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Abstract

The rapid development of time series forecasting research has brought many deep
learning-based modules in this field. However, despite the increasing amount of new
forecasting architectures, it is still unclear if we have leveraged the full potential
of these existing modules within an adequately designed architecture space. In
this work, we propose a novel hierarchical neural architecture search (NAS) for
time series forecasting tasks. With the design of a hierarchical search space, we
incorporate many architecture types designed for forecasting tasks and allow for
the efficient combination of different forecasting architecture modules. Results
on long-term-time-series-forecasting tasks show that our approach can search
for lightweight, high-performing forecasting architectures specific to different
forecasting tasks.

1 Introduction

Time series forecasting techniques are widely applied in different fields, e.g., energy consumption [45],
business [36], or traffic planning [27]. However, unlike computer vision (CV) and natural language
processing (NLP) tasks that are dominated by the CNN [19; 29; 55] and Transformer [7; 17; 34; 46]
families, there is no clearly dominating architecture in time series forecasting tasks. Although there
are lots of transformer-based approaches applied to forecasting models [4; 15; 49; 31; 54], many of
them might even be outperformed by a simple linear baseline [52].

The success of transformer models in CV and NLP tasks is based on their ability to capture long-term
dependencies with the help of tokens with fruitful semantic information, i.e., each word embedding
already contains lots of information, while an image patch with many pixels can already tell us a
lot of information. All this information relaxes the requirement for the models to grab the temporal
information within the input series. However, this information is usually crucial in time series
forecasting tasks, given that a single value at each time step only contains a limited amount of
information. The strong ability of the transformer family to capture long-term dependencies might
not compensate for its poor ability to build temporal connections within the input series. For example,
a simple linear layer could outperform many state-of-the-art transformer models Zeng et al. [52].

Some recent works show the efficiency of transformers [33; 37] on long-time forecasting tasks.
However, these approaches still cannot overcome the temporal dependencies issues for transformers.
For example, PatchTST [37] augments the information within each token by constructing a patch with
the data from multiple time steps, while iTransformer [33] simply encodes the entire input sequence
into a token and tries constructing the connections among different variables.

On the other hand, many architectures were constructed for mining the local dependencies, such as
CNNs [6; 35] and RNNs [20; 22]. These architectures might not work well on long-term dependencies
due to the limited receptive field for CNNs, latent bottlenecks [18], or vanishing gradients in the case
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of RNNs. Recent work such as ModernTCN [35] showed that an increased convolutional kernel size
and improved microarchitecture could lead to a more accurate model. However, this approach results
in a huge memory and computation consumption. Here we provide another perspective: we combine
these architectures with other operations, such as transformer layers, to develop a new architecture
that combines the best of two worlds [18; 26; 28].

Nevertheless, it is still unclear (i) which type of architecture we would like to construct, given the
variability of different forecasting models [16; 38; 42; 52] and (ii) how to connect different operations
to form a new architecture. Designing a new architecture from scratch for each task might take a lot
of human expert efforts and tedious trial-and-error. Neural architecture search (NAS) is a technique
that automatically searches for the optimal architecture given a new task.

Previous NAS frameworks mainly focused on single network backbones types such as CNN or
Transformer networks [9; 29; 55]. It is still unclear how to optimize the forecasting architectures due
to their internal complexity. For instance, an encoder-decoder architecture [49; 53] might work well
on some tasks, while the other tasks might prefer encoder-only architectures [33] or even MLP-only
architectures [38; 52]. This provides another challenge for designing a search space for time series
forecasting tasks. In this work, we will address this challenge by designing a unified search space for
time series forecasting tasks.

In this work, we design a hierarchical search space that contains most forecasting architecture design
decisions and allows any sort of architecture layers to be combined to form new architectures. This
search space is compatible with any existing NAS search strategy and we shown that by applying
DARTS to our search space, DARTS-TS, can robustly search for architectures that are comparable to
the state-of-the-art models with much less computation resource requirements.

2 Search Space Design

It is a common observation and an assumption of NAS that no single architecture family always
outperforms the others; based on our previous results of Deng et al. [16], we believe this also holds for
time series forecasting tasks. We are unlikely to find a single architecture that is best for all datasets.

The architectures applied to time series forecasting can be classified into the Seq Net and the Flat Net.
For a given input time series of size [L,D], where L is the time series length and D is the time
series dimension, Seq Nets are designed to handle this type of data format and generate another
time sequence of size [L,Dout] without destructing its format. Examples for Seq Net include RNN
families [11; 21] and Transformers [46]. Conversely, the Flat Net families need to decompose the
input sequence into a single vector [L×D] to fuse the information between different time steps. This
type of models include MLP layers [52] and N-BEATS [38]. Further details are under the appendix A.

We propose a hierarchical search space incorporating many forecasting architecture families. We will
start from the most basic operation level and gradually decrease the granularity until our search space
contains all the required components.

2.1 Operation Level

The first level, the operation level, describes the operations that can be used in the network. Our
search space follows the DARTS [30] search space, a cell-based architecture where each cell contains
multiple nodes. Each node represents a latent feature map, and the edges that connect the nodes are
the operations applied to the latent feature maps. Since Seq Net and Flat Net have different output
formats, and we cannot easily connect the two types of networks to each other, we design a search
space for each family individually.

2.2 Micro Network Level

The second level, the micro-network level, connects different cells to form the Flat Net and Seq Net
backbones.

Flat operations only receive the past information. Therefore, we stack several Flat cells as a Flat Net.
As shown in Figure 1a, the past targets are first transposed and then fed to the encoder layers. The
transposed target, i.e., the backcast part, and a zero tensor whose length is equal to the forecasting
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Figure 1: Micro-level search space design for Flat and Seq cells.

horizon, i.e., the forecast part, are fed to the Flat encoders. Finally, the forecast output is fed to the
forecasting head to predict the target values.1

Different from the Flat Net, we decompose the Seq architectures into two parts: encoders and
decoders. The encoders encode the past observed values into an embedding and feed them to the
decoder networks. The design of the Seq encoder is similar to the Flat Encoder, and we stack the
encoder cells to form the encoder network. However, two potential ways exist to transform the
encoder latent features into forecasting heads. Therefore, we design the following two types of
decoder networks: Seq decoder and Flat decoder for Seq encoder.

The design of Seq Encoder and Seq Decoder architecture has been widely applied in previous
architecture works [28; 44; 46]. However, architecture decoders might require information different
from that of the encoder network. For instance, a Transformer decoder [46] only requires the output
from the last layer of the corresponding encoder; an RNN decoder would need the hidden states from
the corresponding encoder layer. We record the following information stored by each edge:

1. The output hidden feature map of this edge. It will then be contacted with the corresponding
decoder feature maps and fed to the TCN decoder network.

2. The last step’s feature map. This value is considered hidden states that can be fed to the
corresponding GRU and LSTM layers to initialize their states.

3. The cell gate state that is applied to initialize the hidden cell states of the corresponding
LSTM layer. If the encoder is not an LSTM network, following the idea of stitchable
network [39] that uses a linear layer to stitch two networks with different shapes, we use a
linear layer that transforms the hidden states into the cell gate states.

Additionally, we define the linear (or flat) decoder for Seq Net. We apply one linear layer across the
time series dimension [10; 52] that maps the encoder output and the available future information
to the decoder output feature. This feature is then fed to the forecasting head to generate the final
prediction result. The overall Seq Net architecture designed is presented in Figure 1b. Similar to
the operations in each edge, only one decoder will be presented in the final architecture. Hence, we
assign another set of architecture parameters to the output of the two decoder architectures. This
architecture is jointly optimized with the other architecture weights introduced in Section 2.1.

2.3 Macro Architecture Level

The Flat Net and Seq Net families defined above encode the input data from different perspectives.
Hence, the two architectures can complement each other, and we concatenate the two architectures
sequentially.

1We note that the head here does not necessarily need to be a network module since Flat net only predicts
one variable each time.
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DARTS-TS iTransformer ModernTCN PatchTST TSMixer DLinear TimesNet Autoformer
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.344 0.368 0.368 0.395 0.362 0.386 0.352 0.381 0.382 0.408 0.360 0.382 0.402 0.415 0.619 0.539
ETTm2 0.253 0.306 0.273 0.330 0.261 0.319 0.257 0.315 0.446 0.477 0.267 0.329 0.290 0.339 0.423 0.441
ETTh1 0.413 0.423 0.473 0.468 0.404 0.421 0.415 0.429 0.515 0.503 0.447 0.456 0.486 0.482 0.559 0.529
ETTh2 0.351 0.388 0.387 0.415 0.333 0.385 0.330 0.379 0.571 0.548 0.422 0.439 0.399 0.435 0.739 0.621
ECL 0.156 0.245 0.166 0.261 0.163 0.257 0.161 0.254 0.168 0.272 0.166 0.264 0.203 0.302 0.221 0.334
Exchange 0.378 0.409 0.411 0.440 0.525 0.505 0.385 0.417 0.366 0.452 0.382 0.419 0.540 0.524 1.010 0.775
Weather 0.230 0.262 0.239 0.274 0.231 0.269 0.229 0.265 0.222 0.288 0.244 0.297 0.249 0.287 0.398 0.431
Traffic 0.394 0.260 0.387 0.273 0.421 0.287 0.398 0.267 0.541 0.413 0.434 0.295 0.624 0.336 0.671 0.412

Table 1: The results of the mean performance over all the long-term forecasting datasets. The best
models are marked as red while the second best model is marked with underlines.
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Figure 2: Architecture for Marco Search Space.

As shown in Figure 2, the past target values
are first fed to the Flat Net which results
in a backcast and forecasting feature maps.
The forecast feature maps are then concate-
nated with the known future features and
fed to the Seq decoder. Finally, the final
forecasting result is the weighted sum of
both Flat Net and Seq Net.

These weights are considered an architecture parameter that can be jointly learned with the other
architecture parameters described in the aforementioned sections.

3 Searching for the Optimal Architectures

We search for the optimal architecture with DARTS [32; 47]. DARTS assigns a weight for each
of the operations within its search space and optimizes these architecture weights jointly with the
model weights using gradient descent. Some of the modules, such as Dropout [43] and Batch
Normalization [23], behave differently during training and inference time. We thus switch these
modules to the eval mode when we update the architecture weights with validation losses to simulate
the evaluation process. Further details can be found in the appendix.

4 Experiments

We evaluate our architecture search framework on the popular long-term forecasting datasets intro-
duced by Wu et al. [49] and Zeng et al. [52]: Weather, Traffic, Exchange Rate, Electricity (ECL),
and four ETT datasets. Following the experimental setup from [37; 49; 52], we set the forecasting
horizon H for ETT, ECL, Exchange Rate, Weather, and Traffic dataset as {96, 192, 336, 720}. We
compare our results with the following baselines: PathTST [37], ModernTCN [35], DLinear [52],
TSMixer [10]. iTransformer [33], Autoformer [49] and TimesNet [50]. We fixed the input sequence
of all the models to 336.

The results for long-term forecasting tasks are shown in Table 1. The best results are marked as red.
The full results can be found in the appendix. Overall, we show that DARTS-TS automatically found
architectures that are comparable to or better than many other hand-crafted architectures specifically
designed for forecasting tasks with only the vanilla series modules.

5 Discussion and Future Work

This work proposes a general search space for time series forecasting tasks. Our search space allows
the components in the search space to freely connect to each other and form a new network. This
search space contains most of the forecasting architectures and can be easily extended to the other
frameworks. For instance, iTransformer [33] can be considered as a special case of the Flat Net and
searched jointly with the other modules from this family. Decomposing multi-variant series into
single variant series and applying a special kernel result in PatchTST [37] and then we can search for
the optimal architecture jointly with the other Seq Net. Hence in future work, our approach can be
easily extended to other frameworks to allow for searching for novel architectures.
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A Operations Details

In section 2.1, we briefly introduced the operations within our search space. Here, we will provide
the details of these operations.

A.1 Seq Net

For Seq net, encoders and decoders share the same operation sets. Overall, we have the following
operations:

• TSMixer [10], a full MLP-based Sequential operation. Each TSMixer operation is con-
structed by the time and feature mixing blocks. The time mixing blocks use a fully connected
(FC) layer to mix the information across different time steps. In contrast, the feature mixing
block uses another set of FC layers to enhance the information within each channel. Our
TSMixer encoders follow the design from Chen et al. [10], and the size of the feature
mixing layer is set as 2× dmodel. For TSMixer decoders, we first concrete the input feature
map with the encoder network outputs. This concatenated feature is then provided to the
time mixing modules to recover its size and return it to the forecasting horizon. Additionally,
we use LayerNorm [5] instead of BatchNorm [23] in TSMixer to ensure that the operations
within an edge generate the feature maps that follow the same distribution (since all other
components in our module used LayerNorm to normalize the feature maps).

• LSTM [21] is an RNN model. It maintains a set of cell gate states to control the amount of
information passed to the next time steps. Therefore, it suffers less from the known gradient
explosion problems in the RNN families. However, the introduction of the gates brings
lots of additional parameters to the modules. As described in Section 2.2, the hidden states
of the LSTM decoder are initialized by the last time step of the encoder feature from the
corresponding layer and another feature generated with a linear embedding (or directly from
the corresponding LSTM encoder).

• GRU [13] is yet another type of RNN network. It only maintains one hidden state and
therefore requires much less amount of parameters and computations compared to the LSTM.
The setting of the GRU Encoder/Decoder is nearly the same as the LSTM families. The
only difference is that we do not maintain an additional state to initialize the GRU decoders.

• Transformer [46] has attracted lots of attention from different research fields and is therefore
widely applied in time series forecasting tasks. Here, we use the vanilla Transformer
implemented in PyTorch [40] with the hidden size to be 4× dmodel.

• TCN [6] is a type of CNN network that can capture the local correlations among different
time steps. However, the receptive field of the TCN network is restricted by its kernel
size. To efficiently increase the receptive field without introducing too much computation
overhead with a larger kernel, TCN implemented dilated convolution operations. Here we
implement a similar approach, for edge i < −j that starts from node j to node i as cell k, we
set its dilation as 2(j+k−nin), where nin is the number of inputs of the current cell. Hence,
the deeper convolutional layers will have a larger receptive field. For the TCN decoders, we
concatenate the feature maps from the corresponding encoder layer with our input feature
and feed them together to our TCN network. This idea is similar to U-Net [41], where
features with similar levels should be gathered together.

• SepTCN [35] is a variation of the vanilla TCN. We replace the full convolutional operations
in TCN with a combination of a separated TCN model with another 1× 1 linear layer.

• Skip Connection, an identity layer that passes its input to the next level. However, for the
skip connection encoder, we still have a linear layer to provide initial cell gate states to the
corresponding LSTM decoder layers.

Another type of Seq decoder is a linear decoder. We apply a linear layer that transforms the encoder
out feature map with size R[B,L,N ] to R[B,H,N ] and feed it further to the forecasting heads.

A.2 Flat Net

We only consider the MLP families in our Flat Net to minimize the computational overhead when
applying our approaches to problems with higher series amounts. Given an input feature series with
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shape [B,N,L], we first concatenate it with a zero tensor with shape [B,N,H] that represents the
prediction results. Then this concatenated tensor is fed to the Flat encoder.

This architecture family includes:

• a simple Linear model [52]. This linear layer maps its input features with shape [B,N,L+
H] to a feature map whose size is equal to the forecasting horizon: [B,N,H]. Then the
output feature is concatenated with the first part of the input feature maps. If the network
only contains skip connections for all but the last layer, then this network becomes a DLinear
model [52]. If the operation is not the output layer, we attach an activation and normalization
layer to introduce some non-linearity.

• NBEATS [38] modules. NBEATS is a hierarchical module where each model is composed
of multiple stacks. Each stack contains multiple blocks. Each block has an FC stack
with multiple FC layers, a forecasting, and a backcasting head. In our search space, each
NBEATS edge corresponds to a NBEATS block. NBEATs provides three variations: generic,
trend, and seasonal. We include them all in our search space. Since the only difference
between these variations is their prediction heads. We ask the models to share the same FC
layer backbones and only diverge at the forecasting heads.

• Skip Connection, a skip connection layer.

A.3 Forecasting Heads

We also consider the forecasting heads as part of the operations within our graph. Each of these heads
is composed of one or multiple linear layers that map the Seq Net 2 output feature maps to the desired
multiple-variable target values. These linear layers are then trained with a set of specific training loss.
Let’s assume that the target value is y and prediction value is ŷ

• Quantile loss [28; 48] predicts the percentiles of the target values. A quantile head can be
composed of multiple heads and each of the head is asked to predict a q quantile. Given a
required quantile value q, the quantile loss is computed by Lq = max(q(y − ŷ) + (1 −
q)(ŷ − y)). In our network, we used the following quantile values: {0.1, 0.5, 0.9}. The
final prediction is given by the 0.5 quantile values. A quantile head is then a set of linear
layers whose size is the number of quantile values

• MSE loss is yet another popular choice in time series forecasting tasks. It is computed by
LMSE = (ŷ − y)2. An MSE head is a single linear layer whose weights are updated with
MSE loss.

• MAE loss is similar to MSE loss. However, instead of computing the mean square error
from MSE, it computes the mean absolute error: LMAE = |ŷ − y|. Similar to MSE layer,
an MAE head is also composed of one linear layer but its weights are updated with MAE
losses.

We stack these forecasting heads on top of the Seq Net decoders and optimize their architecture
weights with validation losses.

B Optimization Details

During the search phase, we divide the dataset into training and validation sets with the same size.
The training set and validation sets are then used to optimize the architecture weights and architecture
parameters, respectively. We follow the common practice for the training-validation split in time
series forecasting tasks: the validation set is located at the tail of the training set. The first half of the
dataset is considered as training set that is used to optimize the weights of the supernet, while the
second part of the data set is the validation set, which is used to optimize the architecture parameters.
We apply RevINV [25] during both the searching and training phases to ensure that the input features
fed to the networks stay in the same distribution.

2For Flat Net, there is no need to have an additional head if the loss only requires one output
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B.1 Hierarchical Pruning of the One-Shot Model

Vanilla DARTS are shown to be unstable during the search process and might prefer to select
architectures that are dominated by skip connections [12; 24; 47; 51]. Hence, once the weights and
architecture parameters are trained, as the last step, we select the optimal operations and edges using
the perturbation-based approach [47].

Given that our search space is a hierarchical search space, some of the operations might be dependent
on others and we have to consider that for the pruning phase. For instance, if we select a Linear
Decoder, then we do not need to further select the operations in the Seq decoder. However, on the
other hand, this also indicates that our estimate will be biased if we select the choice of decoder
before selecting any edge operations in the Seq Decoder. Hence, we propose pruning our network
from the lowest granularity level and gradually increasing the granularity level until we prune the
operations in our search space. Once all the operations are selected, we further prune the edges of our
network using the same perturbation-based approach. Finally, only two edges are preserved for each
node, including the cell output node.3

C Experiment Details

Besides the benchmarks introduced in Section 4, we also evaluate our approach on the four PEMS
datasets [8] that record the public traffic network data in California. We set the forecasting horizon for
these benchmarks as {12, 24, 48, 96}..We show detailed information on the dataset that we applied in
Table 2. Given the great discrepancy in variable size between different datasets, we divide the datasets
into two groups: we assign a smaller model to the datasets with fewer variables, such as Weather,
Exchange Rate, and ETTs. We then attach a normalization layer within the linear decoder. For the
other datasets, we design an architecture search space with a relatively large model. Additionally, we
removed the normalization layer in the linear decoder since the number of target variables is larger
than our model size, and the final forecasting head does not need to recover the distribution of the
target variable from the normalized feature maps.

We run our experiments on a Cluster equipped with Nvidia A100 40 GB GPUs and AMD Milan 7763
CPUs. For each dataset, we perform the search over the smallest forecasting horizons and evaluate
the same optimal model on all the other forecasting horizons. Each task is repeated 5 times. The
resources spent for each evaluation depend on the size of the dataset. It takes roughly 4 hours to
evaluate smaller datasets such as ETThs and ExchangeRate. Other tasks might require up to 10 GPU
hours. The ablation study requires another 500 GPU hours. Overall, it takes roughly 1200 GPU hours
to finish the experiments.

Dataset # Time steps # Variables

ECL 26304 321
Traffic 17544 862

Weather 62696 21
ExchangeRate 7588 9

ETTh1 17420 7
ETTh2 17420 7
ETTm1 69680 7
ETTm2 69680 7

PEMS03 26208 358
PEMS04 16992 307
PEMS07 28224 883
PEMS08 17856 170

Table 2: Data set information

Our architecture search framework is a two-stage approach. In the first stage, we search for the
optimal architecture, while in the second stage, we train the proposed network from scratch. We

3We note that this setting is different from the traditional NAS framework, where all the edges towards the
output nodes are preserved. This approach helps us to reduce the architecture size and required latency further.
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Figure 3: Latency information of different networks on the Traffic (left) and ECL (right) dataset. We
set the look-back window size and the forecast horizon as 96. The batch size for both training and
inference is set as 32

preserve most of the searching hyperparameters from Liu et al. [29]. However, we apply ADAM
instead of SGD during the test phases to optimize the network weights.

All the look-back window sizes are set as 336 for both the searching and testing phases. We divide the
datasets into two groups based on their number of variables: 1. The PEMSs, traffic and ECL dataset
belongs to the big dataset 2. The remaining datasets, including Weather and ETTs, are small datasets.

Both datasets share nearly the same architecture, which is a mixed network introduced in Section 2.3.
The number of Seq and Flat cells are both set as 2, and they could receive 2 and 1 input variables,
respectively. However, for the big dataset, we set the number of Seq Net hidden dimensions as
32, while this value for the small dataset is 8. This approach is also applied to the hidden NBATS
dimension of Flat Net: we set this value as 256 for the big datasets and 96 for the small datasets.

Since the Seq encoder has 2 input nodes, instead of feeding the raw input value to both input nodes,
we decompose the input nodes into trend-cyclical components by using an average moving [49; 52]
to ask the edges in the cell to focus on different levels of information.

D Model efficiency analysis

The growing demands for forecasting models have proposed more challenges to the forecasting
networks: the network should be fast such that it can quickly predict the following trend. Additionally,
networks need to contain fewer parameters and consume less memory so we can deploy them on
embedded systems. To further show that our network could find an efficient and strong network, we
ask all the networks to do a single forward pass and backpropagation with the series within the Traffic
and ECL dataset, where each series contains 862 and 321 variables, respectively. We set the batch
size of the series to 32 and the look-back window size to 96. The networks are then asked to predict
the future series with a forecasting horizon of 96. This experiment is executed on one single Nvidia
2080 TI graph card with 11 GB GPU RAM 4. Due to this memory constraint, some of the networks,
such as ModernTCN, cannot fit into this GPU with our setup and do not appear in this comparison.

As shown in Figure 3, while having a comparable performance with iTransformer and PatchTST
on the traffic dataset, our approach requires around 2x less GPU memories and is faster than the
iTransformer and 3x less GPU memories and speed up compared to PatchTST during the training
phases. During the test phases, the required GPU memory is even further reduced to around 300 MB,
which is 4x less than the iTransformer and 6x less than the PatchTST, and only requires 3x more
memories compared to a linear layer. A similar trend can be observed on the ECL dataset: DARTS-TS
requires 5x less GPU memories and is 2x faster than PatchTST to achieve a better performance.

E Results on all the forecasting horizon

Table 3 and Table 4 show the results w.r.t. each forecasting horizon. While DARTS-TS requires
much less amount of resources and parameters, it still shows comparable performances on many
datasets.

4However, we search the one-shot model on an Nvidia A100 GPU with 40 GB GPU RAM.
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DARTS-TS iTransformer ModernTCN PatchTST TSMixer DLinear TimesNet Autoformer
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 96 0.129 (0.00) 0.217 (0.00) 0.132 (0.00) 0.228 (0.00) 0.135 (0.00) 0.231 (0.00) 0.130 (0.00) 0.223 (0.00) 0.137 (0.00) 0.241 (0.00) 0.140 (0.00) 0.237 (0.00) 0.184 (0.00) 0.287 (0.00) 0.204 (0.01) 0.320 (0.01)
192 0.147 (0.00) 0.234 (0.00) 0.155 (0.00) 0.249 (0.00) 0.149 (0.00) 0.243 (0.00) 0.148 (0.00) 0.241 (0.00) 0.156 (0.00) 0.260 (0.00) 0.153 (0.00) 0.250 (0.00) 0.194 (0.00) 0.295 (0.00) 0.212 (0.00) 0.327 (0.00)
336 0.164 (0.00) 0.253 (0.00) 0.171 (0.00) 0.266 (0.00) 0.165 (0.00) 0.259 (0.00) 0.165 (0.00) 0.259 (0.00) 0.173 (0.00) 0.281 (0.00) 0.169 (0.00) 0.267 (0.00) 0.197 (0.00) 0.299 (0.00) 0.215 (0.01) 0.328 (0.01)
720 0.186 (0.00) 0.275 (0.00) 0.206 (0.01) 0.299 (0.01) 0.205 (0.00) 0.295 (0.00) 0.202 (0.00) 0.292 (0.00) 0.206 (0.00) 0.308 (0.00) 0.203 (0.000) 0.301 (0.000)) 0.236 (0.03) 0.329 (0.02) 0.254 (0.01) 0.360 (0.01)

ETTh1 96 0.365 (0.00) 0.385 (0.00) 0.404 (0.00) 0.419 (0.00) 0.369 (0.00) 0.394 (0.00) 0.375 (0.00) 0.400 (0.00) 0.387 (0.00) 0.413 (0.01) 0.379 (0.01) 0.403 (0.01) 0.443 (0.01) 0.453 (0.01) 0.496 (0.01) 0.492 (0.01)
192 0.405 (0.00) 0.411 (0.00) 0.451 (0.00) 0.449 (0.00) 0.407 (0.00) 0.415 (0.00) 0.413 (0.00) 0.420 (0.00) 0.428 (0.01) 0.439 (0.01) 0.415 (0.01) 0.427 (0.01) 0.486 (0.01) 0.482 (0.01) 0.532 (0.04) 0.509 (0.02)
336 0.437 (0.01) 0.433 (0.01) 0.471 (0.00) 0.465 (0.00) 0.392 (0.00) 0.413 (0.00) 0.427 (0.00) 0.432 (0.00) 0.505 (0.01) 0.501 (0.01) 0.470 (0.03) 0.469 (0.03) 0.482 (0.01) 0.478 (0.01) 0.544 (0.03) 0.523 (0.01)
720 0.448 (0.01) 0.462 (0.00) 0.565 (0.02) 0.538 (0.01) 0.450 (0.00) 0.461 (0.00) 0.444 (0.00) 0.463 (0.00) 0.741 (0.09) 0.658 (0.03) 0.524 (0.02) 0.527 (0.01) 0.534 (0.03) 0.515 (0.02) 0.662 (0.14) 0.592 (0.06)

ETTh2 96 0.276 (0.00) 0.332 (0.00) 0.305 (0.00) 0.361 (0.00) 0.264 (0.00) 0.333 (0.00) 0.275 (0.00) 0.336 (0.00) 0.370 (0.01) 0.436 (0.01) 0.283 (0.00) 0.347 (0.00) 0.363 (0.03) 0.408 (0.02) 0.517 (0.05) 0.534 (0.04)
192 0.344 (0.00) 0.377 (0.00) 0.389 (0.01) 0.411 (0.00) 0.322 (0.00) 0.377 (0.00) 0.339 (0.00) 0.379 (0.00) 0.494 (0.03) 0.510 (0.02) 0.366 (0.02) 0.403 (0.01) 0.411 (0.02) 0.437 (0.01) 0.565 (0.09) 0.559 (0.05)
336 0.377 (0.01) 0.406 (0.00) 0.420 (0.01) 0.434 (0.01) 0.315 (0.00) 0.377 (0.00) 0.328 (0.00) 0.381 (0.00) 0.586 (0.02) 0.559 (0.01) 0.428 (0.02) 0.450 (0.01) 0.394 (0.02) 0.438 (0.01) 0.757 (0.14) 0.642 (0.07)
720 0.406 (0.01) 0.435 (0.00) 0.436 (0.01) 0.454 (0.00) 0.429 (0.00) 0.453 (0.00) 0.378 (0.00) 0.420 (0.00) 0.837 (0.07) 0.688 (0.03) 0.610 (0.06) 0.555 (0.03) 0.429 (0.03) 0.458 (0.01) 1.115 (0.17) 0.751 (0.06)

ETTm1 96 0.283 (0.00) 0.330 (0.00) 0.305 (0.00) 0.358 (0.00) 0.296 (0.00) 0.348 (0.00) 0.290 (0.00) 0.341 (0.00) 0.308 (0.01) 0.358 (0.01) 0.301 (0.00) 0.346 (0.00) 0.330 (0.01) 0.373 (0.00) 0.497 (0.04) 0.487 (0.02)
192 0.320 (0.00) 0.354 (0.00) 0.343 (0.00) 0.380 (0.00) 0.348 (0.00) 0.378 (0.00) 0.333 (0.00) 0.369 (0.00) 0.347 (0.01) 0.386 (0.01) 0.337 (0.00) 0.368 (0.00) 0.430 (0.05) 0.423 (0.02) 0.591 (0.03) 0.528 (0.01)
336 0.357 (0.00) 0.377 (0.00) 0.380 (0.00) 0.402 (0.00) 0.376 (0.00) 0.395 (0.00) 0.367 (0.00) 0.391 (0.00) 0.398 (0.01) 0.420 (0.01) 0.374 (0.00) 0.392 (0.00) 0.397 (0.00) 0.416 (0.00) 0.682 (0.06) 0.561 (0.02)
720 0.418 (0.01) 0.412 (0.00) 0.441 (0.00) 0.438 (0.00) 0.430 (0.00) 0.421 (0.00) 0.417 (0.00) 0.422 (0.00) 0.474 (0.03) 0.470 (0.02) 0.427 (0.00) 0.423 (0.00) 0.450 (0.01) 0.446 (0.01) 0.703 (0.09) 0.579 (0.03)

ETTm2 96 0.162 (0.00) 0.244 (0.00) 0.179 (0.00) 0.268 (0.00) 0.170 (0.00) 0.257 (0.00) 0.165 (0.00) 0.254 (0.00) 0.182 (0.01) 0.293 (0.01) 0.166 (0.00) 0.258 (0.00) 0.190 (0.01) 0.277 (0.00) 0.332 (0.03) 0.392 (0.02)
192 0.223 (0.00) 0.285 (0.00) 0.242 (0.00) 0.312 (0.00) 0.225 (0.00) 0.297 (0.00) 0.222 (0.00) 0.293 (0.00) 0.284 (0.03) 0.386 (0.03) 0.224 (0.00) 0.301 (0.00) 0.247 (0.01) 0.313 (0.00) 0.380 (0.08) 0.414 (0.04)
336 0.274 (0.00) 0.320 (0.00) 0.292 (0.00) 0.344 (0.00) 0.283 (0.00) 0.335 (0.00) 0.277 (0.00) 0.329 (0.00) 0.499 (0.04) 0.535 (0.02) 0.280 (0.00) 0.339 (0.01) 0.312 (0.02) 0.354 (0.01) 0.432 (0.05) 0.452 (0.03)
720 0.354 (0.00) 0.373 (0.00) 0.380 (0.01) 0.397 (0.00) 0.367 (0.00) 0.386 (0.00) 0.364 (0.00) 0.383 (0.00) 0.818 (0.03) 0.695 (0.01) 0.397 (0.01) 0.416 (0.00) 0.413 (0.01) 0.411 (0.00) 0.547 (0.09) 0.506 (0.05)

Exchange 96 0.088 (0.00) 0.210 (0.00) 0.099 (0.00) 0.227 (0.00) 0.169 (0.00) 0.305 (0.00) 0.093 (0.00) 0.213 (0.00) 0.113 (0.00) 0.259 (0.01) 0.084 (0.00) 0.203 (0.00) 0.167 (0.01) 0.305 (0.01) 0.541 (0.12) 0.560 (0.07)
192 0.186 (0.00) 0.308 (0.00) 0.202 (0.00) 0.326 (0.00) 0.276 (0.00) 0.389 (0.00) 0.192 (0.00) 0.312 (0.00) 0.237 (0.03) 0.378 (0.01) 0.164 (0.01) 0.293 (0.00) 0.309 (0.02) 0.415 (0.01) 0.956 (0.24) 0.770 (0.12)
336 0.350 (0.01) 0.428 (0.01) 0.397 (0.01) 0.466 (0.01) 0.449 (0.00) 0.505 (0.00) 0.350 (0.00) 0.431 (0.00) 0.443 (0.08) 0.519 (0.03) 0.355 (0.01) 0.453 (0.00) 0.487 (0.02) 0.534 (0.01) 1.290 (0.23) 0.903 (0.08)
720 0.888 (0.03) 0.689 (0.01) 0.947 (0.01) 0.740 (0.00) 1.206 (0.02) 0.821 (0.01) 0.906 (0.00) 0.713 (0.00) 0.671 (0.11) 0.653 (0.04) 0.927 (0.05) 0.727 (0.02) 1.197 (0.07) 0.842 (0.02) 1.254 (0.03) 0.866 (0.01)

Traffic 96 0.358 (0.00) 0.240 (0.01) 0.356 (0.00) 0.258 (0.00) 0.398 (0.00) 0.275 (0.00) 0.367 (0.00) 0.250 (0.00) 0.488 (0.00) 0.381 (0.00) 0.410 (0.00) 0.282 (0.00) 0.605 (0.01) 0.330 (0.00) 0.682 (0.02) 0.415 (0.02)
192 0.386 (0.01) 0.256 (0.00) 0.376 (0.00) 0.268 (0.00) 0.412 (0.00) 0.280 (0.00) 0.385 (0.00) 0.259 (0.00) 0.524 (0.01) 0.403 (0.00) 0.423 (0.00) 0.287 (0.00) 0.616 (0.00) 0.333 (0.01) 0.669 (0.03) 0.411 (0.02)
336 0.398 (0.01) 0.262 (0.00) 0.389 (0.00) 0.274 (0.00) 0.424 (0.00) 0.287 (0.00) 0.399 (0.00) 0.267 (0.00) 0.556 (0.01) 0.423 (0.01) 0.436 (0.000) 0.296 (0.000) 0.624 (0.01) 0.335 (0.01) 0.674 (0.03) 0.415 (0.01)
720 0.434 (0.00) 0.284 (0.00) 0.426 (0.00) 0.293 (0.00) 0.452 (0.00) 0.305 (0.00) 0.439 (0.01) 0.292 (0.01) 0.596 (0.01) 0.444 (0.01) 0.466 (0.000) 0.315 (0.000) 0.650 (0.01) 0.346 (0.00) 0.661 (0.02) 0.406 (0.01)

Weather 96 0.148 (0.00) 0.194 (0.01) 0.163 (0.00) 0.212 (0.00) 0.152 (0.00) 0.206 (0.00) 0.151 (0.00) 0.199 (0.00) 0.146 (0.00) 0.220 (0.00) 0.174 (0.00) 0.235 (0.00) 0.165 (0.00) 0.223 (0.00) 0.295 (0.01) 0.370 (0.01)
192 0.195 (0.00) 0.239 (0.01) 0.207 (0.00) 0.253 (0.00) 0.197 (0.00) 0.247 (0.00) 0.196 (0.00) 0.242 (0.00) 0.192 (0.00) 0.267 (0.01) 0.216 (0.00) 0.274 (0.00) 0.216 (0.00) 0.267 (0.00) 0.382 (0.04) 0.431 (0.03)
336 0.252 (0.01) 0.282 (0.01) 0.256 (0.00) 0.291 (0.00) 0.246 (0.00) 0.285 (0.00) 0.248 (0.00) 0.283 (0.00) 0.240 (0.00) 0.304 (0.01) 0.262 (0.00) 0.314 (0.00) 0.278 (0.01) 0.309 (0.01) 0.424 (0.04) 0.445 (0.02)
720 0.323 (0.00) 0.331 (0.01) 0.330 (0.00) 0.340 (0.00) 0.327 (0.00) 0.338 (0.00) 0.319 (0.00) 0.335 (0.00) 0.311 (0.01) 0.359 (0.01) 0.325 (0.00) 0.365 (0.00) 0.338 (0.00) 0.349 (0.00) 0.493 (0.06) 0.476 (0.03)

Table 3: The full evaluation results on long-term forecasting datasets. We evaluate each model five
times and take the mean of the final results. The optimal models are marked as red, and we underline
the models that are not significantly worse than the optimal

DARTS-TS iTransformer ModernTCN PatchTST TSMixer DLinear TimesNet Autoformer
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PEMS03 12 0.066 (0.00) 0.171 (0.00) 0.069 (0.00) 0.175 (0.00) 0.112 (0.00) 0.221 (0.00) 0.079 (0.00) 0.187 (0.00) 0.075 (0.00) 0.187 (0.00) 0.105 (0.00) 0.220 (0.00) 0.085 (0.00) 0.192 (0.00) 0.277 (0.06) 0.387 (0.04)
24 0.097 (0.00) 0.206 (0.00) 0.098 (0.00) 0.209 (0.00) 0.173 (0.00) 0.281 (0.00) 0.124 (0.00) 0.235 (0.00) 0.113 (0.00) 0.238 (0.01) 0.182 (0.00) 0.296 (0.00) 0.110 (0.00) 0.216 (0.00) 0.422 (0.05) 0.466 (0.03)
48 0.152 (0.01) 0.257 (0.01) 0.448 (0.57) 0.416 (0.28) 0.307 (0.00) 0.395 (0.00) 0.223 (0.00) 0.319 (0.00) 0.195 (0.02) 0.320 (0.02) 0.318 (0.00) 0.410 (0.00) 0.168 (0.01) 0.263 (0.00) 0.806 (0.08) 0.679 (0.04)
96 0.234 (0.02) 0.331 (0.02) 1.215 (0.62) 0.831 (0.25) 1.041 (0.02) 0.779 (0.01) 0.368 (0.00) 0.425 (0.00) 0.266 (0.01) 0.380 (0.01) 0.450 (0.00) 0.507 (0.00) 0.242 (0.01) 0.321 (0.00) 0.710 (0.15) 0.634 (0.07)

PEMS04 12 0.073 (0.00) 0.176 (0.00) 0.081 (0.00) 0.188 (0.00) 0.132 (0.00) 0.245 (0.00) 0.101 (0.00) 0.209 (0.00) 0.085 (0.00) 0.195 (0.00) 0.115 (0.00) 0.228 (0.00) 0.088 (0.00) 0.197 (0.00) 0.562 (0.06) 0.577 (0.03)
24 0.091 (0.00) 0.198 (0.00) 0.124 (0.00) 0.232 (0.00) 0.244 (0.00) 0.338 (0.00) 0.161 (0.00) 0.267 (0.00) 0.112 (0.01) 0.228 (0.01) 0.189 (0.00) 0.299 (0.00) 0.104 (0.00) 0.216 (0.00) 0.637 (0.10) 0.617 (0.05)
48 0.120 (0.00) 0.232 (0.00) 0.135 (0.00) 0.248 (0.00) 0.452 (0.00) 0.482 (0.00) 0.294 (0.00) 0.369 (0.00) 0.159 (0.01) 0.278 (0.01) 0.323 (0.00) 0.407 (0.00) 0.138 (0.00) 0.252 (0.01) 1.002 (0.10) 0.775 (0.04)
96 0.165 (0.00) 0.278 (0.00) 0.169 (0.00) 0.280 (0.00) 1.127 (0.00) 0.818 (0.00) 0.507 (0.00) 0.505 (0.00) 0.190 (0.01) 0.313 (0.01) 0.428 (0.00) 0.484 (0.00) 0.179 (0.00) 0.291 (0.00) 0.853 (0.24) 0.708 (0.08)

PEMS07 12 0.060 (0.00) 0.155 (0.00) 0.066 (0.00) 0.164 (0.00) 0.085 (0.00) 0.196 (0.00) 0.076 (0.00) 0.180 (0.00) 0.070 (0.00) 0.177 (0.00) 0.100 (0.00) 0.215 (0.00) 0.083 (0.00) 0.183 (0.00) 0.201 (0.02) 0.330 (0.02)
24 0.081 (0.00) 0.180 (0.00) 0.087 (0.00) 0.190 (0.00) 0.127 (0.00) 0.245 (0.00) 0.127 (0.00) 0.234 (0.00) 0.105 (0.01) 0.221 (0.01) 0.189 (0.00) 0.302 (0.00) 0.101 (0.00) 0.204 (0.00) 0.304 (0.04) 0.402 (0.03)
48 0.113 (0.01) 0.218 (0.01) 0.892 (0.12) 0.764 (0.08) 0.267 (0.01) 0.380 (0.01) 0.238 (0.00) 0.325 (0.00) 0.157 (0.01) 0.265 (0.00) 0.375 (0.00) 0.436 (0.00) 0.133 (0.00) 0.236 (0.00) 0.422 (0.13) 0.472 (0.08)
96 0.156 (0.02) 0.262 (0.01) 0.972 (0.19) 0.789 (0.12) 0.736 (0.02) 0.673 (0.01) 0.394 (0.00) 0.432 (0.00) 0.268 (0.02) 0.342 (0.02) 0.579 (0.00) 0.540 (0.00) 0.211 (0.06) 0.308 (0.06) 0.519 (0.10) 0.546 (0.05)

PEMS08 12 0.074 (0.00) 0.175 (0.00) 0.089 (0.00) 0.193 (0.00) 0.125 (0.00) 0.239 (0.00) 0.091 (0.00) 0.195 (0.00) 0.095 (0.00) 0.203 (0.00) 0.112 (0.00) 0.223 (0.00) 0.110 (0.00) 0.208 (0.00) 0.467 (0.07) 0.503 (0.05)
24 0.107 (0.01) 0.213 (0.01) 0.138 (0.00) 0.243 (0.00) 0.238 (0.00) 0.336 (0.00) 0.144 (0.00) 0.247 (0.00) 0.150 (0.01) 0.257 (0.01) 0.195 (0.00) 0.299 (0.00) 0.139 (0.00) 0.234 (0.00) 0.503 (0.07) 0.512 (0.05)
48 0.178 (0.02) 0.277 (0.02) 0.237 (0.01) 0.277 (0.01) 0.528 (0.00) 0.534 (0.00) 0.254 (0.00) 0.332 (0.00) 0.256 (0.01) 0.344 (0.01) 0.382 (0.00) 0.431 (0.00) 0.194 (0.00) 0.277 (0.00) 0.964 (0.23) 0.729 (0.11)
96 0.318 (0.04) 0.360 (0.04) 0.346 (0.07) 0.363 (0.05) 1.150 (0.00) 0.808 (0.00) 0.435 (0.00) 0.441 (0.00) 0.399 (0.02) 0.415 (0.02) 0.634 (0.00) 0.550 (0.01) 0.322 (0.01) 0.349 (0.01) 1.021 (0.14) 0.763 (0.06)

Table 4: The full evaluation results on PEMS datasets. The optimal models are marked as red, and
we underline the models that are not significantly

F Ablation Study

F.1 The impact of window size

In our experiments, we fixed our window size to 336 and applied this window size to predict different
forecasting horizons. However, since the look-back window size is an important hyperparameter
in forecasting tasks, it is interesting to see if the model should always stick to the window where
it is trained. To answer this, we ask the optimizer to search for an architecture that requires the
input window size {96, 192, 336, 720}. We then evaluate each of these found architectures with the
window sizes mentioned above.

We run this task on the ECL-96 dataset. The result is shown in Figure 4. We see that our model will
perform better with the increase in search window size in general. While the search window size
also influences the final evaluations, a model searched with a window size of 720 performs the worst
when the architecture suggested by this optimizer is asked to make a prediction with a window size
of 96 and vice versa. However, this gap becomes less if the search window size is closer to the eval
window size. This indicates that the window size we used to search for the network should not be too
far away from the actual window size used to evaluate the model.

F.2 Forecasting components

We constructed a hierarchical search space in Section 2. Here, we will show the efficiency of each
component. We provide the following variations:

• Flat Only. This variation only contains the Flat Net in the search space.
• Seq ONly. This variation only contains the Seq Net in the search space.
• Parallel. This variation is similar to our approach. However, the Seq Net receives only

feature variables instead of the output of the Flat Net
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Figure 4: The impact of window size during searching and evaluations on the ECL-96 task

DARTS-TS Parallel Seq Only Flat Only No Weights
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 96 0.129 (0.00) 0.217 (0.0) 0.128 (0.00) 0.219 (0.00) 0.206 (0.05) 0.305 (0.04) 0.128 (0.00) 0.221 (0.00) 0.139 (0.01) 0.234 (0.02)
ETTh1 96 0.365 (0.00) 0.385 (0.0) 0.371 (0.01) 0.392 (0.01) 0.466 (0.04) 0.463 (0.02) 0.383 (0.00) 0.406 (0.00) 0.366 (0.00) 0.385 (0.00)
ETTh2 96 0.276 (0.00) 0.332 (0.0) 0.282 (0.00) 0.341 (0.00) 0.382 (0.02) 0.421 (0.01) 0.312 (0.00) 0.361 (0.00) 0.279 (0.00) 0.338 (0.01)
ETTm1 96 0.283 (0.00) 0.330 (0.0) 0.287 (0.00) 0.338 (0.00) 0.366 (0.02) 0.402 (0.02) 0.295 (0.00) 0.345 (0.00) 0.286 (0.00) 0.334 (0.01)
ETTm2 96 0.162 (0.00) 0.244 (0.0) 0.166 (0.00) 0.249 (0.00) 0.221 (0.01) 0.301 (0.01) 0.173 (0.00) 0.255 (0.00) 0.162 (0.00) 0.246 (0.00)
Exchange 96 0.088 (0.00) 0.210 (0.0) 0.098 (0.00) 0.220 (0.00) 0.227 (0.03) 0.347 (0.02) 0.107 (0.01) 0.234 (0.01) 0.092 (0.00) 0.214 (0.00)
Traffic 96 0.358 (0.00) 0.240 (0.0) 0.370 (0.02) 0.244 (0.01) 0.572 (0.02) 0.312 (0.01) 0.359 (0.00) 0.249 (0.00) 0.452 (0.00) 0.300 (0.01)
Weather 96 0.148 (0.00) 0.194 (0.0) 0.150 (0.00) 0.195 (0.01) 0.191 (0.00) 0.244 (0.00) 0.151 (0.00) 0.201 (0.00) 0.157 (0.00) 0.209 (0.00)

Table 5: Ablation over the components in DARTS-TS

• No Weights. This variation removed the weighted sum approach described in Section 2.3

The result is shown in Table 5. The Parallel approach is slightly worse than DARTS-TS on many
datasets. However, there is a huge gap between Parallel and DARTS-TS on the Traffic dataset. While
the Flat Only approach is generally worse than DARTS-TS on the ETT datasets. Overall, we show
that the architectural design of DARTS-TS generally provides us with architectures that are robust
across many datasets.

G Optimal Architectures

Figure 5: One optimal architecture on the ECL dataset, this is an encoder-only architecture and will
be trained with a MSE loss.

In this section, we show the optimal architecture searched by our optimizers for each task. Each Seq
cell is composed of 6 nodes, including 2 input nodes (nodes 0 and 1), 3 intermediate nodes (nodes 2,
3, and 4), and 1 output node (node 5). Each node represents an intermediate feature map. Each edge
connecting the nodes represents a Seq network module. If multiple edges point toward the same node,
we sum their output values and store the sum value within the output node. For instance, in Figure 5,
we show the optimal Seq cell in the left. The feature map in node 0 is passed through one separable
TCN layer to node 2 and one TCN layer to the final output node 5. Node 3 receives the output feature
map from node 2 with an MLP-Mixer layer and 1 with a seperatable TCN layer, respectively. Since
the final output, node 5, does not require the information from node 4, we can delete node 4 from the
optimal architecture.

Figure 5 shows an optimal architecture on the ECL dataset. We can see that TCN and NBEATS
seasonal modules are still contained in the optimal modules, further confirming our conclusions in
Section 4.

14



Figure 6: One optimal architecture on the ETTm2 dataset, this is an encoder-decoder architecture and
will be trained with a quantile loss

Figure 7: An optimal architecture on the ECL dataset. This is an encoder-only architecture

Figure 8: An optimal architecture on the Traffic dataset. This is an encoder-only architecture

Figure 9: An optimal architecture on the ETTm1 dataset. This is an encoder-decoder architecture

Figure 10: An optimal architecture on the ETTm2 dataset. This is an encoder-only architecture

Figure 11: An optimal architecture on the Weather dataset. This is an encoder-only architecture

We also show some of the optimal architectures in Figure 8, 9, 10, and 11. We can see that no
single operation dominates the optimal architecture, which shows the necessity of performing an
architecture search for the optimal architecture.
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