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Abstract
Large language models (LLM) achieve superior performance in gen-
erative tasks. However, due to the natural gap between language
model generation and structured information extraction in three
dimensions: task type, output format, and modeling granularity,
they often fall short in structured information extraction, a crucial
capability for effective data utilization on the web. In this paper,
we define the generation process of the language model as the con-
trollable state transition, aligning the generation and extraction
processes to ensure the integrity of the output structure and adapt
to the goals of the information extraction task. Furthermore, we
propose the Structure2Text decider to help the language model un-
derstand the fine-grained extraction information, which converts
the structured output into natural language and makes state deci-
sions, thereby focusing on the task-specific information kernels,
and alleviating language model hallucinations and incorrect con-
tent generation. We conduct extensive experiments and detailed
analyses on myriad information extraction tasks. Our method not
only achieves significant performance improvements but also en-
sures the integrity of the output structure, making it easy to parse
the extracted content.

CCS Concepts
• Computing methodologies→ Information extraction.
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1 Introduction
Large language models have gained widespread popularity due to
their superior performance in generative tasks [1, 14], producing
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Entities:
Person: Dr. Emily Stone, Date: September 15

Location: Paris Global Environmental Summit

Events:

Type: Presentation

Relations:

Person-Location Relation: Dr. Emily Stone is from Paris.

Person-Date Relation: Dr. Emily Stone became a climate

change advocate on September 15, 2023.

Dr. Emily Stone gave a presentation on climate change at the

Global Environmental Summit in Paris on September 15, 2023.

She highlighted the urgent need for policy reform.

Text Continuation:

LLM

User

User

LLM

…

 no arguments

Dr. Emily Stone elaborated on specific strategies to mitigate

the effects of global warming, emphasizing renewable energy

adoption and stricter emissions regulations. Her insights were

well-received by policymakers and researchers alike, leading to

a spirited discussion on international cooperation in

environmental policies.

Dr. Emily Stone gave a presentation on climate change at the

Global Environmental Summit in Paris on September 15, 2023.

She highlighted the urgent need for policy reform.

Information Extraction:

Figure 1: The gap between language model generation and
structured information extraction.

contextually rich and coherent content that enhances user inter-
actions across diverse web platforms [51]. However, despite these
advances, they often fall short in structured information extraction,
a crucial capability for effective data utilization on the web [2].
This deficiency is particularly evident in web environments where
accurate information extraction and organization are essential for
applications such as semantic search [8, 16], content recommenda-
tion systems [35], and automated knowledge base updates [27].

It is intuitive that such discrepancies arise: the fundamental ob-
jectives of language model generation and structured information
extraction inherently diverge. Language models, trained on exten-
sive textual datasets, are designed to predict the next token or gen-
erate coherent, semantically rich text. So language models primarily
focus on linguistic fluency, semantic coherence, and understanding
context. Conversely, structured information extraction is tasked
with pulling specific, meaningful information from unstructured
text and organizing it into structured forms like relational triples
or event tuples, emphasizing the accuracy, completeness, and ad-
herence to predefined structures of the data. Therefore, a natural
gap exists between language model generation and structured in-
formation extraction.

To further understand the inherent reasons behind this gap, a
comparison between language model generation and structured
information extraction can be elucidated across three dimensions:
task type, output format, and modeling granularity.
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• Generation vs. Extraction. The core task of language
models is to generate natural language, which may produce
redundant or unnecessary information. In contrast, struc-
tured information extraction is focused on extracting and
organizing precise information, demanding accuracy.

• Freedom vs. Structure. Language models enjoy consid-
erable freedom in text generation, producing content that
is open-ended and unstructured. However, information ex-
traction requires outputs to be highly structured, adhering
to predefined rules or formats.

• Coarser-grained vs. Fine-grained. Language models ex-
cel in understanding context and focus on coarser-grained
information, whereas information extraction typically de-
mands attention to fine-grained details within the text, map-
ping them accurately to predefined categories.

How to bridge the gap and make language model generation effi-
cient for structured information extraction? To this end, we define
the language model generation process as the Controllable State
Transition and incorporate the goals of the information extrac-
tion task into the state decision process, to align language model
Generation and information Extraction (STGE). Specifically, we
define five states based on the features of the information extrac-
tion task, which can efficiently represent the generation of labels
and corresponding extracted content. Furthermore, we propose the
Structure2Text decider to help the language model understand the
fine-grained extraction information, which converts the structured
output into natural language and makes state decisions, thereby
focusing on the task-specific information kernels, and alleviating
language model hallucinations [21] and incorrect content genera-
tion. We conduct extensive experiments and detailed analyses on
named entity recognition, relation extraction, and event argument
extraction tasks. Our method not only achieves significant perfor-
mance improvements but also ensures the integrity of the output
structure, making it easy to parse the extracted content.

The contributions are summarized as follows:

• We define the generation process of the language model
as the controllable state transition, aligning the generation
and extraction processes to ensure the integrity of the out-
put structure and adapt to the goals of the information
extraction task.

• We propose Structure2Text decider to convert output struc-
ture into natural language and make state decisions to focus
on fine-grained information in text, alleviating language
model hallucinations and incorrect content generation.

• We conduct extensive experiments and detailed analysis
on myriad information extraction tasks, demonstrating
that our method achieves significant performance improve-
ments in multiple scenarios.

2 Related Work
2.1 Generative Information Extraction
Benefiting from the excellent contextual reasoning capabilities of
the large language model, some works have proposed integrating
the large language model into information extraction tasks based on
the generation paradigm [47]. Generation-based methods require

designing the output format and parsing the extracted content and
corresponding labels from the output.

Name Entity Recognition (NER). Researchers [7, 44] propose NER
methods based on In-context Learning [4]. GPT-NER [44] uses
special tokens to mark the entities that need to be extracted in
the output, and proposes a self-verification strategy to alleviate the
hallucination issue of the languagemodel and over-confidently label
NULL inputs as entities. MetaNER [7] design output is “ENTITY
is type”, and injects in-context NER ability into the pre-trained
language model, which can recognize new types of entities using
only a few demonstrations. GNER [11] designs the output in the
format of sequence tagging, identifies the entity type of each word
one by one, and explores the impact of negative instances on NER.
Researchers [3] analyze different context demonstration selection
methods for NER in scientific documents.

Relation Extraction (RE). QA4RE [49] obtains the corresponding
entity relationship through question and answer based on spe-
cific relation templates. SUMASK [25] recursively uses the large
language model to transform RE input into the effective question-
answering format. ERA-CoT [32] captures the relationships be-
tween entities to help the large language model understand the
context, and improves reasoning ability through Chain-of-Thoughts
(CoT) [46]. GPT-RE [43] designs specific prompts and reasoning
logic process, and queries the language model about the relation be-
tween entities to complete the RE task. MICRE [26] designs output
as the tabular format using “|” as the recognizable delimiter of ta-
bles, and it learns new RE tasks in context more effectively through
meta-training, thereby achieving better generalization on zero-shot
and few-shot tasks. TableIE [24] defines RE as the table genera-
tion task and uses “|” as the delimiter, which incorporates explicit
structured information into in-context learning, thus facilitating
the conversion of output into RE structure.

Event Argument Extraction (EAE). Researchers [20, 28, 36, 45]
designed specific prompts and output structures to complete the
EAE task in a generative paradigm. Specifically, BART-Gen [28] and
DEGREE [20] construct prompts for each event type, guiding the
language model to generate corresponding arguments in the role
slot. TEXT2EVENT [36] converts events into the tree structure, uses
the depth-first algorithm to convert the tree structure into the linear
sequence, and generates arguments in the text generation paradigm.
CODE4STRUCT [45] designs the output structure as code, using
the features of the programming language to complete the EAE
task in the code generation manner. Researchers [13, 39] applied
Retrieval-Augmented Generation to the EAE task to enhance the
performance of the EAE task by retrieving demonstrations that are
suitable for the current context.

2.2 Controllable Text Generation
Recently, large language models have demonstrated high quality in
text generation and have attracted a large number of users on the
web. However, in practical applications, large languagemodels must
meet increasingly complex user requirements, including semantic
control such as toxicity [30], topic [5, 9], sentiment [6, 23], style
[22], lexical control such as keyword or phrase inclusion [18, 50],
and structural control such as tables [24], poetry [48, 52], recipes
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Controllable State Transition

𝑆𝑠 𝑆𝑘𝑒𝑦
𝑔

𝑆𝑣𝑎𝑙𝑢𝑒
𝑓 𝑆𝑒𝑆𝑣𝑎𝑙𝑢𝑒

𝑔

Input

“Person”

“Organization”

In this context, the entity tagged

as Person is larry eustachy and

coach, are there other Person

entities?

{"Person": ["larry eustachy", "coach" 

Decision Process

＋

Token Sequence

Structure2Text 

Decider Logits 𝑝
~

Generate End

Token Logits 𝑝

] ...     , }   

Natural Language

{"Person": ["larry eustachy", 

"coach", "eustachy", 

"students", "alcoholic"],

"Organization": ["iowa

state", "schools"]}

{"Organization-Affiliation": 

[["coach", "iowa state"], 

["students", "schools"]]}

{"Person": ["larry eustachy"], 

"Entity": ["iowa state"]}

NER

RE

Decider

LLM

Decision Logits 𝑃

] ...     , }   

Iterative Training Decider

Train

Train Data Construction

Original Data

Predict Data

Train Data

Decider LLM

Start Generate Key Generate Value Finish Value End 

{"Person": ["larry eustachy", "alcoholic"],  

"Organization": ["iowa state"]}

In this context, the entity tagged as Person is larry

eustachy and alcoholic, the entity tagged as 

Organization is iowa state

Sampling

Structure2Text 

Label Set ℛ

{"Person": ["larry eustachy", "coach",    

"eustachy", "students", "alcoholic"],  

"Organization": ["iowa state", "schools"]}
Positive Sample Negative Sample

are there other Organization 

entities?

are there other 

Location entities?

𝒟𝑔 ∪ 𝒟𝑝

Structure2Text Decider

“larry eustachy”, “coach”...

“iowa state”, “schools” ...     

Train Data Construction

Generation Framework

Output

EAE

... ;

... ;

... ;

A week after

these pictures surfaced,

and after saying he 'd fight

for his job, larry eustachy

resigned as basketball

coach at iowa state. the

damage to his credibility

w a s t o o m u c h a f t e r

eustachy admitted he

partied with students at

r i v a l s c h o o l s , a n d

that he's an alcoholic.

Task Definition 𝒛

Demonstration 𝐦𝑐

Type ℛ

Context 𝐜

Figure 2: Overall framework of our method STGE. In the Generation Framework, taking the NER task as an example, we use
an example in the ACE05 dataset to illustrate this process (Input only shows the context, the complete input can be found in
Figure 3), and we show the decision process from 𝑆

𝑔

𝑣𝑎𝑙𝑢𝑒
to 𝑆

𝑓

𝑣𝑎𝑙𝑢𝑒
or 𝑆𝑔

𝑣𝑎𝑙𝑢𝑒
as an example. In the Iterative Training Decider, we

perform multiple rounds of iterative training on the Structure2Text Decider, constructing training data through the original
data and the data predicted by the language model.

[33], etc. These diverse requirements have driven the rapid devel-
opment of controllable text generation techniques, which ensure
that the output meets predefined control conditions while main-
taining high standards of helpfulness, fluency, and diversity [29].
Researchers [41] explore whether structured generation would limit
the reasoning and domain knowledge understanding capabilities of
large language models. StructuredRAG [40] proposes a benchmark
designed to evaluate the ability of LLMs to follow response format
instructions using different prompting strategies. Different from
these methods, our method cleverly combines the features of large
language models and information extraction through controllable
state transitions, which not only ensures the correct generation
format and reduces the complex parsing process, but also signifi-
cantly improves the extraction ability of the model and enhances
the performance of information extraction tasks.

3 Methodology
In this section, we delineate task formalization and the basic genera-
tion framework, followed by a detailed exposition of the controllable
state transition mechanism. We further elaborate on the decision-
making and training processes integral to the Structure2Text De-
cider. Figure 2 shows the overall framework.

3.1 Task Formalization
We first formalize the task of NER, RE, and EAE. Each task operates
within a given a context c = {𝑐1, ..., 𝑐𝑛} consisting of 𝑛 words. For
the NER task, given the set of entity types R𝑒𝑛𝑡 , the NER task
aims to extract all entities {𝑒1, ..., 𝑒𝑢 } in c and assign a type to each
extracted entity 𝑒𝑖 , where 𝑒𝑖 is the text span in the context c. For
the RE task, given the set of relation types R𝑟𝑒 , the RE task aims to
extract all entity pairs {(𝑒1𝑜 , 𝑒1𝑠 ), ..., (𝑒𝑢𝑜 , 𝑒𝑢𝑠 )} in c and assign a type
to each extracted entity pair (𝑒𝑖𝑜 , 𝑒𝑖𝑠 ), where 𝑒𝑖𝑜 and 𝑒𝑖𝑠 are text spans
in context c. For the EAE task, given the event trigger word 𝑐𝑡𝑟𝑖 ∈ c,
the event type 𝑡 ∈ T and the set of event-specific role types R𝑒𝑣𝑒𝑛𝑡

𝑡 ,
the EAE task aims to extract all arguments {𝑎1, ..., 𝑎𝑢 } related to
𝑐𝑡𝑟𝑖 in c and assign a role 𝑟 ∈ R𝑒𝑣𝑒𝑛𝑡

𝑡 to each extracted argument
𝑎𝑖 , where 𝑎𝑖 is a text span in the context c.

3.2 Basic Generation Framework
This section outlines the basic generation framework tailored for
information extraction tasks. Specifically, the input x to language
model comprises several components: the task definition z, the type
set R , the context c, and additionally includes demonstration m𝑐

in the few-shot scenario: x = [z;m𝑐 ;R; c], where [; ] denotes the
3
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{"Person": ["larry eustachy", "coach", "eustachy", "students", "alcoholic"], 

"Organization": ["iowa state", "schools"]}

Entity is words with specific meanings in the context, mainly including names of people,

places, institutions, proper nouns, etc. Please output the entities in the following context. The format of the

output is json, the key is the entity type, and the value is an entity list. Entity must be consecutive words in

the context. If the entity type does not have a corresponding entity, the key and value will not be output.

The format refers to the demonstration below:

Context: ......   Entity type: ......   Answer: ......

Entity type: Person, Organization, Geo-Political Entity, Vehicle, Location, Facility, Weapon

A week after these pictures surfaced, and after saying he 'd fight for his job, larry eustachy

resigned as basketball coach at iowa state. the damage to his credibility was too much after eustachy

admitted he partied with students at rival schools, and thathe's an alcoholic.

LLM

Output 𝐲

Context 𝐜

Type ℛ

Demonstration 𝐦𝑐

Task Definition 𝒛

Figure 3: ANERexample from theACE05 dataset, with details
omitted due to space limitations.

concatenation operation. The input of a NER example on the ACE05
dataset is shown in Figure 3.

In the few-shot scenario, demonstration selection is context-
sensitive. We first use a language model to encode the current
context h𝑐 = Encoder(c) and few-shot data respectively. Then em-
ploying cosine similarity as the retrieval criterion to select the Top-k
data entries 𝑑𝑘 from the few-shot data (such as 20-shot) as demon-
strations m𝑐 of context c. Each demonstration m𝑖

𝑐 incorporates the
context, the labels to be extracted (entity type, relation type, and
argument role), and their corresponding extraction results.

Sim(h𝑖𝑐 |h𝑐 ) =
Mean(h𝑖𝑐 ) ·Mean(h𝑐 )

| |Mean(h𝑖𝑐 ) | | × | |Mean(h𝑐 ) | |
, (1)

𝑑𝑘 = Top-k𝑑𝑖 ∈D (Sim(h𝑖𝑐 |h𝑐 )), (2)

where Mean denotes the mean-pooling operation, 𝑑𝑖 ∈ D refers to
the data in the few-shot dataset, and h𝑖𝑐 signifies the corresponding
context representation.

During the generation process, the language model utilizes the
previously generated tokens y<𝑖 and input x to model the condi-
tional probability of next token y𝑖 . Consequently, the total proba-
bility 𝑝 (y|x) for generating output y is calculated as follows:

𝑝 (y|x) =
|y |∏
𝑖

𝑝 (y𝑖 |y<𝑖 , x), (3)

where output y adopts a JSON structure to represent the extraction
result. As illustrated in Figure 3, each key in the output y corre-
sponds to a label to be extracted, while the associated value is a list
containing the corresponding extracted content, such as entities,
entity pairs, and arguments.

3.3 Controllable State Transition
Compared with generation tasks, information extraction tasks pos-
sess two distinct features: (1) The extracted content must have
specific labels. (2) The extracted content strictly originates from
the initial context. Motivated by finite-state machine, we leverage
these features alongside structured output to define the language
model’s decoding process as the controllable state transition, which
includes the following five states:

• Start state 𝑆𝑠 : Start state marks the beginning of the genera-
tion process, where the model outputs the initial character

Table 1: The permissible subsequent states for each state.

𝑆𝑠 𝑆
𝑔

𝑘𝑒𝑦
𝑆
𝑔

𝑣𝑎𝑙𝑢𝑒
𝑆
𝑓

𝑣𝑎𝑙𝑢𝑒
𝑆𝑒

Start 𝑆𝑠 × ✓ × × ✓
Generate Key 𝑆

𝑔

𝑘𝑒𝑦
× × ✓ ✓ ×

Generate Value 𝑆𝑔
𝑣𝑎𝑙𝑢𝑒

× × ✓ ✓ ×
Finish Value 𝑆 𝑓

𝑣𝑎𝑙𝑢𝑒
× ✓ × × ✓

End 𝑆𝑒 -

of the structured format, such as the opening brace ‘{” for
JSON. This initiates the structured output, setting the stage
for subsequent content generation.

• Generate Key state 𝑆𝑔
𝑘𝑒𝑦

: This state is dedicated to gener-
ating labels for the structured output, such as entity types,
relation types, and argument roles. The label generated
by this state must belong to the label set R and cannot be
repeated with the label generated by the previous state.

• Generate Value state 𝑆𝑔
𝑣𝑎𝑙𝑢𝑒

: This state is tasked with gener-
ating the content of the corresponding label extracted from
the context, which is the subsequent state of the Generate
Key state. This state ensures that the generated content
must come from the context.

• Finish Value state 𝑆 𝑓
𝑣𝑎𝑙𝑢𝑒

: Finish Value State indicates the
end of Generate Value State corresponding to the current
Generate Key state, which generates the end character of
the value state.

• End state 𝑆𝑒 : End state indicates the end of the generation
process. In this state, the model outputs the final character
of the structured format, such as the closing brace ‘}” for
JSON, finalizing the structured output.

The generation process of the language model can be conceptual-
ized as a series of state transitions: y = [𝑆𝑠 , 𝑆𝑔𝑘𝑒𝑦, 𝑆

𝑔

𝑣𝑎𝑙𝑢𝑒
, 𝑆

𝑔

𝑣𝑎𝑙𝑢𝑒
, 𝑆

𝑓

𝑣𝑎𝑙𝑢𝑒
,

𝑆
𝑔

𝑘𝑒𝑦
, 𝑆

𝑔

𝑣𝑎𝑙𝑢𝑒
, 𝑆

𝑓

𝑣𝑎𝑙𝑢𝑒
, . . . , 𝑆𝑒 ], where y means generating two keys

and their corresponding values, the first key contains two corre-
sponding values, and the second key contains one value.

To guarantee a complete and correct output structure, the transi-
tions between states in the language model are carefully controlled,
not arbitrary. The sequence begins with the Start State and con-
cludes with the End State. Notably, the Generate Key State can
be succeeded by multiple Generate Value States, indicating that
the current label corresponds to multiple extracted contents. The
permissible subsequent states for each state are detailed in Table 1.

3.4 Structure2Text Decider
State transition is a decision-making process where the model needs
to predict the next state based on the current context and previous
states:

𝑃 (𝑆 𝑗
𝑖+1 |c, 𝑆<𝑖 ) =

Score(𝑆 𝑗
𝑖+1 |c, 𝑆<𝑖 )∑

𝑆𝑘
𝑖+1∈S𝑖+1

Score(𝑆𝑘
𝑖+1 |c, 𝑆<𝑖 )

, (4)

where 𝑃 (𝑆 𝑗
𝑖+1 |c, 𝑆<𝑖 ) represents the probability that the i+1 state is

𝑆
𝑗

𝑖+1, Score represents the scoring function, and S𝑖+1 represents all
possible subsequent states of the 𝑆𝑖 state in Table 1.
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However, according to the modeling goal of the language model,
the language model makes decisions at the token level and predicts
the next token (Equation 3), so scoring function Score(𝑆 𝑗

𝑖+1 |c, 𝑆<𝑖 ) =
𝑝 (y|c, 𝑆<𝑖 ) [𝑆 𝑗𝑖+1] is token logits, where each state has specific pre-
ceding state and start characters, and we use the probability of
the corresponding characters as the predicted probability of the
state. As shown in the decision process example in Figure 2, the
current state is 𝑆𝑔

𝑣𝑎𝑙𝑢𝑒
, the probability of character “]” represents

the probability of the next state being 𝑆 𝑓
𝑣𝑎𝑙𝑢𝑒

, and the probability of
character “,” represents the probability of the next state being 𝑆𝑔

𝑣𝑎𝑙𝑢𝑒
.

This process focuses too much on linguistic fluency and ignores
the connection between different states and the goal of information
extraction. To this end, we propose the Structure2Text Decider,
which uses the information of previous states and the task-specific
features to make state decisions in natural language.

Specifically, we first convert the previous state and label infor-
mation into natural language, such as entities in NER, relations in
RE, event type, trigger word and arguments in EAE task. As shown
in Figure 2, the current state is 𝑆𝑔

𝑘𝑒𝑦
, and the language model has

predicted two Person entities as larry eustachy and coach. At this
point, the language model needs to decide whether to continue
generating Person entities (the corresponding state is 𝑆𝑔

𝑣𝑎𝑙𝑢𝑒
), or

stop generating Person entities and further generate other types of
entities (the corresponding state is 𝑆 𝑓

𝑣𝑎𝑙𝑢𝑒
). We convert the current

output into natural language as “In this context, the entity tagged as
Person is larry eustachy and coach, there are other 𝑟 entities”, where
𝑟 ∈ R𝑒𝑛𝑡 ∪ ∅ represents the type. The natural language has two
query forms, 𝑆𝑠 and 𝑆

𝑓

𝑣𝑎𝑙𝑢𝑒
state is the previous state of 𝑆𝑔

𝑘𝑒𝑦
, the

current key is unknown (𝑟 = ∅), and the query form is “there are
other entities?”. In the 𝑆𝑔

𝑘𝑒𝑦
and 𝑆

𝑔

𝑣𝑎𝑙𝑢𝑒
states, the current key is

known, and 𝑟 ∈ R𝑒𝑛𝑡 is the label corresponding to the content
generated in the subsequent 𝑆𝑔

𝑣𝑎𝑙𝑢𝑒
state, the query form is “there

are other 𝑟 entities?”.
This conversion process uses natural language to better meet the

modeling goals of the language model, summarizing the previous
state information and which labels the model should focus on. Then
Structure2Text Decider predicts the probability of the next state
based on the context and natural language:

𝑝 (S𝑖+1 |c, 𝑆<𝑖 ) = Softmax(FFN(Decider( [c; Convert(𝑆<𝑖 )]))), (5)

where Decider means Structure2Text Decider, which is based on
the discriminant model. FFN represents the feed-forward network,
and Convert represents the Structure2Text operation of converting
to natural language.

Finally, combined with the token logits of the language model,
the scoring function of the state transition is:

Score(𝑆 𝑗
𝑖+1 |c, 𝑆<𝑖 ) = 𝑝 (y|c, 𝑆<𝑖 ) [𝑆 𝑗𝑖+1] + 𝑝 (S𝑖+1 |c, 𝑆<𝑖 ) [𝑆 𝑗𝑖+1] . (6)

Based on the process of controllable state transfer, decisions
are made according to Equation 4 to perform state transfer during
the decoding stage of the language model. This process not only
ensures a complete output structure but also aligns information
extraction with language model generation.

3.5 Iterative Training
During the training phase of the Structure2Text Decider, we con-
struct training dataD𝑔 based on the ground truth output. As shown
in the train data construction in Figure 2, we sample subsets of the
extracted results from the ground truth as the state sequence to
simulate the state decision process, then convert it into natural
language and finally construct the labels of the training data based
on whether there is other unextracted content in the context:

𝑝 (𝑑𝑔
𝑖
) =

{
1, |E𝑟

𝑖
| > 0

0, |E𝑟
𝑖
| = 0

, (7)

where 𝑑𝑔
𝑖
∈ D𝑔

𝑖
denotes data constructed from multiple subsets D𝑔

𝑖

of the ground truth of 𝑑𝑖 , 𝑟 denotes the type in 𝑑
𝑔

𝑖
, and |E𝑟

𝑖
| denotes

the number of remaining unextracted content of type 𝑟 . If 𝑟 = ∅,
|E𝑟

𝑖
| means the number of remaining unextracted content.
However, in real-world scenarios, the output of the language

model is not completely correct. For example, some wrong entities,
entity pairs, or arguments may be output in information extraction
tasks. The actual decision-making process is more complicated
and is missing from the ground truth data. For this reason, we
additionally construct training data D𝑝 based on the predicted
output of the language model:

𝑝 (𝑑𝑝
𝑖
) =

{
1, |E𝑟

𝑖
| > 0 ∧ Pre(𝑑𝑝

𝑖
) ≥ 𝜆

0, |E𝑟
𝑖
| = 0

, (8)

where 𝑑𝑝
𝑖
∈ D𝑝

𝑖
denotes data constructed from multiple subsets

D𝑝

𝑖
of the predicted outputs of 𝑑𝑖 . Pre(𝑑𝑝𝑖 ) means the extraction

precision of 𝑑𝑝
𝑖
, and 𝜆 means the precision threshold.

Finally, we define the training process of the Structure2Text
Decider as multiple rounds of iterative training. As shown in the
iterative training decider in Figure 2, we use the output of the
ground truth and the prediction results of the language model to
construct data to train the Structure2Text Decider. Then, we use
the updated Structure2Text Decider to help the language model
transfer states and construct the next round of training data based
on the output. This iterative training process includes more complex
correct or error states, which can improve the robustness of the
Structure2Text Decider. The training loss is:

L =
∑︁

𝑑𝑖 ∈D
−(

∑︁
𝑑
𝑔

𝑖
∈D𝑔

𝑖

𝑝 (𝑑𝑔
𝑖
) log𝑝 (𝑑𝑔

𝑖
) +

∑︁
𝑑
𝑝

𝑖
∈D𝑝

𝑖

𝑝 (𝑑𝑝
𝑖
) log𝑝 (𝑑𝑝

𝑖
)).

(9)

4 Experiment
4.1 Experimental Settings
4.1.1 Datasets. We focus on NER, RE, and EAE tasks, and conduct
experiments on three widely used information extraction datasets:
Automatic Content Extraction 2005 (ACE05) [12], Roles Across
Multiple Sentences (RAMS) [15], and WikiEvents [28].

ACE05 is a comprehensive dataset derived from a variety of
sources including newswires, weblogs, broadcast conversations, and
broadcast news. It is commonly utilized for NER, RE, and sentence-
level EAE tasks. Specifically, the dataset includes 34,474 manually
annotated entities across 7 types, 5,860 entity relations of 7 types,
and 5,055 events with 6,040 arguments spanning 33 event types

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1168

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Experimental results in 0-shot and 20-shot scenarios on ACE05, WikiEvents, and RAMS datasets. The bold text marks
the highest value with Llama3.1 8b.

Model Method
NER RE EAE
ACE05 ACE05 ACE05 WikiEvents RAMS

P R F1 P R F1 Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

0-shot

GPT-3.5 Vanilla 66.59 40.97 50.73 3.35 6.92 4.52 30.51 24.26 14.35 12.25 29.19 22.72
Structure 65.58 40.54 50.10 3.70 7.86 5.03 31.00 24.61 13.97 11.56 28.96 22.71

GPT-4 Vanilla 77.60 42.36 54.80 6.33 7.39 6.82 30.54 24.89 15.71 14.25 36.17 30.05
Structure 76.39 42.36 54.50 6.95 8.18 7.51 31.16 25.99 15.18 13.30 36.39 30.56

Llama3.1 8b

Vanilla 54.08 28.11 36.99 5.21 1.57 2.42 26.83 18.90 14.56 12.72 23.71 17.85
CoT 51.33 34.47 41.25 4.99 3.14 3.86 30.20 22.45 15.13 12.38 24.25 19.13
Constraint 51.68 32.68 40.04 4.47 7.23 5.53 31.31 22.12 15.97 12.93 21.62 16.70
STGE (Ours) 41.66 44.35 42.96 7.09 10.69 8.53 34.95 26.27 22.51 19.37 25.02 19.55

20-shot

GPT-3.5 Vanilla 62.89 43.19 51.21 9.68 15.57 11.93 36.17 28.29 22.68 17.94 32.98 27.30
Structure 64.43 44.02 52.30 9.41 15.09 11.59 36.54 28.22 21.28 17.33 33.28 27.57

GPT-4 Vanilla 74.87 49.49 59.59 18.23 20.13 19.13 37.74 32.51 22.76 20.46 37.23 31.62
Structure 74.45 49.06 59.14 18.49 21.23 19.77 37.15 31.94 23.33 20.69 36.85 30.89

Llama3.1 8b

Vanilla 70.94 45.14 55.18 17.81 15.88 16.79 41.33 32.42 25.58 21.85 33.15 27.39
CoT 70.44 45.41 55.22 17.31 15.41 16.31 39.01 31.21 26.22 22.67 32.94 26.95
Constraint 75.16 47.63 58.31 18.52 16.51 17.46 41.53 32.80 25.90 22.45 33.76 28.07
STGE (Ours) 73.03 53.50 61.76 21.42 18.55 19.88 43.15 35.06 27.90 25.11 35.26 29.40

and 35 argument roles, reflecting its extensive utility for diverse
information extraction tasks.

RAMS focuses on document-level EAE tasks, compiled from
12,000 news articles sourced from the Reddit platform. This dataset
includes 9,124 events and 21,237 arguments, covering an expansive
139 event types and 65 argument roles, with each event distributed
across a context of 5 sentences, offering a unique challenge in
document-level event extraction tasks.

WikiEvents, another key dataset for document-level EAE tasks, is
constructed from EnglishWikipedia entries that describe real-world
events. It comprises 3,951 events and 5,536 arguments, categorized
into 50 event types and 59 argument roles. Each event in this dataset
is distributed across the context of the entire document, evaluating
the model’s ability to extract arguments over long ranges.

For each dataset, we adhere to the official data splits. ACE05 data
is processed following the methodology of DyGIE++ [42], whereas
RAMS andWikiEvents are pre-processed according to the protocols
established by PAIE [37]. In the few-shot scenario, we sample data
from the training set as few-shot data.

4.1.2 Evaluation Metrics. We employ the same evaluation metrics
as previous methods across all tasks. NER task uses Precision (P),
Recall (R), and Micro-F1 (F1) metrics for evaluation. An entity is
correct if its offsets and type match any entity mention. RE task uses
Precision (P), Recall (R), and Micro-F1 (F1) metrics for evaluation.
A relation is correct if its entity offsets and relation type match any
relation triple. For the EAE task, we use Argument Identification
(Arg-I) and Argument Classification (Arg-C) metrics, and use Micro-
F1 (F1) for evaluation. An event argument must have correct offsets
and event type for Arg-I metric, and additionally the correct role
type for Arg-C metrics.

4.1.3 Implementation Details. We use three advanced language
models: Llama-3.1 (Llama-3.1-8B-Instruct) [14], GPT-3.5 (gpt-3.5-
turbo-0125), and GPT-4 (gpt-4-turbo) [1]. We employ Llama-3.1-8B-
Instruct as its foundational language model, the max new tokens are
set to 256. Our Structure2Text Decider is built based on RoBERTa-
large model [31], pre-training on the sampled NERD dataset [10]
(a few-shot NER dataset). In the few-shot scenario, Structure2Text
Decider is further fine-tuning on the few-shot data and optimized
using the AdamW optimizer [34] with learning rates of 2 × 10−5.
The precision threshold 𝜆 is set to 0.2 on RAMS and 0.5 other-
wise. The Jina embeddings 2 (jina-embeddings-v2-base-en) [17],
a mainstream model for long document embeddings, are used to
retrieve demonstrations. For fair comparison, all baselines use the
same retrieval strategy to retrieve demonstrations, and the number
of demonstrations is set to 2. All models and embeddings are ac-
cessible via the HuggingFace Transformers library1 and OpenAI
API,2 respectively. All models are temperature-fixed at 0, utilizing
NVIDIA V100 80GB GPUs and PyTorch for implementation.

4.1.4 Baselines.

• Vanilla: Employing In-context Learning [4] with heuristic
rules applied post-processing to filter redundant content,
aiming to refine the output structure.

• CoT: Employing Chain-of-Thought (CoT) [46] prompts the
language model to first think about the labels that exist in
the context and then extract the corresponding content.

• Constraint: Incorporating Constrained Decoding [19, 28]
during the inference phase. It restricts the language model’s

1https://github.com/huggingface/transformers
2https://openai.com/api/
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Table 3: Ablation study results in 20-shot scenario on ACE05, WikiEvents, and RAMS datasets.

Method
NER RE EAE
ACE05 ACE05 ACE05 WikiEvents RAMS

P R F1 P R F1 Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

STGE 73.03 53.50 61.76 21.42 18.55 19.88 43.15 35.06 27.90 25.11 35.26 29.40
-w/o decider 75.08 47.83 58.43 20.24 16.19 17.99 42.01 33.86 26.13 22.75 34.11 28.23
-w/o pre-training 73.02 48.53 58.30 20.00 16.82 18.27 42.44 34.00 26.24 23.05 34.07 28.08
-w/o iterative training 60.76 52.77 56.48 19.80 18.24 18.99 42.20 32.53 26.64 23.89 34.87 28.70

token generation to those from the given context or prede-
fined characters of the output structure.

• Structure: Utilizing OpenAI’s JSON mode for structured
outputs, this approach ensures that all outputs conform to
the complete JSON format.

4.2 Main Results
Table 2 shows the NER, RE, and EAE experimental results in 0-shot
and 20-shot scenarios on ACE05, WikiEvents, and RAMS datasets.
We have the following observations and analyses:

By Aligning Language Model Generation with Structured
Information Extraction via Controllable State Transition, our
method can significantly outperform the Vanilla baseline.
Our STGE improves F1 by 11.9%~16.1% over the vanilla baseline in
two few-shot settings on the NER task. On the RE task, our STGE
even archives an F1 score nearly three times higher than the vanilla
baseline. Our STGE improves Arg-C F1 by average 32% over the
vanilla baseline in two settings on three EAE datasets. Even when
competing against OpenAI’s JSON mode (GPT4: Structure), our
method also outperforms GPT-4 in most cases, achieving gains of up
to 6.07 in Arg-C F1 on the WikiEvents dataset in the 0-shot setting.
This verifies that our controllable state transition mechanism can
bridge the gap to make the language model better fit structure
information extraction.

While ensuring correct format output, Structure method
generally fails to surpass the Vanilla method. Illustrating that
merely adhering to format constraints does not substantially con-
tribute to the performance. Specifically, examining the 0-shot sce-
nario on the ACE05 dataset for the NER task, the Structure method
scores an F1 of 50.10 with GPT-3.5 and 54.50 with GPT-4, which
are marginally worse or on par with the Vanilla method’s scores
of 50.73 and 54.80, respectively. This pattern is consistent across
different tasks and models, where the gains provided by structural
adherence alone are minimal. In contrast, our STGE incorporates
controllable state transitions specific to the extraction tasks, main-
taining correct formatting and showing a significant performance
uplift. For example, in the 20-shot scenario on NER ACE05, our
method achieves an F1 of 61.76, outstripping the Vanilla method by
a substantial margin.

Multiple methods exhibit higher precision in the NER task
yet demonstrate increased recall in the RE and EAE tasks.
This discrepancy suggests that while the models are precise in
identifying named entities, they tend to miss more ground truth
entities in NER and generate extraneous or incorrect relations and
arguments in the more complex RE and EAE tasks. In contrast,
our method, which utilizes a state transition process tailored to

structured text formats, not only enhances the model’s ability to
accurately judge and extract relevant content but also achieves
better overall performance with a more balanced precision and
recall across all tasks.

4.3 Ablation Study
We conduct ablation studies to investigate the effectiveness of each
component, and Table 3 presents the results. Specifically, “w/o
decider” removes the Structure2Text Decider and only uses the lan-
guage model to make state transition decisions, “w/o pre-training”
means removing the pre-training process of Decider, and “w/o itera-
tive training” means removing multiple rounds of iterative training
and only using the dataset D𝑔 based on the ground truth output to
train the Structure2Text Decider. We have the following analysis:

(1) Without Decider: Integrating the Structure2Text Decider
proves essential, as its removal leads to a significant decline in
performance. For example, the F1 score in the NER task on the
ACE05 dataset dropped from 61.76 to 58.43, illustrating a decrease
of 3.33 percentage points. This underscores that without the de-
cider, the language model prioritizes textual fluency over accurate
structured output, struggling to effectively navigate and extract
precise content within the imposed constraints.

(2) Without Pre-training: Omitting the pre-training compo-
nent results in a notable reduction in model efficacy across tasks,
with the F1 score in the NER task on ACE05 decreasing from 61.76
to 58.30, a drop of 3.46 percentage points. This highlights the crucial
role of pre-training in equipping the model.

(3) Without Iterative Training: The absence of iterative train-
ing markedly diminishes the model’s performance, with the F1
score in the NER task on ACE05 decreasing from 61.76 to 56.48,
reflecting a significant reduction of 5.28 percentage points. This
component’s role is critical in continually adapting and refining the
model’s responses to complex scenarios, illustrating that iterative
adjustments and exposure to error states significantly enhance the
decider’s decision-making accuracy and robustness.

This provides a clearer view of how each component contributes
to the overall effectiveness of the model, clearly demonstrating
their necessity in achieving optimal performance in structured
information extraction tasks.

4.4 Few-shot Results
As shown in Figure 4, we construct experiments and analyses on
multiple few-shot NER, RE, and EAE scenarios on ACE05 dataset,
where the number of shot ∈ [20, 40, 60, 80, 100]. Specifically, our
method achieves the best performance in all scenarios, improving
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Figure 4: Experimental results on multiple few-shot NER, RE, and EAE scenarios on ACE05 dataset.

Table 4: The ratio of correct structures output by the model.

Method NER RE EAE
ACE05 ACE05 ACE05 WikiEvents RAMS

w/o rule 2.10 0.00 23.82 6.85 14.81
Vanilla 80.69 52.23 84.86 47.95 67.28
Constraint 67.91 73.00 97.77 53.15 78.42
STGE 100.00 100.00 100.00 100.00 100.00

the performance by 6.58~10.05 F1, 2.29~3.82 F1, and 2.30~5.02
Arg-C F1 on NER, RE, and EAE tasks. It is worth noting that since
the number of shot affects the retrieval space of the demonstra-
tion, the baseline methods achieve different degrees of performance
fluctuations [38, 45], and even achieve poor results due to halluci-
nations [21]. In contrast, our method is based on the controllable
state transition process. It cleverly incorporates information extrac-
tion features into the decision-making process, which significantly
alleviates this performance fluctuation and achieves better results,
with an average performance improvement of 8.57 F1, 3.00 F1,
and 3.38 Arg-C F1 on NER, RE, and EAE tasks. This indicates that
Structure2Text Decider can help the language model correct wrong
decisions, thereby alleviating hallucinations and preventing the
generalization of wrong content.

4.5 Format Analysis
We analyze the structure and token length of the model output
in the challenging 0-shot scenario. The experimental results are
shown in Table 4 and 5. “w/o rule” represents the original output
obtained by removing the heuristic rule from the Vanilla baseline,
and “Gold” represents the ground truth output.

4.5.1 Structure Analysis. In our analysis of model outputs to de-
termine structural accuracy, displayed in Table 4. It’s evident that
heuristic rules are crucial, without them, as seen in the “w/o rule”
method, the model produces excessive irrelevant content. Although
constrained decoding, as utilized in the “Constraint” method, nar-
rows the model’s search space and somewhat enhances structure
accuracy, it fails to consistently deliver optimal results. In stark
contrast, our method, employing the controllable state transition

Table 5: The results of the number of output tokens.

Method NER RE EAE
ACE05 ACE05 ACE05 WikiEvents RAMS

w/o rule 241.70 253.61 127.94 188.24 210.37
Vanilla 74.27 123.20 32.54 101.01 88.16
Constraint 82.97 83.85 34.86 111.55 61.65
STGE 37.91 45.28 20.27 17.85 18.69
Gold 28.31 23.52 10.00 11.77 18.90

process, consistently achieves 100% correct structure output across
various tasks, demonstrating its superior capability to output pre-
cise structure.

4.5.2 Output Analysis. Table 5 illustrates the token lengths gener-
ated by various models in a 0-shot scenario, revealing that methods
without heuristic rules (“w/o rule”) and even the “Vanilla” produce
excessively verbose outputs, far exceeding efficient token use. In
contrast, our method not only minimizes token output but aligns
closely with the ground truth (“Gold”), demonstrating its superior
efficiency. This efficiency stems from our controllable state transi-
tion process, which integrates task-specific features into decision-
making, significantly enhancing the model’s capability to generate
precise and relevant content swiftly, thereby optimizing both accu-
racy and output conciseness.

5 Conclusion
In this paper, we align language model generation with structured
information extraction via controllable state transitions. Specifically,
we propose controllable state transition process constraints and
simplify the language model’s generation process. Furthermore, we
propose Structure2Text Decider, which uses text that incorporates
the features of the information extraction task to help the language
model make decisions. Our method not only ensures the correct
structured output, but also incorporates the task-specific features,
aligning the generation and extraction processes to improve the
extraction ability of the model. We conduct extensive experiments
on multiple tasks and datasets, and our method achieves superior
performance and generation efficiency in multiple scenarios.
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