
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS IMPROVED SENTENCE REPRESENTATIONS
USING TOKEN GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Obtaining a single-vector representation from a Large Language Model’s (LLM)
token-level outputs is a critical step for nearly all sentence-level tasks. How-
ever, standard pooling methods like mean or max aggregation treat tokens as an
independent set, discarding the rich relational structure captured by the model’s
self-attention layers and making them susceptible to signal dilution. To address this,
we introduce GLOT, a lightweight, structure-aware pooling module that reframes
pooling as relational learning followed by aggregation. Operating on the outputs of
a frozen LLM, GLOT first constructs a latent token-similarity graph, then refines
token representations with a graph neural network, and finally aggregates them
using a readout layer. Experimentally, our approach is remarkably robust and effi-
cient: on a diagnostic stress test where 90% of tokens are random distractors, GLOT
maintains over 97% accuracy while baseline methods collapse. Furthermore, it
competitive with state-of-the-art techniques on benchmarks like GLUE and MTEB
with 20x fewer trainable parameters and speeds up the training time by over 100x
compared with parameter-efficient fine-tuning methods. Supported by a theoretical
analysis of its expressive power, our work shows that learning over token graphs is
a powerful paradigm for the efficient adaptation of frozen LLMs.

1 INTRODUCTION

Large Language Models (LLMs) (Raffel et al., 2020; Lewis et al., 2020; Brown et al., 2020; Touvron
et al., 2023; Jiang et al., 2023) produce a sequence of token-level hidden states, yet many downstream
applications require a single vector embedding to represent an entire sentence or document. Therefore,
the process by which a sentence and its tokens’ hidden states are collapsed into a single vector
representation is critical. Standard practices typically rely on simple heuristics such as mean, max,
or using a dedicated [CLS] token. While these pre-defined approaches have been dominant in the
literature (Devlin et al., 2019; Liu et al., 2019; Reimers & Gurevych, 2019; Gao et al., 2021; Arora
et al., 2017; Wang et al., 2024), they can also be vulnerable when only a small subset of tokens carries
task-relevant signal amid many distractors, as has been recently studied in Brothers (2025).

Although Transformers (Vaswani et al., 2017) inherently model token interactions through self-
attention, standard sentence-level representation techniques discard this rich relational structure,
treating hidden states as an independent set of vectors. Indeed, this shortcoming was recently studied
for Vision-Transformers (Dosovitskiy et al., 2021) in Brothers (2025), who proposed to learn a
multilayer-perceptron (MLP)-based token scoring function. However, while this approach may
correctly up-weight the word “good”, it may fail to capture the effect of its negation with the word
“not”. This challenge is particularly acute for decoder-only LMs (e.g., GPT (Radford et al., 2019;
Brown et al., 2020) or LLaMA (Touvron et al., 2023)), whose causal attention mechanism optimizes
hidden states for next-token prediction rather than holistic sentence representation (Radford et al.,
2019; Brown et al., 2020).

Prior work shows that LLM token vectors have a strong directional bias: many of them point in similar
directions, and seemingly unrelated words have embeddings with high similarity (Ethayarajh, 2019;
Li et al., 2020). Therefore, sentence-level representations built on isolated tokens may be unreliable
for semantic understanding tasks. While these shortcomings can be addressed by fine-tuning the entire
model on downstream tasks, this approach is often computationally prohibitive for billion-parameter

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

106 107 108 109 1010

Trainable Parameters (log scale)

37.5

40.0

42.5

45.0

47.5

50.0

52.5
Pe

rfo
rm

an
ce

 (M
CC

 ×
 1

00
) Single-Sentence (CoLA)

106 107 108 109 1010

Trainable Parameters (log scale)
51

52

53

54

55

56

57

58

59

Pe
rfo

rm
an

ce
 (A

cc
ur

ac
y

%
) Sentence-Pair (RTE)

106 107 108 109 1010

Trainable Parameters (log scale)

40

50

60

70

80

Pe
rfo

rm
an

ce
 (S

pe
ar

m
an

 ×
 1

00
) Similarity (STSB)

[EOS] Mean Max AdaPool GLOT (Ours) Full FT LoRA Frozen LLM

Figure 1: Fine-tuning large language models for sentence embeddings is computationally expensive.
Our pooling method, GLOT, constructs a latent token-similarity graph from the outputs of a frozen
model. It then refines token representations with a graph neural network before aggregation. This
technique enables decoder-only models (like Mistral-7B), typically optimized for next-token predic-
tion, to produce powerful sentence-level representations without requiring any fine-tuning.

models (Lee et al., 2025; Gao et al., 2021). The immense cost of training, compounded by the need
for extensive hyperparameter optimization, makes full fine-tuning impractical for many applications.

To bridge this gap, we reframe the problem of collapsing token hidden states into a sentence-level
representation as learning over token graphs. To this end, we propose GLOT, a lightweight, structure-
aware module that operates on the token hidden states produced by LLMs to obtain a sentence-level
representation. Specifically, as illustrated in Figure 2, GLOT does the following: (i) constructs a
token-similarity graph from the LLM hidden states, (ii) propagates information across the graph
using a graph neural network, and (iii) aggregates the refined token representations using a readout
mechanism. The LLM backbone remains entirely frozen; only the GNN module and a task-specific
head are trained. This lightweight approach maintains a remarkably small memory footprint while
equipping decoder-only LMs to perform as powerful text embedding models.

Contributions. Our contributions are as follows:

• We introduce a new conceptualization of sentence-level representation from LLM hidden
states; rather than framing it as direct information compression like existing techniques, we
envision a relational learning approach via GNNs. In addition, our framework generalizes
common pooling methods like mean, max, and [CLS] pooling.

• We present GLOT, a compact and parameter-efficient module that enhances the performance
of both encoder- and decoder-only frozen backbones with 20x fewer trainable parameters
and over 100x faster training time than LLM fine-tuning-based methods.

• We provide extensive empirical validation for GLOT. Our evaluation shows that GLOT
consistently outperforms pre-defined pooling and learning-based methods, across a wide
range of tasks, including the GLUE benchmark for language understanding (Wang et al.,
2018), long-text classification on IMDB (Maas et al., 2011), and seven diverse tasks from
the large-scale MTEB benchmark (Muennighoff et al., 2023). Crucially, we introduce a
novel diagnostic stress test that confirms GLOT’s superior robustness to signal dilution, a
key failure mode for other methods.

• We provide a detailed analysis of our method’s components, demonstrating how the graph
construction impacts performance and quantifying its substantial computational efficiency
over fine-tuning methods.

To ensure reproducibility, we will publish the code and pre-trained models upon acceptance and
provide pseudo-code for our method in Appendix B.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

The Compressive Paradigm of Sentence-Level Representation. To obtain sentence-level represen-
tations from LLMs, existing methods consider a compression problem: collapsing tokens’ hidden
states into a single vector. This paradigm usually encompasses pre-defined rules like mean or max
selection, as well as learnable variants that learn token weights (Reimers & Gurevych, 2019; Gao
et al., 2021; Xing et al., 2024; Lee et al., 2025; Brothers, 2025). While effective in some cases,
these methods fundamentally discard relational structure. This can be derived from the theory of
permutation-invariant functions on sets, as done in DeepSets (Zaheer et al., 2017), however, only
looking at the tokens as completely independent items in a set does not paint the whole picture. As a
result, these approaches implicitly assume the LLM has already embedded all necessary relational
information. This assumption is often violated, especially for decoder-only models, which are opti-
mized for next-token prediction rather than holistic sentence understanding (Radford et al., 2019;
Brown et al., 2020). Indeed, recent work by Brothers (2025) shows such methods fail precisely
because they compress before performing relational learning. Our work, GLOT, directly addresses
this shortcoming by using advances from graph neural networks, which are also permutation invariant
but can also encode relational information.

Graph-Based Representations in NLP. Graph Neural Networks (GNNs) are natural tools for
relational learning; however, their prior applications in NLP differ from our problem of obtaining
sentence-level representation using a frozen LLM. Many of these works use graphs to represent corpus-
level tasks and solve them using GNNs rather than producing sentence-level embeddings. For example,
Yao et al. (2019) builds a single word-occurrence-based graph over the corpus for text classification,
and Huang et al. (2019) extends this approach for online inference and reduced memory consumption.
Recent works propose the usage of attention and diffusion dynamics (Liu et al., 2021) and interleaving
GNN and Transformer layers for improved text classification performance. Other approaches differ
in their architecture or output format. Late-interaction models like ColBERT (Khattab & Zaharia,
2020) preserve token granularity but produce multi-vector representations incompatible with standard
embedding interfaces. In contrast, GLOT is the first approach to construct a latent token-similarity
graph directly from frozen LLM hidden states, and perform explicit relational learning within the
pooling head to produce a single, robust sentence vector.

Global Representations in Other Domains. The challenge of creating a single, global representation
from a set of features is not unique to NLP. In computer vision, pooling has long been a central
component in convolutional neural networks (CNNs). While operations like max and average pooling
are used throughout these models (Krizhevsky et al., 2012; He et al., 2016), global pooling is critical
for producing a hoslistic representation. Techniques like global average pooling are used to collapse
the final spatial feature maps into a single feature vector for classification, effectively summarizing
the most salient features present in an image (Lin et al., 2013). In NLP, by contrast, pooling is
often treated as a final, routine step. Our work, GLOT, challenges this view by demonstrating that a
graph-neural-based sentence-level learning approach can unlock significant performance gains from
frozen language models, opening a new direction for efficient sentence-level model adaptation.

Positioning GLOT Relative to Prior Works. Our work distinguishes itself from two primary
streams of literature: learnable pooling and graph-based NLP. (a) Relation to Learnable Pooling.
Recent learnable pooling methods, such as AdaPool (Brothers, 2025), operate fundamentally under
a “DeepSets” paradigm (Zaheer et al., 2017). These approaches treat the token sequence as an
independent set to be compressed. While effective for some tasks, this independence assumption fails
to capture inter-token dependencies which are critical for resolving the signal dilution inherent in
frozen LLM outputs. GLOT challenges this assumption by reframing pooling as relational learning.
By explicitly modeling pairwise interactions via a GNN before aggregation, GLOT recovers structural
dependencies that strictly independent pooling methods discard. (b) Relation to Graph-Based NLP.
Unlike prior graph-based text encoding methods (e.g., TextGCN (Yao et al., 2019)), which typically
rely on global corpus-level statistics or fixed syntactic dependency trees, GLOT introduces a dynamic,
latent graph construction mechanism. GLOT builds semantic graphs on-the-fly based entirely on
the intrinsic geometry of the frozen LLM’s hidden states. This allows the model to recover rich,
context-specific structural information without the computational overhead of external parsers or the
rigidity of fixed syntactic trees.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

��������������

���������
����
�

🔥

🔥

	�������������

�����������������

����

Figure 2: An overview of the GLOT pooling architecture. Given token hidden states from a frozen
language model, our trainable module performs three stages : (1) it constructs a latent token-similarity
graph, (2) a TOKEN-GNN performs relational learning to refine token representations, and (3) a
readout layer aggregates the refined vectors into a final sentence representation, z

3 METHOD

In this section we formalize and discuss the properties of our method. We start by providing essential
notations and problem formulation in Section 3.1, followed by Section 3.2 where we present GLOT.

3.1 PROBLEM SETUP

Given a sequence of input tokens [x1, x2, · · · , xL] and a frozen LLM, the task is to design a function
fpool, that maps the sequence of token-level hidden states X = [x1,x2, · · · ,xL] ∈ RL×d, to a
single, sentence-level representation, z ∈ RD. This vector z is a critical input for many downstream
applications considered in this work, as follows:

• Single-Sentence Classification. For tasks like sentiment analysis, the vector z is fed into a
linear classifier, y = softmax(Wz + b) to obtain the sentence label, where W and b are
trainable parameters.

• Sentence-Pair Classification. For tasks like entailment detection, two sentence vectors, za and
zb, are concatenated and passed to a linear classifier to obtain a label y = softmax(W[za∥zb] +
b), where ∥ denotes channel-wise concatenation.

• Similarity and Retrieval. For ranking, the semantic relatedness of two vectors, za and zb, is
measured with a function like cosine similarity, sim(za, zb) = z⊤a zb/∥za∥∥zb∥.

3.2 GLOT

We introduce GLOT, a trainable framework that transforms the token-level hidden states into a
final, sentence-level vector, z = GLOT(X). As illustrated in Figure 2, this process involves three
stages: (1) constructing a token graph, (2) refining token states with a graph neural network (GNN)
denoted TOKEN-GNN, and (3) performing a learnable readout. Standard pooling methods treat the
input sequence as a set of independent vectors. While computationally cheap, this independence
assumption forces the model to discard inter-token dependencies during the compression step,
making the representation susceptible to signal dilution from distractor tokens. GLOT challenges
this paradigm by reframing pooling as relational learning. We hypothesize that the token space is
not a set, but a latent graph G, where nodes are tokens and edges represent semantic dependencies.
This allows GLOT to learn complex, multi-token dependencies relevant to the task. This paradigm
shift is significant because we are to the best of our knowledge the first to adapt the LLM’s rich,
yet possibly unoptimized, respect to sentence-level tasks, relational structure using a token-graph
approach. Below we explain the core mechanism of GLOT:

Step 1: Token Graph Construction. Given token hidden states X = [x1,x2, · · · ,xL] ∈ RL×d that
are obtained from an LLM with hidden dimensionality d, after processing an input of length L, we
construct a token graph G = (V, E) where nodes |V| = L correspond to tokens. Edges are defined by
the cosine similarity Sij between token vectors xi and xj . To induce a sparse, semantic structure, we
only create edges where Sij exceeds a threshold τ , which is a hyperparameter, discussed in Section 4.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Step 2: Refinement with TOKEN-GNN. Next, we apply a lightweight graph neural network, dubbed
TOKEN-GNN, to refine the token representations by modeling their interactions. With token hidden
states X, we initialize node features H(0) = XWin ∈ RL×p using a learnable matrix Win ∈ Rd×p,
where p is the hidden dimension of the GNN. Overall, we apply K GNN layers to produce a set
of refined, structure-aware token representations H(K) = U = [u1, · · · ,uL] ∈ RL×p. Each layer
ℓ = 1, . . . ,K of the TOKEN-GNN computes:

a
(ℓ)
i = AGGREGATE

j∈Ni

(
h
(ℓ)
j

)
∈ Rp, (1)

h
(ℓ+1)
i = σ

(
W(ℓ)CONCAT(h

(ℓ)
i ,a

(ℓ)
i)

)
, (2)

where a
(ℓ)
i is the aggregated information from the neighbors Ni of token i, AGGREGATE is a

permutation-equivariant aggregation function like sum or mean, W(ℓ) ∈ Rp×2p is a learnable weight
matrix, and σ is a nonlinear activation function, with implementation details in Appendix B.

Step 3: Readout Layer. The set of refined token representations, U, is aggregated into the sentence
vector z via learnable scoring. A scalar importance score mi is computed for each refined token
vector ui, normalized using softmax to create weights π, and used to compute a weighted sum:

mi = v⊤ tanh(Wmui + bm), π = softmax(m), z =

L∑
i=1

πiui, (3)

where m = [m1, . . . ,mL].

Overall, GLOT aggregates token-level hidden states obtained from a frozen LLM, to obtain refined
and learnable sentence-level representations by modeling token–token relationships using a graph
and processing them using TOKEN-GNN.

Properties of GLOT. The GLOT framework extends several common methods for obtaining
sentence-level representations, which can be recovered as special cases. If we disable the TOKEN-
GNN by setting its number of layers to zero (i.e., K = 0), then the refined vectors are simply the
original hidden states (that is, ui = xi), and the framework reduces to a direct weighted pooling
mechanism. From here, we can model both standard pooling methods (like mean or CLS pooling) by
using fixed weights and adaptive scoring methods, like AdaPool from Brothers (2025), by keeping
the weights learnable.

These cases, where K = 0, fit into the DeepSets framework (Zaheer et al., 2017), in which all
elements xi are transformed individually ϕ(xi) before a global aggregation function. Instead, the
Token-GNN utilized in GLOT enables information exchange in the form of ϕ(xi,G), taking a more
global approach and allowing interactions between tokens. Bronstein et al. (2021) has shown
DeepSets to be a special case of convolutional GNNs with no edge connectivity and, thus, strictly less
powerful than message passing, an advantage we exploit in GLOT. The additional communication
introduced in GLOT between tokens’ representations allows it to model linguistic phenomena that
hinge on pairwise or multi-hop dependencies among the tokens. The GNN mechanism in GLOT
requires additional memory and computations, compared with pre-defined methods. Nonetheless,
we note that, in comparison to other methods, which require the fine-tuning of the entire backbone
LLMs, our GLOT strikes a balance between efficiency and effectiveness in downstream performance,
as is evident in Section 4 and Figure 1.

4 EXPERIMENTS AND DISCUSSION

We conduct a comprehensive evaluation of GLOT to validate our core hypothesis: obtaining
sentence-level representation via its reframing as relational learning before compression yields
superior sentence embeddings from frozen LLMs compared with traditional and recent learnable
approaches. Throughout our experiments, all backbone LLM models remain completely frozen; only
the lightweight GLOT head and a minimal task-specific classifier are trained. This design ensures
our approach is both parameter and resource-efficient. Our evaluation is guided by four key research
questions:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: A comparison of pooling methods on the GLUE benchmark using six different frozen
backbones. The table reports standard metrics: MCC for CoLA, Spearman for STS-B, F1 for
MRPC/QQP, and Accuracy for the rest. Scores are multiplied by 100, with the best performance for
each model highlighted in bold.

Model Method CoLA SST-2 STS-B MRPC QQP MNLI-m MNLI-mm QNLI RTE WNLI
MCC ↑ ACC ↑ SPEA. ↑ F1 ↑ F1 ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑

B
E

R
T

[CLS] 22.66 83.83 61.08 79.58 19.70 43.86 45.03 54.75 50.90 45.07
Mean 19.55 82.91 74.96 80.28 29.01 43.86 45.16 56.43 51.62 52.11
Max 15.79 80.73 74.12 81.64 29.58 38.60 39.55 53.79 51.98 49.26

AdaPool 29.20 87.72 80.01 77.99 40.15 48.57 49.93 58.04 51.62 45.07
GLOT 47.49 90.25 83.86 82.58 62.19 54.39 54.47 61.08 59.21 54.93

R
oB

E
R

Ta

[CLS] 6.92 66.63 52.87 81.22 47.66 32.78 32.98 54.89 52.34 40.85
Mean 23.69 84.12 70.55 81.92 48.97 39.15 38.76 57.77 54.63 38.73
Max 22.06 79.10 66.39 81.52 44.69 35.54 35.37 52.49 52.22 52.81

AdaPool 26.80 90.97 71.12 80.78 57.71 42.51 44.24 59.72 50.45 41.90
GLOT 56.08 92.78 85.27 81.95 61.41 57.01 57.95 62.73 56.68 56.34

Sm
ol

L
M

2 [EOS] 7.63 77.75 52.77 81.03 38.11 41.14 42.66 53.23 49.10 47.88
Mean 12.30 79.81 56.39 80.60 32.34 40.50 41.06 55.97 54.15 42.25
Max 2.38 73.62 52.10 76.72 24.02 37.44 38.40 54.84 51.62 52.11

AdaPool 7.21 83.71 61.20 81.69 49.26 41.00 42.35 58.08 55.59 45.07
GLOT 39.23 90.25 76.28 82.24 62.32 53.42 53.64 59.86 57.40 63.38

Ti
ny

L
la

m
a [EOS] 8.33 73.85 64.63 80.31 41.46 39.33 40.92 56.19 47.29 45.07

Mean 5.93 73.85 61.29 80.67 41.46 39.50 40.83 57.51 49.58 45.07
Max 2.76 70.87 63.99 81.45 39.64 36.88 37.93 55.29 50.90 46.48

AdaPool 4.63 59.92 69.53 81.04 30.17 42.69 43.49 57.71 46.20 50.70
GLOT 17.61 80.73 71.77 82.54 59.92 48.04 49.34 63.77 57.40 53.52

L
L

aM
A

-3
B [EOS] 37.37 91.74 74.11 70.58 58.78 48.47 47.46 53.98 54.87 42.25

Mean 20.91 87.04 78.62 70.34 56.82 48.06 47.19 59.60 57.40 45.07
Max 13.49 84.51 73.27 67.64 51.17 40.89 40.77 55.84 49.45 47.88

AdaPool 43.32 92.54 81.93 71.81 49.37 49.56 50.59 58.48 55.23 47.88
GLOT 55.13 93.92 82.83 82.34 61.16 53.49 54.67 67.15 61.01 56.34

M
is

tr
al

-7
B [EOS] 38.63 92.55 72.36 76.32 51.68 48.18 48.33 50.82 50.90 40.85

Mean 38.61 89.91 77.96 77.22 57.44 47.86 48.08 53.46 53.07 42.25
Max 10.78 85.89 70.72 65.61 54.39 38.77 39.30 58.70 53.07 48.70

AdaPool 48.00 93.00 79.55 81.12 49.07 50.72 51.56 55.75 54.87 49.30
GLOT 54.30 94.38 80.51 82.83 64.07 51.66 53.22 60.93 59.21 56.34

(RQ1) How does GLOT compare to standard pre-defined and learnable sentence-level representation
methods, across diverse LLMs and tasks?

(RQ2) Does explicit relational learning offer consistent improvements, especially for decoder-only
models?

(RQ3) Can our GLOT match or exceed the performance of fine-tuned models while maintaining the
computational efficiency of frozen LLMs?

(RQ4) How robust is GLOT to the signal dilution that affects traditional techniques?

4.1 EXPERIMENTAL SETUP

We evaluate GLOT against standard static (Mean, Max, CLS/EOS) and learnable pooling baselines
across a diverse set of frozen encoder (BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019))
and decoder (e.g., Llama (Meta AI, 2024), Mistral (Jiang et al., 2023)) models. The evaluation is
conducted on a wide range of tasks, including general language understanding (GLUE) (Wang et al.,
2018), long-text classification (IMDB) (Maas et al., 2011), and retrieval (MTEB) (Muennighoff et al.,
2023). To specifically test for relational robustness, we also introduce a synthetic diagnostic stress
test that measures performance under noise. Across all experiments, the LLM backbones remain
completely frozen. Full details on all models, baselines, benchmarks, training hyperparameters, and
evaluation protocols are provided in Appendix B.

4.2 GENERAL LANGUAGE UNDERSTANDING EVALUATION (GLUE BENCHMARK)

Across the GLUE benchmark, GLOT consistently outperforms all baselines on all LLMs, from
encoders like BERT to decoders like Mistral-7B. Table 1 provides the detailed scores, while Figure 4

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Accuracy (×100) on the IMDB long-text sentiment classification task. We freeze the
LLM backbones and train only the pooling heads and a linear classifier. The best result per model is
in bold.

Method BERT RoBERTa SmolLM2 TinyLlama LLaMA3.2-3B Mistral-7B

[CLS]/[EOS] 80.23 82.04 82.82 87.27 90.56 84.86
Mean 81.64 84.38 84.10 88.72 92.58 94.21
Max 60.78 58.80 63.41 75.45 80.90 64.43
AdaPool 85.45 90.91 91.56 92.61 95.71 95.66
GLOT 86.93 94.52 94.18 93.38 96.14 95.95

of Appendix C visualizes the overall trend, showing that our GLOT’s advantage is consistent across
different task categories. This directly addresses (RQ1) and (RQ2).

GLOT achieves its most significant performance gains on tasks that require nuanced relational
understanding. On the Corpus of Linguistic Acceptability (CoLA) (Warstadt et al., 2018), for
instance, GLOT dramatically improves the Matthew’s Correlation Coefficient for BERT by a relative
improvement of 62.63% and 13.13% for Mistral-7B. This suggests that by explicitly modeling token
relationships, our approach better captures the grammatical structure essential for this task. Similarly,
on Quora Question Pairs (QQP), a paraphrase detection task, GLOT delivers a large performance
improvement margin over baselines for all tested architectures.

The consistent superiority on single-sentence classification (SST-2) (Socher et al., 2013b), semantic
similarity (STS-B) (Agirre et al., 2007), and inference (RTE) (Dagan et al., 2006; Bar Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al., 2009) tasks validates that our “relational learning
before compression” approach yields more robust and general-purpose embeddings than methods
that pool token states in isolation.

4.3 LONG-TEXT CLASSIFICATION

We assess performance on longer sequences using the IMDB dataset (Maas et al., 2011), where the
task is to classify paragraph-length reviews. As shown in Table 2, GLOT consistently outperforms all
baselines. For instance, it improves accuracy by nearly 4.5% for RoBERTa over the strongest baseline
and by an average of +10.1% relative improvement over the standard [EOS] token for decoder
models. This result highlights the effectiveness of our graph-based approach on long-form text;
unlike simple pooling, which can dilute sentiment signals across long contexts, GLOT’s relational
learning preserves and utilizes critical phrases for more accurate classification.

4.4 LARGE-SCALE BENCHMARKING ON MTEB

To assess GLOT’s performance as a general-purpose sentence encoder, we evaluate it on seven diverse
tasks from the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 2023). Since
many tasks are zero-shot, all learnable heads are first trained on the MS MARCO dataset (Bajaj et al.,
2016) with a contrastive loss while keeping the LLM backbones frozen. The specific MTEB tasks are
detailed in Appendix B.

The results in Table 3 show that GLOT is a robust performer across all tasks for both encoder- and
decoder-only architectures. For RoBERTa, GLOT achieves the best score on all seven tested tasks,
with a notable ×3 improvement on SciFact. This advantage extends to decoders: with the Llama-3B
backbone, GLOT secures a top performance of 0.5103 MAP on AskUbuntuDupQuestions, rivaling
strong encoder-only models. This strong general-purpose performance, achieved without expensive
backbone fine-tuning, provides a clear affirmative answer to (RQ3).

4.5 DIAGNOSTIC ANALYSIS: EVALUATING RELATIONAL ROBUSTNESS

To test for relational robustness under noise (RQ4), we design a synthetic diagnostic task inspired
by ‘signal-in-noise’ evaluations (Brothers, 2025) and the ‘Needle in a Haystack’ paradigm (Kam-
radt, 2023). The test involves injecting a short phrase containing a logical dependency (e.g.,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Zero-shot performance on seven diverse tasks from the MTEB benchmark. Prior to
evaluation, we train all learnable pooling heads on the MS MARCO dataset. The best performance
for each frozen backbone is in bold.

Model Method EmotionClass. SciFact RedditClust. AskUbuntu STS12 TwitterSemEval SummEval
ACC ↑ NDCG@10 ↑ V-MEAS. ↑ MAP ↑ COS. SPEA. ↑ MAX AP. ↑ COS. SPEA. ↑

B
E

R
T

[CLS] 0.2412 0.0231 0.1417 0.4137 0.2153 0.3433 0.2792
Mean 0.3361 0.1769 0.2777 0.4584 0.3087 0.5613 0.2983
Max 0.2812 0.2771 0.2241 0.4553 0.3175 0.5450 0.3022

AdaPool 0.3513 0.2224 0.3403 0.4778 0.3941 0.5195 0.2918
GLOT 0.3715 0.2485 0.3630 0.5020 0.4862 0.5623 0.3068

R
oB

E
R

Ta

[CLS] 0.2759 0.0900 0.1908 0.4439 0.1667 0.4848 0.2347
Mean 0.2520 0.0825 0.1850 0.4621 0.3210 0.5456 0.2986
Max 0.2200 0.0116 0.1354 0.4491 0.2667 0.5000 0.2583

AdaPool 0.2135 0.0042 0.1475 0.4513 0.2026 0.4744 0.2276
GLOT 0.2909 0.2605 0.2184 0.4687 0.3688 0.5598 0.3083

Sm
ol

L
M

2 [EOS] 0.2252 0.0012 0.1418 0.4113 0.1900 0.3613 0.2271
Mean 0.2396 0.1313 0.1708 0.4428 0.3824 0.4256 0.2335
Max 0.1923 0.0385 0.0960 0.4382 0.2458 0.3650 0.2530

AdaPool 0.2360 0.1702 0.1905 0.4461 0.4322 0.4153 0.2591
GLOT 0.2471 0.1834 0.2306 0.4529 0.4754 0.4343 0.2628

Ti
ny

L
la

m
a [EOS] 0.2044 0.0042 0.0689 0.4275 0.1297 0.3532 0.2602

Mean 0.1898 0.0126 0.0687 0.4269 0.1633 0.3150 0.2450
Max 0.1820 0.0049 0.0591 0.4292 0.1842 0.3588 0.1178

AdaPool 0.2904 0.0602 0.1688 0.4004 0.0329 0.2811 0.2521
GLOT 0.2905 0.0916 0.1800 0.4341 0.2369 0.3804 0.2649

L
L

aM
A

-3
B [EOS] 0.2765 0.0087 0.1979 0.4420 0.2494 0.4141 0.1917

Mean 0.2920 0.4247 0.3034 0.4971 0.4296 0.4430 0.1924
Max 0.2478 0.4087 0.1943 0.4906 0.3367 0.4196 0.2347

AdaPool 0.2185 0.4140 0.2774 0.4946 0.3765 0.3216 0.2350
GLOT 0.3046 0.4586 0.3301 0.5103 0.4616 0.4431 0.2658

M
is

tr
al

-7
B [EOS] 0.2662 0.0033 0.1858 0.4352 0.2307 0.3846 0.2042

Mean 0.2995 0.3735 0.2544 0.4774 0.3824 0.4106 0.1964
Max 0.2142 0.2116 0.1015 0.4577 0.3017 0.4151 0.2470

AdaPool 0.2832 0.4268 0.2398 0.4767 0.3641 0.3510 0.2346
GLOT 0.3016 0.4414 0.2623 0.4821 0.3905 0.4221 0.2774

...not...keys...) into a long sequence of random words. A binary classifier must then
interpret the logic of the signal phrase, with difficulty controlled by increasing the distractor ratio
from 20% to 90%. The pseudo-code for synthetic data generation is presented in Algorithm 2 of
Appendix B.

The results in Figure 3 show a stark divergence. As noise increases, the accuracy of baseline methods
collapses; on Mistral-7B, AdaPool’s accuracy plummets from 92.2% to 78.4%, and Mean pooling
drops to 63.8%. In contrast, GLOT remains robust, maintaining over 97% accuracy even at the 90%
distractor level. This confirms that GLOT’s explicit token graph successfully bypasses the signal
dilution that plagues methods reliant on global summary statistics. Full results are available in Table 7
in Appendix C.

4.6 ABLATIONS AND ANALYSIS

We conduct a series of ablations and analyses to validate GLOT’s design choices and quantify its
computational efficiency.

Impact of Graph Sparsity. To understand the importance of constructing a well-formed semantic
graph, we ablate the similarity threshold parameter, τ , using the Mistral-7B backbone on GLUE
benchmark. As shown in Table 4, the graph structure is critical to performance. When τ = 0.0,
the graph is fully connected, allowing noisy or irrelevant token relationships to dilute the message
passing process, resulting in suboptimal performance on all tasks. As we increase τ , pruning weaker
edges, performance steadily improves across most tasks, plateauing in the range of τ = 0.4− 0.6.
This confirms that not all token relations are equally important; by focusing on the strongest semantic
connections via relational learning, GLOT produces a more robust sentence representation.

Computational Efficiency. To address (RQ3), we compare the resource consumption of GLOT
against full fine-tuning (Full FT) and Parameter-Efficient Fine-Tuning (PEFT) with LoRA (Hu et al.,
2022). The results in Table 5 highlight the dramatic efficiency of our approach. Prior research
indicates that catastrophic forgetting becomes increasingly severe when fine-tuning large-scale

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

50

60

70

80

90

100
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

)
20% Distractors 50% Distractors

110M 360M 1.1B 3B 7B
Parameters (log scale)

50

60

70

80

90

100

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

80% Distractors

110M 360M 1.1B 3B 7B
Parameters (log scale)

90% Distractors

[CLS]/[EOS] Mean Max AdaPool GLOT (Ours)
BERT RoBERTa SmolLM2 TinyLlama LLaMA-3B Mistral-7B

Figure 3: Robustness to signal dilution on the diagnostic stress test. Each of the four panels
displays the classification accuracy for all pooling methods at a specific distractor ratio, which
increases from 20% to 90%. Within each panel, backbone models are arranged along the x-axis by
their parameter count.

Table 4: An ablation study on the impact of graph sparsity in GLOT. This table shows performance
on GLUE tasks using the Mistral-7B backbone as we vary the similarity threshold (τ) for token graph
construction. All scores are multiplied by 100, and the best result for each task is in bold.

Method CoLA SST-2 STS-B MRPC QQP MNLI-m MNLI-mm QNLI RTE WNLI
MCC ↑ ACC ↑ SPEA. ↑ F1 ↑ F1 ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑

GLOT (τ = 0.0) 50.19 93.69 80.34 81.04 62.79 49.09 49.46 52.85 49.81 38.03
GLOT (τ = 0.2) 53.40 94.38 80.48 82.83 62.53 51.66 53.22 54.15 49.45 36.62
GLOT (τ = 0.4) 51.73 93.46 80.40 80.25 64.07 48.81 49.94 60.93 50.54 40.84
GLOT (τ = 0.6) 54.30 93.23 80.29 80.06 63.49 49.36 50.01 53.67 54.15 56.34
GLOT (τ = 0.8) 52.48 92.66 80.26 79.87 63.22 48.92 49.66 55.09 52.70 56.34

models on smaller downstream tasks (Li et al., 2024; Saroufim et al., 2025). The immense capacity
of the 7B model makes it prone to overfitting the small training sets of GLUE tasks (like CoLA and
RTE), degrading its generalizable representations. Furthermore, recent work suggests a functional
equivalence between LoRA and Full Fine-Tuning (Shuttleworth et al., 2025), explaining why LoRA
suffers from similar degradation. In contrast, GLOT requires only 8.92M trainable parameters, which
is approximately 20× fewer than LoRA. This parameter efficiency translates directly to a minimal
memory footprint of only 0.42 GB, compared to over 32 GB for the other methods. Consequently,
GLOT is over 100× faster per training batch. This demonstrates that our method provides a practical
and accessible way to generate high-quality embeddings from large, frozen LLMs on consumer-
grade hardware. For a detailed breakdown of graph construction costs and extended cross-model
benchmarks against BERT and Mistral, please refer to Appendix D.2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: A comparison of training methods by resource consumption and performance on the
CoLA task, using the Mistral-7B backbone. We contrast our frozen-backbone approach (GLOT)
against full fine-tuning (Full FT) and LoRA. Batch runtime is reported as the mean ± standard
deviation over 10 measurements.

Method # Trainable Params GPU Memory (GB)↓ Batch Runtime (ms)↓ MCC↑
Full FT + EOS 7.11B 32.59 1318.8± 1.1 49.63
LoRA (r = 64) + EOS 167.8M 33.50 1454.6± 1.1 48.23
GLOT (ours) 8.92M 0.42 13.4± 3.0 53.29

5 CONCLUSION

As LLMs continue to scale, the computational cost of full fine-tuning becomes prohibitive, establish-
ing the need for improved pooling methods that operate on frozen backbones as a crucial research
problem. In this work, we addressed a fundamental limitation of standard pooling: that it treats token
hidden states as an independent set of vectors, discarding the rich relational structure captured by
language models. We introduced GLOT, a lightweight and parameter-efficient pooling head that
instantiates a new paradigm of relational learning followed by aggregation. GLOT first constructs a
latent token-similarity graph, refines token representations using a GNN, and then aggregates them
with an attention mechanism.

Through comprehensive experiments, we demonstrated that GLOT consistently outperforms strong
baselines across a wide range of tasks and on both encoder- and decoder-only models. Our diagnostic
stress test provided direct evidence that GLOT’s graph-based learning makes it remarkably robust to
the signal dilution that plagues traditional pooling. Furthermore, we showed that GLOT is up to two
orders of magnitude more computationally efficient than parameter-efficient fine-tuning techniques
like LoRA, making it a practical solution for adapting billion-parameter models.

Our findings challenge the view that pooling is a routine final step, showing instead that a carefully
designed, relational learning-based head can unlock significant performance from frozen models.
This work opens several avenues for future research, including exploring learnable graph construction
mechanisms and applying the “relational learning before compression” paradigm to other modalities,
such as pooling patch embeddings in Vision Transformers and designing advanced GNN architectures.
Furthermore, our graph-based formulation opens the door to studying additional token interaction
modeling techniques as future research work. For instance, recent work on graph rewiring (Barbero
et al., 2024; Arnaiz-Rodrı́guez et al., 2022) and virtual nodes (Qian et al., 2024) have shown
techniques in learning graph connectivity for graph learning tasks in GNNs. While GLOT is focused
on introducing the concept of learning on token graphs already strong performance with cosine
similarity, we view these dynamic rewiring strategies as an exciting avenue to further enhance the
model’s ability to capture long-range dependencies in future research works.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work primarily focuses on developing a new pooling methodology and is evaluated on publicly
available, standard academic benchmarks, including GLUE, MTEB, and IMDB. We do not use any
private or sensitive user data, and our experiments did not involve human subjects. We acknowledge
that the pre-trained language models used as backbones in our study may reflect societal biases
present in their training corpora. Our proposed method, GLOT, operates on the outputs of these
models and does not introduce new sources of bias, nor does it explicitly mitigate biases inherent in
the backbone models. We intend for this work to contribute to the development of more efficient and
robust NLP models, and we do not foresee any direct negative societal impacts from its application.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we will release our source code and all trained model
checkpoints upon the paper’s acceptance. Our methodology is described in Section 3, with detailed
pseudo-code available in Algorithm 1. Appendix B provides a comprehensive description of our
experimental setup, including the specific backbone models used, training and evaluation protocols,
and all hyperparameters. All datasets used in our experiments are standard benchmarks publicly
available through the Hugging Face Datasets library.

USAGE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we utilized LLMs. Its role was strictly limited to that of
grammatical assistance. The LLM was not used for research ideation, experimental design, data
analysis, or the generation of any core scientific content. The authors take full responsibility for all
content and claims presented in this paper.

REFERENCES

Eneko Agirre, Llu’is M‘arquez, and Richard Wicentowski (eds.). Proceedings of the Fourth Inter-
national Workshop on Semantic Evaluations (SemEval-2007). Association for Computational
Linguistics, Prague, Czech Republic, June 2007.

Adrián Arnaiz-Rodrı́guez, Ahmed Begga, Francisco Escolano, and Nuria M Oliver. DiffWire:
Inductive Graph Rewiring via the Lovász Bound. In Bastian Rieck and Razvan Pascanu (eds.),
Proceedings of the First Learning on Graphs Conference, volume 198 of Proceedings of Machine
Learning Research, pp. 15:1–15:27. PMLR, 09–12 Dec 2022. URL https://proceedings.
mlr.press/v198/arnaiz-rodri-guez22a.html.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence
embeddings. In International conference on learning representations, 2017.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica,
Saurabh Tiwary, and Tong Wang. MS MARCO: A human generated machine reading comprehen-
sion dataset. In NeurIPS 2016 Deep Learning for Question Answering (InCoCo@NIPS) Workshop,
2016.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. The second PASCAL recognising textual entailment challenge. 2006.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael M. Bronstein, and Francesco Di Giovanni.
Locality-aware graph rewiring in GNNs. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=4Ua4hKiAJX.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados,
and Siva Reddy. LLM2vec: Large language models are secretly powerful text encoders. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
IW1PR7vEBf.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini. The
fifth PASCAL recognizing textual entailment challenge. 2009.

11

https://proceedings.mlr.press/v198/arnaiz-rodri-guez22a.html
https://proceedings.mlr.press/v198/arnaiz-rodri-guez22a.html
https://openreview.net/forum?id=4Ua4hKiAJX
https://openreview.net/forum?id=IW1PR7vEBf
https://openreview.net/forum?id=IW1PR7vEBf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges, 2021. URL https://arxiv.org/abs/2104.
13478.

Greyson Brothers. Robust noise attenuation via adaptive pooling of transformer outputs, 2025. ICML
2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1–61, 2023.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evaluating predictive uncertainty, visual object
classification, and recognising tectual entailment, pp. 177–190. Springer, 2006.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the International Workshop on Paraphrasing, 2005.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
International Conference on Learning Representations (ICLR), 2021.

Kawin Ethayarajh. How contextual are contextualized word representations? comparing the geometry
of bert, elmo, and gpt-2 embeddings. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 55–65, 2019.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. In Proceedings of EMNLP, pp. 6894–6910, 2021.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual entailment
and paraphrasing, pp. 1–9. Association for Computational Linguistics, 2007.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. Pmlr, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

12

https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng Wang. Text level graph neural
network for text classification. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.),
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.
3444–3450, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1345. URL https://aclanthology.org/D19-1345/.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825.

Ting Jiang, Jian Jiao, Shaohan Huang, Zihan Zhang, Deqing Wang, Fuzhen Zhuang, Furu Wei,
Haizhen Huang, Denvy Deng, and Qi Zhang. Promptbert: Improving bert sentence embeddings
with prompts. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 8826–8837, 2022.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing Wang, and Fuzhen Zhuang. Scaling sen-
tence embeddings with large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
3182–3196, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.181. URL https://aclanthology.org/2024.
findings-emnlp.181/.

Greg Kamradt. Needle In A Haystack: Pressure Testing LLMs.
Blog post, nov 2023. URL https://gregkamradt.com/blog/
needle-in-a-haystack-evaluating-llms-on-long-context-recall.
The original test and results that popularized the ’Needle in a Haystack’ method for evaluating
long-context recall in Large Language Models.

Omar Khattab and Matei Zaharia. ColBERT: Efficient and effective passage search via contextualized
late interaction over BERT. In Proceedings of SIGIR, pp. 39–48, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015. URL https://arxiv.org/abs/
1412.6980.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. NV-embed: Improved techniques for training LLMs as generalist embedding
models. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=lgsyLSsDRe.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 7871–7880, 2020.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Tomáš
Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen
Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue,
Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Arthur Mus-
tar, Sanchit Mangrulkar, Alexander M. Rush, and Thomas Wolf. Datasets: A community library for
natural language processing. In Proceedings of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations, pp. 175–184. Association for Computational
Linguistics, 2021. URL https://aclanthology.org/2021.emnlp-demo.21.

13

https://aclanthology.org/D19-1345/
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://aclanthology.org/2024.findings-emnlp.181/
https://aclanthology.org/2024.findings-emnlp.181/
https://gregkamradt.com/blog/needle-in-a-haystack-evaluating-llms-on-long-context-recall
https://gregkamradt.com/blog/needle-in-a-haystack-evaluating-llms-on-long-context-recall
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=lgsyLSsDRe
https://aclanthology.org/2021.emnlp-demo.21

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the sentence
embeddings from pre-trained language models. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 9119–9130, 2020.

Hongyu Li, Liang Ding, Meng Fang, and Dacheng Tao. Revisiting catastrophic forgetting
in large language model tuning. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 4297–
4308, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.249. URL https://aclanthology.org/2024.
findings-emnlp.249/.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv:1907.11692, 2019.

Yonghao Liu, Renchu Guan, Fausto Giunchiglia, Yanchun Liang, and Xiaoyue Feng. Deep attention
diffusion graph neural networks for text classification. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 8142–8152, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.642. URL https://aclanthology.org/2021.emnlp-main.642/.

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
text retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2421–2425, 2024.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150.
Association for Computational Linguistics, 2011.

Meta AI. Llama 3.2: New open and customizable models with vision and on-device
capabilities. Blog post, October 2024. URL https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. Mteb: Massive text embedding
benchmark. In Proceedings of the 17th Conference of the European Chapter of the Association for
Computational Linguistics, pp. 2014–2037. Association for Computational Linguistics, 2023.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. Generative representational instruction tuning, 2025. URL https://arxiv.
org/abs/2402.09906.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814,
2010.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32. Curran Associates,
Inc., 2019.

Chendi Qian, Andrei Manolache, Christopher Morris, and Mathias Niepert. Probabilistic graph
rewiring via virtual nodes. Advances in Neural Information Processing Systems, 37:28359–28392,
2024.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 2019. URL https://openai.com/
research/language-models-are-unsupervised-multitask-learners.

14

https://aclanthology.org/2024.findings-emnlp.249/
https://aclanthology.org/2024.findings-emnlp.249/
https://aclanthology.org/2021.emnlp-main.642/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://arxiv.org/abs/2402.09906
https://arxiv.org/abs/2402.09906
https://openai.com/research/language-models-are-unsupervised-multitask-learners
https://openai.com/research/language-models-are-unsupervised-multitask-learners

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of EMNLP, pp. 2383–2392. Association for
Computational Linguistics, 2016.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of EMNLP-IJCNLP, pp. 3982–3992, 2019.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

Mark Saroufim, Yotam Perlitz, Leshem Choshen, Luca Antiga, Greg Bowyer, Christian Puhrsch,
Driss Guessous, Supriya Rao, Geeta Chauhan, Ashvini Kumar, et al. Neurips 2023 llm efficiency
fine-tuning competition. arXiv preprint arXiv:2503.13507, 2025.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic web
conference, pp. 593–607. Springer, 2018.

Reece S Shuttleworth, Jacob Andreas, Antonio Torralba, and Pratyusha Sharma. LoRA vs full fine-
tuning: An illusion of equivalence. In The Thirty-ninth Annual Conference on Neural Information
Processing Systems, 2025. URL https://openreview.net/forum?id=xp7B8rkh7L.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of EMNLP, pp. 1631–1642, 2013a.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pp. 1631–1642. Association for Computational Linguistics, 2013b.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-
training for language understanding. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 16857–16867.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf.

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou. Whitening sentence representations for better
semantics and faster retrieval. arXiv preprint arXiv:2103.15316, 2021.

Yixuan Tang and Yi Yang. Pooling and attention: What are effective designs for llm-based embedding
models?, 2024. URL https://arxiv.org/abs/2409.02727.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Gan, Vighnesh Gante, Gartheeban Gholami, Vassilis Gkoumas, Kshitij Goyal,
Thomas Hart, Sunny Hsia, Jason Huang, Alexandra Ispas, Jack Jacob, Saumya Jha, Anirudh
Kumar, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Igor Molybog, Ylan Morisot, Victor O’Beirne, Eoin O’Sullivan, Alexander
Pirogov, Roman Rabbat, Amjad Raghuraman, Sainbayar Ramjee, Ruan Ras, Jérémy Rault, Nicolas
Rolland, Baptiste Rozière, Mohit Sachan, Todd Sawyers, Mykola Seljan, Adrien Seznec, Sharan
Sun, Adel Tazairt, Gabriel Synnaeve, Yuxin Tan, Lilian Tang, Ross Taylor, Adina Williams, Jean
Kenebrew, Mannan Zaheer, Ahmed El-Kishky, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

15

https://openreview.net/forum?id=xp7B8rkh7L
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://arxiv.org/abs/2409.02727
https://github.com/tatsu-lab/stanford_alpaca

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP. Association for Computational Linguistics, 2018.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving
text embeddings with large language models. arXiv preprint arXiv:2401.00368, 2023.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training, 2024. URL
https://arxiv.org/abs/2212.03533.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
arXiv preprint 1805.12471, 2018.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pp. 1112–1122. Association for Computational Linguistics,
2018. doi: 10.18653/v1/N18-1101.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45. Association for Computational Linguistics, 2020.
URL https://aclanthology.org/2020.emnlp-demos.6.

Jinming Xing, Dongwen Luo, Chang Xue, and Ruilin Xing. Comparative analysis of pooling
mechanisms in llms: A sentiment analysis perspective. arXiv preprint arXiv:2411.14654, 2024.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Proceedings of
ICML, pp. 5453–5462, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification. In
Proceedings of AAAI, pp. 7370–7377, 2019.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–983,
2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Bowen Zhang, Kehua Chang, and Chunping Li. Simple techniques for enhancing sentence embed-
dings in generative language models. In International Conference on Intelligent Computing, pp.
52–64, 2024.

16

https://arxiv.org/abs/2212.03533
https://aclanthology.org/2020.emnlp-demos.6
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORK

Fine-Tuning vs. Frozen Backbones for Embedding. A significant body of work adapts decoder-
only LLMs into powerful text embedding models through extensive fine-tuning (Wang et al., 2023;
Lee et al., 2025; Muennighoff et al., 2025; Ma et al., 2024; Tang & Yang, 2024). These methods
achieve state-of-the-art performance but require modifying the LLM backbone, often through full-
model training that is computationally prohibitive. GLOT sidesteps this entirely by operating on
completely frozen backbones. Our approach is therefore lightweight, accessible, and applicable to
both encoder-only and decoder-only models without expensive training.

The Geometry of Embedding Space. Recent studies reveal that token embeddings from LLMs
occupy anisotropic manifolds, which makes cosine similarity between pooled sentence vectors
unreliable (Ethayarajh, 2019; Li et al., 2020). While post-processing methods like whitening can
mitigate this (Su et al., 2021), they do not address the underlying information loss from pooling.
SBERT-style fine-tuning reshapes this geometry but is computationally expensive. Our work offers
an alternative: by constructing a similarity graph, GLOT operates on an approximation of the
intrinsic manifold geometry, preserving relational structures that are lost when pooling in the ambient
Euclidean space.

Applications of Graph Neural Networks. The success of Graph Neural Networks (GNNs) is
demonstrated by their wide-ranging application across numerous scientific and industrial domains.
In the life sciences, they have become a cornerstone for molecular property prediction and drug
discovery, where molecules are modeled as graphs of atoms and bonds (Gilmer et al., 2017; Xu
et al., 2019). Similarly, they are used to analyze complex protein-protein interaction networks in
bioinformatics. In the digital realm, GNNs power modern recommender systems by capturing the
intricate relationships between users and items (Ying et al., 2018), and they are essential for learning
over large-scale knowledge graphs (Schlichtkrull et al., 2018). Their foundational use case remains
the analysis of social networks, where they are applied to tasks like node classification and community
detection (Kipf & Welling, 2017; Hamilton et al., 2017). GNNs have also been successfully applied
in other areas, including modeling particle systems in physics simulations (Sanchez-Gonzalez
et al., 2020), processing 3D point clouds in computer vision, and solving complex combinatorial
optimization problems like the Traveling Salesperson Problem (Cappart et al., 2023).

B IMPLEMENTATION DETAILS

B.1 GENERAL SETUP

Hardware and Software. All experiments were conducted on a single NVIDIA A6000 GPU.
Our implementation is built using PyTorch (Paszke et al., 2019), with extensive use of the Hug-
ging Face ecosystem (Wolf et al., 2020), including transformers for backbone models and
datasets (Lhoest et al., 2021) for data loading. The graph-based components of our method are
implemented using PyTorch Geometric (Fey & Lenssen, 2019). Large-scale benchmarking was
performed using the mteb (Muennighoff et al., 2023) library, and retrieval metrics were calculated
using ranx.

Training Details. Unless otherwise noted, all trainable pooling heads were trained for 2 epochs
using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 2×10−4 and no weight decay.
We used a training batch size of 32 and an evaluation batch size of 64. For all experiments, we used a
fixed random seed of 42. To accelerate training, we implemented a feature to precompute and cache
the frozen backbone’s hidden states before training the pooling heads. We provide the pseudocode
for GLOT in Algorithm 1. The hyperparameter tuning shown in Table 6 using Weights and Biases
framework. To ensure a rigorous comparison in Table 5, we implemented Full Fine-Tuning (Full FT)
and LoRA baselines using standard hyperparameters optimized for the Mistral-7B backbone. For Full
Fine-Tuning, we fine-tuned the complete model on the training splits of CoLA, STS-B, and RTE for
3 epochs (Taori et al., 2023; Li et al., 2024). We used a learning rate of 2× 10−5 and a weight decay
of 0.01, utilizing the AdamW optimizer. For the LoRA baseline, we set the rank hyperparameter to
r = 64 and applied adapters to both the attention and feed-forward blocks. The training used a higher
learning rate of 2× 10−4 with a weight decay of 0.01 for 3 epochs.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 1 GLOT: Graph-based Token Pooling

Require: H ∈ RB×L×din : Batch of hidden states from a frozen LLM.
M ∈ {0, 1}B×L: Attention mask for the hidden states.
τ : Cosine similarity threshold for edge creation.
K: Number of layers in the TOKEN-GNN.

Ensure: Z ∈ RB×dout : Batch of final sentence embeddings.
1: function GLOT(H,M)
2: Glist ← []
3: for i = 1→ B do ▷ Step 1: Token Graph Construction
4: H ′

i ← H[i,M [i] == 1, :] ▷ Get valid tokens for sentence i
5: Si ← COSINESIMILARITY(H ′

i, H
′
i) ▷ Pairwise similarity matrix

6: Ai ← (Si > τ) ▷ Create adjacency matrix based on threshold
7: edge indexi ← ADJACENCYTOEDGES(Ai)
8: Glist.APPEND(nodes = H ′

i, edges = edge indexi)
9: end for

10: Gbatch ← BATCHGRAPHS(Glist) ▷ Combine graphs into a single batch
11: U0, edge index, batch idx← Gbatch.x,Gbatch.edge index,Gbatch.batch
12: Ulayers ← [U0]
13: for k = 1→ K do ▷ Step 2: Refinement with TOKEN-GNN
14: Uk−1 ← Ulayers[k − 1]
15: Uk ← GNN-LAYERk(Uk−1, edge index)
16: Ulayers.APPEND(Uk)
17: end for
18: Ufused ← JUMPINGKNOWLEDGECONCAT(Ulayers) ▷ Step 3: Feature Fusion
19: m← READOUTMLP(Ufused) ▷ Step 4: Readout Layer
20: π ← SOFTMAXBYGRAPH(m, batch idx) ▷ Normalize scores per sentence graph
21: Zpooled ← π ⊙ Ufused ▷ Apply attention weights
22: Z ← SCATTERADD(Zpooled, batch idx) ▷ Aggregate via weighted sum per graph
23: return Z
24: end function

Table 6: Hyperparameter search space for the GLOT pooling head. The final model configuration
was determined via a grid search over these values. The search was performed consistently across all
backbone models and datasets.

Hyperparameter Search Space
Optimization
Learning Rate {1e-3, 2e-4, 2e-5}
Weight Decay {0.0, 1e-5, 5e-5}
Token-GNN Architecture
GNN Layers (K) {2, 4}
GNN Hidden Dimension {64, 128, 256}
Jumping Knowledge {cat, max, mean, none}
Input Projection Dimension {128, 256, 512}
Graph Construction
Similarity Threshold (τ) {0.1, 0.3, 0.6}

B.2 MODEL CONFIGURATIONS

Backbone Models. All backbone models were loaded from the Hugging Face Hub. For decoder-
only models, the tokenizer’s padding side was set to ‘right’. If a model did not have a pre-defined
padding token, the ‘[EOS]’ token was used.

Baseline Pooling Methods. We implemented all baselines within the same framework and evaluated
them to ensure a fair comparison.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• Static Methods: MEAN and MAX pooling operate over the non-padded token hidden states.
[CLS]/[EOS] pooling for encoder models takes the hidden state of the first token. For decoder
models, it takes the hidden state of the last non-padded token, identified via the attention
mask.

• AdaPool: Our implementation follows the original paper (Brothers, 2025), consisting of a
two-layer MLP with a Tanh activation that computes a scalar score for each token, followed
by a softmax and weighted average.

GLOT Configuration. Our GLOT is implemented using 2 layers of GATConv (Veličković et al.,
2018) with a hidden dimension of 128 and ReLU non-linearity (Nair & Hinton, 2010). As described
in the main paper, the graph is constructed by creating edges between tokens where their cosine
similarity exceeds a threshold of τ = 0.6. Following the GNN layers, we use a ‘cat’ mode for
Jumping Knowledge (Xu et al., 2018) to aggregate features from all layers before the final attention
readout.

Compatibility with Fine-Tuned Backbones A natural question arises regarding whether GLOT
provides complementary benefits when applied to a fine-tuned backbone rather than a frozen one.
While GLOT is technically compatible with fine-tuned LLMs, our experimental results (refer to Ta-
ble 17 and Table 1) demonstrate that applying GLOT to a frozen backbone already yields performance
competitive and often superior to fully fine-tuned models (e.g., matching Full FT performance on
CoLA).

Since our primary objective is to enable robust sentence representations without the prohibitive
computational cost of updating billion-parameter backbones, we focused on the frozen setting.
Furthermore, simultaneously fine-tuning the backbone while learning the graph structure introduces
complex optimization dynamics that warrant a distinct study. We therefore consider the ”Fine-tuned
Backbone + GLOT ” setting as a promising direction for future work.

B.3 BENCHMARK-SPECIFIC DETAILS

GLUE Benchmark. For all tasks from the General Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2018), we fine-tune the lightweight GLOT head and a task-specific linear
classifier jointly on the training sets. Sequences are truncated to a maximum length of 128 tokens.
For larger datasets (QQP, QNLI, MNLI), we train on a subsample of 20,000 examples.

CoLA: The Corpus of Linguistic Acceptability (Warstadt et al., 2018) requires the model to de-
termine if a sentence is grammatically correct. Task: Binary classification. Loss: Cross-
Entropy Loss.

SST-2: The Stanford Sentiment Treebank (Socher et al., 2013a) consists of movie reviews. Task:
Binary sentiment classification (positive/negative). Loss: Cross-Entropy Loss.

STS-B: The Semantic Textual Similarity Benchmark (Agirre et al., 2007) involves predicting a
similarity score between 1 and 5 for a pair of sentences. Task: Regression. Loss: Mean
Squared Error (MSE) Loss.

MRPC: The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) contains sentence
pairs. Task: Binary classification to determine if the sentences are paraphrases. Loss:
Cross-Entropy Loss.

QQP: The Quora Question Pairs dataset requires determining if two questions are semantically
equivalent. Task: Binary classification. Loss: Cross-Entropy Loss.

MNLI: The Multi-Genre Natural Language Inference corpus (Williams et al., 2018) provides a
premise and a hypothesis. Task: Three-class classification (entailment, contradiction,
neutral). Loss: Cross-Entropy Loss.

QNLI: The Question Natural Language Inference dataset, derived from SQuAD (Rajpurkar et al.,
2016). Task: Binary classification to determine if a context sentence contains the answer to
a question. Loss: Cross-Entropy Loss.

RTE: The Recognizing Textual Entailment datasets (Dagan et al., 2006; Bar Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009). Task: Binary classification to determine
if a premise entails a hypothesis. Loss: Cross-Entropy Loss.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Long-Text Classification (IMDB). For the IMDB Large Movie Review dataset (Maas et al., 2011),
sequences were truncated to a maximum length of 512 tokens. The dataset contains paragraph-length
movie reviews. Task: Binary sentiment classification. Loss: Cross-Entropy Loss.

MTEB Evaluation. For the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al.,
2023), we follow a two-stage process. First, the learnable pooling heads are trained on a large-scale
retrieval dataset, and then they are evaluated in a zero-shot setting on the downstream MTEB tasks.

• Training Stage: All learnable heads were trained on the MS MARCO (Bajaj et al., 2016)
passage ranking dataset. This involves predicting relevant text passages for a given query.
Task: Passage retrieval. Loss: A symmetric in-batch contrastive loss with a temperature of
0.07.

• Zero-shot Evaluation Stage: The trained encoders are then evaluated on the following
seven tasks without any further fine-tuning:

– EmotionClassification: A multi-class classification task on tweets.
– SciFact: A re-ranking task to verify scientific claims.
– RedditClustering: An unsupervised task to cluster Reddit comments.
– AskUbuntuDupQuestions: A retrieval task to find duplicate questions.
– STS12: A semantic similarity regression task.
– TwitterSemEval2015: A pair classification task for paraphrase detection.
– SummEval: A summarization evaluation task based on semantic similarity.

B.4 DIAGNOSTIC TASK GENERATION

The synthetic diagnostic task was created to isolate and test for relational understanding under noise.

• Signal Phrases: We created a small set of template phrases involving a logical dependency,
such as negation (e.g., “The file has [X] but not [Y]”).

• Distractors: The “haystack” was formed by sampling words randomly from a large general-
purpose vocabulary derived from English Wikipedia.

• Injection: For each example, a 256-token sequence of random distractor words was gener-
ated. A signal phrase was then injected at a random position within this sequence.

• Difficulty Control: The difficulty was controlled by the distractor ratio, which we varied
from 20

The final dataset consists of 10,000 training examples and 2,000 test examples for each distractor
ratio.

C ADDITIONAL RESULTS

GLUE Benchmark. To provide a high-level summary of the comprehensive GLUE results pre-
sented in Table 1, we visualize the performance trends in Figure 4. To compare performance across
different tasks and their associated metrics (e.g., Accuracy vs. MCC) on a single, unified scale, we
normalized the scores. The methodology was as follows: for each of the eight GLUE tasks and
for each of the six backbone models, we took the resulting scores of all five pooling methods and
calculated their mean (µ) and standard deviation (σ). Each individual score x was then converted
to a z-score via z = (x − µ)/σ. These z-scores were then averaged within their respective task
categories. A higher z-score indicates that a method’s performance is significantly above the average
of all tested methods for a given experimental setting. The plots clearly show that GLOT consistently
achieves the highest z-score, often one or more standard deviations above the mean performance.
This visualization powerfully reinforces our primary finding: the performance advantage of GLOT is
not confined to specific tasks or model scales but is a robust and general phenomenon.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 2 Synthetic Diagnostic Dataset Generation

Require: N : Number of samples to generate.
Require: L: Total sequence length of each sample.
Require: dr: The target distractor ratio (e.g., 0.2, 0.5, 0.8, 0.9).
Require: T : A set of signal phrase templates, each with an associated label (e.g., ‘(“...has [X] but

not [Y]”, 0)‘).
Require: VD: A large vocabulary of distractor words.

1: function GENERATEDIAGNOSTICDATA(N,L, dr, T ,VD)
2: D ← ∅ ▷ Initialize an empty dataset
3: LD ← ⌊L× dr⌋ ▷ Calculate number of distractor tokens
4: LS ← L− LD ▷ Calculate number of signal tokens
5: for i = 1 to N do
6: (template, label)← RandomChoice(T)
7: signal tokens← Instantiate(template) ▷ e.g., fill placeholders like [X] and [Y]
8: ▷ Ensure signal phrase fits the allocated length
9: if length(signal tokens) > LS then

10: signal tokens← signal tokens[: LS] ▷ Truncate if too long
11: else
12: padding ← LS − length(signal tokens)
13: signal tokens← concat(signal tokens,Sample(VD, padding)) ▷ Pad with

distractors if too short
14: end if
15: distractor tokens← Sample(VD, LD) ▷ Sample distractors with replacement
16: pinject ← RandomInt(0, LD) ▷ Choose a random injection point
17: sequence← concat(distractor tokens[: pinject], signal tokens, distractor tokens[pinject :

])
18: D ← D ∪ {(sequence, label)}
19: end for
20: return D
21: end function

110M 360M 1.1B 3.2B 7B
Parameters (log scale)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Pe
rfo

rm
an

ce
 (z

-s
co

re
)

Single-Sentence Classification

110M 360M 1.1B 3.2B 7B
Parameters (log scale)

Sentence-Pair Classification

110M 360M 1.1B 3.2B 7B
Parameters (log scale)

Semantic Textual Similarity
[CLS]/[EOS] Mean Max AdaPool GLOT (Ours)

Figure 4: Z-score normalized performance on the GLUE benchmark, aggregated by task
category. Performance, represented as a z-score, is plotted against the number of parameters in the
frozen backbone model (log scale). A higher z-score indicates better relative performance compared
to the average of all tested methods for that setting.

C.1 DIAGNOSTIC TASK: DETAILED RESULTS AND ANALYSIS

To provide a controlled evaluation of relational robustness under noise (RQ4), we designed a
synthetic diagnostic task. Inspired by ‘signal-in-noise’ evaluations (Brothers, 2025) and the ‘Needle
in a Haystack’ paradigm (Kamradt, 2023), our stress test is specifically adapted to probe for relational
understanding rather than simple factual recall. We programmatically generate sequences by injecting
a short “signal phrase” with a logical dependency (e.g., negation) into a long sequence of random
distractor words. The task is a binary classification based on the logic within the signal phrase. We

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 7: Full results for the diagnostic stress test, which evaluates robustness to signal dilution.
The table reports the classification accuracy for all pooling methods across six backbones as the ratio
of distractor tokens in the input sequence increases from 20% to 90%. The best results for each
model are in bold.

Model Method 20% Distractors 50% Distractors 80% Distractors 90% Distractors
B

E
R

T

[CLS] 70.8 58.2 57.2 67.6
Mean 68.0 58.6 64.2 53.4
Max 57.4 50.8 51.6 50.4

AdaPool 91.4 78.8 65.6 61.6
GLOT 97.2 97.0 97.8 98.8

R
oB

E
R

Ta

[CLS] 83.6 63.4 51.6 48.6
Mean 73.2 64.6 67.8 57.2
Max 56.8 60.0 59.0 50.2

AdaPool 83.0 67.2 59.8 59.2
GLOT 92.6 99.2 98.8 98.2

Sm
ol

L
M

2 [CLS] 72.0 57.6 58.6 51.4
Mean 70.2 56.2 54.6 51.4
Max 54.0 50.6 46.2 51.4

AdaPool 78.2 57.6 54.2 55.2
GLOT 96.0 93.6 92.4 92.2

Ti
ny

L
la

m
a [EOS] 73.2 58.8 57.4 56.6

Mean 83.4 56.6 56.8 56.4
Max 76.4 54.0 58.8 51.4

AdaPool 78.4 66.4 57.4 53.0
GLOT 96.4 94.8 88.4 94.0

L
L

aM
A

-3
B [EOS] 84.4 69.8 69.0 68.4

Mean 82.4 65.0 64.4 61.8
Max 63.0 50.8 50.6 54.6

AdaPool 92.6 69.8 70.0 51.0
GLOT 99.6 95.4 89.8 93.2

M
is

tr
al

-7
B [EOS] 89.4 72.6 69.4 70.6

Mean 93.0 74.0 71.4 63.8
Max 60.8 60.0 57.4 55.6

AdaPool 92.2 86.6 85.0 78.4
GLOT 99.2 97.6 97.4 97.2

systematically increase the task’s difficulty by increasing the distractor ratio from 20% to 90%. The
full generation process is detailed in Algorithm 2.

The complete results for this stress test are presented in Table 7. The data provides a clear and
quantitative confirmation of our hypothesis: GLOT’s performance remains remarkably stable even
at extreme noise levels, while the performance of all baseline methods degrades significantly as the
signal is diluted.

This trend is consistent across all architectures. For the encoder-only BERT backbone, GLOT’s
accuracy remains consistently above 97% across all distractor ratios. In contrast, the next-best
baseline, AdaPool, sees its performance drop sharply from 91.4% at 20% distractors to just 61.6% at
90% distractors. The pattern is mirrored in decoder-only models. With the Llama backbone, GLOT’s
accuracy is nearly perfect at low noise (99.6%) and stays high at 83.2% even at the extreme 90%
distractor ratio. All other methods, including using the standard ‘[EOS]’ token, see their performance
collapse, with most falling to near-chance levels. This analysis demonstrates that by explicitly
modeling token relationships, GLOT can reliably identify and reason over the crucial signal phrase,
whereas methods that rely on global summary statistics are overwhelmed by the distractor tokens.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: Impact of Graph Topology (τ) on Performance and Linearity. We compare the sensitivity
of BERT (top) and Mistral (bottom) to the threshold τ . Linear Probing indicates the accuracy of a
linear SVM trained on frozen GLOT embeddings, serving as a proxy for linear separability.

Threshold (τ) STSB (Spear. ↑) CoLA (MCC ↑) RTE (ACC ↑) Linear Probing (ACC ↑)
BERT (Encoder-only)

τ = 0.0 81.88 39.62 50.90 76.41
τ = 0.2 82.12 39.82 50.90 76.51
τ = 0.4 82.25 47.49 52.34 77.18
τ = 0.6 83.86 43.16 59.21 77.56
τ = 0.8 83.85 43.16 52.70 77.18

Mistral-7B (Decoder-only)
τ = 0.0 80.34 49.81 50.90 80.06
τ = 0.2 80.48 49.45 50.90 81.20
τ = 0.4 80.40 50.54 52.34 80.44
τ = 0.6 80.29 54.15 59.21 81.40
τ = 0.8 80.26 52.70 52.70 80.82

D ADDITIONAL ANALYSES

D.1 GRAPH TOPOLOGY AND REPRESENTATION QUALITY ANALYSIS

In this subsection, we expand upon the graph construction analysis presented in Table 4. To address
the question of how graph topology influences representation quality beyond simple ablation, we
conduct a detailed sensitivity analysis of the sparsity threshold τ on both encoder-only (BERT) and
decoder-only (Mistral) backbones.

We evaluate performance across three semantically distinct tasks from GLUE (STSB, CoLA, and
RTE). Furthermore, to provide a theoretical justification for the representation quality, we perform a
linear probing experiment. In this setting, we freeze the sentence embeddings z generated by GLOT
(with no classifier head trained) and train a standard linear SVM. The resulting accuracy serves as a
direct quantitative measure of the linear separability of the pooled embeddings.

As shown in Table 8, we observe two key trends:

1. Correlation with Linear Separability: The threshold τ that yields the highest linear
probing accuracy (typically τ = 0.6) consistently aligns with the highest performance on
downstream tasks (RTE and STSB). This suggests that the graph structure explicitly refines
the manifold of the embeddings, making classes more linearly separable.

2. Task-Dependent Topology: Different tasks benefit from different levels of sparsity. For
example, CoLA (linguistic acceptability) on BERT peaks at τ = 0.4, while RTE (entailment)
benefits from a sparser graph at τ = 0.6. This confirms that the thresholding mechanism
allows GLOT to adapt the graph topology to the specific semantic or syntactic needs of the
task.

D.2 DETAILED EFFICIENCY AND SCALABILITY ANALYSIS

To fully analyze the computational cost (RQ3) and scalability to long contexts (RQ4), we provide
extended benchmarks covering cross-model performance and a stress test of the graph construction
step.

Cross-Model and Cross-Task Efficiency In Table 9, we compare GLOT against Full Fine-Tuning
(Full FT) and LoRA (r = 64) across both encoder-only (BERT) and decoder-only (Mistral) archi-
tectures. We report performance on three semantically diverse tasks: CoLA (Grammar), STS-B
(Similarity), and RTE (Entailment).

GLOT achieves a superior trade-off across both architectures:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 9: Cross-Model Efficiency Benchmarks. We compare GLOT against Full Fine-Tuning and
LoRA. MCC: CoLA, Spear.: STSB, ACC: RTE. Runtimes are measured with batch size 32. GLOT
provides consistent efficiency gains across architectures.

Method Trainable GPU Mem. Runtime CoLA STSB RTE
Params (GB) ↓ (ms) ↓ (MCC) ↑ (Spear.) ↑ (ACC) ↑

Mistral-7B (Decoder-only)
Full FT + [EOS] 7.11B 32.59 1318.8± 1.1 49.63 55.68 55.23
LoRA (r = 64) 167.8M 33.50 1454.6± 1.1 48.23 54.54 53.43
GLOT (Ours) 8.92M 0.42 13.4 ± 3.0 53.29 80.51 59.21

BERT (Encoder-only)
Full FT + [CLS] 109.5M 0.74 52.5± 0.1 38.31 60.10 56.68
LoRA (r = 64) 10.7M 0.86 77.4± 0.2 36.16 64.64 56.32
GLOT (Ours) 8.92M 0.42 13.4 ± 3.0 47.49 83.86 59.21

Table 10: Scalability Stress Test. Graph construction time vs. total inference time (per sample) at
maximum context lengths (Lmax). All times are in milliseconds (ms). Even at L = 32K, the graph
construction overhead is ≈ 1.3% of the total runtime.

Backbone Max Context (Lmax) Graph Const. (ms) Total Runtime (ms) Overhead (%)
BERT 512 0.043± 0.002 5.36± 0.06 0.8%
TinyLlama-1.1B 2048 0.672± 0.001 143.15± 0.05 0.5%
SmolLM2 8192 4.46± 0.05 772.30± 0.11 0.6%
Llama-3B 8192 15.05± 0.37 2041.77± 0.19 0.7%
Mistral-7B 32768 303.47± 1.02 23460.29± 4.77 1.3%

• Efficiency: On Mistral-7B, GLOT reduces memory usage from ≈ 32GB (Full FT) to just
0.42GB and reduces batch runtime from ≈ 1318ms to 13.4ms (100× speedup).

• Consistency: The performance gains are not isolated to specific tasks; GLOT outperforms
parameter-heavy baselines on all three benchmarks, confirming that the graph-based ap-
proach generalizes well across different semantic objectives.

Scalability to Long Contexts A theoretical concern with graph-based pooling is the O(L2) com-
plexity of edge formation, which could potentially become a bottleneck for long sequences. To
investigate this, we benchmarked the graph construction time against the total forward pass runtime
across the maximum supported context lengths of our backbone models (up to 32K tokens for
Mistral-7B).

As shown in Table 10, even at extreme lengths, the graph construction overhead remains a small
fraction of the total inference time. For instance, with Mistral-7B at a context length of 32,768 tokens,
graph construction takes ≈ 0.3 seconds, which is negligible compared to the computational cost of
the backbone’s forward pass (≈ 23.5 seconds). This confirms that the O(L2) step does not hinder
scalability in practical long-context applications.

D.3 EFFECT OF GNN BACKBONE ARCHITECTURE

To evaluate the robustness of the GLOT framework and verify that our performance gains stem from
the graph-based paradigm rather than a specific architecture, we experimented with different GNN
backbones. In addition to GAT (Veličković et al., 2018) used in the main experiments, we evaluated
using GCN (Kipf & Welling, 2017) abd GIN (Xu et al., 2019) architectures.

Table 11 presents the comparative results for Mistral-7B and BERT, respectively. The results yield
two key observations: (i) Robustness of the Paradigm: Consistently across both LLM backbones
(Mistral and BERT), all graph-based variants (GCN, GAT, GIN) significantly outperform the set-based
AdaPool baseline. This validates our core hypothesis that modeling inter-sample relationships is
critical for performance. (ii) Architecture Sensitivity: The optimal GNN architecture appears to

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 11: Performance comparison of different GNN backbones. We evaluate the effectiveness of
different graph variants against the AdaPool baseline using both Mistral-7B and BERT embeddings.

Method CoLA (MCC) STSB (Spearman) RTE (ACC)

Mistral-7B (Decoder-only)
AdaPool (No GNN) 48.00 79.55 54.87
GLOT (GCN) 52.65 79.74 57.04
GLOT (GAT) (Ours) 54.30 80.51 59.21
GLOT (GIN) 59.30 79.73 59.30

BERT (Encoder-only)
AdaPool (No GNN) 29.20 80.01 51.62
GLOT (GCN) 45.19 80.17 58.12
GLOT (GAT) (Ours) 47.49 83.86 59.21
GLOT (GIN) 47.78 80.71 57.04

depend on the underlying LLM embeddings. For the larger Mistral-7B model, the more expressive
GIN outperforms if not competitive. However, for BERT, GAT remains the superior choice.

D.4 COMPARISON WITH PROMPTING-BASED METHODS

Our goal in this work is to treat token embeddings for a given sentence from frozen LLMs as a
semantic graph in the latent space. We reframe pooling as relational learning from token interactions,
rather than treating tokens as a set of independent vectors. Orthogonally, prompting methods use
hand-crafted prefixes (which are identical across all sentences and datasets) to obtain a representation
for the sentence.

Our goal is not to introduce a new memory-efficient pooling mechanism. The computational
efficiency of GLOT is a consequence of keeping the backbone frozen, thereby eliminating the
requirement to store backbone gradients in memory and allowing the forward pass (to obtain token
embeddings) to be amortized as a dataset preparation step.

Nevertheless, to contextualize our performance, we compare GLOT to prompting-based approaches,
including PromptBERT (Jiang et al., 2022), PromptEOL (Jiang et al., 2024), and Pretended Chain
of Thought and Knowledge Enhancement (Zhang et al., 2024). Table 13 presents the results on the
STS-B benchmark.

As shown, GLOT consistently outperforms prompting methods on both encoder and decoder architec-
tures. These results confirm that explicitly learning relational structures over tokens is more effective
than input prompting for frozen LLMs.

D.5 COMPARISON WITH CONTRASTIVE FINE-TUNING BASELINES

We acknowledge the importance of established sentence embedding baselines such as Sentence-
BERT (Reimers & Gurevych, 2019), SimCSE (Gao et al., 2021), and recent adaptation methods like
LLM2Vec (BehnamGhader et al., 2024). A key distinction, however, is that these methods require
updating the backbone model (or altering attention mechanisms), whereas GLOT operates strictly on
a frozen backbone.

To illustrate the performance-efficiency trade-off, Table 14 compares GLOT (using a frozen BERT
backbone) against fully fine-tuned SBERT (MPNet-v2) and SimCSE (BERT-sup) on three linguis-
tically diverse GLUE tasks. As shown, GLOT outperforms the fully fine-tuned baselines on tasks
requiring complex linguistic understanding, such as CoLA (+22.5 points) and RTE (+6.5 points).
While SimCSE retains a slight edge on semantic similarity (STS-B), GLOT remains highly competi-
tive (within 3.4 points) despite having approximately 12× fewer trainable parameters and requiring
significantly less training time.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D.6 IMPACT OF RELATIONAL LEARNING VS. MODEL CAPACITY

To verify that the performance gains of GLOT stem from its graph-based design rather than simply
having more learnable parameters than standard pooling methods, we compared GLOT against a
parameter-matched baseline. Specifically, we replaced the TOKEN-GNN module with a deep
Multi-Layer Perceptron (MLP) of comparable capacity (9.2M parameters) and evaluated it using the
Mistral-7B backbone.

Table 15 presents the results on three diverse GLUE tasks. As shown, GLOT consistently outperforms
the parameter-matched MLP baseline across all tasks, despite using slightly fewer parameters (8.9M
vs. 9.2M). The performance gap is most pronounced on STS-B (+6.4 points), where modeling
fine-grained semantic similarity is critical. This difference highlights a fundamental limitation of the
MLP, which processes the input tokens as a static vector. In contrast, GLOT employs a GNN over
the token graph, enabling tokens (nodes) to explicitly exchange information via message passing.
This confirms that the superior performance of GLOT is driven by graph construction and relational
learning, not merely by learnable parameter capacity.

D.7 INFERENCE-TIME COMPUTATIONAL COSTS

We benchmark the inference-time costs of GLOT (including graph construction and the GNN forward
pass) against simpler pooling methods using the Mistral-7B backbone. We also report performance
on representative datasets from the GLUE benchmark (CoLA for MCC, STS-B for Spearman, and
RTE for Accuracy).

Table 16 summarizes these results. As observed, the inference time is dominated by the forward pass
through the large LLM backbone. Consequently, the inference-time costs are nearly identical across
all pooling methods. GLOT requires only ≈ 600 MB of additional GPU memory and negligible
additional runtime (≈ 3ms) compared to the baselines. This efficiency is achieved through specialized
sparse computation operations utilized in our implementation.

For a detailed breakdown of the specific graph construction overhead across varying backbones and
context lengths, please refer to Table 10. These results collectively indicate that GLOT offers a highly
efficient pooling mechanism for frozen LLMs, providing significant performance improvements with
minimal computational overhead.

D.8 UNIFIED COMPARISON OF EFFICIENCY AND PERFORMANCE

To provide a holistic view of the trade-offs between computational resources and downstream
effectiveness, we present a unified comparison using the Mistral-7B backbone. Table 17 contrasts
training efficiency (parameters and memory) against performance on three diverse tasks: CoLA
(linguistic acceptability), STS-B (semantic similarity), and RTE (textual entailment).

As shown, GLOT introduces only a minor parameter increase compared to AdaPool (8.9M vs. 2.1M)
yet yields significant gains across all metrics (e.g., +5.3 points on CoLA and +4.3 points on RTE).
Furthermore, GLOT consistently outperforms the parameter-matched MLP baseline, confirming the
value of the relational graph structure.

Most notably, when compared to fine-tuning approaches, GLOT outperforms both LoRA and Full
Fine-Tuning on all three tasks. It achieves this while requiring ≈ 19× fewer parameters than LoRA
and ≈ 800× fewer than Full FT, utilizing only a fraction of the GPU memory. This confirms that
GLOT offers a “sweet spot,” delivering performance competitive with (or superior to) fine-tuning
techniques while maintaining the computational efficiency of frozen methods.

D.9 VISUALIZING TOKEN CONTRIBUTIONS

To understand why graph-based pooling yields superior representations compared to set-based pooling
or average pooling, we visualize the token contribution weights (π) assigned by different methods.
Figure 5 illustrates the weight distribution for Mean Pooling, AdaPool (Brothers, 2025) and GLOT
on samples from Quora Question Pairs dataset using a frozen BERT backbone. The visualization
highlights a distinct difference in how these pooling methods prioritize information:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

is

lit
er

all
y

in
fin

ite

nu
m

be
r of

un
iq

ue

hu
m

an dn
a s

po
ss

ib
le ?

0.0

0.1

0.2

0.3

0.4

0.5

0.6
To

ke
n

W
ei

gh
t

"Is literally infinite number of unique
 human DNAs possible?"

wh
at is th
e

m
ax

im
um

nu
m

be
r of

ge
ne

tic
all

y
un

iq
ue

in
di

vid
ua

ls

th
at

hu
m

an
ge

no
m

e
all

ow
s ?

0.0

0.1

0.2

0.3

0.4

0.5

0.6

To
ke

n
W

ei
gh

t

"What is the maximum number of genetically unique
 individuals that human genome allows?"

Mean AdaPool GLOT (Ours)

(a) Example 1: GLOT (blue) focuses on “DNA”, “genome”, and “individuals”, while suppressing the interrogative
“What”.

a

pe
rs

on is

rid
in

g on a

ho
rs

e .0.0

0.1

0.2

0.3

0.4

0.5

0.6

To
ke

n
W

ei
gh

t

"A person is riding on a horse."

a

pe
rs

on is

pa
ss

in
g

ou
t

br
o

ch
u re
s .0.0

0.1

0.2

0.3

0.4

0.5

0.6

To
ke

n
W

ei
gh

t

"A person is passing out brochures."
Mean AdaPool GLOT (Ours)

(b) Example 2: GLOT isolates the action “riding” and object “horse”, whereas AdaPool (grey) often attends to
functional stop words like “a” or “person”.

Figure 5: Token Contribution Analysis with frozen BERT. Visualization of learned token weights
(π) on 2 examples. The orange highlights on the X-axis indicate the top-3 scoring tokens identified
by GLOT. While Mean Pooling (green) is uniform and AdaPool (grey) tends to over-index on
high-frequency functional words, GLOT (blue) consistently up-weights the semantic anchors essential
for determining sentence equivalence.

• Mean Pooling assigns a uniform weight of (1/L) to all tokens. This approach suffers from
a signal dilution, as tokens without meaning (e.g. ‘is’,‘of’, ‘?’) contribute equally to the
final representation as the important tokens.

• AdaPool weighs tokens non-uniformly and treats tokens independently. We observe that it
frequently assigns high importance to functional words, syntactic markers or interrogatives
(e.g., attending to ‘What’ or ‘a’). This suggests the method is overfitting to common patterns
rather than semantic token interactions.

• Our GLOT exhibits a highly selective distribution. By refining the representations via the
TOKEN-GNN before aggregation, GLOT identifies and assigns larger weights to semantically
important tokens of the sentence. For example, in the query “What is the maximum
number of genetically unique individuals that human genome allows?”, GLOT suppresses
the interrogative “What” and places maximum weight on “genome” and “individuals”.
Similarly, in “A person is riding a horse”, GLOT isolates the action “riding” and the object
“horse”, whereas AdaPool focuses on the article “a”.

This analysis suggests that the graph structure enables GLOT to perform relational learning by
exchanging information among the tokens thereby producing a robust embedding that is resilient to
the distractors inherent in natural language.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 12: Comprehensive MTEB benchmark results. Datasets are grouped by task category, with the
category average reported in the shaded rows. The evaluation metric for each category is indicated in
parentheses: CLASSIFICATION (Accuracy), RETRIEVAL (NDCG@10), CLUSTERING (V-Measure),
STS (Spearman Correlation), RERANKING (MAP), PAIRCLASSIFICATION (Average Precision), and
SUMMARIZATION (Spearman Correlation). Results marked with ”x” are still running, we will report
them when they finish.

Dataset [EOS] Mean MaxPool AdaPool GLOT

CLASSIFICATION (ACC ↑) 0.4910 0.5178 0.3917 0.4907 0.4727
AmazonCounterfactualClassification 0.5767 0.6301 0.6052 0.6076 0.6210
AmazonPolarityClassification 0.7858 0.6912 0.6447 0.6364 0.6299
AmazonReviewsClassification 0.3865 0.3544 0.2842 0.3068 0.3048
Banking77Classification 0.3127 0.4482 0.2704 0.4425 0.4730
EmotionClassification 0.2662 0.2995 0.2142 0.2832 0.3016
ImdbClassification 0.6209 0.7214 0.5982 0.6807 0.6704
MTOPDomainClassification 0.5783 0.6596 0.4323 0.6102 0.6103
MTOPIntentClassification 0.3036 0.4757 0.2465 0.3980 0.3970
MassiveIntentClassification 0.4265 0.3633 0.2083 0.4090 0.4254
MassiveScenarioClassification 0.5114 0.4374 0.2483 0.4707 0.4963
ToxicConversationsClassification 0.6446 0.6412 0.5347 0.5922 0.5950
TweetSentimentExtractionClassification 0.4808 0.4923 0.4150 0.4518 0.4495

RETRIEVAL (NDCG@10 ↑) 0.1157 0.2282 0.1459 0.2611 0.2658
ArguAna 0.0875 0.4162 0.0986 0.3164 0.3003
CQADupstackRetrieval 0.0106 0.0926 0.0291 0.0954 0.1143
ClimateFEVER x x x x x
DBPedia x x 0.0095 x x
FEVER x x x x x
FiQA2018 0.0111 0.0333 0.0123 0.0840 0.0953
HotpotQA x x 0.0387 x x
NFCorpus 0.0233 0.0253 0.0146 0.0925 0.1043
NQ x x 0.0036 x x
QuoraRetrieval 0.5697 0.5332 0.5200 0.6030 0.6055
SCIDOCS 0.0035 0.0181 0.0187 0.0441 0.0480
SciFact 0.0033 0.3735 0.2116 0.4268 0.4414
TRECCOVID 0.0581 0.1706 0.1840 0.2643 0.2626
Touche2020 0.0037 0.0207 0.0217 0.0935 0.0037
MSMARCO x x 0.0040 x x

CLUSTERING (V-MEAS. ↑) 0.2254 0.2995 0.2197 0.2910 0.2955
ArxivClusteringP2P 0.2979 x 0.3791 x 0.4548
ArxivClusteringS2S 0.2770 0.3009 0.1722 0.2858 0.2466
BiorxivClusteringP2P 0.1415 0.3588 0.2503 0.3593 0.3484
BiorxivClusteringS2S 0.1341 0.2336 0.1082 0.2049 0.1926
MedrxivClusteringP2P 0.1478 0.3018 0.2516 0.3140 0.3110
MedrxivClusteringS2S 0.1664 0.2414 0.1616 0.2287 0.2201
RedditClustering 0.1858 0.2544 0.1015 0.2398 0.2623
RedditClusteringP2P 0.2997 0.5755 0.4121 0.5553 0.2997
StackExchangeClustering 0.4214 0.4523 0.2215 0.4183 0.4116
StackExchangeClusteringP2P 0.2280 0.3522 0.2594 0.3493 0.3333
TwentyNewsgroupsClustering 0.1804 0.2007 0.0992 0.2189 0.2149

STS (COS. SPEA. ↑) 0.2840 0.4569 0.3656 0.4331 0.4596
BIOSSES 0.2697 0.6363 0.4927 0.5891 0.5406
SICK-R 0.4981 0.5095 0.4482 0.4494 0.4612
STS12 0.2307 0.3824 0.3017 0.3641 0.3905
STS13 0.3603 0.5370 0.4292 0.4607 0.5755
STS14 0.2045 0.4223 0.3550 0.4482 0.4980
STS15 0.2068 0.5396 0.4513 0.5387 0.5489
STS16 0.5413 0.5229 0.4721 0.5208 0.5635
STS17 0.1230 0.2122 -0.0283 0.1358 0.1456
STS22 0.0922 0.4334 0.3632 0.4203 0.4313
STSBenchmark 0.3135 0.3742 0.3716 0.4045 0.4414

RERANKING (MAP ↑) 0.4071 0.4163 0.4000 0.4136 0.4533
AskUbuntuDupQuestions 0.4352 0.4774 0.4577 0.4767 0.4821
MindSmallReranking x 0.2815 x 0.2815 x
SciDocsRR 0.5188 0.5682 0.4427 0.5744 0.5647
StackOverflowDupQuestions 0.2675 0.3383 0.2997 0.3221 0.3133

PAIRCLASSIFICATION (AVG. PRE. ↑) 0.2914 0.5316 0.5605 0.5547 0.5754
SprintDuplicateQuestions 0.0840 0.4954 0.5239 0.5686 0.5528
TwitterSemEval2015 0.3846 0.4106 0.4151 0.3510 0.4221
TwitterURLCorpus 0.4058 0.6890 0.7425 0.7446 0.7513

SUMMARIZATION (COS. SPEA. ↑) 0.2042 0.1964 0.2470 0.2346 0.2774
SummEval 0.2042 0.1964 0.2470 0.2346 0.2774

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 13: Performance comparison on the STS-B benchmark (Spearman correlation) between GLOT
and prompting-based methods across Encoder and Decoder architectures.

Method (Encoder Architectures) STS-B
BERT (Encoder-only)

PromptBERT 70.60
GLOT (Ours) 83.85

Mistral-7B (Decoder-only)
PromptEOL 75.77
Pretended CoT 76.66
Knowledge Enhancement 74.09
GLOT (Ours) 80.51

Table 14: Performance comparison between GLOT (frozen backbone) and fully fine-tuned contrastive
baselines. Runtime is reported in milliseconds per batch. Best performance is in bold.

Model Runtime (ms) ↓ Params (M) ↓ CoLA (MCC) ↑ STS-B (Spear.) ↑ RTE (ACC) ↑
SBERT (MPNet-v2) (Song et al., 2020) 52.99 ± 0.08 109.50 17.70 86.70 54.51
SimCSE (BERT-sup) (Gao et al., 2021) 47.21 ± 0.09 109.50 24.91 87.27 52.70
GLOT (BERT) 13.40 ± 3.00 8.92 47.49 83.86 59.21

Table 15: Ablation study comparing GLOT against a parameter-matched MLP baseline using the
Mistral-7B backbone. Best results are in bold.

Method Params (M) ↓ CoLA (MCC) ↑ STS-B (Spear.) ↑ RTE (ACC) ↑
MLP 9.2 51.33 74.12 57.76
GLOT (Ours) 8.9 54.30 80.51 59.21

Table 16: Inference-time cost and performance benchmark using the Mistral-7B backbone. Runtime
is measured in seconds per batch. Best performance is in bold.

Method # Params GPU Mem (GB) ↓ Runtime (s) ↓ MCC ↑ Spear. ↑ ACC ↑
[EOS] 8.2K 32.58 3.227 ± 0.006 38.63 72.36 50.90
Mean 8.2K 32.58 3.244 ± 0.003 38.61 77.96 53.07
Max 8.2K 32.58 3.259 ± 0.009 10.78 70.72 53.07
AdaPool 2.1M 32.58 3.249 ± 0.011 48.00 79.55 54.87
GLOT (Ours) 8.92M 32.64 3.252 ± 0.007 53.29 80.51 59.21

Table 17: Unified comparison of training efficiency and performance using the Mistral-7B backbone.
We categorize methods by computational cost. Best results are in bold.

Category Method Trainable Params GPU Mem (GB) CoLA (MCC) STS-B (Spear) RTE (Acc)
Low Cost Mean Pooling 0 < 0.1 38.61 77.96 53.07

Max Pooling 0 < 0.1 10.78 70.72 53.07
AdaPool 2.1 M < 0.1 48.00 79.55 54.87
MLP Baseline 9.2 M 0.42 51.33 74.12 57.76

High Cost LoRA (r = 64) 167.8 M 33.5 48.23 54.54 53.43
Full Fine-Tuning 7,110 M > 40.0 49.63 55.68 55.23

Proposed GLOT (Ours) 8.9 M 0.42 53.29 80.51 59.21

29

	Introduction
	Related Work
	Method
	Problem Setup
	Glot

	Experiments and Discussion
	Experimental Setup
	General Language Understanding Evaluation (GLUE Benchmark)
	Long-Text Classification
	Large-Scale Benchmarking on MTEB
	Diagnostic Analysis: Evaluating Relational Robustness
	Ablations and Analysis

	Conclusion
	Additional Related Work
	Implementation Details
	General Setup
	Model Configurations
	Benchmark-Specific Details
	Diagnostic Task Generation

	Additional Results
	Diagnostic Task: Detailed Results and Analysis

	Additional Analyses
	Graph Topology and Representation Quality Analysis
	Detailed Efficiency and Scalability Analysis
	Effect of GNN Backbone Architecture
	Comparison with Prompting-based Methods
	Comparison with Contrastive Fine-tuning Baselines
	Impact of Relational Learning vs. Model Capacity
	Inference-time Computational Costs
	Unified Comparison of Efficiency and Performance
	Visualizing Token Contributions

