this paradigm, and propose novel extensions in the form of constrained
privileged experts to adapt this for training LLM agents. Section 3.1 defines the privileged teacher,
Section 3.2 details LEAP, and Section 3.3 presents the theoretical analysis of LEAP.

3.1 PRIVILEGED EXPERT TEACHER

We introduce a privileged expert teacher, a policy that has access to privileged state information st
which fully describes the environment at time t. This access transforms the expert’s decision-making
from a POMDP into a fully observable MDP making policy learning more tractable. Formally, the
teacher policy takes the student’s reason ρt, action at, history ht, and privileged state st and generates
a corrected reason action (ρ̃t, ãt) ∼ πE(·|ρt, at, ht, st).

The privileged information st can come from multiple sources:

1. Simulator States: Many agentic domains train in simulated environments before real-world
deployment, where the simulator exposes underlying states. For instance, in AlfWorld (Shridhar
et al., 2020a), agents observe only their location, but the simulator provides full item locations as
privileged information during training.

2. Evaluation Criteria: Most domains have success metrics. In WebShop (Yao et al., 2022a), privi-
leged information includes product attributes, options, and target prices, while in InterCode (Yang
et al., 2024), it includes goal commands and unit tests.

3. Human Annotations: Privileged states can be extracted from human demonstrations. In AlfWorld,
key subgoal details (e.g., "drawer 3 contains book 2") come from demonstrations. Similarly,
dialog agents leverage conversation-level subgoal annotations, which are easier to collect than
dense demonstrations, making them a practical alternative.

A crucial requirement for the privileged expert teacher is that it must not reveal privileged information
in its feedback to the learner. The prompt instructions specify that the teacher should provide general
reason and action that avoid the direct use of privileged information. Using such information directly
might solve tasks quickly but makes the corrected actions (ρ̃t, ãt) unrealizable for the learner, who
does not have access to the privileged state st, leading to a significant imitation gap and poor learner
performance. In Section 3.3, we characterize the trade-off between using privileged information and
student realizability. We show in Appendix. B that a constrained privileged expert that effectively
utilizes privileged information while remaining realizable for the student has the optimal performance.
We approximate such an expert by designing prompts for the expert to instruct it to use privileged
information, without revealing it. See Appendix E for prompts.

3

Algorithm 1 LEAP: Iterative Learning with Privileged Expert Teacher

Input: Privileged expert teacher πE , Environment E
Output: Learned policy π

1: Collect an initial set of demonstrations from expert teacher D ← {(h∗
t , ρ

∗
t , a

∗
t)}

2: Train BC π0 on D using supervised fine-tuning (SFT)
3: for iteration i = 1, 2, . . . , N do
4: Roll out policy πi−1 in environment E to collect new data: Di ← {(ht, ρt, at)}
5: Compute privileged state st for every datapoint in Di

6: Invoke privileged expert to generate corrected reason and action: ρ̃t, ãt ∼ πE(.|ρt, at, ht, st)
7: Augment dataset with corrected reason and action: Di ← {(ht, ρt, at, ρ̃t, ãt)}
8: Train policy πi using a no-regret update: πi ← SFT (

⋃
Di) or πi ← DPO(Di, πi−1)

return Best π ∈ {π1, . . . , πN} on validation dataset

3.2 THE LEAP ALGORITHM

The LEAP algorithm iteratively trains the student policy π through online interactions with the
environment E and corrections from a privileged expert teacher πE . The process begins by collecting
an initial set of demonstrations of history, reason, and action from the teacher D ← {h∗

t , ρ
∗
t , a

∗
t }, and

training a BC policy π0 on this data using supervised fine-tuning (SFT).

At each iteration, the current learner policy πi is rolled out in the environment to generate new data
Di ← (ht, ρt, at). For each timestep in Di, LEAP computes the privileged state st by leveraging
information available only during training. The privileged teacher is then invoked on trajectories
where the agent fails, generating corrected reasoning and actions, ρ̃t, ãt ∼ πE(.|ρt, at, ht, st). These
corrections are used to augment the dataset Di. The policy πi is subsequently updated using this
augmented dataset through a no-regret learning method. This iterative process continues, refining the
policy over multiple iterations until the best-performing policy is selected based on validation.

The update step in LEAP should be designed to ensure no-regret learning, a property that guarantees
the policy’s cumulative performance will converge to that of the best possible policy in hindsight.
The most common update is to aggregate data

⋃
Di, and train πi using supervised fine-tuning

(SFT) on the aggregated dataset, as done in DAGGER (Ross et al., 2011). This is equivalent to
Follow the Regularized Leader (FTRL), a no-regret update step. An alternate update is to treat the
problem as a preference optimization problem where the corrected reason action (ρ̃t, ãt) is preferred
over the student reason action (ρt, at). Preference optimizers like Direct Policy Optimization
(DPO) (Rafailov et al., 2024) or Kahneman-Tversky Optimization (KTO) (Ethayarajh et al., 2024)
optimize a preference loss while regularizing to the base policy, in this case the previous policy πi−1.
This is equivalent to an Online Mirror Descent (OMD) update, which is also a no-regret update. We
use SFT by default but compare it against preference optimization as an ablation in the results.

3.3 ANALYSIS

We briefly touch on the theoretical guarantees of LEAP, and refer the reader to Appendix. B for a full
exposition. We define the realizability of an expert policy and show how it affects LEAP performance.
Definition 3.1 (Average Realizability Gap). The average realizability gap ϵ(πE , T) between the
privileged expert πE and the best policy π⋆ over time horizon T is:

ϵ(πE , T) := sup
π

1

T

T∑
t=1

Est,ht∼dπ
t
||πE(at|st)− π⋆(at|ht))||1 (1)

where ||.||1 is the L1 distance, dπt is the induced distribution over state and history.
Theorem 3.2 (LEAP with Privileged Expert). Running N iterations of LEAP with privileged expert
πE yields at least one policy π such that the time-average performance 1

T J(π) is bounded as:

1

T
J(π) ≥ 1

T
J(πE)︸ ︷︷ ︸

performance

−H(πE)

ϵ(πE , T)︸ ︷︷ ︸
realizability

+γ(N)

 (2)

where πE is the privileged expert, H(πE) is the recoverability coefficient of πE , ϵ(πE , T) is the
average realizability gap, and γ(N) is the average regret of the DAGGER update.

4

The equation shows a trade-off between performance of the privileged expert (first term) and the
realizability of the privileged expert (second term), which we show how to optimize in Appendix. B.

4 EXPERIMENTS

4.1 OVERVIEW OF RESULTS

We evaluate LEAP across 3 decision-making domains: ALFWorld, a text-based game, WebShop, a
web navigation environment, and Intercode, an interactive coding environment. Below is a summary:

1. LEAP improves upon base behavior cloning (BC) policy: LEAP significantly improves the
base BC policy π0 over successive fine-tuning iterations, showing gains on AlfWorld (65.7%→
91.8%), WebShop (29.4→ 61.8), and InterCode (60.3%→ 71.8%). See Tables 1, 2, Fig. 3.

2. LEAP enables weaker student models to surpass stronger teacher models: Over successive
iterations, student models (e.g., Llama3-8B) outperform their stronger teachers (e.g., GPT-4o),
despite starting with lower or comparable performance. For example, on ALFWorld, the student
model (π3 : 91.8%) surpasses the teacher (πE : 65.7%), with similar trends on WebShop
(π2 : 61.8 vs. πE : 58.4) and InterCode (π3 : 71.8% vs. πE : 71.3%). See Tables 1, 2, Fig. 3.

3. LEAP requires a balance between using privileged information and generating realizable
corrections: Experts using minimal privileged information (πE

1 : 73.1%) generate more realizable
actions, while those with excessive privileged feedback (πE

5 : 5.22%) produce unrealizable
corrections. πE

3 strikes a perfect balance achieving optimal performance (πE
3 : 91%). See Fig. 5.

4. LEAP enables LLM agents to self-improve by using their own privileged versions as experts:
LLM agents can self-improve by using their privileged versions as teachers. For example, in
ALFWorld, Llama3-8B bootstraps itself through iterations, improving from 65.7% to 82.1% and
finally to 91.8%. See Fig. 6.

5. LEAP can be trained using both SFT or preference optimization: Both SFT and preference
optimization improve over the base BC policy (π0), with SFT delivering stronger gains (68.6%→
96.4%) compared to DPO (68.6%→ 74.3%) and KTO (68.6%→ 87.1%). See Table 3.

4.2 DOMAIN 1: TEXT-BASED GAMES

Setup. ALFWorld (Shridhar et al., 2020b) is a text-based game where agents complete household
tasks (e.g., "heat mug and put it in cabinet") by navigating and interacting via text commands.
Success requires planning subgoals, tracking progress, and efficiently searching for objects. Each
task has 30 timesteps, spanning six categories, with a training set of 3,257 games and two evaluation
sets: 139 in-distribution and 134 out-of-distribution games. We compare against prior works and
extend ReAct (Yao et al., 2022b) with stronger models (gpt-4o1, Claude2, Gemini3) and a general
instruction prompt. Our approach fine-tunes Llama3-8B (Dubey et al., 2024) with LoRA (Hu et al.,
2021), using gpt-4o as a privileged expert teacher for 4 iterations. Privileged information includes
essential objects, their locations, and optimal actions. See Appendix D.2, E.1 for details and prompts.

Results. Table 1 shows that LEAP significantly outperforms all baselines, with the best policy
achieving 91.8% success rate on out-of-distribution tasks. Iteration 1 of LEAP has the biggest
performance gain (65.7% → 91.0%), leading to a student policy π1 that surpasses the teacher
gpt-4o with higher success rate (91.8% > 65.7%) and lower actions (11.3 < 20.2). Note
that performance improvements are not monotonic over iterations of LEAP, (65.7% → 91.0% →
83.6%→ 91.8%), however, all policies are better than the BC policy π0. The regression from π1 to
π2 are mainly from HEAT and LOOK tasks, which gets corrected immediately in the next iteration π3.
Finally. we note that LEAP policies generalize well from in-distribution to out-of-distribution tasks
with only a slight dip in performance for the final policy π3 (94.2%→ 91.8%).

Fig. 2 (a) shows an example of LEAP training and testing. A typical failure mode of π0 is that it
searches for items inefficiently, e.g. looking at shelves or drawers or cabinets one by one until time
runs out. The expert teacher leverages the privileged state of where objects are to show the student
how to search efficiently without revealing the object location, e.g. it’s more efficient to search
desks where cellphones are likely to be than drawers sequentially one after another. Training on this
correction data, π1 generalizes this reasoning to new test-time tasks, e.g. putting a watch in a safe.
Fig. 2 (b) shows that while π0 inefficiently searches shelves, π1 searches likely locations for the watch,
first the sidetable and then the dresser to solve the task. The main performance gains of LEAP over
1 https://platform.openai.com/docs/models 2 https://docs.anthropic.com/en/docs/about-claude/models
3 https://ai.google.dev/gemini-api/docs/models/gemini

5

Method All tasks PICK tasks CLEAN tasks HEAT tasks COOL tasks LOOK tasks PICK 2 tasks

%suc↑ #act↓ %suc↑ %suc↑ %suc↑ %suc↑ %suc↑ %suc↑
BUTLER [1] 35.0 - 50.0 74.0 83.0 91.0 39.0 65.0
ReAct few-shot [2] 57.0 - 65.0 39.0 83.0 76.0 55.0 24.0
Autogen gpt-3.5 [3] 77.0 - - - - - - -
ExpeL gpt-3.5 [4] 59.0 - - - - - - -
Reflexion gpt-3 [5] 88.0 - 75.0 90.3 91.3 90.5 88.9 94.1
AdaPlanner gpt-3 [6] 91.7 - 100.0 96.7 95.6 100.0 100.0 47.0

ReAct gpt-4o 65.7 20.2 91.7 35.5 56.5 52.4 100.0 76.5
ReAct gpt-4o-mini 29.9 25.5 33.3 25.8 17.4 14.3 66.7 29.4
ReAct claude-3.5-sonnet 76.1 19.0 95.8 61.3 60.9 81.0 88.9 76.5
ReAct claude-3.5-haiku 16.4 27.2 33.3 9.7 8.7 9.5 38.9 0.0
ReAct gemini-1.5-flash 19.4 26.3 41.7 12.9 13.0 19.0 16.7 11.8

LEAP Llama3-8B 0.7 29.8 0.0 0.0 0.0 4.8 0.0 0.0
LEAP Llama3-8B π0 65.7 18.6 66.7 74.2 73.9 66.7 66.0 35.3
LEAP Llama3-8B π1 91.0 11.9 83.3 90.3 91.3 95.2 94.4 94.1
LEAP Llama3-8B π2 83.6 13.1 87.5 90.3 73.9 95.2 66.7 82.4
LEAP Llama3-8B π3 91.8 11.3 87.5 93.5 91.3 90.5 94.4 94.1

Method All tasks PICK tasks CLEAN tasks HEAT tasks COOL tasks LOOK tasks PICK 2 tasks

%suc↑ #act↓ %suc↑ %suc↑ %suc↑ %suc↑ %suc↑ %suc↑
BUTLER [1] 40.0 - 69.0 67.0 88.0 76.0 69.0 54.0
ReAct gpt-4o 54.3 22.9 91.4 33.3 31.2 12.0 84.6 66.7
ReAct gpt-4o-mini 40.0 26.1 11.1 12.5 4.0 53.8 20.8 20.8

LEAP Llama3-8B 2.9 29.5 8.6 0.0 0.0 0.0 7.7 0.0
LEAP Llama3-8B π0 68.6 16.9 88.6 51.9 56.2 80.0 76.9 50.0
LEAP Llama3-8B π1 96.4 10.5 100.0 100.0 100.0 92.0 92.3 91.7
LEAP Llama3-8B π2 90.0 11.4 94.3 92.6 87.5 88.0 92.3 83.3
LEAP Llama3-8B π3 94.2 10.3 100.0 96.3 100.0 87.5 100.0 83.3

Table 1: AlfWorld Evaluation. (top) 136 out-of-distribution games and (bottom) 140 in-distribution (max 30
actions). Baseline comparisons include [1] BUTLER (Shridhar et al., 2020a), [2] ReAct few-shot (Yao et al.,
2022b), [3] Autogen (Shridhar et al., 2020a), [4] ExpeL (Zhao et al., 2024). Note [5] Reflexion (Shinn
et al., 2023) and [6] AdaPlanner (Sun et al., 2024) make multiple attempts on the same test task, while we do
not. We also add our own REACT instruction prompt with different models. LEAP with an 8B model across
iterations (π1, π2, π3) outperforms the stronger teacher ReAct gpt-4o.

Student

rollout

π0
(ρt, at)

Teacher

correction

π E

(ρ̃t, ãt)

The sidetable does not have a watch.
I should check the dresser, as it
often contains valuable items.

go to
dresser1

put watch1
in/on safe1

open
safe1

take
watch1

go to
sidetable1 look

go to
safe1

Corrected student  
 rolloutπ1

Initial student  
 rolloutπ0

look go to
sidetable1

The sidetable does not
have a watch. I should
check other locations.

go to
shelf1

go to
shelf2

go to
shelf3

go to
shelf4

go to
shelf5

go to
shelf12

Shelf 4 is empty.
I will check the

next shelf.

(b) Student policy at test time

(a) Dataset generation at train time

Task: Put watch on a safe

Task: Find two cellphones I need to open the
drawer to see if there
is a cellphone inside.

open
drawer1

I should look for common
places where cellphones

might be found, like desks.

go to
desk1

go to
drawer 2

I need to continue
my search ...I’ll

check drawer 2 next.

Instead of searching all the
drawers sequentially, it

might be more efficient...

close
drawer1

go to
desk1

go to
drawer1

go to
drawer5

 ... cellphone2
is in desk1 ..

Figure 2: ALFWorld Training and Testing for LEAP. (a) Training: Student policy π0 rolled out on training
task to generate reason and actions, e.g. it fails to cell phone because it inefficiently searches all drawers. Expert
teacher πE uses privileged information (cellphone in desk1) to generate general corrected reason actions that
don’t reveal privileged information (cellphones commonly found in desks, more efficient to search desks than
drawers). (b) Testing: π0 fails to find a watch as it inefficently explores shelves one by one. π1 learns a more
efficient exploration policy, prioritizing areas like sidetables and dressers, solving the task quickly.

gpt-4o come from such efficient exploration. gpt-4o searches likely locations, however, its prior
is from internet data and isn’t necessarily aligned with the statistics of the ALFWorld environment.
In contrast, LEAP leverages privileged feedback to learn this. See Appendix D for more results.

4.3 DOMAIN 2: WEB AGENTS

Setup. WebShop (Yao et al., 2022a) is an online shopping environment where agents fulfill user
requests via search and click. Performance is based on attribute, option, product type, and price
matches, with partial credit for partial matches. Each task has 30 timesteps, with 12,086 training and
500 test tasks. We compare against ReAct (Yao et al., 2022b) (GPT-4o, GPT-4o-mini) and the IL
baseline (Yao et al., 2022a), which trains separate search and click models. Our approach fine-tunes

6

At
t

 ↑
Ty

pe

 ↑

O
pt

io
n

 ↑
Pr

ic
e

 ↑

(a) (b)

gpt-4o gpt-4o-mini

LEAP Iterations LEAP Iterations

LEAP Iterations LEAP Iterations

Figure 3: WebShop Evaluation. (a) Overall score↑ and #act↓ on 500 test tasks (max 30 actions). (b)
Performance of LEAP over iterations on 4 different score components. Baseline comparisons include [1] IL (Yao
et al., 2022a) and our ReAct instruction prompt with different models. LEAP with an 8B model across iterations
(π2, π3) outperforms the stronger teacher ReAct gpt-4o.

(a) Dataset generation at train time (b) Student policy at test time

action search[gluten free
vegetarian smoked peppered
bacon]
...
observation Smoked Bacon
[button] 4 ounce (pack of 2)
reason The features provide
more information about the
product, but I need to go back
to the previous page to make
sure I didn't miss any other
important details.
action click[< prev]
...
reason I should continue to
the next page to find more
options.action click[next >]
...
action click[next >]

a0

o9
ρ9

a9
ρ13

a13
a14

Task i am looking for ... that is 13.5 fl oz,
Student rollout
... reason I need to check the features of
this product to see if it meets all the
requirements. action click[features]
Teacher correction
... reason This product does not match the
13.5 fl oz criterion specified in the
instruction. ... action click[back to search]

ht , ρt , at
ρ2

a2
ρ̃t , ãt

ρ̃2
ã2

Initial student  
 rolloutπ0

action search[gluten free
vegetarian smoked peppered
bacon - 4 ounce (pack of 2)]
...
observation Peppered Bacon
[button] 4 ounce (pack of 1)
reason I have selected the 4
ounce pack of peppered bacon,
but it is still not a pack of
2. I should go back to search.
action click[back to search]
...
reason I should select the
p a c k o f 2 t o m a t c h t h e
instruction's requirement of a
pack of 2. action click[4
ounce (pack of 2)]
...
action click[buy now]

a0

o2
ρ2

a2
ρ7

a7

a8

Corrected student  
 rolloutπ1

⋮

Data point 1

Data point N
Task <another task>
Student rollout
... reason I should go back to the previous
page to explore other options that might better
fit the criteria. action click[< prev]
Teacher correction
... reason Instead of navigating back and
forth repeatedly, it's better to finalize a
decision to avoid inefficiency. I should buy
this item. action click[buy now] ...

ht , ρt , at
ρ8

a8
ρ̃t , ãt

ρ̃8

ã8

Task I need gluten free vegetarian smoked peppered bacon - 4
ounce (pack of 2), and price lower than 50.00 dollars

Figure 4: WebShop Training and Testing for LEAP. (a) Training: Teacher policy generates corrections on
student rollout to backtrack when the product does not fit criteria or to commit to a product when it does. (b)
Evaluation: π0 fails to solve the task since it continues to search page after page even after discovering a good
product. π1 learns when to backtrack and when to commit to a product to solve the task in time.

Llama3-8B with LoRA, using gpt-4o as a privileged expert teacher. Privileged information includes
product attributes, options, price constraints, and example product. See Appendix D.3, E.2 for details.

Results. Fig. 3 (a) shows that LEAP outperforms all baselines, with the best policy (π2) achieving
61.4 score. Iteration 1 has the biggest performance gain (29.4 → 51.8) followed by iteration 2
(51.8→ 61.8). This leads to a student policy π2 that surpasses the teacher GPT-4o with a higher
score (61.8 > 58.4). Similar to ALFWorld, while performance improvements are not monotonic,
both π2, π3 remain above the teacher gpt-4o performance. Fig. 3 (b) shows how LEAP improves
on all 4 components of the score. The biggest improvements between LEAP and gpt-4o is in OPT
component (42.4 > 22.1), indicating gpt-4o fails to select a product with the right option often.

Fig.4 (a) shows LEAP’s correction of π0 and π1 using training data. The teacher leverages privileged
information (e.g., product attributes or options) to guide the student in recognizing when to backtrack
on mismatched items and when to commit to a suitable product. Training on this correction data
produces policy π2, which balances backtracking and committing effectively. Fig.4 (b) highlights
π0’s failure to commit, endlessly cycling through pages, whereas π2 successfully backtracks and
selects a suitable item to complete the task.

4.4 DOMAIN 3: INTERACTIVE CODING

Setup. Intercode Bash (Yang et al., 2024) is an interactive coding environment where agents solve
filesystem tasks (e.g., "Find all text files and write their names to a single file") using Bash. Tasks are
drawn from four NL2Bash (Lin et al., 2018) datasets; we train on the first two and test on the next
two, with a 10-step time limit. We compare against ReAct (Yao et al., 2022b) using gpt-4o and
gpt-4o-mini, as well as the top three entries on the Intercode leaderboard—TryAgain baselines

7

91.04%

11.02

N
um

be
r o

f a
ct

io
ns

all tasks clean tasks cool taskspick tasks heat tasks pick 2 taskslook tasks

πE1 πE2 πE3 πE4 πE5 πE1 πE2 πE3 πE4 πE5
Level of privileged information

%
 S

uc
ce

ss
 ra

te

Level of privileged information

Correction from  
(0% privileged state)

πE1 Correction from  
(LEAP)

πE3 Correction from  
(100% privileged state)

πE5

Teacher correction

reason I need to explore the
locations that are more likely
t o h a v e k e t t l e s , l i k e
stoveburners or countertops.
action go to stoveburner 4
...

reason Drawers are unlikely to
contain kettles. It's better to
check places like stoveburners
or countertops
action go to stoveburner 4

ρ̃t, ãt

ρ̃0

ã0

ρ̃3

ã3

Teacher correction

reason To begin the search
efficiently, I should start by
going to places where kettles
are more commonly found, like
cabinets or countertops.
action go to cabinet 1
...
reason Drawers are less likely
to contain a kettle. It's more
c o m m o n t o f i n d t h e m o n
countertops or inside cabinets.
action go to cabinet 3

ρ̃t, ãt

ρ̃0

ã0

ρ̃3

ã3

Teacher correction

reason I should first check
the stoveburner to look for the
first kettle.
action go to stoveburner 4
...

reason I should head straight
to stoveburner 4 as it contains
the kettle.

action go to stoveburner 4

ρ̃t, ãt

ρ̃0

ã0

ρ̃3

ã3

Task Put two kettles in cabinet Privileged State {“essential objects”: “kettle 2, kettle 2”, “critical
locations”: “stoveburner 3 (kettle 2), stoveburner 4 (kettle 3), ...

(a)

(b)

Figure 5: Privileged Information vs Realizability. (a) Performance of 5 policies trained with experts with
varying levels of privileged information on ALFWorld, peaking for expert πE

3 . (b) Examples of corrections from
experts πE

1 , πE
3 , πE

5 . πE
1 generates realizable reason action but predicts wrong action. πE

5 predicts correction
action, but produces unrealizable reason action that contains privileged information. πE

3 strikes a perfect balance.

(Yang et al., 2024) with gpt-4, gpt-3.5, and CodeLlama-34B-INST (Roziere et al., 2023). Our
approach fine-tunes Llama-3.1-8B and Llama-3.1-70B with LoRA for two iterations, using gpt-4o
as a privileged expert teacher. Privileged information consists of the ground truth Bash command.

Results. Table 2 shows that LEAP trained with 70B policy outperforms all baselines, with pol-
icy π1 achieving 71.8% success rate to match the gpt-4o expert teacher (71.8% > 71.3%).

Method %succ↑ #act↓
gpt-4 [1] 48.5⋆ -
gpt-3.5 [1] 46.5⋆ -
CodeLlama-34B-INST [1] 36.0⋆ -

ReAct gpt-4o 71.3 3.8
ReAct gpt-4o-mini 43.4 6.0

LEAP Llama-3.1-8b π0 41.4 6.6
LEAP Llama-3.1-8b π1 49.9 5.5

LEAP Llama-3.1-70b π0 60.3 4.8
LEAP Llama-3.1-70b π1 71.8 5.1

Table 2: Intercode Bash Evaluation. Over-
all success rate and actions on test data (max
10 actions). Baselines from [1] (Yang et al.,
2024) evaluated on ⋆(train + test) data.

We find that on this coding benchmark, the gpt-4o ex-
pert is a very strong baseline. LEAP trained with 8B
models improve over the BC policy, but falls short of
the gpt-4o expert teacher. These results show that if
the expert teacher is already a strong baseline, even after
leveraging privileged information, it might be hard for the
student to outperform the teacher.

4.5 WHAT IS THE TRADE-OFF BETWEEN
PRIVILEGED INFORMATION AND REALIZABILITY?

We study the trade-off between how much privileged state
the expert uses vs. the realizability of their corrections
on ALFworld. We create 5 different privileged experts
π1
E , . . . , π

5
E by varying the prompt to instruct them to use

increasing amounts of privileged state, e.g. for π2
E it says

“Use this information sparingly for your correction,” but for π4
E it says “feel free to include information

from the privileged state”. We run 1 iteration of LEAP to generate updated π1, . . . , π5. Fig. 5 (a)
shows that success rate initially rises from π1 to π3, but then falls off sharply till π5. Num actions has
a similar trend. This validates the hypothesis that there is indeed an optimal tradeoff. Interestingly, π5

is much worse than π1, showing that it’s more important to be realizable than to provide optimal yet
unrealizable corrections. Fig. 5 (b) shows the corrections from πE

1 , π
E
3 , π

E
5 . πE

1 generates reasoning
that is perfectly realizable to the student, but since it has no privileged state the actions are not optimal.
In contrast, πE

5 predicts the correct action, but blatantly reveals the privileged information in the
reason, being unrealizable to the student. πE

3 strikes a perfect balance where it offers the correct
action, but offers a reason that is very much realizable, i.e. kettles are likely to be in stoveburners.

We run another experiment to examine the effect of the teacher providing on-policy corrections on the
states visited by the student, detailed in the Appendix C.1. Our hypothesis is that LEAP works due to

8

(a) (b)

Al
l t

as
ks

 (%
su

c
) ↑

Al
l t

as
ks

 (#
ac

t
) ↓

π0 π1 π2
LEAP Iterations LEAP Iterations LEAP Iterations

π0 π1 π2 π0 π1 π2

π0 π1 π2
LEAP Iterations LEAP Iterations LEAP Iterations

π0 π1 π2 π0 π1 π2

Figure 6: Self Correction. LEAP self-improves a Llama3-8B model that is used as both student and teacher. (a)
Overall success rate and num actions. (b) Category-wise breakdown of success rate.

these two key factors: (a) the LLM teacher effectively balances the use of privileged information and
(b) the LLM teacher provides on-policy corrections.

4.6 CAN LEAP BE USED TO SELF-CORRECT A STUDENT?

We test the hypothesis that LEAP should enable a model to self-improve by using its privileged
version as the expert. On ALFWorld, we fine-tune Llama3-8B initializing with the BC policy π0 and
running 2 iterations of self-improvement. Fig. 6 shows that LEAP is able to significantly self-improve
policies over iterations (65.7%→ 82.1%→ 91.8%), with the final policy matching the best policy
when using GPT-4o as a teacher. We see uniform improvements across all categories, with some
improving from π0 → π1 and others from π1 → π2. We conclude that for some environments, like
ALFworld, the privileged state does the heavy lifting, i.e. performance improvements happen at a
similar rate to using a strong teacher vs. using the model itself as a teacher. We note that this need
not hold for all environments, e.g. for some a strong teacher is required to extract the optimal reason
and action from the privileged state. This effect is seen on WebShop in Appendix C.2 where while
self-correction improves performance, it is unable to outperform the gpt-4o baseline.

4.7 HOW DOES SFT COMPARE TO PREFERENCE OPTIMIZATION?

Method %succ↑ #act↓

in
-d

is
t. LEAP π0 68.6 16.9

LEAP DPO (β : 0.1) π1 74.3 15.7
LEAP DPO (β : 0.01) π1 74.3 15.6
LEAP KTO (λU : 0.0) π1 87.1 11.6
LEAP SFT π1 96.4 10.5

ou
t-

di
st

. LEAP π0 65.7 18.6
LEAP DPO (β : 0.1) π1 71.6 17.9
LEAP DPO (β : 0.01) π1 70.9 17.7
LEAP KTO (λU : 0.0) π1 88.1 11.7
LEAP SFT π1 91.0 11.9

Table 3: SFT vs Preference: LEAP with
SFT vs DPO vs KTO on ALFWorld.

We study the effect of different update methods for LEAP:
SFT vs Preference Optimization. Our initial hypothesis is
that KL regularized preference optimization should also
result in performance improvement without needing to ag-
gregate datasets. We run 1 iteration of DPO with different
regularization β values. Table. 3 shows that while DPO
improves upon the base π0 policy, the improvement is far
smaller than SFT for both β = 0.1, 0.01. One explanation
is that SFT is far more aggressive in using the correction
data compared to preference optimization, i.e., SFT deems
the corrected reason action to be better than any alterna-
tive. To test this, we used a different preference optimizer
KTO, that operates with unpaired preference data and set
weight λD = 1.0, λD = 0.0, effectively emulating SFT-like behavior. KTO with these settings has a
significantly high performance of 88.1% close to SFT (91.0%).

5 RELATED WORK
Imitation Learning and Privileged Information. A powerful paradigm in machine learning is
leveraging privileged information (Vapnik et al., 2015)—data available only during training and
inaccessible at test time. This concept has been transformative in robotics, where a simulated
expert policy with full state supervises a learner that only perceives sensor observations, such as
navigation (Zhang et al., 2016; Uppal et al., 2024), self-driving (Chen et al., 2020), manipulation (Chen
et al., 2023a; Hu et al., 2024), and legged locomotion (Lee et al., 2020; Kumar et al., 2021).

A fundamental challenge in utilizing privileged information is the realizability gap—where actions
suggested by an expert may be infeasible for the learner to predict. This gap often leads to spurious
correlations, manifesting as the “latching effect” where learners repetitively predict the same action,

9

commonly observed in autonomous driving (Muller et al., 2005; Kuefler et al., 2017; Bansal et al.,
2018; Codevilla et al., 2019) and language models (Bengio et al., 2015; Holtzman et al., 2019; Wang
& Sennrich, 2020; Ortega et al., 2021). While off-policy methods (Wen et al., 2020; 2022) have been
proposed, (Swamy et al., 2022) show that online interaction with the environment is necessary.

Interactive imitation learning methods such as DAGGER (Ross et al., 2011), where experts provide
corrective actions during the learner’s rollouts, both theoretically and empirically lead to very effective
policies in this regime (Choudhury et al., 2018). These methods operate under the assumption of
asymptotic realizability (Swamy et al., 2022), where the learner’s policy can eventually match the
expert’s actions as the episode progresses. However, when this assumption fails—often due to the
partial observability of the task or model capacity—suboptimal performance ensues, particularly
for LLM agents, as demonstrated by our experiments (Sec. 4.5). While recent approaches resort to
exploration or RL (Walsman et al., 2022; Tennenholtz et al., 2021; Nguyen et al., 2022; Weihs et al.,
2021), these are intractable to extend to LLM agents. Our work provides a practical recipe for LLM
agents that optimally balances the trade-off between using privileged information and maintaining
realizability, and further shows how such an expert can be used to enable policy self-improvement.

Learning from AI Feedback. A scalable method for aligning language model using AI feedback (Lee
et al., 2023). Recent works have explored different types of feedback, from self-generated corrections
to those provided by external AI models or environments (Pan et al., 2023). One body of work focuses
on self-correction, where LLMs refine their responses based on feedback from their own outputs (Bai
et al., 2022; Madaan et al., 2024). This can occur either at train-time, where LLMs are fine-tuned to
generate corrected responses (Bai et al., 2022; Ganguli et al., 2023), or at test-time, where the model
improves its response interactively (Madaan et al., 2024). However, while simple in principle, Huang
et al. (2024) shows that without external sources of feedback, LLMs often struggle to accurately judge
the correctness of their reasoning, limiting the effectiveness of purely self-generated corrections.

Another cluster of work explores feedback from external sources. Some approaches use feedback
from strong models like GPT-4 acting as judges (Zheng et al., 2023) or critics trained on high-quality
curated data (Wang et al., 2023; Paul et al., 2023). Similarly, An et al. (2024) and Guo et al. (2024) use
GPT-4 to provide corrections and preference feedback. Welleck et al. (2023); Qu et al. (2024) trains
LLMs to self-correct from errors. Others leverage environmental feedback or external tools to guide
improvements. Chen et al. (2023b); Olausson et al. (2023) utilize execution feedback to improve
code generation, and (Gou et al., 2023) employs external tools. Notably, Reflexion (Shinn et al.,
2023) leverages feedback from external environments to generate self-reflections for agents, although
it assumes multiple attempts in the same environment, which our approach does not. Our work
introduces the use of privileged information in decision-making tasks for LLM agents, a technique
not yet fully explored in the literature. This also enables LLM agents to self-improve using privileged
information, setting it apart from existing self-improvement methods that rely on iterative solution
generation and evaluation (Zelikman et al., 2022; Pang et al., 2024; Hosseini et al., 2024).

6 LIMITATIONS
We proposed LEAP, an iterative fine-tuning framework that improves LLM agent performance using
privileged AI feedback, enabling weaker models to surpass stronger expert teachers and allowing
agents to self-improve. However, LEAP has notable limitations. First, generating interaction rollouts
is time-consuming, particularly in complex environments requiring multi-step reasoning. Each rollout
requires simulating the environment and generating complete trajectories, that becomes computation-
ally expensive across multiple fine-tuning iterations. Second, corrective feedback from the expert
often results in lengthy output tokens. As trajectory lengths grow, balancing the effectiveness of
feedback with its verbosity becomes challenging. Exploring methods to distill and summarize expert
feedback at critical points is an interesting direction for future work.

10

ACKNOWLEDGEMENTS

This work was supported in part by the NSF FRR (#2327973), NSF RI (#2312956), and ONR Young
Investigator Award. Sanjiban Choudhury is supported in part by the Google Faculty Research Award
and the OpenAI Superalignment Grant.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we have made several efforts, as outlined below. Detailed
information and resources are provided in the main paper, appendix, and supplementary materials:

1. Open source code. We open source the code including the Python package implementing LEAP,
along with all prompts, configuration files, and training scripts necessary to reproduce our results.

2. Experimental details. We provide descriptions of our experiments in the main paper (Section 4),
with additional details on the setup, hyperparameters, prompts found in Appendix D, E. We use
open-source datasets and models in our experiments, with citations and links.

3. Analysis. The key results of our theoretical analysis are presented in the main paper (Section 3.3),
with full derivations, proofs, and assumptions detailed in Appendix B.

REFERENCES

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, Jian-Guang Lou, and Weizhu Chen. Learning
from mistakes makes LLM better reasoner. arXiv preprint arXiv:2310.20689, 2024.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning to drive by imitating
the best and synthesizing the worst. arXiv preprint arXiv:1812.03079, 2018.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. Advances in neural information processing systems, 28,
2015.

Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning by cheating. In
Conference on Robot Learning, pp. 66–75. PMLR, 2020.

Tao Chen, Megha Tippur, Siyang Wu, Vikash Kumar, Edward Adelson, and Pulkit Agrawal. Visual
dexterity: In-hand reorientation of novel and complex object shapes. Science Robotics, 8(84):
eadc9244, 2023a.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023b.

Sanjiban Choudhury, Mohak Bhardwaj, Sankalp Arora, Ashish Kapoor, Gireeja Ranade, Sebastian
Scherer, and Debadeepta Dey. Data-driven planning via imitation learning. The International
Journal of Robotics Research, 37(13-14):1632–1672, 2018.

Felipe Codevilla, Eder Santana, Antonio M López, and Adrien Gaidon. Exploring the limitations
of behavior cloning for autonomous driving. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 9329–9338, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

11

Deep Ganguli, Amanda Askell, Nicholas Schiefer, Thomas I Liao, Kamilė Lukošiūtė, Anna Chen,
Anna Goldie, Azalia Mirhoseini, Catherine Olsson, Danny Hernandez, et al. The capacity for
moral self-correction in large language models. arXiv preprint arXiv:2302.07459, 2023.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738, 2023.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from online
ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457,
2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Edward S Hu, James Springer, Oleh Rybkin, and Dinesh Jayaraman. Privileged sensing scaffolds
reinforcement learning. arXiv preprint arXiv:2405.14853, 2024.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the Nineteenth International Conference on Machine Learning, pp. 267–274, 2002.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Alex Kuefler, Jeremy Morton, Tim Wheeler, and Mykel Kochenderfer. Imitating driver behavior with
generative adversarial networks. In 2017 IEEE intelligent vehicles symposium (IV), pp. 204–211.
IEEE, 2017.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots. arXiv preprint arXiv:2107.04034, 2021.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif: Scaling reinforcement learning
from human feedback with ai feedback. arXiv preprint arXiv:2309.00267, 2023.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D Ernst. Nl2bash: A corpus
and semantic parser for natural language interface to the linux operating system. arXiv preprint
arXiv:1802.08979, 2018.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024.

12

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and Yann Cun. Off-road obstacle avoidance through
end-to-end learning. Advances in neural information processing systems, 18, 2005.

Hai Nguyen, Andrea Baisero, Dian Wang, Christopher Amato, and Robert Platt. Leveraging fully
observable policies for learning under partial observability. arXiv preprint arXiv:2211.01991,
2022.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama.
Demystifying gpt self-repair for code generation. arXiv preprint arXiv:2306.09896, 2023.

Pedro A Ortega, Markus Kunesch, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Joel Veness,
Jonas Buchli, Jonas Degrave, Bilal Piot, Julien Perolat, et al. Shaking the foundations: delusions
in sequence models for interaction and control. arXiv preprint arXiv:2110.10819, 2021.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
Automatically correcting large language models: Surveying the landscape of diverse self-correction
strategies. arXiv preprint arXiv:2308.03188, 2023.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733, 2024.

Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision processes.
Mathematics of operations research, 12(3):441–450, 1987.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West,
and Boi Faltings. Refiner: Reasoning feedback on intermediate representations. arXiv preprint
arXiv:2304.01904, 2023.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. arXiv preprint arXiv:2407.18219, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Stéphane Ross, Geoffrey Gordon, and J Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Artificial Intelligence and Statistics (AISTATS),
2011.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning.(2023). arXiv preprint
cs.AI/2303.11366, 2023.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for
everyday tasks. In Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, 2020a.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020b.

Charlie Snell, Dan Klein, and Ruiqi Zhong. Learning by distilling context. arXiv preprint
arXiv:2209.15189, 2022.

Paloma Sodhi, SRK Branavan, Yoav Artzi, and Ryan McDonald. Step: Stacked llm policies for web
actions. In Conference on Language Modeling (COLM), 2024.

13

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive
planning from feedback with language models. Advances in Neural Information Processing
Systems, 36, 2024.

Gokul Swamy, Sanjiban Choudhury, J Bagnell, and Steven Z Wu. Sequence model imitation learning
with unobserved contexts. Advances in Neural Information Processing Systems, 35:17665–17676,
2022.

Guy Tennenholtz, Assaf Hallak, Gal Dalal, Shie Mannor, Gal Chechik, and Uri Shalit. On co-
variate shift of latent confounders in imitation and reinforcement learning. arXiv preprint
arXiv:2110.06539, 2021.

Shagun Uppal, Ananye Agarwal, Haoyu Xiong, Kenneth Shaw, and Deepak Pathak. Spin: Simul-
taneous perception interaction and navigation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 18133–18142, 2024.

Vladimir Vapnik, Rauf Izmailov, et al. Learning using privileged information: similarity control and
knowledge transfer. J. Mach. Learn. Res., 16(1):2023–2049, 2015.

Aaron Walsman, Muru Zhang, Sanjiban Choudhury, Dieter Fox, and Ali Farhadi. Impossibly
good experts and how to follow them. In The Eleventh International Conference on Learning
Representations, 2022.

Chaojun Wang and Rico Sennrich. On exposure bias, hallucination and domain shift in neural
machine translation. arXiv preprint arXiv:2005.03642, 2020.

Tianlu Wang, Ping Yu, Xiaoqing Ellen Tan, Sean O’Brien, Ramakanth Pasunuru, Jane Dwivedi-Yu,
Olga Golovneva, Luke Zettlemoyer, Maryam Fazel-Zarandi, and Asli Celikyilmaz. Shepherd: A
critic for language model generation. arXiv preprint arXiv:2308.04592, 2023.

Luca Weihs, Unnat Jain, Iou-Jen Liu, Jordi Salvador, Svetlana Lazebnik, Aniruddha Kembhavi,
and Alex Schwing. Bridging the imitation gap by adaptive insubordination. Advances in Neural
Information Processing Systems, 34:19134–19146, 2021.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct. In The Eleventh International Conference
on Learning Representations, 2023.

Chuan Wen, Jierui Lin, Trevor Darrell, Dinesh Jayaraman, and Yang Gao. Fighting copycat agents
in behavioral cloning from observation histories. Advances in Neural Information Processing
Systems, 33:2564–2575, 2020.

Chuan Wen, Jianing Qian, Jierui Lin, Jiaye Teng, Dinesh Jayaraman, and Yang Gao. Fighting fire with
fire: avoiding dnn shortcuts through priming. In International Conference on Machine Learning,
pp. 23723–23750. PMLR, 2022.

John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing
and benchmarking interactive coding with execution feedback. Advances in Neural Information
Processing Systems, 36, 2024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. In Advances in Neural Information
Processing Systems (NeurIPS), 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022b.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel. Learning deep control policies for
autonomous aerial vehicles with mpc-guided policy search. In 2016 IEEE international conference
on robotics and automation (ICRA), pp. 528–535. IEEE, 2016.

14

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm
agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19632–19642, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

15

Appendix

Table of Contents
A Broader Impacts 17

B Analysis 17
B.1 Trade-off between realizability and privileged information 17
B.2 Practical approximation for constrained privileged expert 21

C Additional Ablations 21
C.1 LEAP vs SFT with Privileged Information . 21
C.2 LEAP self-correction on Webshop . 22
C.3 LEAP training on all data . 22

D Experimental details 22
D.1 Hyper-parameters . 22
D.2 ALFWorld . 24
D.3 WebShop . 24
D.4 Intercode . 25

E Prompts 25
E.1 AlfWorld . 26
E.2 WebShop . 29
E.3 InterCode . 34

16

A BROADER IMPACTS

Technological Impact. By iteratively fine-tuning LLMs through privileged expert feedback, LEAP
can significantly enhance AI performance across diverse applications, such as virtual assistants
and dialogue agents handling complex decision-making tasks. This approach allows LLMs to
autonomously refine their decision-making, reducing the need for human intervention, streamlining
automation, and improving efficiency in both consumer and enterprise environments.

Additionally, LEAP ’s ability to enable weaker models to outperform stronger ones democratizes AI
access, making state-of-the-art models more accessible to organizations with limited computational
resources. This also opens new possibilities for improving model generalization in settings where
perfect information is unavailable. However, the reliance on privileged feedback during training
underscores the importance of further research into model transparency and interpretability. As these
models grow more autonomous, ensuring their decision-making remains understandable to users will
be critical for building trust and fostering widespread adoption.

Societal Impact. Equipping LLMs with iterative self-improvement capabilities unlocks a range of
societal benefits. In sectors such as education, customer service, and software development, these
AI systems can assist professionals in decision-making, automate routine tasks, and enhance overall
productivity. By continuously improving their performance, these models can reduce the cognitive
load on workers, allowing them to focus on more complex, creative, and value-added activities.

Despite these advantages, there are ethical concerns that must be addressed. As LLMs become
capable of self-improvement, ensuring their trustworthiness and accountability becomes critical.
Without proper safeguards, the autonomous refinement of AI could lead to unpredictable behaviors,
making it harder to ensure alignment with human values. Furthermore, there is a risk that self-
improving AIs could be misused for malicious purposes, such as automating harmful tasks or
spreading disinformation. To mitigate these risks, strict ethical guidelines and robust oversight is
necessary to ensure deployment of such systems serves societal good and prevents misuse.

B ANALYSIS

B.1 TRADE-OFF BETWEEN REALIZABILITY AND PRIVILEGED INFORMATION

We now analyze the performance of a policy imitating an expert with access to privileged information.
The performance depends both on the performance of the expert policy and the realizability gap
between the learner and the expert. We then derive a constrained privileged expert to better trade
off these two terms and provide a practical approximation of this constrained expert. For notational
simplicity, we assume that at represents both reason and action. We follow the derivation in (Swamy
et al., 2022) but simplify for our setting.

Let π ∈ Π be the student policy that we are training. We assume the class of policies Π is rich enough
to contain all history-based policies. Let J(π) be the performance, i.e. the cumulative reward of a
learner policy that selects actions based on the history at = π(ht). Let J(πE) be the performance
of the expert policy that selects actions based on the privileged state at = πE(st). Let τ ∼ π be a
privileged rollout which is the sequence of observation, actions, and privileged state upon executing
the policy. We represent the rollout as τ = {(ht, st, at)}. Note that such a privileged rollout is only
accessible at train time.

We begin by defining the average imitation gap between an expert policy πE and learner π.

Definition B.1 (Average Imitaiton Gap). The average imitation gap of a learner π over a horizon T :

AIG(π, T) :=
1

T

(
J(πE)− J(π)

)
= Eτ∼πE

[
1

T
r(st, at)

]
− Eτ∼π

[
1

T
r(st, at)

]
(3)

We next define the realizability gap between the privileged expert and the best policy in policy class
as the L1 distance (or equivalently Total-Variation (TV) distance) between the two policies on the
distribution of states and histories induced by any policy.

17

Definition B.2 (Average Realizability Gap). The average realizability gap over time between the
privileged expert πE and the best policy in the policy class π⋆ is:

ϵ(πE , T) := sup
π

1

T

T∑
t=1

Est,ht∼dπ
t
||πE(at|st)− π⋆(at|ht))||1 (4)

We next define the recoverability of the expert. Let AπE

(s, a) = QπE

(s, a) − V πE

(s) be the
advantage of a state action (s, a) with respect to the expert policy πE . A high negative advantage
means that the mistaken action at a state results in a high value difference from the action the expert
would have taken. Recoverability is the worst case advantage.
Definition B.3 (Recoverability Coefficient of the Privileged Expert). The recoverability of the expert
policy πE is the max advantage of the expert policy

H(πE) := max
s,a
||AπE

(s, a)|| (5)

We are now ready to state the main theorem of LEAP.
Theorem B.4 (LEAP with Privileged Expert). Running N iterations of LEAP with privileged expert
πE yields at least one policy π such that

1

T
J(π) ≥ 1

T
J(πE)−H(πE)

(
ϵ(πE , T) + γ(N)

)
(6)

where πE is the privileged expert, H(πE) is the recoverability coefficient of πE , ϵ(πE , T) is the
average realizability gap, and γ(N) is the average regret of the DAGGER update.

The first term is the performance of the privileged expert and the second term is the average real-
izability of the privileged expert. The more privileged information the expert policy πE leverages
the better J(πE) and the lower recoverability coefficient H(πE). However, the realizability gap
ϵ(πE , T) grows larger.

Proof. The proof relies on two important results.

The first is the Performance Difference Lemma (PDL) (Kakade & Langford, 2002) which states that
the performance difference between any two policies can be expressed as the sum of advantages.

J(π)− J(π′) =

T∑
t=1

Est∼dπ
t

[∑
at

Aπ′
(st, at)π(at|st)

]
(7)

where st ∼ dπt is the induced state distribution by π, and Aπ′
(st, at) = Qπ′

(st, at)− V π′
(st) is the

advantage w.r.t. π′.

To adapt the equality to our setting where two policies operate on different input spaces, we note
that the equality to different input spaces, e.g. state st or history ht or joint state-history st, ht. We
express in terms of the joint state-history st, ht space and write the inequality as:

J(π)− J(πE) =

T∑
t=1

Est,ht∼dπ
t

[∑
at

AπE

(st, ht, at)π(a|st, ht)

]
(From (7))

=

T∑
t=1

Est,ht∼dπ
t

[∑
at

AπE

(st, ht, at)π(a|ht)

]
(π depends only on ht)

=

T∑
t=1

Est,ht∼dπ
t

[∑
at

AπE

(st, at)π(a|ht)

]
(πE depends only on st)

=

T∑
t=1

Est,ht∼dπ
t

[∑
at

AπE

(st, at)
(
π(a|ht)− πE(at|st)

)]
as

(∑
at

AπE

(st, at)π
E(at|st) = 0

)
(8)

18

Rearranging, we get the following form of PDL which we use in the main proof:

J(πE)− J(π) =

T∑
t=1

Est,ht∼dπ
t

[∑
at

AπE

(st, at)
(
πE(at|st)− π(at|ht)

)]
(9)

The second result we use us from interactive imitation learning DAGGER (Ross et al., 2011) that
reduces imitation learning to no-regret online learning. DAGGER shows that with πE as the expert
teacher guarantees that after N iterations, it will find at least one policy

Es,h∼dπ ||π(.|h)− πE(.|s)||1 ≤ Es,h∼dπ ||π⋆(.|h)− πE(.|s)||1 + γ(N) (10)

where γ(N) is the average regret, and dπ is the time average distribution of states and history induced
by policy π.

We now prove the main result

AIG(π, T) =
1

T

(
J(πE)− J(π)

)
=

1

T

T∑
t=1

Est,ht∼dπ
t

[∑
at

AπE

(st, at)
(
πE(a|st)− π(a|ht)

)]
(From (9))

≤ ||AπE

(., .)||∞
1

T

T∑
t=1

Est,ht∼dπ
t
||π(.|ht)− πE(.|st)||1 (Holder’s Inequality)

≤ H(πE)
1

T

T∑
t=1

Est,ht∼dπ
t
||π(.|ht)− πE(.|st)||1

≤ H(πE)

(
1

T

T∑
t=1

Est,ht∼dπ
t
||π⋆(.|ht)− πE(.|st)||1 + γ(N)

)
From (10)

≤ H(πE)
(
ϵ(πE , T) + γ(N)

)
Rearranging, we get

1

T
J(π) ≥ 1

T
J(πE)−H(πE)

(
ϵ(πE , T) + γ(N)

)

To optimize the performance bound, we introduce a constrained privileged expert that provides
actions similar to the privileged expert but is constrained to be close to realizable.
Definition B.5 (Constrained Privileged Expert). Given a state st and history ht, a constrained
privileged expert minimizes KL distance to the privileged expert while being in a δ KL ball of the
non-privileged expert.

πE
δ (.|st, ht) := argmin

π̃
KL
(
π̃(.|st, ht)||πE(.|st)

)
s.t. KL

(
π̃(.|st, ht)||πE(.|ht)

)
≤ δ (11)

We use the fact that we have a rich policy class Π that includes the non-privileged expert πE(.|h), to
show that the constrained privileged expert bounds the average realizability gap

ϵ(πE
δ , T) = sup

π

1

T

T∑
t=1

Est,ht∼dπ
t
||πE

δ (at|st)− π⋆(at|ht))||1

≤ sup
π

1

T

T∑
t=1

Est,ht∼dπ
t

√
2KL(πE

δ (at|st)||π⋆(at|ht))

≤ sup
π

1

T

T∑
t=1

Est,ht∼dπ
t

√
2KL(πE

δ (at|st)||πE(at|ht)) since πE(.|ht) ∈ Π

≤
√
2δ from (11)

(12)

19

Theorem B.6 (LEAP with Constrained Privileged Expert). Running N iterations of LEAP with
constrained privileged expert πE

δ yields at least one policy π such that

1

T
J(π) ≥ 1

T
J(πE)−

 1

T

(
J(πE)− J(πE

δ)
)︸ ︷︷ ︸

gap from privileged expert

+H(πE
δ)

 √
2δ︸︷︷︸

realizability

+γ(N)

 (13)

where πE is the privileged expert, H(πE
δ) is the recoverability coefficient of πE

δ , δ is the KL constraint,
γ(N) is the average regret of the DAGGER update.

The first term is the performance gap between the privileged and the constrained privileged expert.
The second term is the realizability of the constrained privileged expert. As δ → 0, the realizability
gap goes down while the performance gap and recoverability coefficient go up. There is a critical
value of δ that achieves an optimal tradeoff.

Proof. The proof is similar to Theorem B.4 but with the modification that πE depends on both state
and history.

The PDL in this case can be expressed as

J(πE)− J(π) =

T∑
t=1

Est,ht∼dπ
t

[∑
at

AπE

(st, ht, at)
(
πE(at|st, ht)− π(at|ht)

)]
(14)

DAGGER (Ross et al., 2011) with πE
δ as the expert teacher guarantees that after N iterations, it will

find at least one policy

Es,h∼dπ ||π(.|h)− πE
δ (.|s, h)||1 ≤ Es,h∼dπ ||π⋆(.|h)− πE

δ (.|s, h)||1 + γ(N) (15)

where γ(N) is the average regret.

AIG(π, T) =
1

T

(
J(πE)− J(π)

)
=

1

T

(
J(πE)− J(πE

δ)
)
+

1

T

(
J(πE

δ)− J(π)
)

=
1

T

(
J(πE)− J(πE

δ)
)
+

1

T

T∑
t=1

Est,ht∼dπ
t

[∑
at

AπE
δ (st, ht, at)

(
πE
δ (at|st, ht)− π(at|ht)

)]
(From (14))

≤ 1

T

(
J(πE)− J(πE

δ)
)
+ ||AπE

δ (., ., .)||∞
1

T

T∑
t=1

Est,ht∼dπ
t
||π(.|ht)− πE

δ (.|st, ht)||1 (Holder’s Inequality)

≤ 1

T

(
J(πE)− J(πE

δ)
)
+H(πE

δ)
1

T

T∑
t=1

Est,ht∼dπ
t
||π(.|ht)− πE

δ (.|st, ht)||1

≤ 1

T

(
J(πE)− J(πE

δ)
)
+H(πE

δ)

(
1

T

T∑
t=1

Est,ht∼dπ
t
||π⋆(.|ht)− πE

δ (.|st, ht)||1 + γ(N)

)
From (15)

≤ 1

T

(
J(πE)− J(πE

δ)
)
+H(πE

δ)
(
ϵ(πE

δ , T) + γ(N)
)

≤ 1

T

(
J(πE)− J(πE

δ)
)
+H(πE

δ)
(√

2δ + γ(N)
)

From (12)

Rearranging, we get

1

T
J(π) ≥ 1

T
J(πE)−

(
1

T

(
J(πE)− J(πE

δ)
)
+H(πE

δ)
(√

2δ + γ(N)
))

20

B.2 PRACTICAL APPROXIMATION FOR CONSTRAINED PRIVILEGED EXPERT

Writing out the Lagrangian of the constrained privileged expert (Def. B.5) and solving for the primal
we get:

πE(ρ, a|s, h) = 1

Z(s, h)
πE(ρ, at|st)

(
πE(ρ, at|ht)

)λ
(16)

where λ is the Lagrange multiplier.

For a fixed multiplier λ, this closed-form expression suggests a simple penalty-method approximation
to constrained privileged expert:

1. Sample N responses from both πE(ρ̃, ã|ρ, a, h, s) and πE(ρ̃, ã|ρ, a, h) to create R =
{ρ̃i, ãi}Ni=1

2. Reweigh the responses inR according to

log πE(ρ̃, ã|ρ, a, h, s) + λ log πE(ρ̃, ã|ρ, a, h) (17)

3. Sample from the reweighed distribution.

Since the majority of our experiments involve closed-weights models (like gpt-4o), we are unable
to access the logits of the expert. Instead, we design LEAP prompts to approximate the constrained
privileged expert by providing instructions to not reveal the privileged information in the reasoning,
and provide general reason and actions that should be predictable given only history ht.

C ADDITIONAL ABLATIONS

C.1 LEAP VS SFT WITH PRIVILEGED INFORMATION

To investigate whether LEAP’s performance gains primarily arise from the use of privileged infor-
mation, we introduce a new baseline, SFT-privileged. This baseline collects demonstrations from a
privileged teacher that has access to the same privileged information as LEAP and trains a student
policy using Supervised Fine-Tuning (SFT). This follows the context distillation approach Snell et al.
(2022), where privileged information is incorporated into the teacher’s context and distilled into the
student policy. To ensure a fair comparison, we use the same prompt structure as LEAP, preventing
the teacher from explicitly revealing privileged information to the student.

Model %suc↑ #act↓ #act|succ↓
LEAP SFT-privileged 42.5 20.8 8.4
LEAP LEAP π0 65.7 18.6 12.7
LEAP LEAP π1 91.0 11.9 10.1

Table 4: Performance Comparison: Success rate and action effi-
ciency across models.

Key Observations: (1) The SFT-
privileged baseline achieves a success
rate of 42.5%, which is significantly
lower than LEAP (Iter 0: 65.7%, Iter
1: 91.0%). (2) When successful, SFT-
privileged requires fewer actions (8.4)
compared to LEAP (Iter 0: 12.7, Iter
1: 10.1).

Explanation: At training time, the
privileged teacher always provides successful demonstrations, offering general reasoning (e.g.,
“Cellphones are commonly found on desks”) and using privileged information to locate objects and
complete tasks. The SFT-privileged student is trained exclusively on these successful demonstrations.
At test time, if the student’s reasoning is correct, it successfully mimics the teacher with an optimal
action count (8.4). Having been trained only on successful demonstrations, it lacks the ability to
handle failure cases. For example, it might hallucinate incorrect objects or repeatedly visit the same
location. This inability to recover leads to a significantly lower success rate (42.5%)

Summary: The improved performance of LEAP is driven not just by privileged information but by
two key components: (1) On-policy corrections: On-policy corrections enable the student to recover
from errors, as demonstrated by the significant improvement over the SFT-privileged baseline (91.0%
vs. 42.5%). (2) Realizable corrections: Realizable corrections, where the teacher avoids revealing
privileged information, also play a critical role in LEAP’s performance. Ablations show a substantial
drop when realizable corrections are removed (91.0% vs 5.2%).

21

Model Score↑ #act↓ r_att r_option r_type r_price

LEAP iter 0 29.4 21.1 28.0 25.8 35.0 36.8
LEAP iter 1 36.8 18.7 36.6 33.0 44.2 45.2
LEAP iter 2 39.8 18.4 39.9 31.7 48.1 51.0

Table 5: Self-correction on WebShop: LEAP self-improves a Llama3-8B model, where the teacher is a
privileged version of the student.

Model %succ↑ #act↓ Pick Clean Heat Cool Look Pick 2

LEAP ALFWORLD only iter0 65.7 18.6 66.7 74.2 73.9 66.7 66.7 35.3
LEAP ALFWORLD only iter1 91.0 11.9 83.3 90.3 91.3 95.2 94.4 94.1
LEAP COMBINED iter0 64.2 18.4 62.5 80.6 69.6 61.9 55.6 41.2
LEAP COMBINED iter1 91.0 11.9 87.5 90.3 82.6 95.2 100.0 94.1

Table 6: ALFWorld Results: Success rates and per-task performance across different iterations.

Model Score↑ #act↓ r_att r_option r_type r_price

LEAP WEBSHOP only iter0 29.4 21.1 28.0 25.8 35.0 36.8
LEAP WEBSHOP only iter1 51.8 16.7 60.0 16.1 73.4 78.4
LEAP COMBINED iter0 21.3 22.6 16.6 29.7 38.4 21.5
LEAP COMBINED iter1 37.9 20.1 42.9 17.1 52.2 56.8

Table 7: WebShop Results: Performance comparison across iterations for WebShop tasks.

C.2 LEAP SELF-CORRECTION ON WEBSHOP

On WebShop, we observe that self-correction consistently improves performance across iterations,
increasing from 29.4 to 36.8 and to 39.8 (Table 5). However, the performance gains are lower
when using a Llama-8B teacher compared to a GPT-4o teacher. This is in line with our hypothesis
that for environments like Webshop, where the privileged information is not as rich as ALFworld,
the performance improvements do depend on the strength of the teacher to provide meaningful
corrections.

C.3 LEAP TRAINING ON ALL DATA

We run an experiment where we trained a single model on combined datasets (called COMBINED).
To do so, we downsample ALFWorld dataset to be in the same order as Webshop. We run LEAP
for two iterations and present results in Tables 6, 7 comparing to models trained on individual
benchmarks.

We make the following observations: (a) LEAP shows similar magnitude of improvement when
trained on all datasets compared to when trained on individual datasets (on ALFWorld 64.2 -> 91.0,
on Webshop 21.3 -> 37.9). COMBINED model matches ALFWorld performance compared to a
model trained on ALFWORLD only. (b) COMBINED model scores lower on Webshop compared to
Webshop only. We attribute this to a mismatch in dataset size even after downsampling. However, the
magnitude of improvement of LEAP is the same for both models.

D EXPERIMENTAL DETAILS

D.1 HYPER-PARAMETERS

D.1.1 TRAINING PARAMETERS

Tables 8 and 9 contain hyperparameters for SFT training and DPO/KTO training using LoRA for the
different datasets. All training runs were on machines with either 2 or 4 RTX A6000 GPUs, each
with 48 GB of memory per GPU.

22

Dataset AlfWorld WebShop InterCode
Model Llama3-8B Llama3-8B Llama3-8B / Llama3-70B
Batch size 64 16 16
Max seq length 8000 6000 6000
Max epochs 1 1 5
Learning rate 3e-5 3e-5 3e-5
LoRA α 64 64 64
LoRA r 128 128 128
LoRA dropout 0.05 0.05 0.05
Optimizer AdamW AdamW AdamW
LR scheduler cosine cosine cosine

Table 8: Hyperparameters for SFT training using LoRA

Method DPO KTO
Model Llama3-8B Llama3-8B
Batch size 32 64
Max seq length 8000 8000
Max prompt length 6000 6000
Max epochs 1 1
Regularization β 0.01 0.01
Learning rate 5e-7 5e-7
LoRA α 64 64
LoRA r 128 128
LoRA dropout 0.05 0.05
Optimizer AdamW AdamW
LR scheduler cosine cosine

Table 9: Hyperparameters for preference training (DPO, KTO) using LoRA

D.1.2 EVALUATION PARAMETERS

For inference using Llama3-8b and Llama3-70b, we use a temperature setting of 0.3 and a
maximum token length of 256. The following code snippet shows the .generate() function used:� �
outputs = model.generate(

tokenized_inputs["input_ids"],
attention_mask=tokenized_inputs["attention_mask"],
max_new_tokens=256,
eos_token_id=[

tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>"),

],
temperature=0.3,
pad_token_id=self.tokenizer.eos_token_id

) �
 	
Listing 1: Generation function with hyperparameters for Llama3 models

For all OpenAI model calls, including tasks such as generating expert teacher corrections, labeling
reasoning for actions, or running prompt baselines like ReAct, we use the API call with the following
hyperparameters. See Appendix E for the detailed prompts.� �
model: gpt-4o
chat_completion = client.chat.completions.create(

messages=messages,
model="gpt-4o",

23

temperature=0.3,
top_p=1,
n=1

)
response = chat_completion.choices[0].message.content

model: gpt-4o-mini
chat_completion = client.chat.completions.create(

messages=messages,
model="gpt-4o-mini",
temperature=0.3,
top_p=1,
n=1

)
response = chat_completion.choices[0].message.content �
 	

Listing 2: Hyperparameters for OpenAI GPT-4o and GPT-4o-mini models

D.2 ALFWORLD

ALFWorld (Shridhar et al., 2020b) is a text-based game built on the ALFRED embodied benchmark
(Shridhar et al., 2020a). Each task has a high-level objective, e.g. “heat mug and put it in cabinet”
which the agent must complete by navigating and interacting with a virtual household through text
commands, e.g. go to shelf 1, pick up mug 2, etc. It is a POMDP where the hidden state is the
location of all objects, and the observations reveal only the objects the agent can see. To solve it, the
agent must plan subgoals, track progress, and explore efficiently till time runs out. An interesting
aspect of ALFWorld is the requirement to infer the likely locations of household objects (e.g. mugs
are more likely to be on shelves or cabinets), which the agent can learn from interaction with the
environment. There are 6 categories of tasks and two datasets: 139 in-distribution games and 134
out-of-distribution games. Time horizon is limited to 30.

We compare against ReAct (Yao et al., 2022b) with different base models and prompts. The original
ReAct paper (Yao et al., 2022b) used text-davinci-002 with task-dependent in-context examples. We
run ReAct wtug gpt-4o and gpt-4o-mini and an instruction prompt that is shared by all our
methods. We also compare against BUTLER (Shridhar et al., 2020b), a seq2seq BERT model trained
using DAGGER.4

We LoRA fine-tune Llama-3-8B model using gpt-4o as the expert teacher for 4 iterations. We
use observation-action demonstrations on the training dataset of 3257 gamesShridhar et al. (2020b),
which we annotate with gpt-4o to generate reasons and use this to train the BC policy π0. We then
roll out a policy and generate corrections from the privileged expert on unsuccessful rollouts. The
correction data is then aggregated with the existing dataset and used to train a policy using SFT.

The privileged state in ALFworld consists of

1. Task: What is the overall task
2. Essential Objects: Enumerate all objects that are necessary to solve the game.
3. Critical Locations: List the important locations involved in the game solution.
4. Optimal Action Sequence: Suggest an optimal sequence of actions that could theoretically

minimize the steps needed to complete the game, based on the log provided. Be sure to copy
the action verbatim.

D.3 WEBSHOP

WebShop (Yao et al., 2022a) is an online shopping environment consisting of 1.18 million real-world
products and 12, 586 human-provided instructions. Each task is a shopping request from a user (“I
need a gluten-free bacon, 4 oz pack of 2, priced under $50”) that the agent has to solve through a
4 Since we look at the single trial setting, it rules out approaches like Reflexion (Shinn et al., 2023) where agents
require multiple trials on the same game.

24

set of interactions (search[“gluten-free bacon”] or selecting options such as "4 oz pack of 2"). The
metrics are the overall score, and 4 components of the score: whether the attributes match (ATT),
whether the options match (OPT), whether the product types match (TYPE) and whether the price
matches (PRICE). We evaluate on 500 test instructions, and limit time horizon to 30.

We compare against ReAct (Yao et al., 2022b) with different base models like GPT-4o and GPT-
4o-mini. We use the same instruction prompt as in LEAP. We also compare against IL baseline in
WebShop (Yao et al., 2022a) trained using BC. These baselines train two different selection models,
one for selecting search queries from a list of options and one for clicking from a list of options. This
constraint search space simplifies the problem.

We LoRA fine-tune Llama-3-8B model using GPT4-o as the expert teacher for 4 iterations. We
initialize π0 using observation-action demonstrations from Yao et al. (2022a) which we annotate with
GPT4-o to generate reasons. We roll-out policies on the training dataset of 12086 tasks, and generate
corrections from the privileged expert on unsuccessful rollouts. For every game in the training dataset,
we construct privileged information that contains: the attributes the product must satisfy, the price
constraint, the option that has to be selected, and an example product that would satisfy all criteria.
The correction data is then aggregated with the existing dataset and used to train a policy using SFT.

The privileged state in ALFworld consists of

1. Task: What is the user instruction

2. Attributes: What are the attributes the product must have

3. Price: What price constraints must the product satisfy.

4. Example Product: Name of a product that satisfies all criteria.

D.4 INTERCODE

Intercode Yang et al. (2024) is an interactive coding environment, where an agent interacts with a
compiler/interpreter to execute its code and submit further refinements. We use the Bash environment,
where a typical task is “Find all text files and write their names to a single file.”, and the agent issues
commands like ls, find .. to solve the task. Intercode builds on the NL2Bash (Lin et al., 2018) to
create 4 interactive datasets. We use the first 2 for training, and the next 2 for testing. We limit the time
horizon to 10. We compare against ReAct Yao et al. (2022b) with gpt-4o and gpt-4o-mini.
We also compare against the top 3 entries on the Intercode leaderboard, which are the TryAgain
baselines from Yang et al. (2024) with gpt-4, gpt-3.5 and CodeLlama-34B-INST respectively.
Note the numbers are directly from the leaderboard which evaluates on all (train+test) data and, while
our numbers are only on test.

E PROMPTS

We define the following three prompts across all datasets:

1. Expert corrections template: This prompt is used by the LLM expert teacher to provide
corrections on the student agent’s trajectories. These corrections offer improved reasoning
and actions that balance the trade-off between utilizing the privileged state (accessible only to
the expert during training) and ensuring the corrections are realizable by the student agent.

2. Student agent template: This prompt is used during test time by the Llama3 student agent
models to generate reason and action trajectories that achieve the task objective. It is also
used for prompting baselines, such as GPT-4 or ReAct, which generate reasoning and action
trajectories to achieve the task objectives.

3. Autolabel reasons template: For datasets that contain human demonstrations with action
labels (like AlfWorld, WebShop), this prompt is used to generate reasoning annotations for
actions that the human took. Generating reasons is necessary as the student agent needs to be
trained to produce both reason and actions in its output trajectories.

For prompts used in different ablation studies, please refer to the accompanying code.

25

E.1 ALFWORLD

E.1.1 EXPERT CORRECTIONS TEMPLATE� �
{% if system %}
You are given a trajectory containing observations, reason and actions

generated by a student agent solving a text world game. You are a
teacher who has access to a "privileged state" that contains secret
information sufficient to solve the game but is hidden from the
student. Your goal is to improve how the student solves the game by
improving their reason and action at every timestep.

Input
You will be provided with a JSON file that logs the student agent’s

observation, candidate_actions, reason and action at every timestep
while playing a text-based game. The student fails to solve the
task within the time horizon of the game.

The structure is an array of objects, containing the following at each
timestep:

- timestep: Index of the current timestep
- observation: The observation provided to the student agent
- candidate_actions: The set of allowed actions
- reason: The reason generated by the student agent to justify their

action
- action: The action taken by the student agent

You will also be provided the privileged state that contains hidden
information that specifies how to solve the task.

Task
* Analyze the student trajectory and summarize the mistakes it is

making when trying to solve the game
* Refer to your privileged state to know how the game can be solved
* Generate IMPROVED reason and action for the student at every timestep

to guide them towards the goal
* Base your improved reasons solely on the student’s historical

observations and actions up to each timestep
* Do NOT include any information from your privileged state in the

improved reasons, as the student does not have access to those
* Offer GENERAL principles or hints in your improved reasons that

explain why the student should prefer your suggested action over
their original action. This would help the student generalize
better.

* When generating improved reason, action at timestep t, assume that
the student has followed their original trajectory up until
timestep t. Copy over the original observation at timestep t from
the student trajectory.

* When generating improved action at timestep t, make sure the action
is available in the candidate_actions at timestep t. Don’t select
an action that is not available.

Important: Provide GENERAL principles or hints in your improved reasons
that explain why the student should prefer your suggested action
over their original action.

* If you know from your privileged state that an object is in a
different location from where the student is exploring, use common
sense rationale to guide the student

* Do not directly instruct the student to go to the desired location,
as they do not have access to the privileged information you
possess

* For example, if the student is exploring the wrong area, instead of
stating the object is in a different location, suggest a general

26

principle like, "It might be useful to explore areas because ... ",
".. this item is often found in such places", etc

* By following these steps, you help the student understand the logic
behind the actions without revealing privileged information

* Also note that you cannot carry more than one item at a time

Output
The output is a JSON containing a summary and a trajectory with the

same length as the input student trajectory as follows:
‘‘‘json
{

"summary": your summary of the mistakes the student is making,
"trajectory": [
{

"timestep": Index of the current timestep,
"original_observation": The original observation made by

student agent at timestep t (copy as is from student trajectory),
"original_reason": The original reason generated by the student

at timestep t (copy as is from student trajectory),
"original_action": The original action the student took at

timestep t (copy as is from student trajectory),
"corrected_reason": The corrected reason that the student

should generate,
"corrected_action": The corrected action that the student

should take (chosen from list of candidate_actions at timestep t)
},
{

...
}
...
]

}
‘‘‘
{% endif %}
{% if not system %}
The student trajectory is below:
{{student_trajectory}}

The privileged state for the task is below:
{{privileged_state}}

Provide the ### Output in the JSON format specified above.
{% endif %}
""" �
 	

E.1.2 STUDENT AGENT TEMPLATE� �
{% if mode == ’input’ %}
You are an intelligent assistant named ALFRED in a text-based

interactive game called TextWorld. Your objective is to complete
the given tasks by reasoning through the information provided and
taking appropriate actions.

Your task is the following:
{{task}}

Below is the history of previous observations and actions:
{{ observation_action_history }}

Given the history of previous observation and action above, a reminder
that your task is:

27

{{task}}

You are given as input the current observation and the list of possible
candidate_actions:

{
"observation": {{observation}},
"candidate_actions": {{candidate_actions}}

}

Your goal is to generate the action to take at this time step (chosen
from candidate_actions) along with the reason for taking the action
.

Please follow these general instructions:
* You MUST choose action from the list of candidate_actions.
* If "observation": "Nothing happens.", it is because you chose an

invalid action not from the list of candidate_actions in the
previous timestep.

* Oftentimes the task requires you interact with objects not present in
your observation. You must search the environment to locate the
objective.

* Consult the history of previous observations and actions to see what
actions you have tried already so as to not repeat your actions.

* Do NOT repeat the same action as the last action in your
observation_action_history. It’s going to yield the same result.

* Make sure action is VERBATIM copied from the list of
candidate_actions.

You need to generate a response in the following format. Please issue
only a single action at a time.

REASON:
Rationale for what action to take next based on the task and previous

history. In your reason, consult candidate_actions to precisely
state VERBATIM which action you will do.

ACTION:
The action to be taken, chosen ONLY from candidate_actions
{% elif mode == ’output’ %}
REASON:
{{ reason }}
ACTION:
{{ action }}
{% endif %} �
 	

E.1.3 AUTOLABEL REASONS TEMPLATE� �
{% if system %}
You are given a JSON file containing observations and actions generated

by an expert agent solving text world games. Your goal is to
generate the reasoning process of the agent to justify each of
their actions.

Input
The input is a JSON array of objects, each containing:
- ‘observation‘: The state observed by the agent at a specific timestep

.
- ‘action‘: The action taken by the agent in response to the

observation.

Example input format:
‘‘‘json
[

28

{
"observation": "You see a locked door.",
"action": "Use key on door."

},
...

]
‘‘‘

Output
The output should be a JSON array of objects, each containing:
- ‘observation‘: The state observed by the agent at a specific timestep

.
- ‘reason‘: The reasoning behind the action taken by the agent.
- ‘action‘: The action taken by the agent in response to the

observation.

Example output format:
‘‘‘json
[

{
"observation": "You see a locked door.",
"reason": "The door is locked and I have a key that might open

it.",
"action": "Use key on door."

},
...

]
‘‘‘

Requirements
1. **Causal Constraints**: Ensure the reasoning satisfies causal

constraints. Use only the observations up to the current timestep
to justify the action. Do not use future information.

2. **Brevity and Relevance**: The reasoning should be brief and
relevant, using the observations up until that timestep to justify
the action.

3. **Sequence Consistency**: Ensure the output maintains the same
sequence of observations and actions as in the input.

{% endif %}

{% if not system %}
The input JSON file is below:
{{input}}

Provide the output in the format specified above.
{% endif %} �
 	

E.2 WEBSHOP

E.2.1 EXPERT CORRECTIONS TEMPLATE� �
{% if system %}
You are given a trajectory containing observations, reason and actions

generated by a student agent solving a shopping task by searching
for items in a website and clicking on links. You are a teacher who
has access to a "privileged state" that contains secret
information sufficient to solve the task but is hidden from the
student. Your goal is to improve how the student solves the task by
improving their reason and action at every timestep.

Input

29

You will be provided with a JSON file that logs the student agent’s
observation, candidate_actions, reason and action at every timestep
while solving a shopping task. The student fails to solve the task
within the time horizon of the task.

The structure is an array of objects, containing the following at each
timestep:

- timestep: Index of the current timestep
- observation: The observation provided to the student agent
- candidate_actions: The set of allowed actions
- reason: The reason generated by the student agent to justify their

action
- action: The action taken by the student agent

You will also be provided the privileged state that contains hidden
information that specifies how to solve the task.

Task
* Analyze the student trajectory and summarize the main mistakes it is

making when trying to solve the task
* Refer to your privileged state to know how the task can be solved
* Correct a select set of timesteps where you know the student was

definitely doing a wrong action
* Generate IMPROVED reason and action for the student at every timestep

to guide them towards the goal
* Base your improved reasons solely on the student’s historical

observations and actions up to each timestep
* Do NOT include any information from your privileged state in the

improved reasons, as the student does not have access to those
* Offer GENERAL principles or hints in your improved reasons that

explain why the student should prefer your suggested action over
their original action. This would help the student generalize
better.

* When generating improved reason, action at timestep t, assume that
the student has followed their original trajectory up until
timestep t. Copy over the original observation at timestep t from
the student trajectory.

* When generating improved action at timestep t, make sure the action
is available in the candidate_actions at timestep t. Don’t select
an action that is not available. If candidate_actions has only
click actions, you can only choose a click action from the list. If
candidate_actions has only search[<search query>], you must search
by generating the search keywords on your own.

Important:
(1) Provide GENERAL principles or hints in your improved reasons that

explain why the student should prefer your suggested action over
their original action.

* If you know from your privileged state that the desired product is
different from the one the student is considering, use common sense
rationale to guide the student

* Do not directly instruct the student to search the ground truth
product, as they do not have access to the privileged information
you possess

* By following these steps, you help the student understand the logic
behind the actions without revealing privileged information

(2) Put corrections sparingly.
* Be strategic about which timesteps you want to correct.
* If you think an action is good enough or reasonable, don’t bother

correcting. Just copy over the original reason and action.

(3) Correct indecisive behavior of the student agent
* Often times, you will see the student agent not finishing the task

and instead continually browsing through items.

30

* Provide corrections at key moments to help it resolve indecisiveness.
* It’s better to purchase a suboptimal item than not finish the task

within the time horizon.
* The student gets partial points for matching a subset of the criteria

in the instruction. They get 0 points for not finishing the task
in the time horizon (max timesteps in student trajectory)

(4) Considerations for search.
* Specifying prices in search does not work. Other specifications are

fine.
* Only correct egregious failures in search queries, e.g. searching for

a specification not mentioned in the instruction. Otherwise search
usually does not require any correction.

(5) Considerations for click.
* When suggesting corrected_action, make sure this action exists in the

list of candidate_actions at that timestep.

Output
The output is a JSON containing a summary and a trajectory with the

same length as the input student trajectory as follows:
‘‘‘json
{

"summary": your summary of the mistakes the student is making,
"trajectory": [
{

"timestep": Index of the current timestep,
"is_corrected": True/False depending on whether this timestep

is corrected or not
"corrected_reason": The corrected reason that the student

should generate. If is_corrected=False, copy over original reason.
,

"corrected_action": The corrected action that the student
should take (chosen from list of candidate_actions at timestep t).
If is_corrected=False, copy over original action. If click action,
make sure corrected_action belongs to list of candidate_actions at
the corresponding timestep in input student_trajectory.
},
{

...
}
...
]

}
‘‘‘
{% endif %}
{% if not system %}
The student trajectory is below:
{{student_trajectory}}

The privileged state for the task is below:
{{privileged_state}}

Provide the ### Output in the JSON format specified above.
{% endif %} �
 	

E.2.2 STUDENT AGENT TEMPLATE� �
{% if mode == ’input’ %}
You are an intelligent shopping agent. Your objective is to solve

shopping tasks by searching for items in a website, clicking on
links until you solve the task.

31

Below is the history of previous observations and actions:
{{ observation_action_history }}

You are given as input the current observation that contains
instructions for the task and contents of the current webpage. You
are also given a list of possible candidate_actions:

{
"observation": {{observation}},
"candidate_actions": {{candidate_actions}}

}

Your goal is to generate the action to take at this time step along
with the reason for taking the action.

Please follow these general instructions:
* You MUST choose action from the list of candidate_actions. If

candidate_actions has only click actions, you can only choose a
click action from the list. If candidate_actions has only search[<
search query>], you must search by generating the search keywords
on your own.

* When choosing a search action, you MUST follow the format search[<
search query>]

* Choose search keywords that are informative but not too specific or
too broad. Examples of search:

search[6 foot coaxial cable, pack of 3]
search[satin brass frosted hallway light fixture]
* When choosing click action, make sure action is VERBATIM copied from

the list of candidate_actions. Examples of click:
click[satin brass | frosted]
click[buy now]
* Often times the task requires you to find objects not in the current

webpage. You must search the webpages to locate the object and
verify it indeed matches the specifications in the instructions. If
not, go back and refine your search.

* Consult the history of previous observations and actions to see what
actions you have tried already so as to not repeat your actions.

* Do NOT repeat the same action as the last action in your
observation_action_history. It’s going to yield the same result.

* When choosing click action, make sure action is VERBATIM copied from
the list of candidate_actions.

* Important: You must try to finish the task and click on buy now as
quickly as possible. It’s better to purchase a suboptimal item than
not finish the task within the time horizon. You get partial
points for matching a subset of the criteria in the instruction.
You get 0 points for not finishing the task in the time horizon (
typically 20 timesteps).

You need to generate a response in the following format. Please issue
only a single action at a time.

REASON:
Rationale for what action to take next based on the task and previous

history. In your reason, consult candidate_actions to precisely
state VERBATIM which action you will do.

ACTION:
The action to be taken, chosen ONLY from candidate_actions
{% elif mode == ’output’ %}
REASON:
{{ reason }}
ACTION:
{{ action }}
{% endif %} �
 	

32

E.2.3 AUTOLABEL REASONS TEMPLATE� �
{% if system %}
You are given a trajectory containing observations and actions

generated by an agent solving a web shopping task. Your goal is to
generate the reasoning process that the agent must have been
thinking at each timestep to justify each of their actions.

Input
You will be provided with a JSON file that logs the agent’s observation

and action at every timestep while solving the web shop task.

The structure is an array of objects, containing the following at each
timestep:

- timestep: Index of the current timestep
- observation: The instruction the agent has to solve and the current

webpage observed by the agent at a specific timestep.
- action: The action taken by the agent.

Task
* Analyze the agent trajectory
* Generate reason for the agent at every timestep. The reason should be

in first person, e.g. "I should .."
* Base your generated reason solely on the historical observations and

actions up to each timestep
* Offer GENERAL principles or hints in your reasons that explain why

the agent took the action
* For example, if the agent is backtracking by clicking on previous,

explain why that is the case
* Do NOT include any information from future observations as the agent

does not know the future at that time
* Ensure the output maintains the same sequence of actions as in the

input.
* In your REASON, be sure to provide detailed justification for the

action. If candidate_actions has only click actions, specify which
option from the list are you choosing as your action.

* Often times, the task requires you to select both a product and
specific options for that product. Be sure to justify why you are
selecting a particular option for a product by referring to the
task in your observation.

* Often times, the agent settles for an option even though it may not
be exactly optimal. This is because the agent has a fixed time
horizon within which they must click buy now. Ensure that your
reason rationalizes why it’s good to finish the task by clicking on
buy now.

Output
The output is a trajectory represented as a JSON array of objects with

the same length as the input trajectory as follows:
‘‘‘json
[

{
"timestep": Index of the current timestep,
"reason": A reason to justify the action given observation and

action up until the current timestep
"action": The action taken by the agent (copy as is from input

trajectory)
},
...

]
{% endif %}
{% if not system %}
The input trajectory is below:

33

{{input}}

Provide the ### Output in the JSON format specified above.
{% endif %} �
 	

E.3 INTERCODE

E.3.1 EXPERT CORRECTIONS TEMPLATE� �
{% if system %}
You are given a trajectory containing observations, reason and actions

generated by a student agent interacting with a MySQL Database
system using sql queries to answer a question. You are a teacher
who has access to a "privileged state" that contains secret
information sufficient to solve the task but is hidden from the
student. Your goal is to improve how the student solves the task by
improving their reason and action at every timestep.

Input
You will be provided with a JSON file that logs the student agent’s

observation, reason and action at every timestep while solving a
shopping task. The student fails to solve the task within the time
horizon of the task.

The structure is an array of objects, containing the following at each
timestep:

- timestep: Index of the current timestep
- observation: The observation provided to the student agent
- reason: The reason generated by the student agent to justify their

action
- action: The action taken by the student agent

You will also be provided the privileged state. The privileged state
contains an example of an optimal SQL command to solve the task and
the expected observation that solves the task. Note that it is the
observation that the student gets evaluated on. Multiple possible
actions can lead to that observation.

Task
* Analyze the student trajectory and summarize the main mistakes the

student is making when trying to solve the task.
* Refer to your privileged state to understand how the task can be

solved optimally.
* Correct a select set of timesteps where the student’s action is

clearly wrong.
* Generate **IMPROVED REASONS** and **ACTIONS** for the student at each

timestep to guide them towards the goal. The improved reason
should be framed as if it is the student’s new reasoning, e.g., "I
should ...".

* The improved reason and action are intended to replace the student’s
original reason and action at that timestep. Do NOT refer to the
original incorrect reason and action when generating improved
reason and action.

* Base your improved reasons solely on the student’s historical
observations and actions up to that timestep.

* Do NOT include any information from your privileged state in the
improved reasons, as the student does not have access to that
information.

* Offer general principles or hints in your improved reasons that
explain why the student should prefer your suggested action over
their original action. This would help the student generalize
better.

34

* When generating an improved reason and action at timestep ‘t‘, assume
the student followed their original trajectory up until timestep ‘
t‘.

Important:
(1) Provide **GENERAL principles or hints** in your improved reasons.
* If you know from your privileged state that a particular set of

tables should be queried to solve the task, suggest reasons and
actions that guide the student to first discover those tables.

* Do not directly instruct the student to output the privileged action,
as they do not have access to privileged information.

* By following these steps, you help the student understand the logic
behind the actions without revealing privileged information.

(2) Apply corrections sparingly.
* Be strategic about which timesteps you choose to correct.

Output
The output is a JSON containing a summary and a trajectory with the

same length as the input student trajectory as follows:
‘‘‘json
{

"summary": your summary of the mistakes the student is making,
"trajectory": [
{

"timestep": Index of the current timestep,
"original_reason": The original reason generated by the student

at timestep t (copy as is from student trajectory),
"original_action": The original action the student took at

timestep t (copy as is from student trajectory),
"is_corrected": True/False depending on whether this timestep

is corrected or not,
"corrected_reason": The corrected reason that the student

should generate at timestep t. If is_corrected=False, leave blank ,
"corrected_action": The corrected action that the student

should take at timestep t. If is_corrected=False, leave blank
},
{

...
}
...
]

}
‘‘‘
{% endif %}
{% if not system %}
The student trajectory is below:
{{student_trajectory}}

The privileged state for the task is below:
{{privileged_state}}

Provide the ### Output in the JSON format specified above.
{% endif %} �
 	

E.3.2 STUDENT AGENT TEMPLATE� �
{% if system %}
You are given a trajectory containing observations, reason and actions

generated by a student agent interacting with a MySQL Database
system using sql queries to answer a question. You are a teacher

35

who has access to a "privileged state" that contains secret
information sufficient to solve the task but is hidden from the
student. Your goal is to improve how the student solves the task by
improving their reason and action at every timestep.

Input
You will be provided with a JSON file that logs the student agent’s

observation, reason and action at every timestep while solving a
shopping task. The student fails to solve the task within the time
horizon of the task.

The structure is an array of objects, containing the following at each
timestep:

- timestep: Index of the current timestep
- observation: The observation provided to the student agent
- reason: The reason generated by the student agent to justify their

action
- action: The action taken by the student agent

You will also be provided the privileged state. The privileged state
contains an example of an optimal SQL command to solve the task and
the expected observation that solves the task. Note that it is the
observation that the student gets evaluated on. Multiple possible
actions can lead to that observation.

Task
* Analyze the student trajectory and summarize the main mistakes the

student is making when trying to solve the task.
* Refer to your privileged state to understand how the task can be

solved optimally.
* Correct a select set of timesteps where the student’s action is

clearly wrong.
* Generate **IMPROVED REASONS** and **ACTIONS** for the student at each

timestep to guide them towards the goal. The improved reason
should be framed as if it is the student’s new reasoning, e.g., "I
should ...".

* The improved reason and action are intended to replace the student’s
original reason and action at that timestep. Do NOT refer to the
original incorrect reason and action when generating improved
reason and action.

* Base your improved reasons solely on the student’s historical
observations and actions up to that timestep.

* Do NOT include any information from your privileged state in the
improved reasons, as the student does not have access to that
information.

* Offer general principles or hints in your improved reasons that
explain why the student should prefer your suggested action over
their original action. This would help the student generalize
better.

* When generating an improved reason and action at timestep ‘t‘, assume
the student followed their original trajectory up until timestep ‘
t‘.

Important:
(1) Provide **GENERAL principles or hints** in your improved reasons.
* If you know from your privileged state that a particular set of

tables should be queried to solve the task, suggest reasons and
actions that guide the student to first discover those tables.

* Do not directly instruct the student to output the privileged action,
as they do not have access to privileged information.

* By following these steps, you help the student understand the logic
behind the actions without revealing privileged information.

(2) Apply corrections sparingly.
* Be strategic about which timesteps you choose to correct.

36

Output
The output is a JSON containing a summary and a trajectory with the

same length as the input student trajectory as follows:
‘‘‘json
{

"summary": your summary of the mistakes the student is making,
"trajectory": [
{

"timestep": Index of the current timestep,
"original_reason": The original reason generated by the student

at timestep t (copy as is from student trajectory),
"original_action": The original action the student took at

timestep t (copy as is from student trajectory),
"is_corrected": True/False depending on whether this timestep

is corrected or not,
"corrected_reason": The corrected reason that the student

should generate at timestep t. If is_corrected=False, leave blank ,
"corrected_action": The corrected action that the student

should take at timestep t. If is_corrected=False, leave blank
},
{

...
}
...
]

}
‘‘‘
{% endif %}
{% if not system %}
The student trajectory is below:
{{student_trajectory}}

The privileged state for the task is below:
{{privileged_state}}

Provide the ### Output in the JSON format specified above.
{% endif %} �
 	

37

	
	Introduction
	Preliminaries
	Approach
	Privileged Expert Teacher
	The LEAP Algorithm
	Analysis

	Experiments
	Overview of Results
	Domain 1: Text-based games
	Domain 2: Web agents
	Domain 3: Interactive Coding
	What is the trade-off between Privileged Information and Realizability?
	Can LEAP be used to self-correct a student?
	How does SFT compare to Preference Optimization?

	Related Work
	Limitations
	Appendix

	 Appendix
	Broader Impacts
	Analysis
	Trade-off between realizability and privileged information
	Practical approximation for constrained privileged expert

	Additional Ablations
	LEAP vs SFT with Privileged Information
	LEAP self-correction on Webshop
	LEAP training on all data

	Experimental details
	Hyper-parameters
	Training parameters
	Evaluation parameters

	ALFWorld
	WebShop
	Intercode

	Prompts
	AlfWorld
	Expert corrections template
	Student agent template
	Autolabel reasons template

	WebShop
	Expert corrections template
	Student agent template
	Autolabel reasons template

	InterCode
	Expert corrections template
	Student agent template

