Under review as a conference paper at ICLR 2026

TOWARDS IMPROVED SENTENCE REPRESENTATIONS
USING TOKEN GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Obtaining a single-vector representation from a Large Language Model’s (LLM)
token-level outputs is a critical step for nearly all sentence-level tasks. How-
ever, standard pooling methods like mean or max aggregation treat tokens as an
independent set, discarding the rich relational structure captured by the model’s
self-attention layers and making them susceptible to signal dilution. To address this,
we introduce GLOT, a lightweight, structure-aware pooling module that reframes
pooling as relational learning followed by aggregation. Operating on the outputs of
a frozen LLM, GLOT first constructs a latent token-similarity graph, then refines
token representations with a graph neural network, and finally aggregates them
using a readout layer. Experimentally, our approach is remarkably robust and effi-
cient: on a diagnostic stress test where 90% of tokens are random distractors, GLOT
maintains over 97% accuracy while baseline methods collapse. Furthermore, it
competitive with state-of-the-art techniques on benchmarks like GLUE and MTEB
with 20x fewer trainable parameters and speeds up the training time by over /00x
compared with parameter-efficient fine-tuning methods. Supported by a theoretical
analysis of its expressive power, our work shows that learning over token graphs is
a powerful paradigm for the efficient adaptation of frozen LLMs.

1 INTRODUCTION

Large Language Models (LLMs) (Raffel et al.,[2020; Lewis et al., 2020; [Brown et al., 2020; [Touvron
et al.,[2023; Jiang et al.|[2023)) produce a sequence of token-level hidden states, yet many downstream
applications require a single vector embedding to represent an entire sentence or document. Therefore,
the process by which a sentence and its tokens’ hidden states are collapsed into a single vector
representation is critical. Standard practices typically rely on simple heuristics such as mean, max,
or using a dedicated [CLS] token. While these pre-defined approaches have been dominant in the
literature (Devlin et al., 2019; Liu et al., 2019; Reimers & Gurevych, |[2019;|Gao et al., 2021} |Arora;
et al., 2017;|Wang et al.,[2024)), they can also be vulnerable when only a small subset of tokens carries
task-relevant signal amid many distractors, as has been recently studied in|Brothers| (2025).

Although Transformers (Vaswani et al., [2017) inherently model token interactions through self-
attention, standard sentence-level representation techniques discard this rich relational structure,
treating hidden states as an independent set of vectors. Indeed, this shortcoming was recently studied
for Vision-Transformers (Dosovitskiy et al.l 2021} in |Brothers| (2025), who proposed to learn a
multilayer-perceptron (MLP)-based token scoring function. However, while this approach may
correctly up-weight the word “good”, it may fail to capture the effect of its negation with the word
“not”. This challenge is particularly acute for decoder-only LMs (e.g., GPT (Radford et al.,|2019;
Brown et al.||2020) or LLaMA (Touvron et al.l 2023)), whose causal attention mechanism optimizes
hidden states for next-token prediction rather than holistic sentence representation (Radford et al.,
2019; Brown et al., 2020).

Prior work shows that LLM token vectors have a strong directional bias: many of them point in similar
directions, and seemingly unrelated words have embeddings with high similarity (Ethayarajhl 2019;
Li et al2020). Therefore, sentence-level representations built on isolated tokens may be unreliable
for semantic understanding tasks. While these shortcomings can be addressed by fine-tuning the entire
model on downstream tasks, this approach is often computationally prohibitive for billion-parameter

Under review as a conference paper at ICLR 2026

® [EOCS] e Mean Max AdaPool ® GLOT (Ours) O FullFT A LoRA O FrozenlLLM
Single-Sentence (CoLA) Sentence-Pair (RTE) g Similarity (STSB)

8 525t o isg, [] ')‘('30— [}

X 50.0-] 5587 %70—

8 47.5 A g 577] g

=3 50 <% D 0 A

7] o 55 2 A |

o o -

C 425 C 54- @ 50-

© © A o

E 40.0 g 53- %

"g 375 "g 527 E 1

é]-J o e s M, 3517 —— ‘A‘ = ‘g o e e L S
108 107 108 10° 10%° 10° 107 108 10° 10° @ 10° 107 10° 10° 1010

Trainable Parameters (log scale) Trainable Parameters (log scale) % Trainable Parameters (log scale)

Figure 1: Fine-tuning large language models for sentence embeddings is computationally expensive.
Our pooling method, GLOT, constructs a latent token-similarity graph from the outputs of a frozen
model. It then refines token representations with a graph neural network before aggregation. This
technique enables decoder-only models (like Mistral-7B), typically optimized for next-token predic-
tion, to produce powerful sentence-level representations without requiring any fine-tuning.

models (Lee et al., 2025} |Gao et al.,[2021). The immense cost of training, compounded by the need
for extensive hyperparameter optimization, makes full fine-tuning impractical for many applications.

To bridge this gap, we reframe the problem of collapsing token hidden states into a sentence-level
representation as learning over token graphs. To this end, we propose GLOT, a lightweight, structure-
aware module that operates on the token hidden states produced by LLMs to obtain a sentence-level
representation. Specifically, as illustrated in Figure[2] GLOT does the following: (i) constructs a
token-similarity graph from the LLM hidden states, (ii) propagates information across the graph
using a graph neural network, and (iii) aggregates the refined token representations using a readout
mechanism. The LLM backbone remains entirely frozen; only the GNN module and a task-specific
head are trained. This lightweight approach maintains a remarkably small memory footprint while
equipping decoder-only LMs to perform as powerful text embedding models.

Contributions. Our contributions are as follows:

* We introduce a new conceptualization of sentence-level representation from LLM hidden
states; rather than framing it as direct information compression like existing techniques, we
envision a relational learning approach via GNNs. In addition, our framework generalizes
common pooling methods like mean, max, and [CLS] pooling.

We present GLOT, a compact and parameter-efficient module that enhances the performance
of both encoder- and decoder-only frozen backbones with 20x fewer trainable parameters
and over 100x faster training time than LLM fine-tuning-based methods.

* We provide extensive empirical validation for GLOT. Our evaluation shows that GLOT
consistently outperforms pre-defined pooling and learning-based methods, across a wide
range of tasks, including the GLUE benchmark for language understanding (Wang et al.,
2018)), long-text classification on IMDB (Maas et al.,[2011), and seven diverse tasks from
the large-scale MTEB benchmark (Muennighoff et al.,2023). Crucially, we introduce a
novel diagnostic stress test that confirms GLOT’s superior robustness to signal dilution, a
key failure mode for other methods.

* We provide a detailed analysis of our method’s components, demonstrating how the graph
construction impacts performance and quantifying its substantial computational efficiency
over fine-tuning methods.

To ensure reproducibility, we will publish the code and pre-trained models upon acceptance and
provide pseudo-code for our method in Appendix

Under review as a conference paper at ICLR 2026

2 RELATED WORK

The Compressive Paradigm of Sentence-Level Representation. To obtain sentence-level represen-
tations from LLMs, existing methods consider a compression problem: collapsing tokens’ hidden
states into a single vector. This paradigm usually encompasses pre-defined rules like mean or max
selection, as well as learnable variants that learn token weights (Reimers & Gurevych,2019; Gao
et al.l 2021} Xing et al., 2024} Lee et al., |2025; Brothers|, [2025). While effective in some cases,
these methods fundamentally discard relational structure. This can be derived from the theory of
permutation-invariant functions on sets, as done in DeepSets (Zaheer et al., 2017), however, only
looking at the tokens as completely independent items in a set does not paint the whole picture. As a
result, these approaches implicitly assume the LLM has already embedded all necessary relational
information. This assumption is often violated, especially for decoder-only models, which are opti-
mized for next-token prediction rather than holistic sentence understanding (Radford et al., 2019
Brown et al., [2020). Indeed, recent work by Brothers| (2025) shows such methods fail precisely
because they compress before performing relational learning. Our work, GLOT, directly addresses
this shortcoming by using advances from graph neural networks, which are also permutation invariant
but can also encode relational information.

Graph-Based Representations in NLP. Graph Neural Networks (GNNs) are natural tools for
relational learning; however, their prior applications in NLP differ from our problem of obtaining
sentence-level representation using a frozen LLM. Many of these works use graphs to represent corpus-
level tasks and solve them using GNNs rather than producing sentence-level embeddings. For example,
Yao et al.|(2019)) builds a single word-occurrence-based graph over the corpus for text classification,
and |Huang et al.| (2019) extends this approach for online inference and reduced memory consumption.
Recent works propose the usage of attention and diffusion dynamics (Liu et al,[2021)) and interleaving
GNN and Transformer layers for improved text classification performance. Other approaches differ
in their architecture or output format. Late-interaction models like ColBERT (Khattab & Zaharia,
2020) preserve token granularity but produce multi-vector representations incompatible with standard
embedding interfaces. In contrast, GLOT is the first approach to construct a latent token-similarity
graph directly from frozen LLM hidden states, and perform explicit relational learning within the
pooling head to produce a single, robust sentence vector.

Global Representations in Other Domains. The challenge of creating a single, global representation
from a set of features is not unique to NLP. In computer vision, pooling has long been a central
component in convolutional neural networks (CNNs). While operations like max and average pooling
are used throughout these models (Krizhevsky et al.,[2012; He et al.,|2016), global pooling is critical
for producing a hoslistic representation. Techniques like global average pooling are used to collapse
the final spatial feature maps into a single feature vector for classification, effectively summarizing
the most salient features present in an image (Lin et al., [2013). In NLP, by contrast, pooling is
often treated as a final, routine step. Our work, GLOT, challenges this view by demonstrating that a
graph-neural-based sentence-level learning approach can unlock significant performance gains from
frozen language models, opening a new direction for efficient sentence-level model adaptation.

Positioning GLOT Relative to Prior Works. Our work distinguishes itself from two primary
streams of literature: learnable pooling and graph-based NLP. (a) Relation to Learnable Pooling.
Recent learnable pooling methods, such as AdaPool (Brothers, [2025])), operate fundamentally under
a “DeepSets” paradigm (Zaheer et al.l 2017). These approaches treat the token sequence as an
independent set to be compressed. While effective for some tasks, this independence assumption fails
to capture inter-token dependencies which are critical for resolving the signal dilution inherent in
frozen LLM outputs. GLOT challenges this assumption by reframing pooling as relational learning.
By explicitly modeling pairwise interactions via a GNN before aggregation, GLOT recovers structural
dependencies that strictly independent pooling methods discard. (b) Relation to Graph-Based NLP.
Unlike prior graph-based text encoding methods (e.g., TextGCN (Yao et al,[2019)), which typically
rely on global corpus-level statistics or fixed syntactic dependency trees, GLOT introduces a dynamic,
latent graph construction mechanism. GLOT builds semantic graphs on-the-fly based entirely on
the intrinsic geometry of the frozen LLM’s hidden states. This allows the model to recover rich,
context-specific structural information without the computational overhead of external parsers or the
rigidity of fixed syntactic trees.

Under review as a conference paper at ICLR 2026

e 2
11 ﬂiz $+3 LR ﬂiL Frozen Weights
iy Trainable Weights
Language Model
&
v v v GLor
u,
X1 (X2 [[Xgeees XL 5> [TOKENGNN] —> "™ 1 —> [[Remoour | > |-
ur,
N J

Figure 2: An overview of the GLOT pooling architecture. Given token hidden states from a frozen
language model, our trainable module performs three stages : (1) it constructs a latent token-similarity
graph, (2) a TOKEN-GNN performs relational learning to refine token representations, and (3) a
readout layer aggregates the refined vectors into a final sentence representation, z

3 METHOD

In this section we formalize and discuss the properties of our method. We start by providing essential
notations and problem formulation in Section 3.1} followed by Section[3.2] where we present GLOT.

3.1 PROBLEM SETUP

Given a sequence of input tokens |21, z2, -+ , x| and a frozen LLM, the task is to design a function
fpool, that maps the sequence of token-level hidden states X = [x1,Xo, - ,X1] € REXd to a
single, sentence-level representation, z € R, This vector z is a critical input for many downstream
applications considered in this work, as follows:

 Single-Sentence Classification. For tasks like sentiment analysis, the vector z is fed into a
linear classifier, y = softmax(Wz + b) to obtain the sentence label, where W and b are
trainable parameters.

¢ Sentence-Pair Classification. For tasks like entailment detection, two sentence vectors, z, and
Zy, are concatenated and passed to a linear classifier to obtain a label y = softmax(W[z,||zp] +
b), where || denotes channel-wise concatenation.

¢ Similarity and Retrieval. For ranking, the semantic relatedness of two vectors, z, and z, is
measured with a function like cosine similarity, sim(z.,2z3) = 2, 23/ ||| ||2s]|-

3.2 GLOT

We introduce GLOT, a trainable framework that transforms the token-level hidden states into a
final, sentence-level vector, z = GLOT(X). As illustrated in Figure this process involves three
stages: (1) constructing a token graph, (2) refining token states with a graph neural network (GNN)
denoted TOKEN-GNN, and (3) performing a learnable readout. Standard pooling methods treat the
input sequence as a set of independent vectors. While computationally cheap, this independence
assumption forces the model to discard inter-token dependencies during the compression step,
making the representation susceptible to signal dilution from distractor tokens. GLOT challenges
this paradigm by reframing pooling as relational learning. We hypothesize that the token space is
not a set, but a latent graph G, where nodes are tokens and edges represent semantic dependencies.
This allows GLOT to learn complex, multi-token dependencies relevant to the task. This paradigm
shift is significant because we are to the best of our knowledge the first to adapt the LLM’s rich,
yet possibly unoptimized, respect to sentence-level tasks, relational structure using a token-graph
approach. Below we explain the core mechanism of GLOT:

Step 1: Token Graph Construction. Given token hidden states X = [x1,Xa, -+ ,X1] € RL*4 that
are obtained from an LLM with hidden dimensionality d, after processing an input of length L, we
construct a token graph G = (V, £) where nodes |V| = L correspond to tokens. Edges are defined by
the cosine similarity S;; between token vectors x; and ;. To induce a sparse, semantic structure, we
only create edges where S;; exceeds a threshold 7, which is a hyperparameter, discussed in SectionEl

Under review as a conference paper at ICLR 2026

Step 2: Refinement with TOKEN-GNN. Next, we apply a lightweight graph neural network, dubbed
TOKEN-GNN, to refine the token representations by modeling their interactions. With token hidden
states X, we initialize node features H(®) = X W;,, € RE*P using a learnable matrix W,, € R4*P,
where p is the hidden dimension of the GNN. Overall, we apply K GNN layers to produce a set
of refined, structure-aware token representations HE =U = [ug,---,ug] € RE*P Each layer
¢=1,..., K of the TOKEN-GNN computes:

a¥) = AGGREGATE (h(@) € R, M
o JEN; J
h("*? = o (WO CONCAT(R", a(")) , @

where ay) is the aggregated information from the neighbors N; of token i, AGGREGATE is a
permutation-equivariant aggregation function like sum or mean, W) € RP*?? is a learnable weight
matrix, and o is a nonlinear activation function, with implementation details in Appendix

Step 3: Readout Layer. The set of refined token representations, U, is aggregated into the sentence
vector z via learnable scoring. A scalar importance score m,; is computed for each refined token
vector u;, normalized using softmax to create weights 7r, and used to compute a weighted sum:

L
mi=v' tanh(W,,u; + b,,), 7 =softmax(m), z= Zmui, 3)
i=1

where m = [mq,...,mz].

Overall, GLOT aggregates token-level hidden states obtained from a frozen LLM, to obtain refined
and learnable sentence-level representations by modeling token—token relationships using a graph
and processing them using TOKEN-GNN.

Properties of GLOT. The GLOT framework extends several common methods for obtaining
sentence-level representations, which can be recovered as special cases. If we disable the TOKEN-
GNN by setting its number of layers to zero (i.e., K = 0), then the refined vectors are simply the
original hidden states (that is, u; = x;), and the framework reduces to a direct weighted pooling
mechanism. From here, we can model both standard pooling methods (like mean or CLS pooling) by
using fixed weights and adaptive scoring methods, like AdaPool from [Brothers|(2025)), by keeping
the weights learnable.

These cases, where K = 0, fit into the DeepSets framework (Zaheer et al., [2017), in which all
elements x; are transformed individually ¢(x;) before a global aggregation function. Instead, the
Token-GNN utilized in GLOT enables information exchange in the form of ¢(x;, G), taking a more
global approach and allowing interactions between tokens. [Bronstein et al.|(2021) has shown
DeepSets to be a special case of convolutional GNNs with no edge connectivity and, thus, strictly less
powerful than message passing, an advantage we exploit in GLOT. The additional communication
introduced in GLOT between tokens’ representations allows it to model linguistic phenomena that
hinge on pairwise or multi-hop dependencies among the tokens. The GNN mechanism in GLOT
requires additional memory and computations, compared with pre-defined methods. Nonetheless,
we note that, in comparison to other methods, which require the fine-tuning of the entire backbone
LLMs, our GLOT strikes a balance between efficiency and effectiveness in downstream performance,
as is evident in Section 4] and Figure

4 EXPERIMENTS AND DISCUSSION

We conduct a comprehensive evaluation of GLOT to validate our core hypothesis: obtaining
sentence-level representation via its reframing as relational learning before compression yields
superior sentence embeddings from frozen LLMs compared with traditional and recent learnable
approaches. Throughout our experiments, all backbone LLM models remain completely frozen; only
the lightweight GLOT head and a minimal task-specific classifier are trained. This design ensures
our approach is both parameter and resource-efficient. Our evaluation is guided by four key research
questions:

Under review as a conference paper at ICLR 2026

Table 1: A comparison of pooling methods on the GLUE benchmark using six different frozen
backbones. The table reports standard metrics: MCC for CoLA, Spearman for STS-B, F1 for
MRPC/QQP, and Accuracy for the rest. Scores are multiplied by 100, with the best performance for
each model highlighted in bold.

Model Method CoLA SST-2 STS-B MRPC QQP MNLI-m MNLI-mm QNLI RTE WNLI
MCC+ ACCt Spea.+ FI+ FIt ACCt ACCT ACCt ACCt ACCt

[CLS] 22.66 83.83 61.08 79.58 19.70 43.86 45.03 54.75 50.90 45.07
~ Mean 19.55 8291 74.96 80.28 29.01 43.86 45.16 56.43 51.62 52.11
E Max 15.79 80.73 74.12 81.64 29.58 38.60 39.55 53.79 51.98 49.26
=] AdaPool ~ 29.20 87.72 80.01 7799 40.15 48.57 49.93 58.04 51.62 45.07

GLot 47.49 90.25 83.86 82.58 62.19 54.39 54.47 61.08 59.21 54.93
- [CLS] 6.92 66.63 52.87 81.22 47.66 32.78 32.98 54.89 52.34 40.85
E Mean 23.69 84.12 70.55 81.92 48.97 39.15 38.76 57.71 54.63 38.73
= Max 22.06 79.10 66.39 81.52 44.69 35.54 35.37 52.49 52.22 52.81
e AdaPool 26.80 90.97 71.12 80.78 57.71 4251 44.24 59.72 50.45 41.90
~ GLOT 56.08 92.78 85.27 8195 6141 57.01 57.95 62.73 56.68 56.34
. [EOS] 7.63 71.75 52.77 81.03 38.11 41.14 42.66 53.23 49.10 47.88
= Mean 12.30 79.81 56.39 80.60 32.34 40.50 41.06 55.97 54.15 42.25
= Max 2.38 73.62 52.10 76.72 24.02 37.44 38.40 54.84 51.62 52.11
E AdaPool 7.21 83.71 61.20 81.69 49.26 41.00 42.35 58.08 55.59 45.07
«n GLoT 39.23 90.25 76.28 82.24 62.32 53.42 53.64 59.86 57.40 63.38
o [EOS] 8.33 73.85 64.63 80.31 41.46 39.33 40.92 56.19 47.29 45.07
E Mean 5.93 73.85 61.29 80.67 41.46 39.50 40.83 57.51 49.58 45.07
= Max 2.76 70.87 63.99 8145 39.64 36.88 37.93 55.29 50.90 46.48
E’ AdaPool 4.63 59.92 69.53 81.04 30.17 42.69 43.49 57.71 46.20 50.70
= GLOT 17.61 80.73 71.77 82.54 59.92 48.04 49.34 63.77 57.40 53.52
o [EOS] 37.37 91.74 74.11 70.58 58.78 48.47 47.46 53.98 54.87 42.25
2 Mean 20.91 87.04 78.62 70.34 56.82 48.06 47.19 59.60 57.40 45.07
s Max 13.49 84.51 73.27 67.64 51.17 40.89 40.77 55.84 49.45 47.88
3 AdaPool ~ 43.32 92.54 81.93 71.81 49.37 49.56 50.59 58.48 55.23 47.88
= GLOT 55.13 93.92 82.83 82.34 ol.16 53.49 54.67 67.15 61.01 56.34
= [EOS] 38.63 92.55 72.36 7632 51.68 48.18 48.33 50.82 50.90 40.85
= Mean 38.61 89.91 77.96 7722 5744 47.86 48.08 53.46 53.07 42.25
[Max 10.78 85.89 70.72 65.61 54.39 38.77 39.30 58.70 53.07 48.70
z AdaPool 48.00 93.00 79.55 81.12 49.07 50.72 51.56 55.75 54.87 49.30
= GLoT 54.30 94.38 80.51 82.83 64.07 51.66 53.22 60.93 59.21 56.34

(RQ1) How does GLOT compare to standard pre-defined and learnable sentence-level representation
methods, across diverse LLMs and tasks?

(RQ2) Does explicit relational learning offer consistent improvements, especially for decoder-only
models?

(RQ3) Can our GLOT match or exceed the performance of fine-tuned models while maintaining the
computational efficiency of frozen LLMs?

(RQ4) How robust is GLOT to the signal dilution that affects traditional techniques?

4.1 EXPERIMENTAL SETUP

We evaluate GLOT against standard static (Mean, Max, CLS/EOS) and learnable pooling baselines
across a diverse set of frozen encoder (BERT (Devlin et al.l 2019), RoBERTa (Liu et al., 2019))
and decoder (e.g., Llama (Meta Al [2024), Mistral (Jiang et al.,|2023)) models. The evaluation is
conducted on a wide range of tasks, including general language understanding (GLUE) (Wang et al.,
2018)), long-text classification (IMDB) (Maas et al., 2011)), and retrieval (MTEB) (Muennighoff et al.}
2023). To specifically test for relational robustness, we also introduce a synthetic diagnostic stress
test that measures performance under noise. Across all experiments, the LLM backbones remain
completely frozen. Full details on all models, baselines, benchmarks, training hyperparameters, and
evaluation protocols are provided in Appendix B}

4.2 GENERAL LANGUAGE UNDERSTANDING EVALUATION (GLUE BENCHMARK)

Across the GLUE benchmark, GLOT consistently outperforms all baselines on all LLMs, from
encoders like BERT to decoders like Mistral-7B. Table|[T| provides the detailed scores, while Figure

Under review as a conference paper at ICLR 2026

Table 2: Accuracy (x100) on the IMDB long-text sentiment classification task. We freeze the
LLM backbones and train only the pooling heads and a linear classifier. The best result per model is
in bold.

Method BERT RoBERTa SmolLM2 TinyLlama LLaMA3.2-3B Mistral-7B
[CLS]/[EOS] 80.23 82.04 82.82 87.27 90.56 84.86
Mean 81.64 84.38 84.10 88.72 92.58 94.21
Max 60.78 58.80 63.41 75.45 80.90 64.43
AdaPool 85.45 90.91 91.56 92.61 95.71 95.66
GLOT 86.93 94.52 94.18 93.38 96.14 95.95

of Appendix [C] visualizes the overall trend, showing that our GLOT’s advantage is consistent across
different task categories. This directly addresses (RQ1) and (RQ2).

GLOT achieves its most significant performance gains on tasks that require nuanced relational
understanding. On the Corpus of Linguistic Acceptability (CoLA) (Warstadt et al.l 2018), for
instance, GLOT dramatically improves the Matthew’s Correlation Coefficient for BERT by a relative
improvement of 62.63% and 13.13% for Mistral-7B. This suggests that by explicitly modeling token
relationships, our approach better captures the grammatical structure essential for this task. Similarly,
on Quora Question Pairs (QQP), a paraphrase detection task, GLOT delivers a large performance
improvement margin over baselines for all tested architectures.

The consistent superiority on single-sentence classification (SST-2) (Socher et al.l 2013b)), semantic
similarity (STS-B) (Agirre et al.,[2007)), and inference (RTE) (Dagan et al., 2006} Bar Haim et al.,
2006} |Giampiccolo et al., 2007; Bentivogli et al.| 2009) tasks validates that our “relational learning
before compression” approach yields more robust and general-purpose embeddings than methods
that pool token states in isolation.

4.3 LONG-TEXT CLASSIFICATION

We assess performance on longer sequences using the IMDB dataset (Maas et al2011), where the
task is to classify paragraph-length reviews. As shown in Table 2} GLOT consistently outperforms all
baselines. For instance, it improves accuracy by nearly 4.5% for RoBERTa over the strongest baseline
and by an average of +10.1% relative improvement over the standard [EOS] token for decoder
models. This result highlights the effectiveness of our graph-based approach on long-form text;
unlike simple pooling, which can dilute sentiment signals across long contexts, GLOT’s relational
learning preserves and utilizes critical phrases for more accurate classification.

4.4 LARGE-SCALE BENCHMARKING ON MTEB

To assess GLOT’s performance as a general-purpose sentence encoder, we evaluate it on seven diverse
tasks from the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al.l [2023). Since
many tasks are zero-shot, all learnable heads are first trained on the MS MARCO dataset (Bajaj et al.,
2016)) with a contrastive loss while keeping the LLM backbones frozen. The specific MTEB tasks are
detailed in Appendix[B]

The results in Table 3| show that GLOT is a robust performer across all tasks for both encoder- and
decoder-only architectures. For RoBERTa, GLOT achieves the best score on all seven tested tasks,
with a notable x 3 improvement on SciFact. This advantage extends to decoders: with the Llama-3B
backbone, GLOT secures a top performance of 0.5103 MAP on AskUbuntuDupQuestions, rivaling
strong encoder-only models. This strong general-purpose performance, achieved without expensive
backbone fine-tuning, provides a clear affirmative answer to (RQ3).

4.5 DIAGNOSTIC ANALYSIS: EVALUATING RELATIONAL ROBUSTNESS

To test for relational robustness under noise (RQ4), we design a synthetic diagnostic task inspired
by ‘signal-in-noise’ evaluations (Brothers| [2025) and the ‘Needle in a Haystack’ paradigm (Kam;-
radt, [2023). The test involves injecting a short phrase containing a logical dependency (e.g.,

Under review as a conference paper at ICLR 2026

Table 3: Zero-shot performance on seven diverse tasks from the MTEB benchmark. Prior to
evaluation, we train all learnable pooling heads on the MS MARCO dataset. The best performance
for each frozen backbone is in bold.

Model Method EmotionClass. SciFact RedditClust. AskUbuntu STS12 TwitterSemEval SummEval
ACC 1 NDCG@10 1 V-MEAS. 1 MAP 1 Cos. SPEA. T MAX AP. 1 Cos. SPEA. T

[CLS] 0.2412 0.0231 0.1417 0.4137 0.2153 0.3433 0.2792
= Mean 0.3361 0.1769 0.2777 0.4584 0.3087 0.5613 0.2983
E Max 0.2812 0.2771 0.2241 0.4553 0.3175 0.5450 0.3022
=] AdaPool 0.3513 0.2224 0.3403 0.4778 0.3941 0.5195 0.2918

GLOT 0.3715 0.2485 0.3630 0.5020 0.4862 0.5623 0.3068
< [CLS] 0.2759 0.0900 0.1908 0.4439 0.1667 0.4848 0.2347
E Mean 0.2520 0.0825 0.1850 0.4621 0.3210 0.5456 0.2986
= Max 0.2200 0.0116 0.1354 0.4491 0.2667 0.5000 0.2583
2 AdaPool 0.2135 0.0042 0.1475 0.4513 0.2026 0.4744 0.2276
~ GLOT 0.2909 0.2605 0.2184 0.4687 0.3688 0.5598 0.3083
o [EOS] 0.2252 0.0012 0.1418 0.4113 0.1900 0.3613 0.2271
= Mean 0.2396 0.1313 0.1708 0.4428 0.3824 0.4256 0.2335
% Max 0.1923 0.0385 0.0960 0.4382 0.2458 0.3650 0.2530
£ AdaPool 0.2360 0.1702 0.1905 0.4461 0.4322 0.4153 0.2591
z GLOT 0.2471 0.1834 0.2306 0.4529 0.4754 0.4343 0.2628
= [EOS] 0.2044 0.0042 0.0689 0.4275 0.1297 0.3532 0.2602
E Mean 0.1898 0.0126 0.0687 0.4269 0.1633 0.3150 0.2450
= Max 0.1820 0.0049 0.0591 0.4292 0.1842 0.3588 0.1178
E’ AdaPool 0.2904 0.0602 0.1688 0.4004 0.0329 0.2811 0.2521
= GLOT 0.2905 0.0916 0.1800 0.4341 0.2369 0.3804 0.2649
& [EOS] 0.2765 0.0087 0.1979 0.4420 0.2494 0.4141 0.1917
2 Mean 0.2920 0.4247 0.3034 0.4971 0.4296 0.4430 0.1924
s Max 0.2478 0.4087 0.1943 0.4906 0.3367 0.4196 0.2347
3 AdaPool 0.2185 0.4140 0.2774 0.4946 0.3765 0.3216 0.2350
- GLoTr 0.3046 0.4586 0.3301 0.5103 0.4616 0.4431 0.2658
™ [EOS] 0.2662 0.0033 0.1858 0.4352 0.2307 0.3846 0.2042
= Mean 0.2995 0.3735 0.2544 0.4774 0.3824 0.4106 0.1964
g Max 0.2142 0.2116 0.1015 0.4577 0.3017 0.4151 0.2470
z AdaPool 0.2832 0.4268 0.2398 0.4767 0.3641 0.3510 0.2346
= GLOT 0.3016 0.4414 0.2623 0.4821 0.3905 0.4221 0.2774

...not...keys...) into a long sequence of random words. A binary classifier must then
interpret the logic of the signal phrase, with difficulty controlled by increasing the distractor ratio
from 20% to 90%. The pseudo-code for synthetic data generation is presented in Algorithm [2]of
Appendix [B]

The results in Figure [3]show a stark divergence. As noise increases, the accuracy of baseline methods
collapses; on Mistral-7B, AdaPool’s accuracy plummets from 92.2% to 78.4%, and Mean pooling
drops to 63.8%. In contrast, GLOT remains robust, maintaining over 97 % accuracy even at the 90%
distractor level. This confirms that GLOT’s explicit token graph successfully bypasses the signal
dilution that plagues methods reliant on global summary statistics. Full results are available in Table[7]

in Appendix

4.6 ABLATIONS AND ANALYSIS

We conduct a series of ablations and analyses to validate GLOT’s design choices and quantify its
computational efficiency.

Impact of Graph Sparsity. To understand the importance of constructing a well-formed semantic
graph, we ablate the similarity threshold parameter, 7, using the Mistral-7B backbone on GLUE
benchmark. As shown in Table |4} the graph structure is critical to performance. When 7 = 0.0,
the graph is fully connected, allowing noisy or irrelevant token relationships to dilute the message
passing process, resulting in suboptimal performance on all tasks. As we increase 7, pruning weaker
edges, performance steadily improves across most tasks, plateauing in the range of 7 = 0.4 — 0.6.
This confirms that not all token relations are equally important; by focusing on the strongest semantic
connections via relational learning, GLOT produces a more robust sentence representation.

Computational Efficiency. To address (RQ3), we compare the resource consumption of GLOT
against full fine-tuning (Full FT) and Parameter-Efficient Fine-Tuning (PEFT) with LoRA (Hu et al.,
2022). The results in Table [5 highlight the dramatic efficiency of our approach. Prior research
indicates that catastrophic forgetting becomes increasingly severe when fine-tuning large-scale

Under review as a conference paper at ICLR 2026

—— [CLSJ/[EOS] —— Mean Max AdaPool —— GLOT (Ours)
e BERT ® RoBERTa A SmolLM2 ¢ TinyLlama v LLaMA-3B ¢ Mistral-7B
20% Distractors 50% Distractors

90-

60-

Classification Accuracy (%)

50-

80% Distractors 90% Distractors

100- -
’\5 "W
s }\\’// 7
>
)
©
5
3 80-
o
<
=
S 70- 3 J Lo
=1
S o
& [—o
@ 60- 1
© Q —— _——
(@] — _—
50- S eg———
110M 360M 118 3B 78 110M 360M 118 3B 78
Parameters (log scale) Parameters (log scale)

Figure 3: Robustness to signal dilution on the diagnostic stress test. Each of the four panels
displays the classification accuracy for all pooling methods at a specific distractor ratio, which
increases from 20% to 90%. Within each panel, backbone models are arranged along the x-axis by
their parameter count.

Table 4: An ablation study on the impact of graph sparsity in GLOT. This table shows performance
on GLUE tasks using the Mistral-7B backbone as we vary the similarity threshold (7) for token graph
construction. All scores are multiplied by 100, and the best result for each task is in bold.

Method CoLA SST-2 STS-B MRPC QQP MNLI-m MNLI-mm QNLI RTE WNLI

McCc?T AcCC?T SPEA. T F1 1T F1 T ACC T ACC T ACCT ACCT ACCT
GLOT (1 =0.0) 50.19 93.69 80.34 81.04 62.79 49.09 49.46 52.85 49.81 38.03
GLOT (1 =0.2) 5340 94.38 80.48 82.83 6253 51.66 53.22 54.15 4945 36.62
GLOT (1 =0.4) 51.73 9346 80.40 80.25 64.07 48.81 49.94 60.93 50.54 40.84
GLOT (T =0.6) 5430 93.23 80.29 80.06 63.49 49.36 50.01 53.67 5415 56.34
GLOT (1 =0.8) 5248 92.66 80.26 79.87 63.22 48.92 49.66 55.09 5270 56.34

models on smaller downstream tasks (Li et al.} 2024} [Saroufim et al.| [2025)). The immense capacity
of the 7B model makes it prone to overfitting the small training sets of GLUE tasks (like CoLA and
RTE), degrading its generalizable representations. Furthermore, recent work suggests a functional
equivalence between LoRA and Full Fine-Tuning (Shuttleworth et al.} [2025)), explaining why LoRA
suffers from similar degradation. In contrast, GLOT requires only 8.92M trainable parameters, which
is approximately 20 x fewer than LoRA. This parameter efficiency translates directly to a minimal
memory footprint of only 0.42 GB, compared to over 32 GB for the other methods. Consequently,
GLOT is over 100x faster per training batch. This demonstrates that our method provides a practical
and accessible way to generate high-quality embeddings from large, frozen LLMs on consumer-
grade hardware. For a detailed breakdown of graph construction costs and extended cross-model
benchmarks against BERT and Mistral, please refer to Appendix [D.2}

Under review as a conference paper at ICLR 2026

Table 5: A comparison of training methods by resource consumption and performance on the
CoLA task, using the Mistral-7B backbone. We contrast our frozen-backbone approach (GLOT)
against full fine-tuning (Full FT) and LoRA. Batch runtime is reported as the mean + standard
deviation over 10 measurements.

Method # Trainable Params GPU Memory (GB)] Batch Runtime (ms)] MCC?{
Full FT + EOS 7.11B 32.59 1318.8 £ 1.1 49.63
LoRA (r = 64) + EOS 167.8M 33.50 1454.6 £ 1.1 48.23
GLOT (ours) 8.92M 0.42 13.4+ 3.0 53.29

5 CONCLUSION

As LLMs continue to scale, the computational cost of full fine-tuning becomes prohibitive, establish-
ing the need for improved pooling methods that operate on frozen backbones as a crucial research
problem. In this work, we addressed a fundamental limitation of standard pooling: that it treats token
hidden states as an independent set of vectors, discarding the rich relational structure captured by
language models. We introduced GLOT, a lightweight and parameter-efficient pooling head that
instantiates a new paradigm of relational learning followed by aggregation. GLOT first constructs a
latent token-similarity graph, refines token representations using a GNN, and then aggregates them
with an attention mechanism.

Through comprehensive experiments, we demonstrated that GLOT consistently outperforms strong
baselines across a wide range of tasks and on both encoder- and decoder-only models. Our diagnostic
stress test provided direct evidence that GLOT’s graph-based learning makes it remarkably robust to
the signal dilution that plagues traditional pooling. Furthermore, we showed that GLOT is up to two
orders of magnitude more computationally efficient than parameter-efficient fine-tuning techniques
like LoRA, making it a practical solution for adapting billion-parameter models.

Our findings challenge the view that pooling is a routine final step, showing instead that a carefully
designed, relational learning-based head can unlock significant performance from frozen models.
This work opens several avenues for future research, including exploring learnable graph construction
mechanisms and applying the “relational learning before compression” paradigm to other modalities,
such as pooling patch embeddings in Vision Transformers and designing advanced GNN architectures.
Furthermore, our graph-based formulation opens the door to studying additional token interaction
modeling techniques as future research work. For instance, recent work on graph rewiring (Barbero
et al., 2024} |Arnaiz-Rodriguez et al., 2022) and virtual nodes (Qian et al., 2024} have shown
techniques in learning graph connectivity for graph learning tasks in GNNs. While GLOT is focused
on introducing the concept of learning on token graphs already strong performance with cosine
similarity, we view these dynamic rewiring strategies as an exciting avenue to further enhance the
model’s ability to capture long-range dependencies in future research works.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work primarily focuses on developing a new pooling methodology and is evaluated on publicly
available, standard academic benchmarks, including GLUE, MTEB, and IMDB. We do not use any
private or sensitive user data, and our experiments did not involve human subjects. We acknowledge
that the pre-trained language models used as backbones in our study may reflect societal biases
present in their training corpora. Our proposed method, GLOT, operates on the outputs of these
models and does not introduce new sources of bias, nor does it explicitly mitigate biases inherent in
the backbone models. We intend for this work to contribute to the development of more efficient and
robust NLP models, and we do not foresee any direct negative societal impacts from its application.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we will release our source code and all trained model
checkpoints upon the paper’s acceptance. Our methodology is described in Section [3| with detailed
pseudo-code available in Algorithm[I] Appendix [B]provides a comprehensive description of our
experimental setup, including the specific backbone models used, training and evaluation protocols,
and all hyperparameters. All datasets used in our experiments are standard benchmarks publicly
available through the Hugging Face Datasets library.

USAGE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we utilized LLMs. Its role was strictly limited to that of
grammatical assistance. The LLM was not used for research ideation, experimental design, data
analysis, or the generation of any core scientific content. The authors take full responsibility for all
content and claims presented in this paper.

REFERENCES

Eneko Agirre, Llu’is M‘arquez, and Richard Wicentowski (eds.). Proceedings of the Fourth Inter-
national Workshop on Semantic Evaluations (SemEval-2007). Association for Computational
Linguistics, Prague, Czech Republic, June 2007.

Adridn Arnaiz-Rodriguez, Ahmed Begga, Francisco Escolano, and Nuria M Oliver. DiffWire:
Inductive Graph Rewiring via the Lovdsz Bound. In Bastian Rieck and Razvan Pascanu (eds.),
Proceedings of the First Learning on Graphs Conference, volume 198 of Proceedings of Machine
Learning Research, pp. 15:1-15:27. PMLR, 09-12 Dec 2022. URL https://proceedings,
mlr.press/v198/arnaiz-rodri—-gquez22a.html.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence
embeddings. In International conference on learning representations, 2017.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica,
Saurabh Tiwary, and Tong Wang. MS MARCO: A human generated machine reading comprehen-
sion dataset. In NeurIPS 2016 Deep Learning for Question Answering (InCoCo @NIPS) Workshop,
2016.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. The second PASCAL recognising textual entailment challenge. 2006.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael M. Bronstein, and Francesco Di Giovanni.
Locality-aware graph rewiring in GNNSs. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=4Ua4hKiAJX.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados,
and Siva Reddy. LLM2vec: Large language models are secretly powerful text encoders. In First
Conference on Language Modeling, 2024. URL |https://openreview.net/forum?id=
IW1PR7VvEBE.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini. The
fifth PASCAL recognizing textual entailment challenge. 2009.

11

https://proceedings.mlr.press/v198/arnaiz-rodri-guez22a.html
https://proceedings.mlr.press/v198/arnaiz-rodri-guez22a.html
https://openreview.net/forum?id=4Ua4hKiAJX
https://openreview.net/forum?id=IW1PR7vEBf
https://openreview.net/forum?id=IW1PR7vEBf

Under review as a conference paper at ICLR 2026

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovié. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges, 2021. URL https://arxiv.org/abs/2104.
13478\

Greyson Brothers. Robust noise attenuation via adaptive pooling of transformer outputs, 2025. ICML
2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Velickovi¢. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1-61, 2023.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evaluating predictive uncertainty, visual object
classification, and recognising tectual entailment, pp. 177-190. Springer, 2006.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171-
4186, 2019.

William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the International Workshop on Paraphrasing, 2005.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
International Conference on Learning Representations (ICLR), 2021.

Kawin Ethayarajh. How contextual are contextualized word representations? comparing the geometry
of bert, elmo, and gpt-2 embeddings. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-1JCNLP), pp. 55-65, 2019.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. In Proceedings of EMNLP, pp. 6894-6910, 2021.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual entailment
and paraphrasing, pp. 1-9. Association for Computational Linguistics, 2007.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263-1272. Pmlr, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770-778, 2016.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYfO.

12

https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Under review as a conference paper at ICLR 2026

Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng Wang. Text level graph neural
network for text classification. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.),
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-1IJCNLP), pp.
3444-3450, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1345. URL https://aclanthology.org/D19-1345/.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William EI Sayed. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825.

Ting Jiang, Jian Jiao, Shaohan Huang, Zihan Zhang, Deqing Wang, Fuzhen Zhuang, Furu Wei,
Haizhen Huang, Denvy Deng, and Qi Zhang. Promptbert: Improving bert sentence embeddings
with prompts. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 8826-8837, 2022.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing Wang, and Fuzhen Zhuang. Scaling sen-
tence embeddings with large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
3182-3196, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.181. URL |https://aclanthology.org/2024,
findings—-emnlp.181/.

Greg Kamradt. Needle In A Haystack: Pressure Testing LLMs.
Blog post, nov 2023. URL https://gregkamradt.com/blog/
needle-in-a-haystack-evaluating-llms—-on-long-context-recalll
The original test and results that popularized the *Needle in a Haystack’ method for evaluating
long-context recall in Large Language Models.

Omar Khattab and Matei Zaharia. ColBERT: Efficient and effective passage search via contextualized
late interaction over BERT. In Proceedings of SIGIR, pp. 39-48, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015. URL https://arxiv.org/abs/
1412.6980.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. NV-embed: Improved techniques for training LLMs as generalist embedding
models. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=1gsyLSsDRe.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 7871-7880, 2020.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Tom4s
§a§k0, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen
Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue,
Théo Matussiere, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Arthur Mus-
tar, Sanchit Mangrulkar, Alexander M. Rush, and Thomas Wolf. Datasets: A community library for
natural language processing. In Proceedings of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations, pp. 175-184. Association for Computational
Linguistics, 2021. URL https://aclanthology.org/2021.emnlp-demo.21.

13

https://aclanthology.org/D19-1345/
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://aclanthology.org/2024.findings-emnlp.181/
https://aclanthology.org/2024.findings-emnlp.181/
https://gregkamradt.com/blog/needle-in-a-haystack-evaluating-llms-on-long-context-recall
https://gregkamradt.com/blog/needle-in-a-haystack-evaluating-llms-on-long-context-recall
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=lgsyLSsDRe
https://aclanthology.org/2021.emnlp-demo.21

Under review as a conference paper at ICLR 2026

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the sentence
embeddings from pre-trained language models. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 9119-9130, 2020.

Hongyu Li, Liang Ding, Meng Fang, and Dacheng Tao. Revisiting catastrophic forgetting
in large language model tuning. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 4297—-
4308, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.249. URL https://aclanthology.org/2024.
findings—emnlp.249/.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv:1907.11692, 2019.

Yonghao Liu, Renchu Guan, Fausto Giunchiglia, Yanchun Liang, and Xiaoyue Feng. Deep attention
diffusion graph neural networks for text classification. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 8142—8152, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.642. URL https://aclanthology.org/2021.emnlp-main. 642/,

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
text retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2421-2425, 2024.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142—150.
Association for Computational Linguistics, 2011.

Meta Al. Llama 3.2: New open and customizable models with vision and on-device
capabilities. Blog post, October 2024. URL https://ai.meta.com/blog/
llama—-3-2-connect-2024-vision-edge-mobile-devices/.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. Mteb: Massive text embedding
benchmark. In Proceedings of the 17th Conference of the European Chapter of the Association for
Computational Linguistics, pp. 2014-2037. Association for Computational Linguistics, 2023.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. Generative representational instruction tuning, 2025. URL https://arxiv,
org/abs/2402.09906.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807-814,
2010.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32. Curran Associates,
Inc., 2019.

Chendi Qian, Andrei Manolache, Christopher Morris, and Mathias Niepert. Probabilistic graph
rewiring via virtual nodes. Advances in Neural Information Processing Systems, 37:28359-28392,
2024.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAl Blog, 2019. URL|https://openai.com/
research/language-models—-are—-unsupervised-multitask—-learnersl

14

https://aclanthology.org/2024.findings-emnlp.249/
https://aclanthology.org/2024.findings-emnlp.249/
https://aclanthology.org/2021.emnlp-main.642/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://arxiv.org/abs/2402.09906
https://arxiv.org/abs/2402.09906
https://openai.com/research/language-models-are-unsupervised-multitask-learners
https://openai.com/research/language-models-are-unsupervised-multitask-learners

Under review as a conference paper at ICLR 2026

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of EMNLP, pp. 2383-2392. Association for
Computational Linguistics, 2016.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of EMNLP-IJCNLP, pp. 3982-3992, 2019.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459-8468. PMLR, 2020.

Mark Saroufim, Yotam Perlitz, Leshem Choshen, Luca Antiga, Greg Bowyer, Christian Puhrsch,
Driss Guessous, Supriya Rao, Geeta Chauhan, Ashvini Kumar, et al. Neurips 2023 llm efficiency
fine-tuning competition. arXiv preprint arXiv:2503.13507, 2025.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic web
conference, pp. 593-607. Springer, 2018.

Reece S Shuttleworth, Jacob Andreas, Antonio Torralba, and Pratyusha Sharma. LoRA vs full fine-
tuning: An illusion of equivalence. In The Thirty-ninth Annual Conference on Neural Information
Processing Systems, 2025. URL https://openreview.net/forum?id=xp7B8rkh7L.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of EMNLP, pp. 1631-1642, 2013a.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pp- 1631-1642. Association for Computational Linguistics, 2013b.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-
training for language understanding. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 16857-16867.
Curran Associates, Inc., 2020. URL jhttps://proceedings.neurips.cc/paper_
files/paper/2020/file/c3a690be93aab02ee2dcOccabbb7b67e—Paper.pdf.

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou. Whitening sentence representations for better
semantics and faster retrieval. arXiv preprint arXiv:2103.15316, 2021.

Yixuan Tang and Yi Yang. Pooling and attention: What are effective designs for llm-based embedding
models?, 2024. URL https://arxiv.org/abs/2409.02727.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu—-lab/stanford_alpaca)l 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Gan, Vighnesh Gante, Gartheeban Gholami, Vassilis Gkoumas, Kshitij Goyal,
Thomas Hart, Sunny Hsia, Jason Huang, Alexandra Ispas, Jack Jacob, Saumya Jha, Anirudh
Kumar, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Igor Molybog, Ylan Morisot, Victor O’Beirne, Eoin O’Sullivan, Alexander
Pirogov, Roman Rabbat, Amjad Raghuraman, Sainbayar Ramjee, Ruan Ras, Jérémy Rault, Nicolas
Rolland, Baptiste Roziere, Mohit Sachan, Todd Sawyers, Mykola Seljan, Adrien Seznec, Sharan
Sun, Adel Tazairt, Gabriel Synnaeve, Yuxin Tan, Lilian Tang, Ross Taylor, Adina Williams, Jean
Kenebrew, Mannan Zaheer, Ahmed El-Kishky, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

15

https://openreview.net/forum?id=xp7B8rkh7L
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://arxiv.org/abs/2409.02727
https://github.com/tatsu-lab/stanford_alpaca

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In /CLR, 2018.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP. Association for Computational Linguistics, 2018.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving
text embeddings with large language models. arXiv preprint arXiv:2401.00368, 2023.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training, 2024. URL
https://arxiv.org/abs/2212.03533.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
arXiv preprint 1805.12471, 2018.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pp. 1112—1122. Association for Computational Linguistics,
2018. doi: 10.18653/v1/N18-1101.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38—45. Association for Computational Linguistics, 2020.
URLhttps://aclanthology.org/2020.emnlp-demos. 6.

Jinming Xing, Dongwen Luo, Chang Xue, and Ruilin Xing. Comparative analysis of pooling
mechanisms in llms: A sentiment analysis perspective. arXiv preprint arXiv:2411.14654, 2024.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Proceedings of
ICML, pp. 5453-5462, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https
//openreview.net/forum?id=ryGs6iA5Km.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification. In
Proceedings of AAAIL pp. 7370-7377, 2019.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974-983,
2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Bowen Zhang, Kehua Chang, and Chunping Li. Simple techniques for enhancing sentence embed-
dings in generative language models. In International Conference on Intelligent Computing, pp.
52-64, 2024.

16

https://arxiv.org/abs/2212.03533
https://aclanthology.org/2020.emnlp-demos.6
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORK

Fine-Tuning vs. Frozen Backbones for Embedding. A significant body of work adapts decoder-
only LLMs into powerful text embedding models through extensive fine-tuning (Wang et al., 2023}
Lee et al., [2025; Muennighoff et al., 2025; Ma et al., 2024} Tang & Yangl |2024). These methods
achieve state-of-the-art performance but require modifying the LLM backbone, often through full-
model training that is computationally prohibitive. GLOT sidesteps this entirely by operating on
completely frozen backbones. Our approach is therefore lightweight, accessible, and applicable to
both encoder-only and decoder-only models without expensive training.

The Geometry of Embedding Space. Recent studies reveal that token embeddings from LLMs
occupy anisotropic manifolds, which makes cosine similarity between pooled sentence vectors
unreliable (Ethayarajh| [2019; [Li et al.,[2020). While post-processing methods like whitening can
mitigate this (Su et al.l [2021)), they do not address the underlying information loss from pooling.
SBERT-style fine-tuning reshapes this geometry but is computationally expensive. Our work offers
an alternative: by constructing a similarity graph, GLOT operates on an approximation of the
intrinsic manifold geometry, preserving relational structures that are lost when pooling in the ambient
Euclidean space.

Applications of Graph Neural Networks. The success of Graph Neural Networks (GNNs) is
demonstrated by their wide-ranging application across numerous scientific and industrial domains.
In the life sciences, they have become a cornerstone for molecular property prediction and drug
discovery, where molecules are modeled as graphs of atoms and bonds (Gilmer et al., [2017; |Xu
et al} [2019). Similarly, they are used to analyze complex protein-protein interaction networks in
bioinformatics. In the digital realm, GNNs power modern recommender systems by capturing the
intricate relationships between users and items (Ying et al.l 2018), and they are essential for learning
over large-scale knowledge graphs (Schlichtkrull et al., | 2018). Their foundational use case remains
the analysis of social networks, where they are applied to tasks like node classification and community
detection (Kipf & Welling, 2017; Hamilton et al., 2017). GNNs have also been successfully applied
in other areas, including modeling particle systems in physics simulations (Sanchez-Gonzalez
et al., [2020), processing 3D point clouds in computer vision, and solving complex combinatorial
optimization problems like the Traveling Salesperson Problem (Cappart et al., [2023)).

B IMPLEMENTATION DETAILS

B.1 GENERAL SETUP

Hardware and Software. All experiments were conducted on a single NVIDIA A6000 GPU.
Our implementation is built using PyTorch (Paszke et al.l [2019), with extensive use of the Hug-
ging Face ecosystem (Wolf et al., [2020), including transformers for backbone models and
datasets (Lhoest et al., 2021) for data loading. The graph-based components of our method are
implemented using PyTorch Geometric (Fey & Lenssen, 2019). Large-scale benchmarking was
performed using the mt eb (Muennighoff et al.,[2023) library, and retrieval metrics were calculated
using ranx.

Training Details. Unless otherwise noted, all trainable pooling heads were trained for 2 epochs
using the Adam optimizer (Kingma & Bal [2015) with a learning rate of 2 x 10~ and no weight decay.
We used a training batch size of 32 and an evaluation batch size of 64. For all experiments, we used a
fixed random seed of 42. To accelerate training, we implemented a feature to precompute and cache
the frozen backbone’s hidden states before training the pooling heads. We provide the pseudocode
for GLOT in Algorithm[I] The hyperparameter tuning shown in Table[6]using Weights and Biases
framework. To ensure a rigorous comparison in Table[5] we implemented Full Fine-Tuning (Full FT)
and LoRA baselines using standard hyperparameters optimized for the Mistral-7B backbone. For Full
Fine-Tuning, we fine-tuned the complete model on the training splits of CoLA, STS-B, and RTE for
3 epochs (Taori et al., 2023} |Li et al.,[2024)). We used a learning rate of 2 x 10~° and a weight decay
of 0.01, utilizing the AdamW optimizer. For the LoRA baseline, we set the rank hyperparameter to
r = 64 and applied adapters to both the attention and feed-forward blocks. The training used a higher
learning rate of 2 x 10~* with a weight decay of 0.01 for 3 epochs.

17

Under review as a conference paper at ICLR 2026

Algorithm 1 GLOT: Graph-based Token Pooling

Require: H ¢ RE*Lxdin: Batch of hidden states from a frozen LLM.
M € {0,1}B*L: Attention mask for the hidden states.
7: Cosine similarity threshold for edge creation.
K: Number of layers in the TOKEN-GNN.
Ensure: Z € RB*dout: Batch of final sentence embeddings.
1: function GLOT(H, M)

2 glist — H
3 fori=1— Bdo > Step 1: Token Graph Construction
4 H] <+ H[i, M[i] ==1,] > Get valid tokens for sentence 4
5: S; <— COSINESIMILARITY (H/, H)) > Pairwise similarity matrix
6 A« (S;>71) > Create adjacency matrix based on threshold
7 edge_index, < ADJACENCYTOEDGES(4;)
8: Glist.APPEND(nodes = H/, edges = edge_index;)
9: end for
10: Gbatch < BATCHGRAPHS(Gjist) > Combine graphs into a single batch
11: Uy, edge_index, batch_idx < Gputcn-X, Gpaten -€dge_index, Gpqicpn -batch
12: ulayers — [UO]
13: fork=1— Kdo > Step 2: Refinement with TOKEN-GNN
14: Up_1 + Z/llayem[k — 1]
15: Ui, < GNN-LAYER (Uy—1, edge_index)
16: Ujayers- APPEND(Uy,)
17: end for
18: Ufusea < JUMPINGKNOWLEDGECONCAT (Ujqyers) > Step 3: Feature Fusion
19: m <~ READOUTMLP (Uyyseq) > Step 4: Readout Layer
20: 7 < SOFTMAXBYGRAPH(m, batch_idx) > Normalize scores per sentence graph
21: Zpooled < T O Upysed > Apply attention weights
22: Z < SCATTERADD(Z,p01ed, batch_idx) > Aggregate via weighted sum per graph
23: return Z

24: end function

Table 6: Hyperparameter search space for the GLOT pooling head. The final model configuration
was determined via a grid search over these values. The search was performed consistently across all
backbone models and datasets.

Hyperparameter Search Space
Optimization

Learning Rate {1e-3, 2e-4, 2e-5}
Weight Decay {0.0, 1e-5, 5e-5}
Token-GNN Architecture

GNN Layers (K) {2, 4}

GNN Hidden Dimension {64, 128, 256}
Jumping Knowledge {cat, max, mean, none }

Input Projection Dimension {128, 256, 512}

Graph Construction
Similarity Threshold (1) {0.1,0.3, 0.6}

B.2 MODEL CONFIGURATIONS
Backbone Models. All backbone models were loaded from the Hugging Face Hub. For decoder-

only models, the tokenizer’s padding side was set to ‘right’. If a model did not have a pre-defined
padding token, the ‘[EOS]’ token was used.

Baseline Pooling Methods. We implemented all baselines within the same framework and evaluated
them to ensure a fair comparison.

18

Under review as a conference paper at ICLR 2026

* Static Methods: MEAN and MAX pooling operate over the non-padded token hidden states.
[cLs]/[EOS] pooling for encoder models takes the hidden state of the first token. For decoder
models, it takes the hidden state of the last non-padded token, identified via the attention
mask.

* AdaPool: Our implementation follows the original paper (Brothers, [2025)), consisting of a
two-layer MLP with a Tanh activation that computes a scalar score for each token, followed
by a softmax and weighted average.

GLOT Configuration. Our GLOT is implemented using 2 layers of GATConv (VelickovicC et al.,
2018) with a hidden dimension of 128 and ReLU non-linearity (Nair & Hinton, 2010). As described
in the main paper, the graph is constructed by creating edges between tokens where their cosine
similarity exceeds a threshold of 7 = 0.6. Following the GNN layers, we use a ‘cat’ mode for
Jumping Knowledge (Xu et al., 2018)) to aggregate features from all layers before the final attention
readout.

Compatibility with Fine-Tuned Backbones A natural question arises regarding whether GLOT
provides complementary benefits when applied to a fine-tuned backbone rather than a frozen one.
While GLOT is technically compatible with fine-tuned LLMs, our experimental results (refer to Ta-
ble[T7)and Table[T)) demonstrate that applying GLOT to a frozen backbone already yields performance
competitive and often superior to fully fine-tuned models (e.g., matching Full FT performance on
CoLA).

Since our primary objective is to enable robust sentence representations without the prohibitive
computational cost of updating billion-parameter backbones, we focused on the frozen setting.
Furthermore, simultaneously fine-tuning the backbone while learning the graph structure introduces
complex optimization dynamics that warrant a distinct study. We therefore consider the “Fine-tuned
Backbone + GLOT ” setting as a promising direction for future work.

B.3 BENCHMARK-SPECIFIC DETAILS

GLUE Benchmark. For all tasks from the General Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2018]), we fine-tune the lightweight GLOT head and a task-specific linear
classifier jointly on the training sets. Sequences are truncated to a maximum length of 128 tokens.
For larger datasets (QQP, QNLI, MNLI), we train on a subsample of 20,000 examples.

CoLA: The Corpus of Linguistic Acceptability (Warstadt et al.l [2018]) requires the model to de-
termine if a sentence is grammatically correct. Task: Binary classification. Loss: Cross-
Entropy Loss.

SST-2: The Stanford Sentiment Treebank (Socher et al., 2013a)) consists of movie reviews. Task:
Binary sentiment classification (positive/negative). Loss: Cross-Entropy Loss.

STS-B: The Semantic Textual Similarity Benchmark (Agirre et al 2007) involves predicting a
similarity score between 1 and 5 for a pair of sentences. Task: Regression. Loss: Mean
Squared Error (MSE) Loss.

MRPC: The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) contains sentence
pairs. Task: Binary classification to determine if the sentences are paraphrases. Loss:
Cross-Entropy Loss.

QQP: The Quora Question Pairs dataset requires determining if two questions are semantically
equivalent. Task: Binary classification. Loss: Cross-Entropy Loss.

MNLI: The Multi-Genre Natural Language Inference corpus (Williams et al., 2018) provides a
premise and a hypothesis. Task: Three-class classification (entailment, contradiction,
neutral). Loss: Cross-Entropy Loss.

QNLI: The Question Natural Language Inference dataset, derived from SQuAD (Rajpurkar et al.}
2016)). Task: Binary classification to determine if a context sentence contains the answer to
a question. Loss: Cross-Entropy Loss.

RTE: The Recognizing Textual Entailment datasets (Dagan et al., 2006; Bar Haim et al., 2006
Giampiccolo et al.} 2007} Bentivogli et al.,[2009). Task: Binary classification to determine
if a premise entails a hypothesis. Loss: Cross-Entropy Loss.

19

Under review as a conference paper at ICLR 2026

Long-Text Classification (IMDB). For the IMDB Large Movie Review dataset (Maas et al., 2011)),
sequences were truncated to a maximum length of 512 tokens. The dataset contains paragraph-length
movie reviews. Task: Binary sentiment classification. Loss: Cross-Entropy Loss.

MTEB Evaluation. For the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al.,
2023)), we follow a two-stage process. First, the learnable pooling heads are trained on a large-scale
retrieval dataset, and then they are evaluated in a zero-shot setting on the downstream MTEB tasks.

* Training Stage: All learnable heads were trained on the MS MARCO (Bajaj et al.,|2016)
passage ranking dataset. This involves predicting relevant text passages for a given query.
Task: Passage retrieval. Loss: A symmetric in-batch contrastive loss with a temperature of
0.07.

* Zero-shot Evaluation Stage: The trained encoders are then evaluated on the following
seven tasks without any further fine-tuning:
— EmotionClassification: A multi-class classification task on tweets.
— SciFact: A re-ranking task to verify scientific claims.
— RedditClustering: An unsupervised task to cluster Reddit comments.
— AskUbuntuDupQuestions: A retrieval task to find duplicate questions.
— STS12: A semantic similarity regression task.
— TwitterSemEval2015: A pair classification task for paraphrase detection.
— SummEval: A summarization evaluation task based on semantic similarity.

B.4 DIAGNOSTIC TASK GENERATION
The synthetic diagnostic task was created to isolate and test for relational understanding under noise.

* Signal Phrases: We created a small set of template phrases involving a logical dependency,
such as negation (e.g., “The file has [X] but not [Y]”).

* Distractors: The “haystack” was formed by sampling words randomly from a large general-
purpose vocabulary derived from English Wikipedia.

* Injection: For each example, a 256-token sequence of random distractor words was gener-
ated. A signal phrase was then injected at a random position within this sequence.

* Difficulty Control: The difficulty was controlled by the distractor ratio, which we varied
from 20

The final dataset consists of 10,000 training examples and 2,000 test examples for each distractor
ratio.

C ADDITIONAL RESULTS

GLUE Benchmark. To provide a high-level summary of the comprehensive GLUE results pre-
sented in Table[T] we visualize the performance trends in Figure[d To compare performance across
different tasks and their associated metrics (e.g., Accuracy vs. MCC) on a single, unified scale, we
normalized the scores. The methodology was as follows: for each of the eight GLUE tasks and
for each of the six backbone models, we took the resulting scores of all five pooling methods and
calculated their mean (1) and standard deviation (o). Each individual score was then converted
to a z-score via z = (x — pu)/o. These z-scores were then averaged within their respective task
categories. A higher z-score indicates that a method’s performance is significantly above the average
of all tested methods for a given experimental setting. The plots clearly show that GLOT consistently
achieves the highest z-score, often one or more standard deviations above the mean performance.
This visualization powerfully reinforces our primary finding: the performance advantage of GLOT is
not confined to specific tasks or model scales but is a robust and general phenomenon.

20

Under review as a conference paper at ICLR 2026

Algorithm 2 Synthetic Diagnostic Dataset Generation

Require: N: Number of samples to generate.
Require: L: Total sequence length of each sample.
Require: d,: The target distractor ratio (e.g., 0.2, 0.5, 0.8, 0.9).
Require: 7 A set of signal phrase templates, each with an associated label (e.g., ‘(“...has [X] but
not [Y]”, 0)°).
Require: Vp: A large vocabulary of distractor words.
1: function GENERATEDIAGNOSTICDATA(N, L,d,.,T,Vp)

2: D+ > Initialize an empty dataset
3: Lp + |Lxd,] > Calculate number of distractor tokens
4: Ls<+ L—Lp > Calculate number of signal tokens
5: for i =1to N do

6: (template, label) + RandomChoice(T)

7: signal_tokens < Instantiate(template) > e.g., fill placeholders like [X] and [Y]
8: > Ensure signal phrase fits the allocated length
9: if length(signal_tokens) > Lg then
10: signal_tokens + signal_tokens[: Lg] > Truncate if too long
11: else
12: padding < Lg — length(signal_tokens)
13: signal_tokens < concat(signal_tokens, Sample(Vp, padding)) > Pad with

distractors if too short
14: end if
15: distractor_tokens + Sample(Vp, Lp) > Sample distractors with replacement
16: Pinject < RandomlInt(0, Lp) > Choose a random injection point
17: sequence < concat(distractor_tokens[: Dinject], signal_tokens, distractor_tokens[pinject :
1)
18: D « D U {(sequence, label) }
19: end for

20: return D
21: end function

—=— [CLS]/[EOS] —+— Mean Max AdaPool —e— GLOT (Ours)
Single-Sentence Classification Sentence-Pair Classification Semantic Textual Similarity

15-

4

1.0-

0.5-

, /
- | L

110M 360M 118 3.28 78 110M 360M 1.18 3.28 78 110M 360M 118
Parameters (log scale) Parameters (log scale) Parameters (log scale

{;\/

Performance (z-score)

Figure 4: Z-score normalized performance on the GLUE benchmark, aggregated by task
category. Performance, represented as a z-score, is plotted against the number of parameters in the
frozen backbone model (log scale). A higher z-score indicates better relative performance compared
to the average of all tested methods for that setting.

C.1 DIAGNOSTIC TASK: DETAILED RESULTS AND ANALYSIS

To provide a controlled evaluation of relational robustness under noise (RQ4), we designed a
synthetic diagnostic task. Inspired by ‘signal-in-noise’ evaluations (Brothers, [2025)) and the ‘Needle
in a Haystack’ paradigm (Kamradt, |2023)), our stress test is specifically adapted to probe for relational
understanding rather than simple factual recall. We programmatically generate sequences by injecting
a short “signal phrase” with a logical dependency (e.g., negation) into a long sequence of random
distractor words. The task is a binary classification based on the logic within the signal phrase. We

21

Under review as a conference paper at ICLR 2026

Table 7: Full results for the diagnostic stress test, which evaluates robustness to signal dilution.
The table reports the classification accuracy for all pooling methods across six backbones as the ratio
of distractor tokens in the input sequence increases from 20% to 90%. The best results for each
model are in bold.

Model Method 20% Distractors 50% Distractors 80% Distractors 90% Distractors

[CLS] 70.8 58.2 57.2 67.6
= Mean 68.0 58.6 64.2 53.4
5 Max 57.4 50.8 51.6 50.4
= AdaPool 914 78.8 65.6 61.6

GLOT 97.2 97.0 97.8 98.8
. [CLS] 83.6 63.4 51.6 48.6
E Mean 73.2 64.6 67.8 57.2
= Max 56.8 60.0 59.0 50.2
= AdaPool 83.0 67.2 59.8 59.2
~ GLOT 92.6 99.2 98.8 98.2
~ [CLS] 72.0 57.6 58.6 514
s Mean 70.2 56.2 54.6 514
% Max 54.0 50.6 46.2 51.4
g AdaPool 78.2 57.6 54.2 55.2
2 GLOT 96.0 93.6 92.4 92.2
- [EOS] 73.2 58.8 574 56.6
E Mean 83.4 56.6 56.8 56.4
5 Max 76.4 54.0 58.8 514
g AdaPool 78.4 66.4 574 53.0
= GLOT 96.4 94.8 88.4 94.0
= [EOS] 84.4 69.8 69.0 68.4
2 Mean 82.4 65.0 64.4 61.8
S Max 63.0 50.8 50.6 54.6
s AdaPool 92.6 69.8 70.0 51.0
= GLOT 99.6 95.4 89.8 93,2
" [EOS] 89.4 72.6 69.4 70.6
= Mean 93.0 74.0 71.4 63.8
s Max 60.8 60.0 574 55.6
z AdaPool 92.2 86.6 85.0 78.4
= GLOT 99.2 97.6 97.4 97.2

systematically increase the task’s difficulty by increasing the distractor ratio from 20% to 90%. The
full generation process is detailed in Algorithm 2]

The complete results for this stress test are presented in Table [/l The data provides a clear and
quantitative confirmation of our hypothesis: GLOT’s performance remains remarkably stable even
at extreme noise levels, while the performance of all baseline methods degrades significantly as the
signal is diluted.

This trend is consistent across all architectures. For the encoder-only BERT backbone, GLOT’s
accuracy remains consistently above 97% across all distractor ratios. In contrast, the next-best
baseline, AdaPool, sees its performance drop sharply from 91.4% at 20% distractors to just 61.6% at
90% distractors. The pattern is mirrored in decoder-only models. With the Llama backbone, GLOT’s
accuracy is nearly perfect at low noise (99.6%) and stays high at 83.2% even at the extreme 90%
distractor ratio. All other methods, including using the standard ‘[EOS]’ token, see their performance
collapse, with most falling to near-chance levels. This analysis demonstrates that by explicitly
modeling token relationships, GLOT can reliably identify and reason over the crucial signal phrase,
whereas methods that rely on global summary statistics are overwhelmed by the distractor tokens.

22

Under review as a conference paper at ICLR 2026

Table 8: Impact of Graph Topology (7) on Performance and Linearity. We compare the sensitivity
of BERT (top) and Mistral (bottom) to the threshold 7. Linear Probing indicates the accuracy of a
linear SVM trained on frozen GLOT embeddings, serving as a proxy for linear separability.

Threshold (r) STSB (Spear. 1) CoLA (MCC 1) RTE (ACC1) Linear Probing (ACC 1)

BERT (Encoder-only)
7=0.0 81.88 39.62 50.90 76.41
7=0.2 82.12 39.82 50.90 76.51
T=0.4 82.25 47.49 52.34 77.18
7=0.6 83.86 43.16 59.21 77.56
7=038 83.85 43.16 52.70 77.18
Mistral-7B (Decoder-only)
7=20.0 80.34 49.81 50.90 80.06
7=0.2 80.48 49.45 50.90 81.20
T=04 80.40 50.54 52.34 80.44
7=0.6 80.29 54.15 59.21 81.40
7=038 80.26 52.70 52.70 80.82

D ADDITIONAL ANALYSES

D.1 GRAPH TOPOLOGY AND REPRESENTATION QUALITY ANALYSIS

In this subsection, we expand upon the graph construction analysis presented in Table[d] To address
the question of how graph topology influences representation quality beyond simple ablation, we
conduct a detailed sensitivity analysis of the sparsity threshold 7 on both encoder-only (BERT) and
decoder-only (Mistral) backbones.

We evaluate performance across three semantically distinct tasks from GLUE (STSB, CoLA, and
RTE). Furthermore, to provide a theoretical justification for the representation quality, we perform a
linear probing experiment. In this setting, we freeze the sentence embeddings z generated by GLOT
(with no classifier head trained) and train a standard linear SVM. The resulting accuracy serves as a
direct quantitative measure of the linear separability of the pooled embeddings.

As shown in Table 8] we observe two key trends:

1. Correlation with Linear Separability: The threshold 7 that yields the highest linear
probing accuracy (typically 7 = 0.6) consistently aligns with the highest performance on
downstream tasks (RTE and STSB). This suggests that the graph structure explicitly refines
the manifold of the embeddings, making classes more linearly separable.

2. Task-Dependent Topology: Different tasks benefit from different levels of sparsity. For
example, CoLA (linguistic acceptability) on BERT peaks at 7 = 0.4, while RTE (entailment)
benefits from a sparser graph at 7 = 0.6. This confirms that the thresholding mechanism
allows GLOT to adapt the graph topology to the specific semantic or syntactic needs of the
task.

D.2 DETAILED EFFICIENCY AND SCALABILITY ANALYSIS

To fully analyze the computational cost (RQ3) and scalability to long contexts (RQ4), we provide
extended benchmarks covering cross-model performance and a stress test of the graph construction
step.

Cross-Model and Cross-Task Efficiency In Table 9] we compare GLOT against Full Fine-Tuning
(Full FT) and LoRA (r = 64) across both encoder-only (BERT) and decoder-only (Mistral) archi-
tectures. We report performance on three semantically diverse tasks: CoLA (Grammar), STS-B
(Similarity), and RTE (Entailment).

GLOT achieves a superior trade-off across both architectures:

23

Under review as a conference paper at ICLR 2026

Table 9: Cross-Model Efficiency Benchmarks. We compare GLOT against Full Fine-Tuning and
LoRA. MCC: CoLA, Spear.: STSB, ACC: RTE. Runtimes are measured with batch size 32. GLOT
provides consistent efficiency gains across architectures.

Method Trainable GPU Mem. Runtime CoLA STSB RTE
Params (GB) | (ms) | MCC) 1T (Spear.) T (ACO) 1T
Mistral-7B (Decoder-only)
Full FT + [EOS] 7.11B 32.59 1318.8 + 1.1 49.63 55.68 55.23
LoRA (r = 64) 167.8M 33.50 1454.6 + 1.1 48.23 54.54 53.43
GLOT (Ours) 8.92M 0.42 134 + 3.0 53.29 80.51 59.21
BERT (Encoder-only)
Full FT + [CLS] 109.5M 0.74 52.5+0.1 38.31 60.10 56.68
LoRA (r = 64) 10.7M 0.86 77.4+£0.2 36.16 64.64 56.32
GLOT (Ours) 8.92M 0.42 134 + 3.0 47.49 83.86 59.21

Table 10: Scalability Stress Test. Graph construction time vs. total inference time (per sample) at
maximum context lengths (L,,,4,)- All times are in milliseconds (ms). Even at L = 32K, the graph
construction overhead is ~ 1.3% of the total runtime.

Backbone Max Context (L,,,,) Graph Const. (ms) Total Runtime (ms) Overhead (%)
BERT 512 0.043 +0.002 5.36 +0.06 0.8%
TinyLlama-1.1B 2048 0.672 +0.001 143.15 +£0.05 0.5%
SmolLM2 8192 4.46 +0.05 772.30 £ 0.11 0.6%
Llama-3B 8192 15.05 4+ 0.37 2041.77 £0.19 0.7%
Mistral-7B 32768 303.47 +1.02 23460.29 +4.77 1.3%

* Efficiency: On Mistral-7B, GLOT reduces memory usage from ~ 32GB (Full FT) to just
0.42GB and reduces batch runtime from ~ 1318ms to 13.4ms (100x speedup).

* Consistency: The performance gains are not isolated to specific tasks; GLOT outperforms
parameter-heavy baselines on all three benchmarks, confirming that the graph-based ap-
proach generalizes well across different semantic objectives.

Scalability to Long Contexts A theoretical concern with graph-based pooling is the O(L?) com-
plexity of edge formation, which could potentially become a bottleneck for long sequences. To
investigate this, we benchmarked the graph construction time against the total forward pass runtime
across the maximum supported context lengths of our backbone models (up to 32K tokens for
Mistral-7B).

As shown in Table[T0] even at extreme lengths, the graph construction overhead remains a small
fraction of the total inference time. For instance, with Mistral-7B at a context length of 32,768 tokens,
graph construction takes ~ 0.3 seconds, which is negligible compared to the computational cost of
the backbone’s forward pass (= 23.5 seconds). This confirms that the O(L?) step does not hinder
scalability in practical long-context applications.

D.3 EFFECT OF GNN BACKBONE ARCHITECTURE

To evaluate the robustness of the GLOT framework and verify that our performance gains stem from
the graph-based paradigm rather than a specific architecture, we experimented with different GNN
backbones. In addition to GAT (Velickovic¢ et al., 2018)) used in the main experiments, we evaluated
using GCN (Kipf & Welling, |2017)) abd GIN (Xu et al.,[2019)) architectures.

Table [TT] presents the comparative results for Mistral-7B and BERT, respectively. The results yield
two key observations: (i) Robustness of the Paradigm: Consistently across both LLM backbones
(Mistral and BERT), all graph-based variants (GCN, GAT, GIN) significantly outperform the set-based
AdaPool baseline. This validates our core hypothesis that modeling inter-sample relationships is
critical for performance. (ii) Architecture Sensitivity: The optimal GNN architecture appears to

24

Under review as a conference paper at ICLR 2026

Table 11: Performance comparison of different GNN backbones. We evaluate the effectiveness of
different graph variants against the AdaPool baseline using both Mistral-7B and BERT embeddings.

Method CoLA (MCC) STSB (Spearman) RTE (ACC)
Mistral-7B (Decoder-only)
AdaPool (No GNN) 48.00 79.55 54.87
GLOT (GCN) 52.65 79.74 57.04
GLOT (GAT) (Ours) 54.30 80.51 59.21
GLOT (GIN) 59.30 79.73 59.30
BERT (Encoder-only)
AdaPool (No GNN) 29.20 80.01 51.62
GLOT (GCN) 45.19 80.17 58.12
GLOT (GAT) (Ours) 47.49 83.86 59.21
GLOT (GIN) 47.78 80.71 57.04

depend on the underlying LLM embeddings. For the larger Mistral-7B model, the more expressive
GIN outperforms if not competitive. However, for BERT, GAT remains the superior choice.

D.4 COMPARISON WITH PROMPTING-BASED METHODS

Our goal in this work is to treat token embeddings for a given sentence from frozen LLMs as a
semantic graph in the latent space. We reframe pooling as relational learning from token interactions,
rather than treating tokens as a set of independent vectors. Orthogonally, prompting methods use
hand-crafted prefixes (which are identical across all sentences and datasets) to obtain a representation
for the sentence.

Our goal is not to introduce a new memory-efficient pooling mechanism. The computational
efficiency of GLOT is a consequence of keeping the backbone frozen, thereby eliminating the
requirement to store backbone gradients in memory and allowing the forward pass (to obtain token
embeddings) to be amortized as a dataset preparation step.

Nevertheless, to contextualize our performance, we compare GLOT to prompting-based approaches,
including PromptBERT 2022)), PromptEOL (Jiang et al.| 2024), and Pretended Chain
of Thought and Knowledge Enhancement (Zhang et al., [2024). Table[13|presents the results on the
STS-B benchmark.

As shown, GLOT consistently outperforms prompting methods on both encoder and decoder architec-
tures. These results confirm that explicitly learning relational structures over tokens is more effective
than input prompting for frozen LLMs.

D.5 COMPARISON WITH CONTRASTIVE FINE-TUNING BASELINES

We acknowledge the importance of established sentence embedding baselines such as Sentence-
BERT (Reimers & Gurevychl 2019), SimCSE [2021)), and recent adaptation methods like
LLM2Vec (BehnamGhader et al.,[2024)). A key distinction, however, is that these methods require
updating the backbone model (or altering attention mechanisms), whereas GLOT operates strictly on
a frozen backbone.

To illustrate the performance-efficiency trade-off, Table [I4]compares GLOT (using a frozen BERT
backbone) against fully fine-tuned SBERT (MPNet-v2) and SimCSE (BERT-sup) on three linguis-
tically diverse GLUE tasks. As shown, GLOT outperforms the fully fine-tuned baselines on tasks
requiring complex linguistic understanding, such as CoLA (4+22.5 points) and RTE (+6.5 points).
While SimCSE retains a slight edge on semantic similarity (STS-B), GLOT remains highly competi-
tive (within 3.4 points) despite having approximately 12x fewer trainable parameters and requiring
significantly less training time.

25

Under review as a conference paper at ICLR 2026

D.6 IMPACT OF RELATIONAL LEARNING VS. MODEL CAPACITY

To verify that the performance gains of GLOT stem from its graph-based design rather than simply
having more learnable parameters than standard pooling methods, we compared GLOT against a
parameter-matched baseline. Specifically, we replaced the TOKEN-GNN module with a deep
Multi-Layer Perceptron (MLP) of comparable capacity (9.2M parameters) and evaluated it using the
Mistral-7B backbone.

Table T3] presents the results on three diverse GLUE tasks. As shown, GLOT consistently outperforms
the parameter-matched MLP baseline across all tasks, despite using slightly fewer parameters (8.9M
vs. 9.2M). The performance gap is most pronounced on STS-B (+6.4 points), where modeling
fine-grained semantic similarity is critical. This difference highlights a fundamental limitation of the
MLP, which processes the input tokens as a static vector. In contrast, GLOT employs a GNN over
the token graph, enabling tokens (nodes) to explicitly exchange information via message passing.
This confirms that the superior performance of GLOT is driven by graph construction and relational
learning, not merely by learnable parameter capacity.

D.7 INFERENCE-TIME COMPUTATIONAL COSTS

We benchmark the inference-time costs of GLOT (including graph construction and the GNN forward
pass) against simpler pooling methods using the Mistral-7B backbone. We also report performance
on representative datasets from the GLUE benchmark (CoLA for MCC, STS-B for Spearman, and
RTE for Accuracy).

Table [I6] summarizes these results. As observed, the inference time is dominated by the forward pass
through the large LLM backbone. Consequently, the inference-time costs are nearly identical across
all pooling methods. GLOT requires only ~ 600 MB of additional GPU memory and negligible
additional runtime (=~ 3ms) compared to the baselines. This efficiency is achieved through specialized
sparse computation operations utilized in our implementation.

For a detailed breakdown of the specific graph construction overhead across varying backbones and
context lengths, please refer to Table[I0] These results collectively indicate that GLOT offers a highly
efficient pooling mechanism for frozen LLMs, providing significant performance improvements with
minimal computational overhead.

D.8 UNIFIED COMPARISON OF EFFICIENCY AND PERFORMANCE

To provide a holistic view of the trade-offs between computational resources and downstream
effectiveness, we present a unified comparison using the Mistral-7B backbone. Table[T7|contrasts
training efficiency (parameters and memory) against performance on three diverse tasks: CoLA
(linguistic acceptability), STS-B (semantic similarity), and RTE (textual entailment).

As shown, GLOT introduces only a minor parameter increase compared to AdaPool (8.9M vs. 2.1M)
yet yields significant gains across all metrics (e.g., +5.3 points on CoLA and +4.3 points on RTE).
Furthermore, GLOT consistently outperforms the parameter-matched MLP baseline, confirming the
value of the relational graph structure.

Most notably, when compared to fine-tuning approaches, GLOT outperforms both LoRA and Full
Fine-Tuning on all three tasks. It achieves this while requiring ~ 19 x fewer parameters than LoRA
and ~ 800x fewer than Full FT, utilizing only a fraction of the GPU memory. This confirms that
GLOT offers a “sweet spot,” delivering performance competitive with (or superior to) fine-tuning
techniques while maintaining the computational efficiency of frozen methods.

D.9 VISUALIZING TOKEN CONTRIBUTIONS

To understand why graph-based pooling yields superior representations compared to set-based pooling
or average pooling, we visualize the token contribution weights () assigned by different methods.
Figure [f]illustrates the weight distribution for Mean Pooling, AdaPool and GLOT
on samples from Quora Question Pairs dataset using a frozen BERT backbone. The visualization
highlights a distinct difference in how these pooling methods prioritize information:

26

Under review as a conference paper at ICLR 2026

B Mean I AdaPool Il GLOT (Ours)

"Is literally infinite number of unique "What is the maximum number of genetically unique
human DNAs possible?" . individuals that human genome allows?"

Token Weight
o o o o
w o 0 oo
I e e
= 0 o

I
N

Token Weight
o =3
oW

o
o
o
&l I S
o
-
L____

-k !
o AL L L LalaBMib L L. | Mli L bkl RHLL
Y5 § 8 g ¢ 2 A B N
& £ § s 2 g § 5 5 S g
= g I o < & 5 o
€ ;3 <

(a) Example 1: GLOT (blue) focuses on “DNA”, “genome”, and “individuals”, while suppressing the interrogative
“What”.

EmE Mean mmm AdaPool mmE GLOT (Ours)

0.6- "A person is riding on a horse." 06- "A person is passing out brochures."

o o
IS [
o)
IS n

Token Weight
o
w

°
o
Token Weight
o
©

o
N}

0_IJ‘--_- =] -_-I- m,J.-_ - = _I_ J_
oor T . ‘ 5 : - B o T e e s & - B
& q < & £

(b) Example 2: GLOT isolates the action “riding” and object “horse”, whereas AdaPool (grey) often attends to

[T L]

functional stop words like “a” or “person”.

Figure 5: Token Contribution Analysis with frozen BERT. Visualization of learned token weights
() on 2 examples. The orange highlights on the X-axis indicate the top-3 scoring tokens identified
by GLOT. While Mean Pooling (green) is uniform and AdaPool (grey) tends to over-index on
high-frequency functional words, GLOT (blue) consistently up-weights the semantic anchors essential
for determining sentence equivalence.

* Mean Pooling assigns a uniform weight of (1/L) to all tokens. This approach suffers from
a signal dilution, as tokens without meaning (e.g. ‘is’,’of’, ‘?”) contribute equally to the
final representation as the important tokens.

* AdaPool weighs tokens non-uniformly and treats tokens independently. We observe that it
frequently assigns high importance to functional words, syntactic markers or interrogatives
(e.g., attending to “What’ or ‘a’). This suggests the method is overfitting to common patterns
rather than semantic token interactions.

e Our GLOT exhibits a highly selective distribution. By refining the representations via the
TOKEN-GNN before aggregation, GLOT identifies and assigns larger weights to semantically
important tokens of the sentence. For example, in the query “What is the maximum
number of genetically unique individuals that human genome allows?”, GLOT suppresses
the interrogative “What” and places maximum weight on “genome” and “individuals”.
Similarly, in “A person is riding a horse”, GLOT isolates the action “riding” and the object
“horse”, whereas AdaPool focuses on the article “a”.

This analysis suggests that the graph structure enables GLOT to perform relational learning by

exchanging information among the tokens thereby producing a robust embedding that is resilient to
the distractors inherent in natural language.

27

Under review as a conference paper at ICLR 2026

Table 12: Comprehensive MTEB benchmark results. Datasets are grouped by task category, with the
category average reported in the shaded rows. The evaluation metric for each category is indicated in
parentheses: CLASSIFICATION (Accuracy), RETRIEVAL (NDCG@10), CLUSTERING (V-Measure),
STS (Spearman Correlation), RERANKING (MAP), PAIRCLASSIFICATION (Average Precision), and
SUMMARIZATION (Spearman Correlation). Results marked with ”’x” are still running, we will report
them when they finish.

Dataset [EOS] Mean MaxPool AdaPool GLOT
CLASSIFICATION (ACC 1) 0.4910 0.5178 0.3917 0.4907 0.4727
AmazonCounterfactualClassification 0.5767 0.6301 0.6052 0.6076 0.6210
AmazonPolarityClassification 0.7858 0.6912 0.6447 0.6364 0.6299
AmazonReviewsClassification 0.3865 0.3544 0.2842 0.3068 0.3048
Banking77Classification 0.3127 0.4482 0.2704 0.4425 0.4730
EmotionClassification 0.2662 0.2995 0.2142 0.2832 0.3016
ImdbClassification 0.6209 0.7214 0.5982 0.6807 0.6704
MTOPDomainClassification 0.5783 0.6596 0.4323 0.6102 0.6103
MTOPIntentClassification 0.3036 0.4757 0.2465 0.3980 0.3970
MassivelntentClassification 0.4265 0.3633 0.2083 0.4090 0.4254
MassiveScenarioClassification 0.5114 04374 0.2483 0.4707 0.4963
ToxicConversationsClassification 0.6446 0.6412 0.5347 0.5922 0.5950
TweetSentimentExtractionClassification 0.4808 0.4923 0.4150 0.4518 0.4495
RETRIEVAL (NDCG @10 1) 0.1157 0.2282 0.1459 0.2611 0.2658
ArguAna 0.0875 0.4162 0.0986 0.3164 0.3003
CQADupstackRetrieval 0.0106 0.0926 0.0291 0.0954 0.1143
ClimateFEVER X X X X X

DBPedia X X 0.0095 X X

FEVER X X X X X

FiQA2018 0.0111 0.0333 0.0123 0.0840 0.0953
HotpotQA X X 0.0387 X X

NFCorpus 0.0233 0.0253 0.0146 0.0925 0.1043
NQ X X 0.0036 X X

QuoraRetrieval 0.5697 0.5332 0.5200 0.6030 0.6055
SCIDOCS 0.0035 0.0181 0.0187 0.0441 0.0480
SciFact 0.0033 0.3735 0.2116 0.4268 0.4414
TRECCOVID 0.0581 0.1706 0.1840 0.2643 0.2626
Touche2020 0.0037 0.0207 0.0217 0.0935 0.0037
MSMARCO X X 0.0040 X X

CLUSTERING (V-MEAS. 1) 0.2254 0.2995 0.2197 0.2910 0.2955
ArxivClusteringP2P 0.2979 X 0.3791 X 0.4548
ArxivClusteringS2S 0.2770 0.3009 0.1722 0.2858 0.2466
BiorxivClusteringP2P 0.1415 0.3588 0.2503 0.3593 0.3484
BiorxivClusteringS2S 0.1341 0.2336 0.1082 0.2049 0.1926
MedrxivClusteringP2P 0.1478 0.3018 0.2516 0.3140 0.3110
MedrxivClusteringS2S 0.1664 0.2414 0.1616 0.2287 0.2201
RedditClustering 0.1858 0.2544 0.1015 0.2398 0.2623
RedditClusteringP2P 0.2997 0.5755 0.4121 0.5553 0.2997
StackExchangeClustering 0.4214 0.4523 0.2215 04183 04116
StackExchangeClusteringP2P 0.2280 0.3522 0.2594 0.3493 0.3333
TwentyNewsgroupsClustering 0.1804 0.2007 0.0992 0.2189 0.2149
STS (Cos. SPEA. 1) 0.2840 0.4569 0.3656 0.4331 0.4596
BIOSSES 0.2697 0.6363 0.4927 0.5891 0.5406
SICK-R 0.4981 0.5095 0.4482 0.4494 0.4612
STS12 0.2307 0.3824 0.3017 0.3641 0.3905
STS13 0.3603 0.5370 0.4292 0.4607 0.5755
STS14 0.2045 0.4223 0.3550 0.4482 0.4980
STS15 0.2068 0.5396 0.4513 0.5387 0.5489
STS16 0.5413 0.5229 0.4721 0.5208 0.5635
STS17 0.1230 0.2122 -0.0283 0.1358 0.1456
STS22 0.0922 0.4334 0.3632 0.4203 0.4313
STSBenchmark 0.3135 0.3742 0.3716 0.4045 0.4414
RERANKING (MAP 1) 0.4071 0.4163 0.4000 0.4136 0.4533
AskUbuntuDupQuestions 0.4352 0.4774 0.4577 0.4767 0.4821
MindSmallReranking X 0.2815 X 0.2815 X

SciDocsRR 0.5188 0.5682 0.4427 0.5744 0.5647
StackOverflowDupQuestions 0.2675 0.3383 0.2997 0.3221 0.3133
PAIRCLASSIFICATION (AVG. PRE.) 0.2914 0.5316 0.5605 0.5547 0.5754
SprintDuplicateQuestions 0.0840 0.4954 0.5239 0.5686 0.5528
TwitterSemEval2015 0.3846 0.4106 0.4151 0.3510 0.4221
TwitterURLCorpus 0.4058 0.6890 0.7425 0.7446 0.7513
SUMMARIZATION (COS. SPEA. 1) 0.2042 0.1964 0.2470 0.2346 0.2774
SummEval 0.2042 0.1964 0.2470 0.2346 0.2774

28

Under review as a conference paper at ICLR 2026

Table 13: Performance comparison on the STS-B benchmark (Spearman correlation) between GLOT
and prompting-based methods across Encoder and Decoder architectures.

Method (Encoder Architectures) STS-B

BERT (Encoder-only)
PromptBERT 70.60
GLOT (Ours) 83.85

Mistral-7B (Decoder-only)
PromptEOL 75.77
Pretended CoT 76.66
Knowledge Enhancement 74.09
GLOT (Ours) 80.51

Table 14: Performance comparison between GLOT (frozen backbone) and fully fine-tuned contrastive
baselines. Runtime is reported in milliseconds per batch. Best performance is in bold.

Model Runtime (ms) | Params (M) | CoLA (MCC)?t STS-B (Spear) 1 RTE (ACC) 1
SBERT (MPNet-v2) (Song et al.|[2020) 52.99 £ 0.08 109.50 17.70 86.70 54.51
SimCSE (BERT-sup) (Gao et al.|[2021) 47.21 £+ 0.09 109.50 2491 87.27 52.70
GLOT (BERT) 13.40 + 3.00 8.92 47.49 83.86 59.21

Table 15: Ablation study comparing GLOT against a parameter-matched MLP baseline using the
Mistral-7B backbone. Best results are in bold.

Method Params (M) | CoLA MCC)1 STS-B (Spear.) T RTE (ACC) 1
MLP 9.2 51.33 74.12 57.76
GLOT (Ours) 8.9 54.30 80.51 59.21

Table 16: Inference-time cost and performance benchmark using the Mistral-7B backbone. Runtime
is measured in seconds per batch. Best performance is in bold.

Method #Params GPU Mem (GB) | Runtime(s)| MCC?T Spear.T ACC?
[EOS] 8.2K 32.58 3227 £0.006 38.63 72.36 50.90
Mean 8.2K 32.58 3.244 +£0.003 38.61 77.96 53.07
Max 8.2K 32.58 3.259 £0.009 10.78 70.72 53.07
AdaPool 2.1M 32.58 3249 £0.011 48.00 79.55 54.87
GLOT (Ours) 8.92M 32.64 3.252 £0.007 53.29 80.51 59.21

Table 17: Unified comparison of training efficiency and performance using the Mistral-7B backbone.
We categorize methods by computational cost. Best results are in bold.

Category Method Trainable Params GPU Mem (GB) CoLA (MCC) STS-B (Spear) RTE (Acc)
Low Cost Mean Pooling 0 <0.1 38.61 77.96 53.07
Max Pooling 0 <0.1 10.78 70.72 53.07
AdaPool 2.1 M <0.1 48.00 79.55 54.87
MLP Baseline 92 M 0.42 51.33 74.12 57.76
High Cost LoRA (r = 64) 167.8 M 335 48.23 54.54 53.43
Full Fine-Tuning 7,110 M > 40.0 49.63 55.68 55.23
Proposed GLOT (Ours) 8.9M 0.42 53.29 80.51 59.21

29

	Introduction
	Related Work
	Method
	Problem Setup
	Glot

	Experiments and Discussion
	Experimental Setup
	General Language Understanding Evaluation (GLUE Benchmark)
	Long-Text Classification
	Large-Scale Benchmarking on MTEB
	Diagnostic Analysis: Evaluating Relational Robustness
	Ablations and Analysis

	Conclusion
	Additional Related Work
	Implementation Details
	General Setup
	Model Configurations
	Benchmark-Specific Details
	Diagnostic Task Generation

	Additional Results
	Diagnostic Task: Detailed Results and Analysis

	Additional Analyses
	Graph Topology and Representation Quality Analysis
	Detailed Efficiency and Scalability Analysis
	Effect of GNN Backbone Architecture
	Comparison with Prompting-based Methods
	Comparison with Contrastive Fine-tuning Baselines
	Impact of Relational Learning vs. Model Capacity
	Inference-time Computational Costs
	Unified Comparison of Efficiency and Performance
	Visualizing Token Contributions

