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Abstract
The rapid progress of navigation, manipulation, and vision models has made mobile
manipulators capable in many specialized tasks. However, the open-world mobile
manipulation (OWMM) task remains a challenge due to the need for generalization
to open-ended instructions and environments, as well as the systematic complexity
to integrate high-level decision making with low-level robot control based on both
global scene understanding and current agent state. To address this complexity, we
propose a novel multi-modal agent architecture that maintains multi-view scene
frames and agent states for decision-making and controls the robot by function
calling. A second challenge is the hallucination from domain shift. To enhance
the agent performance, we further introduce an agentic data synthesis pipeline for
the OWMM task to adapt the VLM model to our task domain with instruction
fine-tuning. We highlight our fine-tuned OWMM-VLM as the first dedicated
foundation model for mobile manipulators with global scene understanding, robot
state tracking, and multi-modal action generation in a unified model. Through
experiments, we demonstrate that our model achieves SOTA performance compared
to other foundation models including GPT-4o and strong zero-shot generalization
in real world. The project page is at https://owmm-vlm-project.github.io.
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Figure 1: OWMM-Agent Operates Fetch Robot for Tidying Task. OWMM-Agent receives natural
language instructions and leverages both long-term environment memory (scene images) and transient
robot state memory (textual summary) to generate sequential multi-modal actions to finish the task.
By multi-turn, multi-image, and multi-modal VLM reasoning, the agent conducts global scene
aware reasoning, updates robot state memory, and actuates itself to desired coordinates without any
other learning-based models in unstructured environments.

https://owmm-vlm-project.github.io


1 Introduction
The vision of generalist home assistant robots has brought open-world mobile manipulation (OWMM)
to the forefront of embodied AI research [38, 34, 37, 42, 26]. OWMM tasks require mobile manipu-
lators to interpret open-ended natural language instructions and operate in unstructured, previously
unseen environments. Although advancements in navigation, manipulation, and vision models
have effectively enabled mobile manipulators to perform many specialized tasks under constraints,
achieving robust autonomy in these settings remains challenging.

A central difficulty in OWMM is the need for comprehensive global scene understanding and
reasoning conditioned on natural language instructions and agent state. On one hand, prior approaches
often construct 2D semantic maps [28] or 3D semantic fields with CLIP-based features [19, 26],
retrieving targets by computing embedding distances between the semantic map and language
instructions. While these methods have enabled progress, they are limited by the capacity of
embedding models, which can struggle with complex, compositional instructions, compared to
foundational generative models like large language models (LLM) or vision-language models (VLM).
Additionally, they often require time-consuming dense 3D reconstruction, making them less suitable
for complex, open-ended and dynamic environments. On the other hand, the recent advances in LLMs
and VLMs, with strong generalization capability, versatility, and reasoning capability, offer promising
opportunities and potentially a fundamental pathway to solve all sorts of scene understanding, task
planning, and robot control issues in open-world intelligent robot systems [20, 15].

Based on the aforementioned observations, we propose a novel VLM agent framework, OWMM-Agent,
to address these challenges and leverage the power of VLMs for OWMM task. More specifically,
we formulate the high-level OWMM task for the internal VLM model as a multi-turn, multi-image,
and multi-modal reasoning problem. The VLM model generates end-to-end chain-of-thought (CoT)
thinking process, tracked agent states, and multi-modal actions with coordinates based on all raw
multi-modal input. Then the agent calls the coordinate-based planners to actuate the robot. Our
approach is built on two insights: 1) We do not need the detailed geometric representation of the
environment for instruction-conditioned global scene understanding, and we could easily access
precise and even dynamic geometric information when the robot moves to the task-relevant local
region. 2) By leveraging the strong vision-language grounding capabilities, we can effectively bridge
the high-level reasoning process in language and low-level robot control targets in coordinates, with
the help of 2D-to-3D reverse projection.

However, directly applying pre-trained VLMs to our embodied agent presents challenges of domain
shift: 1) Rare grounding tasks: Robotic planners and controllers require multi-modal inputs,
including both tools and coordinates in the visual space for robot control. The base models could
be powerful for object-centric grounding such as detecting novel objects, but they suffer in other
grounding tasks including detecting non-blocked navigable areas in the ego-centric image. 2) State
tracking: The agent must infer and track its own state from observations and history records to make
contextually appropriate decisions. 3) Embodiment priors: Effective decision-making in egocentric
settings demands strong embodiment-dependent priors, such as knowledge of the robot’s kinematic
constraints, such as maximum reach for picking actions.

To address the problem of domain adaptation, we further introduce an agentic data synthesis pipeline
tailored for OWMM, to generate large-scale and instruction-driven episodes that teach the VLM agent
to track its state, reason over multi-view observations, and generate multi-modal action affordances
grounded in both the global scene and the agent’s embodiment. This pipeline minimizes human
annotation effort by utilizing predefined task sequence templates and ground-truth symbolic world
representations from simulation. With extensive experiments in simulation, we demonstrate that
OWMM-VLM consistently outperforms baseline models. In the real-world experiment, we find
that our model has strong zero-shot generalization to real-world observations, with 27/30 = 90%
action generation success rate on our fetch robot in the lab environment, even being fine-tuned on the
simulated data. We also provide ablation studies on models and dataset analysis to provide insights
into the model design and training data construction. In summary, our contributions are as follows:

• We propose OWMM-Agent, a unified VLM-based agent architecture for open-world mobile manip-
ulation, capable of global scene understanding, state tracking, and end-to-end action generation.

• We introduce a simulation-based agentic data synthesis pipeline that enables scalable data collection
for instruction fine-tuning for domain adaptation with minimized human effort, with detailed
analysis on the quality of the generated dataset.
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• We introduce a foundation model for OWMM, capable of multi-image reasoning and executable
multi-modal action generation, with extensive experiments analyzing the model’s performance.

2 Related Works

Open World Mobile Manipulation

Open-vocabulary Mobile Manipulation (OVMM) focuses on navigating and manipulating
novel objects in unseen environments with language instructions. Referred to as Open Vocabulary
Mobile Manipulation (OVMM) by[37, 42, 19] or Open World Mobile Manipulation (OWMM)
by[27, 38, 34], we use the term OWMM for this paper.

The original OWMM baseline and Melnik et al. [23] assume the agent starts without scene observation
and must explore to build a representation for decision-making. Recent works Liu et al. [19], Qiu
et al. [26], Zhi et al. [42] suggest a two-stage approach: first using SLAM [7] to create 3D semantic
maps, then performing OVMM using open-vocabulary models like GPT-4V and GPT-4o [11]. Zhi
et al. [42] introduces COME-robot, a closed-loop OVMM framework using GPT-4V for reasoning
and replanning, producing code for preset functions and object captions as in Code-as-Policy [17].
Unlike relying on pre-trained skill models requiring inputs like skill names and object captions, our
model directly produces target positions for position-based motion planners and controllers.

Large Foundational Models for Robotics

Recent advances in large fundamental models show significant potential in robotic control
and generalization. One major research focus is to adapt pre-trained Visual Language Model (VLM)
to robot scenario. RoboPoint [39] introduces a synthetic data pipeline for instruction-tuning VLMs in
robotics, supporting accurate spatial affordance prediction in object manipulation and navigation.
MOKA [18] uses a novel VLM approach in robotic manipulation with point-based affordance and
motion representation, using visual prompts to turn key points and waypoint predictions into visual
question-answering tasks for VLMs. Our proposed model OWMM-VLM also falls into this category.

The other popular research topic is Vision-Language-Action (VLA) models, focusing on using
relatively smaller transformer backbones to directly generate robotic actions with high freqeuncy.
OpenVLA [14] is a 7B-parameter open-source model trained on 970,000 real-world demonstrations
using Llama 2 [32] architecture, excelling in general manipulation tasks. Octo [31] advances
generalist robot policies, handling language commands and goal images while adapting quickly to
new inputs and actions with standard GPUs. π0 [2] presents a flow-matching architecture based on a
pre-trained VLM, excelling in dexterous tasks. These models mark significant progress in making
robotic systems more versatile, scalable, and adaptable to different trajectories.

Embodied LLM/VLM Agents and Post-training Adaptation

Large Language Models (LLMs) and Vision-Language Models (VLMs) have achieved remarkable
success across various agent applications. In web navigation, agents like AutoWebGLM [16]
leverage curriculum learning and reinforcement learning to surpass GPT-4 on realistic browsing tasks.
Similarly, AppAgent [40] and AssistGUI [9] successfully adapt multimodal LLMs to effectively
interact with smartphone and desktop environments, enabling complex GUI manipulation through
imitation learning. In embodied AI, foundational models have recently begun to be integrated into
physical or simulated robotic agents. Approaches like Steve-Eye [41] provide integrated multimodal
perception and planning capabilities for open-world tasks, while TANGO [44] demonstrates that
pretrained LLMs, combined with basic robot primitives, can solve diverse embodied tasks without
task-specific fine-tuning.

However, direct application of foundational models in embodied settings often causes hallucinations
and grounding issues. To address this, recent works introduce specialized post-training methods to
adapt models to embodied domains. For instance, KNOWAGENT [43] employs external knowl-
edge bases to constrain model-generated plans, significantly reducing unrealistic outputs. Factually
Augmented RLHF [30] utilizes reinforcement learning from human feedback enhanced by factual
grounding to align model outputs with reality. Similarly, AdaVIB [1] incorporates adaptive informa-
tion bottlenecks to suppress irrelevant visual features, thereby mitigating visual hallucinations and
improving task accuracy.
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3 Methodology

In this section, we introduce the definition of OWMM in section 3.1. After that, we elaborate on
the agent framework in section 3.2. Finally, the training method of OWMM-VLM is presented in
section 3.3. The overview of our method is shown in Figure 2.

Figure 2: The Overview of OWMM Agent Framework. The left panel represents the world space,
including a graph of posed frames generated during the pre-mapping phase and a real-time egocentric
frame captured by the robot. The right panel showcases the Agent Space, where OWMM-VLM
processes task instructions, robot history, and visual inputs to perform chain-of-thought reasoning
and generate high-level actions with region coordinates, which are then sent to robot planners for
navigation and manipulation.

3.1 OWMM Task Definition

Following the common OVMM/OWMM problem setting [37, 19, 34], the robot needs to follow the in-
struction in the pattern of "Move 〈A〉(in 〈B〉) and place it on/in 〈C〉", where 〈A〉〈B〉〈C〉
are novel objects/initial receptacles/goal receptacles in the unseen environment from the training
data. Following the problem setting in [19, 26], we assume a pre-mapping phase separating active
exploration and the SLAM module from the OWMM task focus. This is practical, as most robotic
vacuums automate room mapping before cleaning.

Thus, we introduce a pose graph G and associated RGB images I as the output of the pre-mapping
stage on the basis of [37], and define our OWMM problem as follows: In an OWMM task episode
of max timestep T , at each timestep t, 0 ≤ t ≤ T , an agent takes inputs composed of 1) a natural
language instruction L; 2) a pre-mapping camera pose graph G = {V,E} of n poses, where
V = v0, . . . , vn edges are not used; 3) and associated RGB images I = {I0, . . . , In}, each image
Ii ∈ R3×w×h are taken at head camera view pose vi in G; The pre-mapping camera 4) the agent’s
current head camera RGB image Ict and depth image Dc

t .

With these inputs, an agent needs to generate a low-level continuous action at that directly actuates
the robot kinematically, including joint velocities of the robot arm and the base velocity of the robot.
Let’s Fagent note the logical function of the agent policy model, and we have

at = Fagent(L, G, I, Ict , Dc
t ,xt), (1)

where xt stands for the robot state at time t.
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3.2 OWMM Agent

Running large VLM models at 25Hz and gathering sufficient data for training a generalist VLA
model from open-set language and visual observations remain challenging. To address this latency
issue in the OWMM agent, we have the large VLM to produce high-level actions. The agent employs
a unified VLM model Fvlm to convert visual and lingual inputs into action types and positional
commands, using a classical planner for navigation and a motion planner for manipulation, similar to
Rekep[10]. The model’s output represents a high-level action At spanning several simulation steps,
while planners resolve trajectories and low-level actions at for each step.

At,Ht = Fvlm(L, G, I, Ict ,Ht−1), (2)
at = At(xt, D

c
t ), (3)

where Ht,Ht are the high-level robot history, updated by the VLM model by itelf. at = At(xt, D
c
t )

indicates that the high-level action itself can be converted to executable code with the action handle
linked to different planners and positional targets. In this regard, part of the high-level action At can
be seen as a special type of language model program, as proposed in [17]. Then the linked planner
takes the state of the robot xt, and point clouds converted from depth map Dc

t as an additional input
to calculate the low-level action at.

To translate high-level action At into low-level action at, the agent has a path planner [8] for
navigation and a motion planner [29] for arm manipulation. These planners generate waypoints
that satisfy mechanical constraints for base chassis and arm joints through sampling-based methods.
There is also a gripper controller to grasp/ungrasp the object. The high-level actions that aim to
actuate the robot will be associated with planners and controllers through predefined functions.

3.3 OWMM-VLM model

Figure 3: Overview of OWMM-VLM. Our model is fine-tuned on InternVL-2.5[5], comprising a
ViT, a 2-layer projection MLP, and a LLM. During training, ViT parameters are frozen while the
projection MLP and the LLM parameters are trainable. The model is required to generate multi-modal
actions in JSON format conditioned on scene images, task instructions, and robot history.

Intuitively, a VLM model requires three core multi-modal capabilities to accomplish the OWMM
task: (1) Image Retrieval. Given the graph of posed frames and an egocentric frame, the VLM model
needs to retrieve a posed frame that contains the relative objects or receptacles that the robot needs to
navigate to. (2) Ego-centric Decision-making. Given multiple posed frames and an egocentric frame,
the VLM model needs to decide which action to conduct based on the task context, robot history,
and current egocentric observation. This capability is closely associated with the idea of spatial
intelligence[36], that VLM models should understand the spatial relationship between themselves
and the scene objects in order to make decisions on actions. (3) Affordance Grounding. If the
agent decides to interact with the near surroundings perceived in the egocentric frame, it should also
generate the target positions that correspond to the intention of the task.

Following this insight, we train a versatile VLM model that takes the task instruction L, multimodal
observations I, Ict , and history Ht−1, and generates all high-level actions. We design four types of
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Table 1: Dataset Overview for Instruction Fine-tuning. Our dataset consists of four subsets, each correspond-
ing to one of the four primary task actions: Pick, Place, Navigate to Point, and Search Scene Frame. The dataset
is designed to encompass diverse scenarios and objects, ensuring comprehensive coverage of open-world mobile
manipulation tasks.

Task Action Pick Place Nav to point Search scene frame

Data Size 64.7K 68.9K 59.6K 378.8K

Task Description Move Arm Hammer Di-
aper Pail Refills 12 Pack
from the Brunel-style bar
stool to the white 2-seater
sofa.

Move Shark from the
Conlay kitchen to the
comfortable sofa.

Move wood block from
the 7-piece dining set
with grey chairs to the
Low kitchen element,
Natural element.

Move flat screwdriver
from the Modern Indus-
trial Dresser, Natural Ma-
terial to the Stacked shelf
system.

Context Description I have embarked on my
task and am steadily
advancing toward the
Brunel-style bar stool,
where the Arm Hammer
Diaper Pail Refills 12
Pack MFWkmoweejt is
situated.

I have embarked on my
task and successfully nav-
igated to the Conlay
kitchen, retrieving the
Shark with ease. Now, I
am inching closer to the
cozy haven of the com-
fortable sofa, where I will
soon place the Shark.

The task has started and
I have navigated to 7-
piece dining set with
grey chairs and picked
up the wood block , I
am getting closer to Low
kitchen element, Natural
element where I should
place wood block.

The journey has com-
menced, and I have suc-
cessfully navigated to
the Modern Industrial
Dresser, Natural Material,
where I have now picked
up the flat screwdriver.

Action Information [[68, 755, 239, 967]] [[447, 539, 999, 999]] [[246, 666, 285, 705]] 4

high-level actions: 1) Posed image retrieval, 2) Navigate to point, 3) Pick, and 4) Place, which are
associated with planners and the grip controller. However, due to the extended time horizon of the
OWMM task, simply generating the executable action is insufficient. We instruct the VLM model to
monitor the state through robot history and to infer the subsequent action by considering both the
history and the present observations. Figure 3 demonstrates our model architecture as well as its
input and output. For more details on model implementation, see Appendix C.

4 Dataset

In this section, we elaborate on our data construction pipeline and quality verification method in
section 4.1. A detailed analysis of the data is provided in section 4.2.

4.1 Dataset Construction

For effective OWMM-VLM model training, generating the ground truth for OWMM is essential,
covering navigation, object grasping, and manipulation affordances. Previous research[39, 21] often
generates question-answer pairs from images or videos, lacking comprehensive action sequence
representations and necessary affordance information for contextual understanding.

To address this challenge, we developed a data collection pipeline. Using Habitat simulation[25],
we first constructed task sequences to complete the OWMM task based on the Planning Domain
Definition Language (PDDL)[22]. We then directed the robot to execute task sequences within
the simulator, recording key information at each step. With data selection strategy and filtering
pipeline, we constructed question-answer pairs based on the definition of the problem mentioned
in section 3.1. We constructed the reasoning and summarization components based on predefined
templates. Specifically, the summarization from each step is systematically incorporated into the
“Robot’s History" framework to inform the question of the next step. See Appendix D for details.

Finally, we collected scene graph frames for each episode. We first set the robot at the location
of the receptacle where objects were initially located and the goal receptacle, sampling the robot’s

6



head-view images. Subsequently, we randomly positioned the robot and captured its head-view
images. More details can be found in Appendix D.

4.2 Dataset Analysis

We used 143 scenes from The Habitat Synthetic Scenes Dataset (HSSD)[13] and combined objects
from YCB Objects[4] and Google Scanned Objects[6] to create a dataset with 157 unique manipula-
tion objects. We collected 1471 receptacles from our selected scenes. In each scene, objects were
randomly placed for the robot to pick and relocate to another receptacle, resulting in 400 episodes per
scene for our experiments.

Based on the data collection pipeline described in 4.1, we collected episodes from each scene and
ultimately gathered 21,046 valid episodes, obtaining approximately 235k annotations. As shown
in Table 5, the dataset is composed of: pick action dataset of 64.7K image-text pairs, place action
dataset of 68.9K image-text pairs, navigation dataset of 59.6K image-text pairs, and a search scene
frame dataset with 378.8K multi-image-text pairs.

In our datasets, we also apply a re-labeling process for objects and receptacles, unlike HomeRobot’s
fixed criteria[37]. We kept the original object labels and used GPT-4o to rewrite receptacle labels.
These labels were diverse and descriptive, suited for open-world scenarios.

5 Experiments

In this section, we present the evaluation results in both simulation and real-world data. We present
the experimental results of single-step evaluation for OWMM-VLM in our simulated benchmark in
section 5.1 and episodic evaluation for the OWMM-Agent in our simulated benchmark in section 5.2.
We then present the real-world evaluation in section 5.3. Due to the page limit, we discuss the data
scaling law and how data diversity impacts the model performance in Appendix D.2. For the ablation
study on model design, such as the choice of generating bounding boxes rather than points, please
see Appendix G. We further provide the qualitative comparisons of different models in Appendix H.

Table 2: Single-step evaluation of VLM models on OWMM core multi-modal capabilities.
The OWMM-VLM-38B model achieves the best performance across all metrics, demonstrating its
superior ability to integrate scene understanding, decision-making, and action generation. *: Since
PIVOT and RoboPoint are designed for a single image, we also report the single image grounding
results for fairness.

Model/ Task Score Ego-centric
Decision-
making↑

Image
Retrieval↑

Affordance
Grounding
(object)↑

Affordance
Grounding

(receptacle)↑

Affordance
Grounding

(navigation)↑

Time
Consumption(s)↓

OWMM-VLM-38B(ours) 97.85% 87.54% 0.97(±0.14) 0.94(±0.19) 0.88(±0.17) 36.58
OWMM-VLM-8B(ours) 96.72% 79.04% 0.93(±0.14) 0.91(±0.20) 0.83(±0.21) 16.58
GPT-4o[11] 48.53% 46.46% 0.56(±0.38) 0.35(±0.40) 0.07(±0.21) 160.74
Internvl2.5-8B[5] 17.52% 1.27% 0.05(±0.19) 0.18(±0.31) 0.14(±0.26) 16.06
GPT-4o+PIVOT[24] 52.72% 55.38% 0.67(±0.38) 0.45(±0.44) 0.05(±0.18) 22.91
GPT-4o+Robopoint[39] 49.56% 49.72% 0.64(±0.41) 0.38(±0.42) 0.06(±0.20) 14.19

Test of Single Image Grounding(*)

Robopoint[39]* — — 0.91(±0.33) 0.83(±0.11) 0.72(±0.11) —
PIVOT(GPT-4o)[24]* — — 0.86(±0.13) 0.84(±0.12) 0.74(±0.13) —

Table 3: Agent success rate in OWMM Task. OWMM-VLM-38B model consistently outperforms
others across all metrics.

Method Full Task Image Re-
trieval(Object)

Robot close
to Object

Object
Picked

Image Re-
trieval(Goal)

Robot close
to Goal

Dead Loop

OWMM-VLM-38B(ours) 21.90% 88.56% 84.64% 38.56% 30.39% 23.53% 0/308
OWMM-VLM-8B (ours) 9.45% 81.43% 74.59% 17.92% 15.96% 10.42% 0/308
GPT-4o+PIVOT 0.33% 59.15% 10.13% 0.65% 0.33% 0.00% 195/308
GPT-4o+Robopoint 0.33% 56.86% 11.11% 1.31% 0.00% 0.00% 184/308

Experiment with more lenient distance tolerance

OWMM-VLM-38B(ours) 51.52% 89.23% 88.22% 62.96% 51.52% 44.78% 0/308
OWMM-VLM-8B (ours) 38.59% 83.22% 81.21% 52.35% 39.93% 33.56% 0/308
GPT-4o+PIVOT 1.68% 60.27% 12.12% 5.39% 1.68% 1.35% 204/308
GPT-4o+Robopoint 3.03% 52.86% 10.10% 4.04% 2.69% 1.35% 209/308
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5.1 Single-step Evaluation

In the single-step evaluation, we assess three core VLM capabilities for the OWMM task: 1)
Egocentric Decision-making: We evaluate the success rate of choosing correct action categories. 2)
Image Retrieval: We measure the image retrieval success rate. 3) Affordance Grounding: Instead
of predicting points directly like in [39, 24], OWMM-VLM outputs a bounding box, from which we
compute the center as the target point. With the target point, we compute the score for affordance
grounding by s = Σi1valid(i) × (1 − norm_disti), where 1valid(i) is the indicator function of
whether the model generates: an action matched with ground truth and a valid bounding box or
point on the i − th test case. 1 if both conditions are satisfied simultaneously, and 0 otherwise.
norm_disti ∈ [0, 1] is the distance between the predicted target point and the ground truth point,
normalized by the diagonal of the image. In short, s ∈ [0, 1] measures VLM’s ability to generate
accurate grounding with the correct format. Higher scores indicate better performance.

Regarding the baseline methods, we have evaluated both 1) multitasking foundation VLM models,
including GPT-4o[11] and InternVL-2.5-8B that share the same unified input and output configuration
as ours and 2) modularized agent with multiple models, including GPT-4o+PIVOT[24] and GPT-
4o+Robopoint[39]. For Robopoint and PIVOT, which specialize in grounding, GPT-4o serves as the
higher-level module for decision-making and image retrieval. If GPT-4o’s actions need grounding, its
outputs are combined with task details as input to Robopoint and PIVOT for grounding.

The results are reported in Table 2. Our model excels in decision-making, achieving state-of-the-art
results in image retrieval and affordance grounding. GPT-4o and InternVL2.5, as generalist models,
perform poorly at affordance grounding. In contrast, RoboPoint and Pivot that concentrated on
affordance grounding, exhibit capabilities on par with our model in this task, indicating that existing
specialized approaches already provide good effect on robot’s action affordance.

Moreover, our model demonstrates a marked improvement over GPT-4o in decision-making tasks.
This advantage directly translates into higher overall accuracy compared to methods that employ
GPT-4o as the agent. In other words, using the data from our data synthesis pipeline to conduct a
supervised fine-tuning yields a significant enhancement in robotic decision-making performance.

5.2 Episodic Evaluation

In episodic evaluation, we assess how well each model completes an OWMM task episode in the
simulator. Task success is measured by placing objects in goal receptacles using distance thresholds
of 0.85m or 1.7m. The 0.85m threshold relates to half the average diagonal length of goal receptacles’
3D bounding boxes in our test set.

Additionally, we introduce three metrics to assess subgoals: 1) Image retrieval: Success rate in
locating object and goal receptacles from multiple posed images. 2) Object Picked: The success rate
of the robot grasping an item when its end effector is either within 0.15m or 0.8m of the target, with
the latter matching standard HomeRobot setups [37]. 3) Robot close to: The success rate of robot
staying within 1.5m or 2.0m of the object or goal receptacle before picking or placing. Additionally,
we propose the “dead loop" metric to quantify the number of cyclic stagnations occurring during test
episodes. As mentioned in 5.1, GPT-4o may erroneously output image retrieval decisions when the
expected action is navigation, thereby inducing cyclic stagnation. Detailed experimental results are
presented in Table 3. See Appendix F for extra details about evaluation settings.

5.3 Real world Evaluation

In our real-robot experiments, we adopted the mobile manipulation system described in Robi
Butler[33] within a real-world home environment. For safety reasons, we cannot allow the agent to
fully operate the fetch robot in the real world. When OWMM-VLM generates a multi-modal action
to execute, the agent prompts the visualization of the action and waits for human confirmation, and
the fetch robot only executes the action with human consent.

We first had the robot navigate through the scene with human control to perform SLAM process. We
then select 10 test samples from the sequence of the robot’s head view during its run. We used human
operators to judge the model’s output according to several criteria: whether the chosen action was
correct, whether the predicted affordance was accurate, and whether the target was reachable, among
other factors. The results of these experiments are presented in Table 4. The results show that the
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model trained on synthetically generated data in the simulator also demonstrates strong zero-shot
generalization capability in real-world scenarios. Table 5 presents the agent action prediction result
on real-world data.

Table 4: Real world single evaluation. OWMM-VLM-38B model achieved the best performance,
and OWMM-VLM-8B model also outperformed the baseline. While the baseline model demonstrated
relatively strong affordance grounding capabilities for objects, its poor performance in action decision-
making led to incorrect navigation.

Method Image
Retrieval

Affordance
Grounding(object&receptacle)

Affordance Grounding(navigation) Total Acc

OVMM-VLM-38B(ours) 7/10 10/10 10/10 90.00%
OVMM-VLM-8B (ours) 5/10 10/10 9/10 80.00%
GPT-4o+PIVOT 8/10 6/10 0/10 46.67%
GPT-4o+Robopoint 8/10 6/10 0/10 46.67%

Table 5: Demonstration of single step evaluation in real world. These demos showcase OWMM-VLM-38B’s
outputs, illustrating that even though its training data are drawn entirely from our data-synthesis approach in the
simulator, the model delivers outstanding decision-making and affordance-grounding performance in real-world
settings.

Model’s Output Action Pick Place Nav to point

Task Description Move the NutriSoy Bean Milk
Box from the Minimalist Black
Workstation Desk to the White

Rectangular Office Meeting
Table.

Move the banana from the black
desk to the White Rectangular

Office Meeting Table.

Move the chip box from
Genuine Leather Sofa to the

white table.

Context Description The task has started and I am
getting closer to the Minimalist
Black Workstation Desk where
the NutriSoy Bean Milk Box is

located.

The task has started and I have
navigated to the black desk and

picked up the banana, I am
getting closer to the White

Rectangular Office Meeting
Table where I should place the

banana.

The task has started and I am
getting closer to Genuine

Leather Sofa where the chip box
is located.

Action Information [576, 263, 769, 548]] [[0, 445, 1000, 999]] [[539, 978, 578, 999]]

6 Conclusion

In this paper, we introduced OWMM-Agent, a novel agent architecture featuring the OWMM-VLM,
a vision-language model fine-tuned via a simulation-based agentic data synthesis pipeline for Open-
World Mobile Manipulation (OWMM) tasks. This approach enables the VLM to learn state tracking,
multi-view reasoning, and multi-modal action generation grounded in global scene understanding and
agent embodiment. Extensive experiments demonstrated that our OWMM-VLM, particularly the 38B
variant, achieves state-of-the-art performance in single-step multi-modal capabilities like egocentric
decision-making and affordance grounding, outperforming generalist VLMs and specialized robotics
models. Episodic evaluations in simulated environments further confirmed the OWMM-Agent’s
superior success rates and robustness against common failure modes like dead loops, while real-world
tests on a Fetch robot indicated strong zero-shot generalization. Ablation studies underscored the
importance of our design choices, such as bounding box prediction and integrated reasoning, and
revealed that while data scaling is crucial, egocentric spatial intelligence can be learned effectively
even with limited object and scene diversity if data volume is sufficient. Future work will focus on
addressing limitations like pre-mapping reliance and enhancing cross-embodiment adaptability for
more complex manipulation tasks. Please also refer to the appendix for discussions about the potential
impact of this research in Appendix A and extended discussions on limitations in Appendix B.
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A Impact Statement

This work contributes to the long-term vision of creating generalist household robots capable of
assisting with daily activities in homes and other human-centric spaces. Ethically, deploying such
systems raises considerations regarding safety, privacy, and workforce displacement. Ensuring safe
interactions with humans and securing data used for training are critical priorities. In addition, while
automation may replace certain household jobs, it also creates opportunities for new roles in robot
design, deployment, and maintenance. Future societal implications include increased accessibility
to robotic assistance for individuals with disabilities or aging populations. By addressing current
limitations through continued research into adaptability and real-world robustness, OWMM-VLM
can pave the way toward more inclusive and effective robotic solutions for societal benefit.

B Limitations

In this work, we have proposed a novel embodied agent architecture with a foundational VLM model
to address the open-world mobile manipulation problem. However, we also identify some limitations
of our approach.

Pre-mapping: Although our method does not require 3D reconstruction of the environment, we still
assume a pre-mapping phase with a camera pose graph and 2D occupancy map for path planning in
navigation.

Complex manipulation: Following the grasping setup in [37], our agent and model can be directly
applied robot with suction as end effector. However, our model fells short in the circumstances when
the robot needs to control complex end effectors like dexhands.

Cross-embodiment: As demonstrated in the experiments, our model learns the object-scale prior for
spatial understanding and reasoning. However, when deploying the model onto other robots with
different mechanical compositions such as maximum arm stretch distance, our model could fail, i.e.
the cross-embodiment issue.

C Implementation Details

Regarding the model’s architecture, we have trained two variants consisting of 8 billion and 38 billion
parameters, based on the pre-trained model from InternVL-2.5[5]. The 8B model is composed of
InternViT-300M and InternLM-2.5-7B[3], and the 38B model is composed of InternViT-6B and
Qwen2.5[35]. We directly finetune the base model on our OWMM dataset. The OWMM-VLM
model is trained to autoregressively generate the response tokens consisting of the output action and
its corresponding task context in JSON format. Specifically, we freeze the parameters in ViT and
only adjust the parameters in MLP and LLM. As for the training time, OWMM-VLM-8B is trained
on 8X NVIDIA A100 GPUs for about 7 hours, and OWMM-VLM-38B is trained on 24X NVIDIA
A100 GPUs for about 18 hours. Both our models were trained for 1 epoch. For the testing, we deploy
OWMM-VLM and RoboPoint[39] locally and use the openAI API to access GPT-4o and PIVOT[24].

D Details of Datasets

D.1 Extra Dataset Construction Details

Our evaluation pipeline is constructed using the HomeRobot[37] framework, which serves as a
software structure designed to enable comprehensive benchmarking in both simulated and real-
world settings. Specifically, we use the simulation part of HomeRobot project, built on Habitat
platform[25], with 200 scenes, 150 categories, and 7892 object instances. The original episodic data
in HomeRobot are generated with Stretch Robot[12], which has a special telescopic arm instead
of a normal articulated arm with rotary joints. This adds additional difficulty in base control as it
requires the mobile chassis to rotate accurately to align the arm with the target object for manipulation.
However, the baseline VLMs and methods we are going to compare with are designed for robots
with conventional articulated arms [39, 24], providing a broad range of chassis poses that allow for
successful arm manipulation.
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Therefore, we recreate the OWMM episodic training and testing datasets in the simulation using the
Fetch Robot, which is a mobile robot equipped with a standard articulated arm and has also been
integrated into the Habitat platform. We partitioned the scenes into training and testing sets using a
ratio of 113:30. Besides, we allocated 157 objects between the training and validation sets with a
ratio of 137:20, ensuring that the testing set contained entirely unseen objects. This division resulted
in a total of 152k training data entries and 4k testing data entries, establishing a robust dataset for
training and testing in our OWMM task.

In dataset construction pipeline,we first sample key imformation at each step.This information
included the robot’s coordinates, current action, the positions of objects and receptacles, and the
extrinsic parameters of the robot’s head-view camera. In particular, at this stage, we did not collect
the robot’s head-view images to enhance the data collection efficiency.We recollected the robot’s
head-view images of these steps within the simulator after selection strategy.

In the key step data selection strategy, for navigation actions, among all steps that the robot is moving,
we select the step that the receptacle is visible from the robot’s head-view image as the start point of
the navigation action. The point at which the robot stops moving is considered the end point of the
navigation action. Within these steps, we sample the waypoint step data at specified intervals. For
grasp and manipulation actions, we select the first three frames during which the robot executes the
action as the pre-defined action data.

The data filtering pipeline ensures the following matters: for navigation actions, both the receptacle
and the next waypoint are within the robot’s head-view image. For grasp actions,the object to be
grasped is reachable by the robotic arm, and the object is within the robot’s head-view image. For
manipulation actions,the receptacle intended for object placement is reachable by the robotic arm,
and the receptacle is within the robot’s head-view image.

To enhance the diversity of the dataset, we paraphrased reasoning and summarization parts of the
answers using GPT-4o mini.

(a) Object Categories (b) Receptacle Categories

Figure 4: Word Cloud Distribution of Objects and Receptacles in our dataset

D.2 Analysis on the training data

This analysis tries to answer two questions: 1) How does the diversity of objects and environments
affect the model’s performance on unseen objects and environments in the test set? We examine
dataset diversity using three 45k-sample sets: 100% scenes and objects, 100% scenes with 30%
objects, and 30% scenes with 100% objects. We control the total number of training samples while
changing the number of object instances or scenes appearing in the training data. 2) How does the
model’s performance change as the training data scales up? For data scaling, we use five data
sizes: 0k (no fine-tuning), 15k (10%), 45k (30%), 76k (50%), and 152k (100%). At 0k, we give
the Internvl-2.5-8B model limited input-output pairs, allowing it to generate structured outputs via
in-context learning. We evaluate the performance in image retrieval, egocentric decision-making, and
three affordance grounding subtasks. Results are shown in Table 6 and Figure 5.

The results for the first question show that object and scene diversity have negligible effects on
multi-modal capabilities, as metric fluctuations remain within a 5% range. For the second quesion,
data scaling is crucial for enhancing OWMM-VLM’s performance. As seen in Figure 5, increasing
the dataset from 0k to 152k samples shows a logarithmic improvement, especially at lower sizes (0k to
15k, and 15k to 45k). However, benefits diminish near 152k. While larger datasets aid generalization,
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Figure 5: OVMM-VLM-8B Sub-task Performance with the Increase of Training Data Size. The
task scores consistently improve as the training data size increases.

marginal gains decrease beyond a threshold. As performance gains plateau, egocentric decision
making approaches a success rate of 1.0, whereas image retrieval lingers at approximately 0.8. This
difference is likely due to the model’s limited capacity with 8 billion parameters. We also draw two
extra observations from the experiment:

1) The embodiment prior for deciding the current action based on the ego-centric RGB image,
especially how close the robot should be to interact with the target objects, can be learned in a
data-driven approach.

2) The ability to comprehend multiple images or the multimodal context length may present one
of the bottlenecks for VLM models to function as the core cognitive model for intelligent robots,
particularly when scene-level understanding is essential.

Table 6: Results with different data diversity data scales. The best performance across training sets
with different scales is indicated with bold font. Besides, underline highlights the best performance
across three 45k-sample training sets with different diversity.

Data Composition/ Task Score Ego-centric
Decision-
making↑

Image Retrieval↑ Affordance
Grounding
(object)↑

Affordance
Grounding

(receptacle)↑

Affordance
Grounding

(navigation)↑

0k(0%) 17.52% 1.27% 0.05(±0.19) 0.18(±0.31) 0.14(±0.26)
15k(10%) 73.27% 41.36% 0.69(±0.43) 0.84(±0.29) 0.45(±0.41)

45k(30%) 91.01% 70.68% 0.88(±0.24) 0.84(±0.31) 0.74(±0.31)

45k(100% scene + 30% object) 91.56% 71.95% 0.87(±0.26) 0.89(±0.23) 0.72(±0.33)

45k(30% scene + 100% object) 88.96% 69.12% 0.87(±0.26) 0.84(±0.31) 0.69(±0.36)

76k(50%) 95.79% 76.20% 0.91(±0.19) 0.88(±0.24) 0.84(±0.20)
152k(100%) 96.72% 79.04% 0.93(±0.14) 0.91(±0.20) 0.83(±0.21)

E Details of Baseline Setting

As Robopoint and PIVOT are designed for single-image QA task, we adjusted some settings to enable
them fully utilizing their capabilities under the OWMM task.

E.1 Single Image Grounding

For the single-step evaluation, we first extracted robot’s task instruction from the original prompt of
the current step. Based on the ground truth action of the current step and whether the robot picks up
an object, we designed new task instructions, as shown in Table 7. For Robopoint, we appended the
following context: “Find a few spots for robot to execute the action. Your answer should be formatted
as a list of tuples, i.e. [(x1, y1), (x2, y2), ...], where each tuple contains the x and y coordinates of
a point satisfying the conditions above. The coordinates should be between 0 and 1, indicating the
normalized pixel locations of the points in the image." This configuration aligns with Robopoint’s
original settings.
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Ground Truth Action New Task Instruction
Pick The robot needs to pick {object item} on {target rec}

Place The robot needs to place {object item} on {goal rec}

Nav to point(object picked) The robot needs to navigate closer to the {goal rec} for placing
{object item}

Nav to point(object not
picked)

The robot needs to navigate closer to the {target rec} for picking
{object item}

Table 7: Redefined Task Instructions. {object item}, {target rec} and {goal rec} are from robot’s
task instruction.

For PIVOT, we configured the following parameters: n_samples_init=10, n_samples_opt=6, n_iters=2.
In our evaluation settings, as the input consists of a single RGB image and task instructions, we
randomly sample initial points in the image from a 2D Gaussian distribution. The distribution is
parameterized with a mean of (256, 256) and standard deviation of (100, 100).

E.2 Agent Setting

We employed GPT-4o for agent construction.GPT-4o first receives our instruction inputs and returns
JSON-formatted responses. When gpt’s output action is “search scene frame", we directly adopt
GPT-4o’s response as the agent’s current-step output. For actions “nav to point", “pick", or “place",
the system sends both the action name and robot’s current-view RGB image (single frame) to
Robopoint/PIVOT for action affordance. The reformulated task instruction sent to Robopoint/PIVOT
follows this template:

“The robot needs to {task_instruction}. Now the robot needs to {gpt_output_action}. {robot_history}"

where {task_instruction} is the original task instruction,{gpt_output_action} is gpt’s output ac-
tion,{robot_history} is the summarization of previous step. In single-step evaluation, Robopoint and
PIVOT process these new task instructions using the same methodology described in Appendix E.1.In
episodic evaluation, we transmit depth information to PIVOT while maintaining consistency with its
original configuration.

F Extra Details of Episodic Evaluation

As mentioned in section 5.2, we designed the following metrics for episodic evaluation. More detailed
specifications of these metrics are outlined below:

Object to Goal Distance: We used the object to goal distance as the metric to determine whether
objects are successfully placed in goal receptacles. To establish appropriate thresholds, we first
calculated the 3D bounding box diagonal distances of all goal receptacles in the test set, filtering
out those with distances less than 0.75m or greater than 3m.Table 8 show some examples of goal
receptacles in our test set.Subsequently, we computed the average diagonal distance (1.7m) from
the remaining valid receptacles. Based on this value, we selected half of the average (0.85m) as
the strict threshold criterion and the full average (1.7m) as the relaxed threshold criterion. This
threshold approach ensures successful placement recognition when robots position objects near goal
receptacles,and reasonable constraint boundaries to prevent excessive leniency in evaluation.

F.1 Simulation

For one simulation step, the robot state delta is calculated by forward kinematics, as implemented
by the Habitat 3.0 environment[25]. The robot state and observations updates can be expressed
mathematically as:

xt+1 = fk(xt,at,∆t)

Ict+1, D
c
t+1 = fobs(xt+1)

where xt stands for robot current state (e.g., joint angles, positions), at stands for velocities, and fk
represents the kinematic model function that computes the next robot state within the discretized

16



Circular table, Small oak Hisa Wooden Console Silver Picardy Bed tall sideboard
0.789m 1.655m 2.504m 2.931m

Table 8: Example Goal Receptacles in our Test Set. The numbers in the figure represent the
diagonal distances of the 3D bounding boxes of the receptacles. This indicates that there is significant
variation in the sizes of the goal receptacles in the test set.

time step of duration ∆t. fobs is the observation model function, decided by the sensor link forward
kinematics function and camera model.

G Ablation Study on OWMM-VLM

The ablation study evaluates the contributions of the components of the OWMM-VLM model. We
focus on grounding output formats, comparing the bounding box and point coordinate, and we assess
the inclusion of reasoning and summarization in the outputs. Furthermore, we examine the beam
search option provided by the base model Internvl-2.5-8B[5]. The results are in Table 9.

From the table, we have these observations and indications:

1) Beam Search. Beam search is a decoding algorithm widely used in language generation, main-
taining a beam number of top candidate sequences at each step. Beam search enhances Ego-centric
Decision-making and Affordance Grounding tasks, with minimal impact on Image Retrieval, but
increases temporal and spatial overhead in inference, especially on the 38B variant. Hence, its effect
is briefly shown only in the ablation study.

2) Grounding Format. Replacing bounding box predictions with direct output coordinates reduces
performance in Affordance Grounding, especially for objects (0.9251 → 0.6542) and receptacles
(0.9060 → 0.6479). It is postulated that the large-scale visual grounding data in the pre-trained
model allow our model to utilize this prior knowledge. The consistency in output format between the
base model and the instruction fine-tuning dataset aids the training process.

3) Reasoning and Summarization. Removing reasoning and summarization capabilities leads to the
worst performance across most metrics, with a decrease in Image Retrieval (0.7904 → 0.6586) and
Ego-centric Decision-making (0.9672 → 0.9049). This highlights the critical role of reasoning and
summarization in maintaining contextual coherence and task understanding.

Table 9: Ablation Study on OWMM-VLM. The best performance is indicated with bold font.
Model Ablation Ego-centric

Decision-
making↑

Image Retrieval↑ Affordance
Grounding
(object)↑

Affordance
Grounding

(receptacle)↑

Affordance
Grounding

(navigation)↑

OWMM-VLM-8B 96.72% 79.04% 0.93(±0.14) 0.91(±0.20) 0.83(±0.21)
+ beam search 97.30% 78.47% 0.97(±0.14) 0.93(±0.21) 0.85(±0.18)
+ output-coord 96.70% 78.19% 0.65(±0.15) 0.65(±0.17) 0.63(±0.14)
- reasoning and summarization 90.49% 65.86% 0.88(±0.24) 0.83(±0.33) 0.82(±0.24)

H Qualitative Evaluation

We provide the qualitative evaluation of our OWMM-VLM model compared to other baseline models.
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Pick Place Nav to point

Table 10: Single step Qualitative Evaluation. The table demonstrates the single step qualitative evaluation
results: represent the ground truth; represent GPT-4o; • represents RoboPoint; • represents PIVOT;
represents InternVL base model; represent ours
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Task Description Context Description Response

Move Schleich Allosaurus from the Uphol-
stered Sofa to the Brown and Gold Accent
Cabinet.

Task just started.

Move Tena Pads Heavy Long 42 pads from
the Dark Wooden Tall Open Bathroom
Cabinet to the multifunctional games ta-
ble.

The task has started and I have navigated
to Dark Wooden Tall Open Bathroom Cab-
inet and picked up the Tena Pads Heavy
Long 42 pads.

Move hammer from the Multiple Drawer
Short Boy to the Dark Wooden Tall Open
Bathroom Cabinet.

The task has started and I have navigated
to Multiple Drawer Short Boy and picked
up the hammer.

Move 065-b cups from the Unch metal
and wood bar stool to the Magnolia Home
Foundry Console Table.

The task has started and I have navigated to
Unch metal and wood bar stool and picked
up the 065-b cups.

Table 11: Single step Qualitative Evaluation Search Scene Frame. The table demonstrates the single step
qualitative evaluation search scene frame results: represent the ground truth; represent GPT-4o;
represents InternVL base model; represent ours
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