

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS IMPROVED SENTENCE REPRESENTATIONS USING TOKEN GRAPHS

Anonymous authors

Paper under double-blind review

ABSTRACT

Obtaining a single-vector representation from a Large Language Model’s (LLM) token-level outputs is a critical step for nearly all sentence-level tasks. However, standard pooling methods like mean or max aggregation treat tokens as an independent set, discarding the rich relational structure captured by the model’s self-attention layers and making them susceptible to signal dilution. To address this, we introduce GLOT, a lightweight, structure-aware pooling module that reframes pooling as relational learning followed by aggregation. Operating on the outputs of a frozen LLM, GLOT first constructs a latent token-similarity graph, then refines token representations with a graph neural network, and finally aggregates them using a readout layer. Experimentally, our approach is remarkably robust and efficient: on a diagnostic stress test where 90% of tokens are random distractors, GLOT maintains over 97% accuracy while baseline methods collapse. Furthermore, it [competitive with state-of-the-art techniques](#) on benchmarks like GLUE and MTEB with *20x fewer trainable parameters* and speeds up the training time by over *100x* compared with parameter-efficient fine-tuning methods. Supported by a theoretical analysis of its expressive power, our work shows that learning over token graphs is a powerful paradigm for the efficient adaptation of frozen LLMs.

1 INTRODUCTION

Large Language Models (LLMs) (Raffel et al., 2020; Lewis et al., 2020; Brown et al., 2020; Touvron et al., 2023; Jiang et al., 2023) produce a sequence of token-level hidden states, yet many downstream applications require a single vector embedding to represent an entire sentence or document. Therefore, the process by which a sentence and its tokens’ hidden states are collapsed into a single vector representation is critical. Standard practices typically rely on simple heuristics such as *mean*, *max*, or using a dedicated *[CLS]* token. While these pre-defined approaches have been dominant in the literature (Devlin et al., 2019; Liu et al., 2019; Reimers & Gurevych, 2019; Gao et al., 2021; Arora et al., 2017; Wang et al., 2024), they can also be vulnerable when only a small subset of tokens carries task-relevant signal amid many distractors, as has been recently studied in Brothers (2025).

Although Transformers (Vaswani et al., 2017) inherently model token interactions through self-attention, standard sentence-level representation techniques discard this rich relational structure, treating hidden states as an independent set of vectors. Indeed, this shortcoming was recently studied for Vision-Transformers (Dosovitskiy et al., 2021) in Brothers (2025), who proposed to learn a multilayer-perceptron (MLP)-based token scoring function. However, while this approach may correctly up-weight the word “good”, it may fail to capture the effect of its negation with the word “not”. This challenge is particularly acute for *decoder-only LMs* (e.g., GPT (Radford et al., 2019; Brown et al., 2020) or LLaMA (Touvron et al., 2023)), whose causal attention mechanism optimizes hidden states for next-token prediction rather than holistic sentence representation (Radford et al., 2019; Brown et al., 2020).

Prior work shows that LLM token vectors have a strong directional bias: many of them point in similar directions, and seemingly unrelated words have embeddings with high similarity (Ethayarajh, 2019; Li et al., 2020). Therefore, sentence-level representations built on isolated tokens may be unreliable for semantic understanding tasks. While these shortcomings can be addressed by fine-tuning the entire model on downstream tasks, this approach is often computationally prohibitive for billion-parameter

Figure 1: Fine-tuning large language models for sentence embeddings is computationally expensive. Our pooling method, GLOT, constructs a latent token-similarity graph from the outputs of a frozen model. It then refines token representations with a graph neural network before aggregation. This technique enables decoder-only models (like Mistral-7B), typically optimized for next-token prediction, to produce powerful sentence-level representations without requiring any fine-tuning.

models (Lee et al., 2025; Gao et al., 2021). The immense cost of training, compounded by the need for extensive hyperparameter optimization, makes full fine-tuning impractical for many applications.

To bridge this gap, we reframe the problem of collapsing token hidden states into a sentence-level representation as *learning over token graphs*. To this end, we propose GLOT, a lightweight, structure-aware module that operates on the token hidden states produced by LLMs to obtain a sentence-level representation. Specifically, as illustrated in Figure 2, GLOT does the following: (i) constructs a token-similarity graph from the LLM hidden states, (ii) propagates information across the graph using a graph neural network, and (iii) aggregates the refined token representations using a readout mechanism. The LLM backbone remains entirely frozen; only the GNN module and a task-specific head are trained. This lightweight approach maintains a remarkably small memory footprint while equipping decoder-only LMs to perform as powerful text embedding models.

Contributions. Our contributions are as follows:

- We introduce a new conceptualization of sentence-level representation from LLM hidden states; rather than framing it as direct information compression like existing techniques, we envision a relational learning approach via GNNs. In addition, our framework generalizes common pooling methods like mean, max, and [CLS] pooling.
- We present GLOT, a compact and parameter-efficient module that enhances the performance of both encoder- and decoder-only frozen backbones with 20x fewer trainable parameters and over 100x faster training time than LLM fine-tuning-based methods.
- We provide extensive empirical validation for GLOT. Our evaluation shows that GLOT consistently outperforms pre-defined pooling and learning-based methods, across a wide range of tasks, including the **GLUE** benchmark for language understanding (Wang et al., 2018), long-text classification on **IMDB** (Maas et al., 2011), and seven diverse tasks from the large-scale **MTEB** benchmark (Muennighoff et al., 2023). Crucially, we introduce a novel diagnostic stress test that confirms GLOT’s superior robustness to signal dilution, a key failure mode for other methods.
- We provide a detailed analysis of our method’s components, demonstrating how the graph construction impacts performance and quantifying its substantial computational efficiency over fine-tuning methods.

To ensure reproducibility, we will publish the code and pre-trained models upon acceptance and provide pseudo-code for our method in Appendix B.

108
109
110
111
112
2 RELATED WORK113
114
115
116
117
118
119
120
121
122
123
124
125
126

The Compressive Paradigm of Sentence-Level Representation. To obtain sentence-level representations from LLMs, existing methods consider a compression problem: collapsing tokens’ hidden states into a single vector. This paradigm usually encompasses pre-defined rules like *mean* or *max* selection, as well as learnable variants that learn token weights (Reimers & Gurevych, 2019; Gao et al., 2021; Xing et al., 2024; Lee et al., 2025; Brothers, 2025). While effective in some cases, these methods fundamentally discard relational structure. This can be derived from the theory of permutation-invariant functions on sets, as done in DeepSets (Zaheer et al., 2017), however, only looking at the tokens as completely independent items in a set does not paint the whole picture. As a result, these approaches implicitly assume the LLM has already embedded all necessary relational information. This assumption is often violated, especially for decoder-only models, which are optimized for next-token prediction rather than holistic sentence understanding (Radford et al., 2019; Brown et al., 2020). Indeed, recent work by Brothers (2025) shows such methods fail precisely because they compress *before* performing relational learning. Our work, GLOT, directly addresses this shortcoming by using advances from graph neural networks, which are also permutation invariant but can also encode relational information.

127
128
129
130
131
132
133
134
135
136
137
138

Graph-Based Representations in NLP. Graph Neural Networks (GNNs) are natural tools for relational learning; however, their prior applications in NLP differ from our problem of obtaining sentence-level representation using a frozen LLM. Many of these works use graphs to represent corpus-level tasks and solve them using GNNs rather than producing sentence-level embeddings. For example, Yao et al. (2019) builds a single word-occurrence-based graph over the corpus for text classification, and Huang et al. (2019) extends this approach for online inference and reduced memory consumption. Recent works propose the usage of attention and diffusion dynamics (Liu et al., 2021) and interleaving GNN and Transformer layers for improved text classification performance. Other approaches differ in their architecture or output format. Late-interaction models like ColBERT (Khattab & Zaharia, 2020) preserve token granularity but produce multi-vector representations incompatible with standard embedding interfaces. In contrast, GLOT is the first approach to construct a *latent token-similarity graph* directly from frozen LLM hidden states, and perform explicit relational learning *within the pooling head* to produce a single, robust sentence vector.

139
140
141
142
143
144
145
146
147
148

Global Representations in Other Domains. The challenge of creating a single, global representation from a set of features is not unique to NLP. In computer vision, pooling has long been a central component in convolutional neural networks (CNNs). While operations like max and average pooling are used throughout these models (Krizhevsky et al., 2012; He et al., 2016), global pooling is critical for producing a holistic representation. Techniques like global average pooling are used to collapse the final spatial feature maps into a single feature vector for classification, effectively summarizing the most salient features present in an image (Lin et al., 2013). In NLP, by contrast, pooling is often treated as a final, routine step. Our work, GLOT, challenges this view by demonstrating that a graph-neural-based sentence-level learning approach can unlock significant performance gains from frozen language models, opening a new direction for efficient sentence-level model adaptation.

149
150
151
152
153
154
155
156
157
158
159
160
161

Positioning GLOT Relative to Prior Works. Our work distinguishes itself from two primary streams of literature: learnable pooling and graph-based NLP. (a) *Relation to Learnable Pooling.* Recent learnable pooling methods, such as AdaPool (Brothers, 2025), operate fundamentally under a “DeepSets” paradigm (Zaheer et al., 2017). These approaches treat the token sequence as an independent set to be compressed. While effective for some tasks, this independence assumption fails to capture inter-token dependencies which are critical for resolving the signal dilution inherent in frozen LLM outputs. GLOT challenges this assumption by reframing pooling as *relational learning*. By explicitly modeling pairwise interactions via a GNN before aggregation, GLOT recovers structural dependencies that strictly independent pooling methods discard. (b) *Relation to Graph-Based NLP.* Unlike prior graph-based text encoding methods (e.g., TextGCN (Yao et al., 2019)), which typically rely on global corpus-level statistics or fixed syntactic dependency trees, GLOT introduces a *dynamic, latent graph construction* mechanism. GLOT builds semantic graphs on-the-fly based entirely on the intrinsic geometry of the frozen LLM’s hidden states. This allows the model to recover rich, context-specific structural information without the computational overhead of external parsers or the rigidity of fixed syntactic trees.

Figure 2: An overview of the GLOT pooling architecture. Given token hidden states from a frozen language model, our trainable module performs three stages : (1) it constructs a latent token-similarity graph, (2) a TOKEN-GNN performs relational learning to refine token representations, and (3) a readout layer aggregates the refined vectors into a final sentence representation, \mathbf{z}

3 METHOD

In this section we formalize and discuss the properties of our method. We start by providing essential notations and problem formulation in Section 3.1, followed by Section 3.2 where we present GLOT.

3.1 PROBLEM SETUP

Given a sequence of input tokens $[x_1, x_2, \dots, x_L]$ and a frozen LLM, the task is to design a function f_{pool} , that maps the sequence of token-level hidden states $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L] \in \mathbb{R}^{L \times d}$, to a single, sentence-level representation, $\mathbf{z} \in \mathbb{R}^D$. This vector \mathbf{z} is a critical input for many downstream applications considered in this work, as follows:

- **Single-Sentence Classification.** For tasks like sentiment analysis, the vector \mathbf{z} is fed into a linear classifier, $y = \text{softmax}(\mathbf{W}\mathbf{z} + \mathbf{b})$ to obtain the sentence label, where \mathbf{W} and \mathbf{b} are trainable parameters.
- **Sentence-Pair Classification.** For tasks like entailment detection, two sentence vectors, \mathbf{z}_a and \mathbf{z}_b , are concatenated and passed to a linear classifier to obtain a label $y = \text{softmax}(\mathbf{W}[\mathbf{z}_a \parallel \mathbf{z}_b] + \mathbf{b})$, where \parallel denotes channel-wise concatenation.
- **Similarity and Retrieval.** For ranking, the semantic relatedness of two vectors, \mathbf{z}_a and \mathbf{z}_b , is measured with a function like cosine similarity, $\text{sim}(\mathbf{z}_a, \mathbf{z}_b) = \mathbf{z}_a^\top \mathbf{z}_b / \|\mathbf{z}_a\| \|\mathbf{z}_b\|$.

3.2 GLOT

We introduce GLOT, a trainable framework that transforms the token-level hidden states into a final, sentence-level vector, $\mathbf{z} = \text{GLOT}(\mathbf{X})$. As illustrated in Figure 2, this process involves three stages: (1) constructing a token graph, (2) refining token states with a graph neural network (GNN) denoted TOKEN-GNN, and (3) performing a learnable readout. Standard pooling methods treat the input sequence as a set of independent vectors. While computationally cheap, this independence assumption forces the model to discard inter-token dependencies during the compression step, making the representation susceptible to signal dilution from distractor tokens. GLOT challenges this paradigm by reframing pooling as *relational learning*. We hypothesize that the token space is not a set, but a latent graph \mathcal{G} , where nodes are tokens and edges represent semantic dependencies. This allows GLOT to learn complex, multi-token dependencies relevant to the task. This paradigm shift is significant because we are to the best of our knowledge the first to adapt the LLM's rich, yet possibly unoptimized, respect to sentence-level tasks, relational structure using a token-graph approach. Below we explain the core mechanism of GLOT:

Step 1: Token Graph Construction. Given token hidden states $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L] \in \mathbb{R}^{L \times d}$ that are obtained from an LLM with hidden dimensionality d , after processing an input of length L , we construct a token graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where nodes $|\mathcal{V}| = L$ correspond to tokens. Edges are defined by the cosine similarity \mathbf{S}_{ij} between token vectors \mathbf{x}_i and \mathbf{x}_j . To induce a sparse, semantic structure, we only create edges where \mathbf{S}_{ij} exceeds a threshold τ , which is a hyperparameter, discussed in Section 4.

216 **Step 2: Refinement with TOKEN-GNN.** Next, we apply a lightweight graph neural network, dubbed
 217 TOKEN-GNN, to refine the token representations by modeling their interactions. With token hidden
 218 states \mathbf{X} , we initialize node features $\mathbf{H}^{(0)} = \mathbf{X} \mathbf{W}_{in} \in \mathbb{R}^{L \times p}$ using a learnable matrix $\mathbf{W}_{in} \in \mathbb{R}^{d \times p}$,
 219 where p is the hidden dimension of the GNN. Overall, we apply K GNN layers to produce a set
 220 of refined, structure-aware token representations $\mathbf{H}^{(K)} = \mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_L] \in \mathbb{R}^{L \times p}$. Each layer
 221 $\ell = 1, \dots, K$ of the TOKEN-GNN computes:

$$223 \quad \mathbf{a}_i^{(\ell)} = \text{AGGREGATE}_{j \in \mathcal{N}_i} \left(\mathbf{h}_j^{(\ell)} \right) \in \mathbb{R}^p, \quad (1)$$

$$225 \quad \mathbf{h}_i^{(\ell+1)} = \sigma \left(\mathbf{W}^{(\ell)} \text{CONCAT}(\mathbf{h}_i^{(\ell)}, \mathbf{a}_i^{(\ell)}) \right), \quad (2)$$

227 where $\mathbf{a}_i^{(\ell)}$ is the aggregated information from the neighbors \mathcal{N}_i of token i , AGGREGATE is a
 228 permutation-equivariant aggregation function like sum or mean, $\mathbf{W}^{(\ell)} \in \mathbb{R}^{p \times 2p}$ is a learnable weight
 229 matrix, and σ is a nonlinear activation function, with implementation details in Appendix B.

230 **Step 3: Readout Layer.** The set of refined token representations, \mathbf{U} , is aggregated into the sentence
 231 vector \mathbf{z} via learnable scoring. A scalar importance score m_i is computed for each refined token
 232 vector \mathbf{u}_i , normalized using softmax to create weights π , and used to compute a weighted sum:

$$234 \quad m_i = \mathbf{v}^\top \tanh(\mathbf{W}_m \mathbf{u}_i + \mathbf{b}_m), \quad \pi = \text{softmax}(\mathbf{m}), \quad \mathbf{z} = \sum_{i=1}^L \pi_i \mathbf{u}_i, \quad (3)$$

237 where $\mathbf{m} = [m_1, \dots, m_L]$.

238 Overall, GLOT aggregates token-level hidden states obtained from a frozen LLM, to obtain refined
 239 and learnable sentence-level representations by modeling token–token relationships using a graph
 240 and processing them using TOKEN-GNN.

242 **Properties of GLOT.** The GLOT framework extends several common methods for obtaining
 243 sentence-level representations, which can be recovered as special cases. If we disable the TOKEN-
 244 GNN by setting its number of layers to zero (i.e., $K = 0$), then the refined vectors are simply the
 245 original hidden states (that is, $\mathbf{u}_i = \mathbf{x}_i$), and the framework reduces to a direct weighted pooling
 246 mechanism. From here, we can model both standard pooling methods (like mean or CLS pooling) by
 247 using fixed weights and adaptive scoring methods, like AdaPool from Brothers (2025), by keeping
 248 the weights learnable.

249 These cases, where $K = 0$, fit into the DeepSets framework (Zaheer et al., 2017), in which all
 250 elements \mathbf{x}_i are transformed individually $\phi(\mathbf{x}_i)$ before a global aggregation function. Instead, the
 251 Token-GNN utilized in GLOT enables information exchange in the form of $\phi(\mathbf{x}_i, \mathcal{G})$, taking a more
 252 global approach and allowing interactions between tokens. Bronstein et al. (2021) has shown
 253 DeepSets to be a special case of convolutional GNNs with no edge connectivity and, thus, strictly less
 254 powerful than message passing, an advantage we exploit in GLOT. The additional communication
 255 introduced in GLOT between tokens’ representations allows it to model linguistic phenomena that
 256 hinge on pairwise or multi-hop dependencies among the tokens. The GNN mechanism in GLOT
 257 requires additional memory and computations, compared with pre-defined methods. Nonetheless,
 258 we note that, in comparison to other methods, which require the fine-tuning of the entire backbone
 259 LLMs, our GLOT strikes a balance between efficiency and effectiveness in downstream performance,
 260 as is evident in Section 4 and Figure 1.

262 4 EXPERIMENTS AND DISCUSSION

264 We conduct a comprehensive evaluation of GLOT to validate our core hypothesis: obtaining
 265 sentence-level representation via its reframing as relational learning before compression yields
 266 superior sentence embeddings from frozen LLMs compared with traditional and recent learnable
 267 approaches. Throughout our experiments, all backbone LLM models remain completely frozen; only
 268 the lightweight GLOT head and a minimal task-specific classifier are trained. This design ensures
 269 our approach is both parameter and resource-efficient. Our evaluation is guided by four key research
 270 questions:

270 **Table 1: A comparison of pooling methods on the GLUE benchmark using six different frozen**
 271 **backbones.** The table reports standard metrics: MCC for CoLA, Spearman for STS-B, F1 for
 272 MRPC/QQP, and Accuracy for the rest. Scores are multiplied by 100, with the **best** performance for
 273 each model highlighted in bold.

Model	Method	CoLA MCC ↑	SST-2 ACC ↑	STS-B SPEA. ↑	MRPC F1 ↑	QQP F1 ↑	MNLI-m ACC ↑	MNLI-mm ACC ↑	QNLI ACC ↑	RTE ACC ↑	WNLI ACC ↑
BERT	[CLS]	22.66	83.83	61.08	79.58	19.70	43.86	45.03	54.75	50.90	45.07
	Mean	19.55	82.91	74.96	80.28	29.01	43.86	45.16	56.43	51.62	52.11
	Max	15.79	80.73	74.12	81.64	29.58	38.60	39.55	53.79	51.98	49.26
	AdaPool	29.20	87.72	80.01	77.99	40.15	48.57	49.93	58.04	51.62	45.07
	GLOT	47.49	90.25	83.86	82.58	62.19	54.39	54.47	61.08	59.21	54.93
RoBERTa	[CLS]	6.92	66.63	52.87	81.22	47.66	32.78	32.98	54.89	52.34	40.85
	Mean	23.69	84.12	70.55	81.92	48.97	39.15	38.76	57.77	54.63	38.73
	Max	22.06	79.10	66.39	81.52	44.69	35.54	35.37	52.49	52.22	52.81
	AdaPool	26.80	90.97	71.12	80.78	57.71	42.51	44.24	59.72	50.45	41.90
	GLOT	56.08	92.78	85.27	81.95	61.41	57.01	57.95	62.73	56.68	56.34
SmoLLM2	[EOS]	7.63	77.75	52.77	81.03	38.11	41.14	42.66	53.23	49.10	47.88
	Mean	12.30	79.81	56.39	80.60	32.34	40.50	41.06	55.97	54.15	42.25
	Max	2.38	73.62	52.10	76.72	24.02	37.44	38.40	54.84	51.62	52.11
	AdaPool	7.21	83.71	61.20	81.69	49.26	41.00	42.35	58.08	55.59	45.07
	GLOT	39.23	90.25	76.28	82.24	62.32	53.42	53.64	59.86	57.40	63.38
TinyLlama	[EOS]	8.33	73.85	64.63	80.31	41.46	39.33	40.92	56.19	47.29	45.07
	Mean	5.93	73.85	61.29	80.67	41.46	39.50	40.83	57.51	49.58	45.07
	Max	2.76	70.87	63.99	81.45	39.64	36.88	37.93	55.29	50.90	46.48
	AdaPool	4.63	59.92	69.53	81.04	30.17	42.69	43.49	57.71	46.20	50.70
	GLOT	17.61	80.73	71.77	82.54	59.92	48.04	49.34	63.77	57.40	53.52
LLaMA-3B	[EOS]	37.37	91.74	74.11	70.58	58.78	48.47	47.46	53.98	54.87	42.25
	Mean	20.91	87.04	78.62	70.34	56.82	48.06	47.19	59.60	57.40	45.07
	Max	13.49	84.51	73.27	67.64	51.17	40.89	40.77	55.84	49.45	47.88
	AdaPool	43.32	92.54	81.93	71.81	49.37	49.56	50.59	58.48	55.23	47.88
	GLOT	55.13	93.92	82.83	82.34	61.16	53.49	54.67	67.15	61.01	56.34
Mistral-7B	[EOS]	38.63	92.55	72.36	76.32	51.68	48.18	48.33	50.82	50.90	40.85
	Mean	38.61	89.91	77.96	77.22	57.44	47.86	48.08	53.46	53.07	42.25
	Max	10.78	85.89	70.72	65.61	54.39	38.77	39.30	58.70	53.07	48.70
	AdaPool	48.00	93.00	79.55	81.12	49.07	50.72	51.56	55.75	54.87	49.30
	GLOT	54.30	94.38	80.51	82.83	64.07	51.66	53.22	60.93	59.21	56.34

300 **(RQ1)** How does GLOT compare to standard pre-defined and learnable sentence-level representation
 301 methods, across diverse LLMs and tasks?
 302
(RQ2) Does explicit relational learning offer consistent improvements, especially for decoder-only
 303 models?
 304
(RQ3) Can our GLOT match or exceed the performance of fine-tuned models while maintaining the
 305 computational efficiency of frozen LLMs?
 306
(RQ4) How robust is GLOT to the signal dilution that affects traditional techniques?

4.1 EXPERIMENTAL SETUP

311 We evaluate GLOT against standard static (Mean, Max, CLS/EOS) and learnable pooling baselines
 312 across a diverse set of frozen encoder (BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019))
 313 and decoder (e.g., Llama (Meta AI, 2024), Mistral (Jiang et al., 2023)) models. The evaluation is
 314 conducted on a wide range of tasks, including general language understanding (GLUE) (Wang et al.,
 315 2018), long-text classification (IMDB) (Maas et al., 2011), and retrieval (MTEB) (Muennighoff et al.,
 316 2023). To specifically test for relational robustness, we also introduce a synthetic diagnostic stress
 317 test that measures performance under noise. Across all experiments, the LLM backbones remain
 318 completely frozen. Full details on all models, baselines, benchmarks, training hyperparameters, and
 319 evaluation protocols are provided in Appendix B.

4.2 GENERAL LANGUAGE UNDERSTANDING EVALUATION (GLUE BENCHMARK)

321 Across the GLUE benchmark, GLOT consistently outperforms all baselines on all LLMs, from
 322 encoders like BERT to decoders like Mistral-7B. Table 1 provides the detailed scores, while Figure 4

324 **Table 2: Accuracy ($\times 100$) on the IMDB long-text sentiment classification task.** We freeze the
 325 LLM backbones and train only the pooling heads and a linear classifier. The **best** result per model is
 326 in bold.
 327

328 Method	329 BERT	330 RoBERTa	331 SmolLM2	332 TinyLlama	333 LLaMA3.2-3B	334 Mistral-7B
[CLS]/[EOS]	80.23	82.04	82.82	87.27	90.56	84.86
Mean	81.64	84.38	84.10	88.72	92.58	94.21
Max	60.78	58.80	63.41	75.45	80.90	64.43
AdaPool	85.45	90.91	91.56	92.61	95.71	95.66
GLOT	86.93	94.52	94.18	93.38	96.14	95.95

335
 336 of Appendix C visualizes the overall trend, showing that our GLOT’s advantage is consistent across
 337 different task categories. This directly addresses **(RQ1)** and **(RQ2)**.

338 GLOT achieves its most significant performance gains on tasks that require nuanced relational
 339 understanding. On the Corpus of Linguistic Acceptability (CoLA) (Warstadt et al., 2018), for
 340 instance, GLOT dramatically improves the Matthew’s Correlation Coefficient for BERT by a relative
 341 improvement of **62.63%** and **13.13%** for Mistral-7B. This suggests that by explicitly modeling token
 342 relationships, our approach better captures the grammatical structure essential for this task. Similarly,
 343 on Quora Question Pairs (QQP), a paraphrase detection task, GLOT delivers a large performance
 344 improvement margin over baselines for all tested architectures.

345 The consistent superiority on single-sentence classification (SST-2) (Socher et al., 2013b), semantic
 346 similarity (STS-B) (Agirre et al., 2007), and inference (RTE) (Dagan et al., 2006; Bar Haim et al.,
 347 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009) tasks validates that our “relational learning
 348 before compression” approach yields more robust and general-purpose embeddings than methods
 349 that pool token states in isolation.

351 4.3 LONG-TEXT CLASSIFICATION

353 We assess performance on longer sequences using the IMDB dataset (Maas et al., 2011), where the
 354 task is to classify paragraph-length reviews. As shown in Table 2, GLOT consistently outperforms all
 355 baselines. For instance, it improves accuracy by nearly **4.5%** for RoBERTa over the strongest baseline
 356 and by an average of **+10.1%** relative improvement over the standard [EOS] token for decoder
 357 models. This result highlights the effectiveness of our graph-based approach on long-form text;
 358 unlike simple pooling, which can dilute sentiment signals across long contexts, GLOT’s relational
 359 learning preserves and utilizes critical phrases for more accurate classification.

360 4.4 LARGE-SCALE BENCHMARKING ON MTEB

362 To assess GLOT’s performance as a general-purpose sentence encoder, we evaluate it on seven diverse
 363 tasks from the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 2023). Since
 364 many tasks are zero-shot, all learnable heads are first trained on the MS MARCO dataset (Bajaj et al.,
 365 2016) with a contrastive loss while keeping the LLM backbones frozen. The specific MTEB tasks are
 366 detailed in Appendix B.

367 The results in Table 3 show that GLOT is a robust performer across all tasks for both encoder- and
 368 decoder-only architectures. For RoBERTa, GLOT achieves the best score on all seven tested tasks,
 369 with a notable $\times 3$ improvement on SciFact. This advantage extends to decoders: with the Llama-3B
 370 backbone, GLOT secures a top performance of **0.5103 MAP** on AskUbuntuDupQuestions, rivaling
 371 strong encoder-only models. This strong general-purpose performance, achieved without expensive
 372 backbone fine-tuning, provides a clear affirmative answer to **(RQ3)**.

374 4.5 DIAGNOSTIC ANALYSIS: EVALUATING RELATIONAL ROBUSTNESS

376 To test for relational robustness under noise **(RQ4)**, we design a synthetic diagnostic task inspired
 377 by ‘signal-in-noise’ evaluations (Brothers, 2025) and the ‘Needle in a Haystack’ paradigm (Kam-
 radt, 2023). The test involves injecting a short phrase containing a logical dependency (e.g.,

378
 379 **Table 3: Zero-shot performance on seven diverse tasks from the MTEB benchmark.** Prior to
 380 evaluation, we train all learnable pooling heads on the MS MARCO dataset. The **best** performance
 381 for each frozen backbone is in bold.

Model	Method	EmotionClass. ACC \uparrow	SciFact NDCG@10 \uparrow	RedditClust. V-MEAS. \uparrow	AskUbuntu MAP \uparrow	STS12 Cos. SPEA. \uparrow	TwitterSemEval MAX AP. \uparrow	SummEval Cos. SPEA. \uparrow
BERT	[CLS]	0.2412	0.0231	0.1417	0.4137	0.2153	0.3433	0.2792
	Mean	0.3361	0.1769	0.2777	0.4584	0.3087	0.5613	0.2983
	Max	0.2812	0.2771	0.2241	0.4553	0.3175	0.5450	0.3022
	AdaPool	0.3513	0.2224	0.3403	0.4778	0.3941	0.5195	0.2918
	GLOT	0.3715	0.2485	0.3630	0.5020	0.4862	0.5623	0.3068
RoBERTa	[CLS]	0.2759	0.0900	0.1908	0.4439	0.1667	0.4848	0.2347
	Mean	0.2520	0.0825	0.1850	0.4621	0.3210	0.5456	0.2986
	Max	0.2200	0.0116	0.1354	0.4491	0.2667	0.5000	0.2583
	AdaPool	0.2135	0.0042	0.1475	0.4513	0.2026	0.4744	0.2276
	GLOT	0.2909	0.2605	0.2184	0.4687	0.3688	0.5598	0.3083
SmoLLM2	[EOS]	0.2252	0.0012	0.1418	0.4113	0.1900	0.3613	0.2271
	Mean	0.2396	0.1313	0.1708	0.4428	0.3824	0.4256	0.2335
	Max	0.1923	0.0385	0.0960	0.4382	0.2458	0.3650	0.2530
	AdaPool	0.2360	0.1702	0.1905	0.4461	0.4322	0.4153	0.2591
	GLOT	0.2471	0.1834	0.2306	0.4529	0.4754	0.4343	0.2628
TinyLlama	[EOS]	0.2044	0.0042	0.0689	0.4275	0.1297	0.3532	0.2602
	Mean	0.1898	0.0126	0.0687	0.4269	0.1633	0.3150	0.2450
	Max	0.1820	0.0049	0.0591	0.4292	0.1842	0.3588	0.1178
	AdaPool	0.2904	0.0602	0.1688	0.4004	0.0329	0.2811	0.2521
	GLOT	0.2905	0.0916	0.1800	0.4341	0.2369	0.3804	0.2649
LLaMA-3B	[EOS]	0.2765	0.0087	0.1979	0.4420	0.2494	0.4141	0.1917
	Mean	0.2920	0.4247	0.3034	0.4971	0.4296	0.4430	0.1924
	Max	0.2478	0.4087	0.1943	0.4906	0.3367	0.4196	0.2347
	AdaPool	0.2185	0.4140	0.2774	0.4946	0.3765	0.3216	0.2350
	GLOT	0.3046	0.4586	0.3301	0.5103	0.4616	0.4431	0.2658
Mistral-7B	[EOS]	0.2662	0.0033	0.1858	0.4352	0.2307	0.3846	0.2042
	Mean	0.2995	0.3735	0.2544	0.4774	0.3824	0.4106	0.1964
	Max	0.2142	0.2116	0.1015	0.4577	0.3017	0.4151	0.2470
	AdaPool	0.2832	0.4268	0.2398	0.4767	0.3641	0.3510	0.2346
	GLOT	0.3016	0.4414	0.2623	0.4821	0.3905	0.4221	0.2774

406 *...not...keys...)* into a long sequence of random words. A binary classifier must then
 407 interpret the logic of the signal phrase, with difficulty controlled by increasing the distractor ratio
 408 from 20% to 90%. The pseudo-code for synthetic data generation is presented in Algorithm 2 of
 409 Appendix B.

410 The results in Figure 3 show a stark divergence. As noise increases, the accuracy of baseline methods
 411 collapses; on Mistral-7B, AdaPool’s accuracy plummets from 92.2% to 78.4%, and Mean pooling
 412 drops to 63.8%. In contrast, GLOT remains robust, maintaining over **97%** accuracy even at the 90%
 413 distractor level. This confirms that GLOT’s explicit token graph successfully bypasses the signal
 414 dilution that plagues methods reliant on global summary statistics. Full results are available in Table 7
 415 in Appendix C.

4.6 ABLATIONS AND ANALYSIS

419 We conduct a series of ablations and analyses to validate GLOT’s design choices and quantify its
 420 computational efficiency.

421 **Impact of Graph Sparsity.** To understand the importance of constructing a well-formed semantic
 422 graph, we ablate the similarity threshold parameter, τ , using the Mistral-7B backbone on GLUE
 423 benchmark. As shown in Table 4, the graph structure is critical to performance. When $\tau = 0.0$,
 424 the graph is fully connected, allowing noisy or irrelevant token relationships to dilute the message
 425 passing process, resulting in suboptimal performance on all tasks. As we increase τ , pruning weaker
 426 edges, performance steadily improves across most tasks, plateauing in the range of $\tau = 0.4 - 0.6$.
 427 This confirms that not all token relations are equally important; by focusing on the strongest semantic
 428 connections via relational learning, GLOT produces a more robust sentence representation.

429 **Computational Efficiency.** To address **(RQ3)**, we compare the resource consumption of GLOT
 430 against full fine-tuning (Full FT) and Parameter-Efficient Fine-Tuning (PEFT) with LoRA (Hu et al.,
 431 2022). The results in Table 5 highlight the dramatic efficiency of our approach. **Prior research**
 432 **indicates that catastrophic forgetting becomes increasingly severe when fine-tuning large-scale**

Figure 3: **Robustness to signal dilution on the diagnostic stress test.** Each of the four panels displays the classification accuracy for all pooling methods at a specific distractor ratio, which increases from 20% to 90%. Within each panel, backbone models are arranged along the x-axis by their parameter count.

Table 4: **An ablation study on the impact of graph sparsity in GLOT.** This table shows performance on GLUE tasks using the Mistral-7B backbone as we vary the similarity threshold (τ) for token graph construction. All scores are multiplied by 100, and the **best** result for each task is in bold.

Method	CoLA MCC \uparrow	SST-2 ACC \uparrow	STS-B SPEA. \uparrow	MRPC F1 \uparrow	QQP F1 \uparrow	MNLI-m ACC \uparrow	MNLI-mm ACC \uparrow	QNLI ACC \uparrow	RTE ACC \uparrow	WNLI ACC \uparrow
GLOT ($\tau = 0.0$)	50.19	93.69	80.34	81.04	62.79	49.09	49.46	52.85	49.81	38.03
GLOT ($\tau = 0.2$)	53.40	94.38	80.48	82.83	62.53	51.66	53.22	54.15	49.45	36.62
GLOT ($\tau = 0.4$)	51.73	93.46	80.40	80.25	64.07	48.81	49.94	60.93	50.54	40.84
GLOT ($\tau = 0.6$)	54.30	93.23	80.29	80.06	63.49	49.36	50.01	53.67	54.15	56.34
GLOT ($\tau = 0.8$)	52.48	92.66	80.26	79.87	63.22	48.92	49.66	55.09	52.70	56.34

models on smaller downstream tasks (Li et al., 2024; Saroufim et al., 2025). The immense capacity of the 7B model makes it prone to overfitting the small training sets of GLUE tasks (like CoLA and RTE), degrading its generalizable representations. Furthermore, recent work suggests a functional equivalence between LoRA and Full Fine-Tuning (Shuttleworth et al., 2025), explaining why LoRA suffers from similar degradation. In contrast, GLOT requires only **8.92M** trainable parameters, which is approximately $20\times$ fewer than LoRA. This parameter efficiency translates directly to a minimal memory footprint of only **0.42 GB**, compared to over 32 GB for the other methods. Consequently, GLOT is over $100\times$ faster per training batch. This demonstrates that our method provides a practical and accessible way to generate high-quality embeddings from large, frozen LLMs on consumer-grade hardware. For a detailed breakdown of graph construction costs and extended cross-model benchmarks against BERT and Mistral, please refer to Appendix D.2.

486
 487 **Table 5: A comparison of training methods by resource consumption and performance** on the
 488 CoLA task, using the Mistral-7B backbone. We contrast our frozen-backbone approach (GLOT)
 489 against full fine-tuning (Full FT) and LoRA. Batch runtime is reported as the mean \pm standard
 490 deviation over 10 measurements.

Method	# Trainable Params	GPU Memory (GB)↓	Batch Runtime (ms)↓	MCC↑
Full FT + EOS	7.11B	32.59	1318.8 ± 1.1	49.63
LoRA ($r = 64$) + EOS	167.8M	33.50	1454.6 ± 1.1	48.23
GLOT (ours)	8.92M	0.42	13.4 ± 3.0	53.29

496 5 CONCLUSION

497 As LLMs continue to scale, the computational cost of full fine-tuning becomes prohibitive, establishing
 498 the need for improved pooling methods that operate on frozen backbones as a crucial research
 499 problem. In this work, we addressed a fundamental limitation of standard pooling: that it treats token
 500 hidden states as an independent set of vectors, discarding the rich relational structure captured by
 501 language models. We introduced GLOT, a lightweight and parameter-efficient pooling head that
 502 instantiates a new paradigm of relational learning followed by aggregation. GLOT first constructs a
 503 latent token-similarity graph, refines token representations using a GNN, and then aggregates them
 504 with an attention mechanism.

505 Through comprehensive experiments, we demonstrated that GLOT consistently outperforms strong
 506 baselines across a wide range of tasks and on both encoder- and decoder-only models. Our diagnostic
 507 stress test provided direct evidence that GLOT’s graph-based learning makes it remarkably robust to
 508 the signal dilution that plagues traditional pooling. Furthermore, we showed that GLOT is up to two
 509 orders of magnitude more computationally efficient than parameter-efficient fine-tuning techniques
 510 like LoRA, making it a practical solution for adapting billion-parameter models.

511 Our findings challenge the view that pooling is a routine final step, showing instead that a carefully
 512 designed, relational learning-based head can unlock significant performance from frozen models.
 513 This work opens several avenues for future research, including exploring learnable graph construction
 514 mechanisms and applying the “relational learning before compression” paradigm to other modalities,
 515 such as pooling patch embeddings in Vision Transformers and [designing advanced GNN architectures](#).
 516 [Furthermore, our graph-based formulation opens the door to studying additional token interaction](#)
 517 [modeling techniques as future research work.](#) For instance, recent work on graph rewiring (Barbero
 518 et al., 2024; Arnaiz-Rodríguez et al., 2022) and virtual nodes (Qian et al., 2024) have shown
 519 techniques in learning graph connectivity for graph learning tasks in GNNs. While GLOT is focused
 520 on introducing the concept of learning on token graphs already strong performance with cosine
 521 similarity, we view these dynamic rewiring strategies as an exciting avenue to further enhance the
 522 model’s ability to capture long-range dependencies in future research works.

523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 ETHICS STATEMENT

541

542 Our work primarily focuses on developing a new pooling methodology and is evaluated on publicly
 543 available, standard academic benchmarks, including GLUE, MTEB, and IMDB. We do not use any
 544 private or sensitive user data, and our experiments did not involve human subjects. We acknowledge
 545 that the pre-trained language models used as backbones in our study may reflect societal biases
 546 present in their training corpora. Our proposed method, GLOT, operates on the outputs of these
 547 models and does not introduce new sources of bias, nor does it explicitly mitigate biases inherent in
 548 the backbone models. We intend for this work to contribute to the development of more efficient and
 549 robust NLP models, and we do not foresee any direct negative societal impacts from its application.
 549

550 REPRODUCIBILITY STATEMENT

551

552 To ensure the reproducibility of our results, we will release our source code and all trained model
 553 checkpoints upon the paper's acceptance. Our methodology is described in Section 3, with detailed
 554 pseudo-code available in Algorithm 1. Appendix B provides a comprehensive description of our
 555 experimental setup, including the specific backbone models used, training and evaluation protocols,
 556 and all hyperparameters. All datasets used in our experiments are standard benchmarks publicly
 557 available through the Hugging Face Datasets library.

558 USAGE OF LARGE LANGUAGE MODELS (LLMs)
 559

560

561 During the preparation of this manuscript, we utilized LLMs. Its role was strictly limited to that of
 562 grammatical assistance. The LLM was not used for research ideation, experimental design, data
 563 analysis, or the generation of any core scientific content. The authors take full responsibility for all
 563 content and claims presented in this paper.

564

565 REFERENCES

566

567 Eneko Agirre, Llu's M'arquez, and Richard Wicentowski (eds.). *Proceedings of the Fourth Inter-
 568 national Workshop on Semantic Evaluations (SemEval-2007)*. Association for Computational
 569 Linguistics, Prague, Czech Republic, June 2007.

570

571 Adrián Arnaiz-Rodríguez, Ahmed Begga, Francisco Escolano, and Nuria M Oliver. DiffWire:
 572 Inductive Graph Rewiring via the Lovász Bound. In Bastian Rieck and Razvan Pascanu (eds.),
 573 *Proceedings of the First Learning on Graphs Conference*, volume 198 of *Proceedings of Machine
 574 Learning Research*, pp. 15:1–15:27. PMLR, 09–12 Dec 2022. URL <https://proceedings.mlr.press/v198/arnaiz-rodri-guez22a.html>.

575

576 Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence
 577 embeddings. In *International conference on learning representations*, 2017.

578

579 Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
 580 jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica,
 581 Saurabh Tiwary, and Tong Wang. MS MARCO: A human generated machine reading comprehen-
 582 sion dataset. In *NeurIPS 2016 Deep Learning for Question Answering (InCoCo@NIPS) Workshop*,
 2016.

583

584 Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan
 585 Szpektor. The second PASCAL recognising textual entailment challenge. 2006.

586

587 Federico Barbero, Ameya Velingker, Amin Saberi, Michael M. Bronstein, and Francesco Di Giovanni.
 588 Locality-aware graph rewiring in GNNs. In *The Twelfth International Conference on Learning
 589 Representations*, 2024. URL <https://openreview.net/forum?id=4Ua4hKiaJX>.

590

591 Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados,
 592 and Siva Reddy. LLM2vec: Large language models are secretly powerful text encoders. In *First
 593 Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=IW1PR7vEBf>.

594

595 Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini. The
 596 fifth PASCAL recognizing textual entailment challenge. 2009.

594 Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
 595 Grids, groups, graphs, geodesics, and gauges, 2021. URL <https://arxiv.org/abs/2104.13478>.

597 Greysen Brothers. Robust noise attenuation via adaptive pooling of transformer outputs, 2025. ICML
 598 2025.

600 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 601 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 602 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

603

604 Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
 605 Veličković. Combinatorial optimization and reasoning with graph neural networks. *Journal of
 606 Machine Learning Research*, 24(130):1–61, 2023.

607

608 Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment
 609 challenge. In *Machine learning challenges. evaluating predictive uncertainty, visual object
 610 classification, and recognising textual entailment*, pp. 177–190. Springer, 2006.

611 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 612 bidirectional transformers for language understanding. In *Proceedings of NAACL-HLT*, pp. 4171–
 613 4186, 2019.

614

615 William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
 616 In *Proceedings of the International Workshop on Paraphrasing*, 2005.

617

618 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 619 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 620 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
 621 *International Conference on Learning Representations (ICLR)*, 2021.

622

623 Kawin Ethayarajh. How contextual are contextualized word representations? comparing the geometry
 624 of bert, elmo, and gpt-2 embeddings. In *Proceedings of the 2019 Conference on Empirical Methods
 625 in Natural Language Processing and the 9th International Joint Conference on Natural Language
 Processing (EMNLP-IJCNLP)*, pp. 55–65, 2019.

626

627 Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. *arXiv
 628 preprint arXiv:1903.02428*, 2019.

629

630 Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
 631 embeddings. In *Proceedings of EMNLP*, pp. 6894–6910, 2021.

632

633 Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing
 634 textual entailment challenge. In *Proceedings of the ACL-PASCAL workshop on textual entailment
 and paraphrasing*, pp. 1–9. Association for Computational Linguistics, 2007.

635

636 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 637 message passing for quantum chemistry. In *International conference on machine learning*, pp.
 638 1263–1272. Pmlr, 2017.

639

640 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 641 *Advances in neural information processing systems*, 30, 2017.

642

643 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 644 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
 (CVPR)*, pp. 770–778, 2016.

645

646 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 647 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International
 Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.

648 Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng Wang. Text level graph neural
 649 network for text classification. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.),
 650 *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and*
 651 *the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp.
 652 3444–3450, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
 653 10.18653/v1/D19-1345. URL <https://aclanthology.org/D19-1345/>.

654 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 655 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 656 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 657 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

658 Ting Jiang, Jian Jiao, Shaohan Huang, Zihan Zhang, Deqing Wang, Fuzhen Zhuang, Furu Wei,
 659 Haizhen Huang, Deny Deng, and Qi Zhang. Promptbert: Improving bert sentence embeddings
 660 with prompts. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language*
 661 *Processing*, pp. 8826–8837, 2022.

662 Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing Wang, and Fuzhen Zhuang. Scaling sentence
 663 embeddings with large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp.
 664 3182–3196, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
 665 doi: 10.18653/v1/2024.findings-emnlp.181. URL <https://aclanthology.org/2024.findings-emnlp.181/>.

666 Greg Kamradt. Needle In A Haystack: Pressure Testing LLMs. Blog post, nov 2023. URL <https://gregkamradt.com/blog/needle-in-a-haystack-evaluating-llms-on-long-context-recall>.
 667 The original test and results that popularized the 'Needle in a Haystack' method for evaluating
 668 long-context recall in Large Language Models.

669 Omar Khattab and Matei Zaharia. ColBERT: Efficient and effective passage search via contextualized
 670 late interaction over BERT. In *Proceedings of SIGIR*, pp. 39–48, 2020.

671 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *International*
 672 *Conference on Learning Representations (ICLR)*, 2015. URL <https://arxiv.org/abs/1412.6980>.

673 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 674 In *International Conference on Learning Representations*, 2017.

675 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
 676 neural networks. *Advances in neural information processing systems*, 25, 2012.

677 Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
 678 and Wei Ping. NV-embed: Improved techniques for training LLMs as generalist embedding
 679 models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 680 <https://openreview.net/forum?id=lgsyLSSDRe>.

681 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
 682 Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
 683 natural language generation, translation, and comprehension. In *Proceedings of the 58th Annual*
 684 *Meeting of the Association for Computational Linguistics*, pp. 7871–7880, 2020.

685 Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
 686 Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Tomáš
 687 Šaško, Gunjan Chhablani, Bhavya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen
 688 Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue,
 689 Théo Matussière, Lysandre Debut, Stas Bekman, Pierrick Cistac, Thibault Goehringer, Arthur Mus-
 690 tar, Sanchit Mangrulkar, Alexander M. Rush, and Thomas Wolf. Datasets: A community library for
 691 natural language processing. In *Proceedings of the 2021 Conference on Empirical Methods in Nat-*
 692 *ural Language Processing: System Demonstrations*, pp. 175–184. Association for Computational
 693 Linguistics, 2021. URL <https://aclanthology.org/2021.emnlp-demo.21>.

702 Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the sentence
 703 embeddings from pre-trained language models. In *Proceedings of the 2020 Conference on*
 704 *Empirical Methods in Natural Language Processing (EMNLP)*, pp. 9119–9130, 2020.

705 Hongyu Li, Liang Ding, Meng Fang, and Dacheng Tao. Revisiting catastrophic forgetting
 706 in large language model tuning. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
 707 (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 4297–
 708 4308, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
 709 doi: 10.18653/v1/2024.findings-emnlp.249. URL <https://aclanthology.org/2024-findings-emnlp.249/>.

710 Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. *arXiv preprint arXiv:1312.4400*,
 711 2013.

712 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 713 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 714 approach. *arXiv:1907.11692*, 2019.

715 Yonghao Liu, Renchu Guan, Fausto Giunchiglia, Yanchun Liang, and Xiaoyue Feng. Deep attention
 716 diffusion graph neural networks for text classification. In Marie-Francine Moens, Xuanjing Huang,
 717 Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical
 718 Methods in Natural Language Processing*, pp. 8142–8152, Online and Punta Cana, Dominican
 719 Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
 720 emnlp-main.642. URL <https://aclanthology.org/2021.emnlp-main.642/>.

721 Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
 722 text retrieval. In *Proceedings of the 47th International ACM SIGIR Conference on Research and
 723 Development in Information Retrieval*, pp. 2421–2425, 2024.

724 Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
 725 Potts. Learning word vectors for sentiment analysis. In *Proceedings of the 49th Annual Meeting
 726 of the Association for Computational Linguistics: Human Language Technologies*, pp. 142–150.
 727 Association for Computational Linguistics, 2011.

728 Meta AI. Llama 3.2: New open and customizable models with vision and on-device
 729 capabilities. Blog post, October 2024. URL <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>.

730 Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. Mteb: Massive text embedding
 731 benchmark. In *Proceedings of the 17th Conference of the European Chapter of the Association for
 732 Computational Linguistics*, pp. 2014–2037. Association for Computational Linguistics, 2023.

733 Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
 734 Douwe Kiela. Generative representational instruction tuning, 2025. URL <https://arxiv.org/abs/2402.09906>.

735 Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
 736 *Proceedings of the 27th International Conference on Machine Learning (ICML-10)*, pp. 807–814,
 737 2010.

738 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 739 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 740 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 741 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
 742 learning library. In *Advances in Neural Information Processing Systems 32*. Curran Associates,
 743 Inc., 2019.

744 Chendi Qian, Andrei Manolache, Christopher Morris, and Mathias Niepert. Probabilistic graph
 745 rewiring via virtual nodes. *Advances in Neural Information Processing Systems*, 37:28359–28392,
 746 2024.

747 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 748 models are unsupervised multitask learners. *OpenAI Blog*, 2019. URL <https://openai.com/research/language-models-are-unsupervised-multitask-learners>.

756 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 757 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 758 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

759

760 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
 761 for machine comprehension of text. In *Proceedings of EMNLP*, pp. 2383–2392. Association for
 762 Computational Linguistics, 2016.

763 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
 764 In *Proceedings of EMNLP-IJCNLP*, pp. 3982–3992, 2019.

765 Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
 766 Battaglia. Learning to simulate complex physics with graph networks. In *International conference
 767 on machine learning*, pp. 8459–8468. PMLR, 2020.

768

769 Mark Saroufim, Yotam Perlitz, Leshem Choshen, Luca Antiga, Greg Bowyer, Christian Puhrsch,
 770 Driss Guessous, Supriya Rao, Geeta Chauhan, Ashvini Kumar, et al. Neurips 2023 llm efficiency
 771 fine-tuning competition. *arXiv preprint arXiv:2503.13507*, 2025.

772 Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
 773 Welling. Modeling relational data with graph convolutional networks. In *European semantic web
 774 conference*, pp. 593–607. Springer, 2018.

775

776 Reece S Shuttleworth, Jacob Andreas, Antonio Torralba, and Pratyusha Sharma. LoRA vs full fine-
 777 tuning: An illusion of equivalence. In *The Thirty-ninth Annual Conference on Neural Information
 778 Processing Systems*, 2025. URL <https://openreview.net/forum?id=xp7B8rkh7L>.

779

780 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng, and
 781 Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
 In *Proceedings of EMNLP*, pp. 1631–1642, 2013a.

782

783 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
 784 Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
 In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing*,
 785 pp. 1631–1642. Association for Computational Linguistics, 2013b.

786

787 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-
 788 training for language understanding. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
 789 H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 16857–16867.
 790 Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf.

791

792 Jianlin Su, Jiarun Cao, Weijie Liu, and Yangiwen Ou. Whitening sentence representations for better
 793 semantics and faster retrieval. *arXiv preprint arXiv:2103.15316*, 2021.

794

795 Yixuan Tang and Yi Yang. Pooling and attention: What are effective designs for llm-based embedding
 796 models?, 2024. URL <https://arxiv.org/abs/2409.02727>.

797

798 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 799 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

800

801 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 802 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
 803 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
 804 Wenjin Fu, Brian Gan, Vighnesh Gante, Gartheeban Gholami, Vassilis Gkoumas, Kshitij Goyal,
 805 Thomas Hart, Sunny Hsia, Jason Huang, Alexandra Ispas, Jack Jacob, Saumya Jha, Anirudh
 806 Kumar, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
 807 Todor Mihaylov, Igor Molybog, Ylan Morisot, Victor O’Beirne, Eoin O’Sullivan, Alexander
 808 Pirogov, Roman Rabbat, Amjad Raghuraman, Sainbayar Ramjee, Ruan Ras, Jérémie Rault, Nicolas
 809 Rolland, Baptiste Rozière, Mohit Sachan, Todd Sawyers, Mykola Seljan, Adrien Seznec, Sharan
 Sun, Adel Tazairt, Gabriel Synnaeve, Yuxin Tan, Lilian Tang, Ross Taylor, Adina Williams, Jean
 Kenebrew, Mannan Zaheer, Ahmed El-Kishky, and Thomas Scialom. Llama 2: Open foundation
 and fine-tuned chat models, 2023.

810 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 811 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information
 812 Processing Systems*, volume 30, 2017.

813 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 814 Bengio. Graph attention networks. In *ICLR*, 2018.

815 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
 816 A multi-task benchmark and analysis platform for natural language understanding. In *Proceedings
 817 of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
 818 NLP*. Association for Computational Linguistics, 2018.

819 Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving
 820 text embeddings with large language models. *arXiv preprint arXiv:2401.00368*, 2023.

821 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Majumder,
 822 and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training, 2024. URL
 823 <https://arxiv.org/abs/2212.03533>.

824 Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
 825 *arXiv preprint 1805.12471*, 2018.

826 Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus
 827 for sentence understanding through inference. In *Proceedings of the 2018 Conference of the
 828 North American Chapter of the Association for Computational Linguistics: Human Language
 829 Technologies, Volume 1 (Long Papers)*, pp. 1112–1122. Association for Computational Linguistics,
 830 2018. doi: 10.18653/v1/N18-1101.

831 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 832 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
 833 Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
 834 Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
 835 processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language
 836 Processing: System Demonstrations*, pp. 38–45. Association for Computational Linguistics, 2020.
 837 URL <https://aclanthology.org/2020.emnlp-demos.6>.

838 Jinming Xing, Dongwen Luo, Chang Xue, and Ruilin Xing. Comparative analysis of pooling
 839 mechanisms in llms: A sentiment analysis perspective. *arXiv preprint arXiv:2411.14654*, 2024.

840 Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
 841 Jegelka. Representation learning on graphs with jumping knowledge networks. In *Proceedings of
 842 ICML*, pp. 5453–5462, 2018.

843 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 844 networks? In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ryG6iA5Km>.

845 Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification. In
 846 *Proceedings of AAAI*, pp. 7370–7377, 2019.

847 Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
 848 Graph convolutional neural networks for web-scale recommender systems. In *Proceedings of the
 849 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 974–983,
 850 2018.

851 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
 852 Alexander J Smola. Deep sets. *Advances in neural information processing systems*, 30, 2017.

853 Bowen Zhang, Kehua Chang, and Chunping Li. Simple techniques for enhancing sentence embed-
 854 dings in generative language models. In *International Conference on Intelligent Computing*, pp.
 855 52–64, 2024.

856

864

A ADDITIONAL RELATED WORK

865
Fine-Tuning vs. Frozen Backbones for Embedding. A significant body of work adapts decoder-
 866 only LLMs into powerful text embedding models through extensive fine-tuning (Wang et al., 2023;
 867 Lee et al., 2025; Muennighoff et al., 2025; Ma et al., 2024; Tang & Yang, 2024). These methods
 868 achieve state-of-the-art performance but require modifying the LLM backbone, often through full-
 869 model training that is computationally prohibitive. GLOT sidesteps this entirely by operating on
 870 completely frozen backbones. Our approach is therefore lightweight, accessible, and applicable to
 871 both encoder-only and decoder-only models without expensive training.
 872

873
The Geometry of Embedding Space. Recent studies reveal that token embeddings from LLMs
 874 occupy anisotropic manifolds, which makes cosine similarity between pooled sentence vectors
 875 unreliable (Ethayarajh, 2019; Li et al., 2020). While post-processing methods like whitening can
 876 mitigate this (Su et al., 2021), they do not address the underlying information loss from pooling.
 877 SBERT-style fine-tuning reshapes this geometry but is computationally expensive. Our work offers
 878 an alternative: by constructing a similarity graph, GLOT operates on an approximation of the
 879 intrinsic manifold geometry, preserving relational structures that are lost when pooling in the ambient
 880 Euclidean space.
 881

882
Applications of Graph Neural Networks. The success of Graph Neural Networks (GNNs) is
 883 demonstrated by their wide-ranging application across numerous scientific and industrial domains.
 884 In the life sciences, they have become a cornerstone for molecular property prediction and drug
 885 discovery, where molecules are modeled as graphs of atoms and bonds (Gilmer et al., 2017; Xu
 886 et al., 2019). Similarly, they are used to analyze complex protein-protein interaction networks in
 887 bioinformatics. In the digital realm, GNNs power modern recommender systems by capturing the
 888 intricate relationships between users and items (Ying et al., 2018), and they are essential for learning
 889 over large-scale knowledge graphs (Schlichtkrull et al., 2018). Their foundational use case remains
 890 the analysis of social networks, where they are applied to tasks like node classification and community
 891 detection (Kipf & Welling, 2017; Hamilton et al., 2017). GNNs have also been successfully applied
 892 in other areas, including modeling particle systems in physics simulations (Sanchez-Gonzalez
 893 et al., 2020), processing 3D point clouds in computer vision, and solving complex combinatorial
 894 optimization problems like the Traveling Salesperson Problem (Cappat et al., 2023).
 895

896

B IMPLEMENTATION DETAILS

897

B.1 GENERAL SETUP

898
Hardware and Software. All experiments were conducted on a single NVIDIA A6000 GPU.
 899 Our implementation is built using PyTorch (Paszke et al., 2019), with extensive use of the Hug-
 900 ging Face ecosystem (Wolf et al., 2020), including `transformers` for backbone models and
 901 datasets (Lhoest et al., 2021) for data loading. The graph-based components of our method are
 902 implemented using PyTorch Geometric (Fey & Lenssen, 2019). Large-scale benchmarking was
 903 performed using the `mt5b` (Muennighoff et al., 2023) library, and retrieval metrics were calculated
 904 using `rankx`.
 905

906
Training Details. Unless otherwise noted, all trainable pooling heads were trained for 2 epochs
 907 using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 2×10^{-4} and no weight decay.
 908 We used a training batch size of 32 and an evaluation batch size of 64. For all experiments, we used a
 909 fixed random seed of 42. To accelerate training, we implemented a feature to precompute and cache
 910 the frozen backbone’s hidden states before training the pooling heads. We provide the pseudocode
 911 for GLOT in Algorithm 1. The hyperparameter tuning shown in Table 6 using Weights and Biases
 912 framework. To ensure a rigorous comparison in Table 5, we implemented Full Fine-Tuning (Full FT)
 913 and LoRA baselines using standard hyperparameters optimized for the Mistral-7B backbone. For Full
 914 Fine-Tuning, we fine-tuned the complete model on the training splits of CoLA, STS-B, and RTE for
 915 3 epochs (Taori et al., 2023; Li et al., 2024). We used a learning rate of 2×10^{-5} and a weight decay
 916 of 0.01, utilizing the AdamW optimizer. For the LoRA baseline, we set the rank hyperparameter to
 917 $r = 64$ and applied adapters to both the attention and feed-forward blocks. The training used a higher
 918 learning rate of 2×10^{-4} with a weight decay of 0.01 for 3 epochs.
 919

918 **Algorithm 1** GLOT: Graph-based Token Pooling

919

920 **Require:** $H \in \mathbb{R}^{B \times L \times d_{in}}$: Batch of hidden states from a frozen LLM.

921 $M \in \{0, 1\}^{B \times L}$: Attention mask for the hidden states.

922 τ : Cosine similarity threshold for edge creation.

923 K : Number of layers in the TOKEN-GNN.

924 **Ensure:** $Z \in \mathbb{R}^{B \times d_{out}}$: Batch of final sentence embeddings.

925 1: **function** GLOT(H, M)

926 2: $\mathcal{G}_{list} \leftarrow []$

927 3: **for** $i = 1 \rightarrow B$ **do** ▷ Step 1: Token Graph Construction

928 4: $H'_i \leftarrow H[i, M[i] == 1, :]$ ▷ Get valid tokens for sentence i

929 5: $S_i \leftarrow \text{COSINESIMILARITY}(H'_i, H'_i)$ ▷ Pairwise similarity matrix

930 6: $A_i \leftarrow (S_i > \tau)$ ▷ Create adjacency matrix based on threshold

931 7: $\text{edge_index}_i \leftarrow \text{ADJACENCYTOEDGES}(A_i)$

932 8: $\mathcal{G}_{list}.\text{APPEND}(\text{nodes} = H'_i, \text{edges} = \text{edge_index}_i)$

933 9: **end for**

934 10: $\mathcal{G}_{batch} \leftarrow \text{BATCHGRAPHS}(\mathcal{G}_{list})$ ▷ Combine graphs into a single batch

935 11: $U_0, \text{edge_index}, \text{batch_idx} \leftarrow \mathcal{G}_{batch}.\text{x}, \mathcal{G}_{batch}.\text{edge_index}, \mathcal{G}_{batch}.\text{batch}$

936 12: $\mathcal{U}_{layers} \leftarrow [U_0]$

937 13: **for** $k = 1 \rightarrow K$ **do** ▷ Step 2: Refinement with TOKEN-GNN

938 14: $U_{k-1} \leftarrow \mathcal{U}_{layers}[k-1]$

939 15: $U_k \leftarrow \text{GNN-LAYER}_k(U_{k-1}, \text{edge_index})$

940 16: $\mathcal{U}_{layers}.\text{APPEND}(U_k)$

941 17: **end for**

942 18: $U_{fused} \leftarrow \text{JUMPINGKNOWLEDGECONCAT}(\mathcal{U}_{layers})$ ▷ Step 3: Feature Fusion

943 19: $m \leftarrow \text{READOUTMLP}(U_{fused})$ ▷ Step 4: Readout Layer

944 20: $\pi \leftarrow \text{SOFTMAXBYGRAPH}(m, \text{batch_idx})$ ▷ Normalize scores per sentence graph

945 21: $Z_{pooled} \leftarrow \pi \odot U_{fused}$ ▷ Apply attention weights

946 22: $Z \leftarrow \text{SCATTERADD}(Z_{pooled}, \text{batch_idx})$ ▷ Aggregate via weighted sum per graph

947 23: **return** Z

948 24: **end function**

947 Table 6: Hyperparameter search space for the GLOT pooling head. The final model configuration
948 was determined via a grid search over these values. The search was performed consistently across all
949 backbone models and datasets.

Hyperparameter	Search Space
<i>Optimization</i>	
Learning Rate	{1e-3, 2e-4, 2e-5}
Weight Decay	{0.0, 1e-5, 5e-5}
<i>Token-GNN Architecture</i>	
GNN Layers (K)	{2, 4}
GNN Hidden Dimension	{64, 128, 256}
Jumping Knowledge	{cat, max, mean, none}
Input Projection Dimension	{128, 256, 512}
<i>Graph Construction</i>	
Similarity Threshold (τ)	{0.1, 0.3, 0.6}

963 **B.2 MODEL CONFIGURATIONS**

964

965 **Backbone Models.** All backbone models were loaded from the Hugging Face Hub. For decoder-only
966 models, the tokenizer’s padding side was set to ‘right’. If a model did not have a pre-defined
967 padding token, the ‘[EOS]’ token was used.

968

969 **Baseline Pooling Methods.** We implemented all baselines within the same framework and evaluated
970 them to ensure a fair comparison.

- 972 • **Static Methods:** MEAN and MAX pooling operate over the non-padded token hidden states.
973 [CLS]/[EOS] pooling for encoder models takes the hidden state of the first token. For decoder
974 models, it takes the hidden state of the last non-padded token, identified via the attention
975 mask.
- 976 • **AdaPool:** Our implementation follows the original paper (Brothers, 2025), consisting of a
977 two-layer MLP with a Tanh activation that computes a scalar score for each token, followed
978 by a softmax and weighted average.

980 **GLOT Configuration.** Our GLOT is implemented using 2 layers of GATConv (Veličković et al.,
981 2018) with a hidden dimension of 128 and ReLU non-linearity (Nair & Hinton, 2010). As described
982 in the main paper, the graph is constructed by creating edges between tokens where their cosine
983 similarity exceeds a threshold of $\tau = 0.6$. Following the GNN layers, we use a ‘cat’ mode for
984 Jumping Knowledge (Xu et al., 2018) to aggregate features from all layers before the final attention
985 readout.

986 **Compatibility with Fine-Tuned Backbones** A natural question arises regarding whether GLOT
987 provides complementary benefits when applied to a fine-tuned backbone rather than a frozen one.
988 While GLOT is technically compatible with fine-tuned LLMs, our experimental results (refer to Ta-
989 ble 17 and Table 1) demonstrate that applying GLOT to a *frozen* backbone already yields performance
990 competitive and often superior to fully fine-tuned models (e.g., matching Full FT performance on
991 CoLA).

992 Since our primary objective is to enable robust sentence representations without the prohibitive
993 computational cost of updating billion-parameter backbones, we focused on the frozen setting.
994 Furthermore, simultaneously fine-tuning the backbone while learning the graph structure introduces
995 complex optimization dynamics that warrant a distinct study. We therefore consider the “Fine-tuned
996 Backbone + GLOT” setting as a promising direction for future work.

998 B.3 BENCHMARK-SPECIFIC DETAILS

1000 **GLUE Benchmark.** For all tasks from the General Language Understanding Evaluation (GLUE)
1001 benchmark (Wang et al., 2018), we fine-tune the lightweight GLOT head and a task-specific linear
1002 classifier jointly on the training sets. Sequences are truncated to a maximum length of 128 tokens.
1003 For larger datasets (QQP, QNLI, MNLI), we train on a subsample of 20,000 examples.

1004 **CoLA:** The Corpus of Linguistic Acceptability (Warstadt et al., 2018) requires the model to de-
1005 termine if a sentence is grammatically correct. **Task:** Binary classification. **Loss:** Cross-
1006 Entropy Loss.

1007 **SST-2:** The Stanford Sentiment Treebank (Socher et al., 2013a) consists of movie reviews. **Task:**
1008 Binary sentiment classification (positive/negative). **Loss:** Cross-Entropy Loss.

1009 **STS-B:** The Semantic Textual Similarity Benchmark (Agirre et al., 2007) involves predicting a
1010 similarity score between 1 and 5 for a pair of sentences. **Task:** Regression. **Loss:** Mean
1011 Squared Error (MSE) Loss.

1012 **MRPC:** The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) contains sentence
1013 pairs. **Task:** Binary classification to determine if the sentences are paraphrases. **Loss:**
1014 Cross-Entropy Loss.

1015 **QQP:** The Quora Question Pairs dataset requires determining if two questions are semantically
1016 equivalent. **Task:** Binary classification. **Loss:** Cross-Entropy Loss.

1017 **MNLI:** The Multi-Genre Natural Language Inference corpus (Williams et al., 2018) provides a
1018 premise and a hypothesis. **Task:** Three-class classification (entailment, contradiction,
1019 neutral). **Loss:** Cross-Entropy Loss.

1020 **QNLI:** The Question Natural Language Inference dataset, derived from SQuAD (Rajpurkar et al.,
1021 2016). **Task:** Binary classification to determine if a context sentence contains the answer to
1022 a question. **Loss:** Cross-Entropy Loss.

1023 **RTE:** The Recognizing Textual Entailment datasets (Dagan et al., 2006; Bar Haim et al., 2006;
1024 Giampiccolo et al., 2007; Bentivogli et al., 2009). **Task:** Binary classification to determine
1025 if a premise entails a hypothesis. **Loss:** Cross-Entropy Loss.

1026 **Long-Text Classification (IMDB).** For the IMDB Large Movie Review dataset (Maas et al., 2011),
 1027 sequences were truncated to a maximum length of 512 tokens. The dataset contains paragraph-length
 1028 movie reviews. **Task:** Binary sentiment classification. **Loss:** Cross-Entropy Loss.
 1029

1030 **MTEB Evaluation.** For the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al.,
 1031 2023), we follow a two-stage process. First, the learnable pooling heads are trained on a large-scale
 1032 retrieval dataset, and then they are evaluated in a zero-shot setting on the downstream MTEB tasks.
 1033

- 1034 • **Training Stage:** All learnable heads were trained on the **MS MARCO** (Bajaj et al., 2016)
 1035 passage ranking dataset. This involves predicting relevant text passages for a given query.
 1036 **Task:** Passage retrieval. **Loss:** A symmetric in-batch contrastive loss with a temperature of
 1037 0.07.
- 1038 • **Zero-shot Evaluation Stage:** The trained encoders are then evaluated on the following
 1039 seven tasks without any further fine-tuning:
 - 1040 – **EmotionClassification:** A multi-class classification task on tweets.
 - 1041 – **SciFact:** A re-ranking task to verify scientific claims.
 - 1042 – **RedditClustering:** An unsupervised task to cluster Reddit comments.
 - 1043 – **AskUbuntuDupQuestions:** A retrieval task to find duplicate questions.
 - 1044 – **STS12:** A semantic similarity regression task.
 - 1045 – **TwitterSemEval2015:** A pair classification task for paraphrase detection.
 - 1046 – **SummEval:** A summarization evaluation task based on semantic similarity.

1050 B.4 DIAGNOSTIC TASK GENERATION

1052 The synthetic diagnostic task was created to isolate and test for relational understanding under noise.
 1053

- 1054 • **Signal Phrases:** We created a small set of template phrases involving a logical dependency,
 1055 such as negation (e.g., “The file has [X] but not [Y]”).
- 1056 • **Distractors:** The “haystack” was formed by sampling words randomly from a large general-
 1057 purpose vocabulary derived from English Wikipedia.
- 1058 • **Injection:** For each example, a 256-token sequence of random distractor words was gener-
 1059 ated. A signal phrase was then injected at a random position within this sequence.
- 1060 • **Difficulty Control:** The difficulty was controlled by the **distractor ratio**, which we varied
 1061 from 20

1064 The final dataset consists of 10,000 training examples and 2,000 test examples for each distractor
 1065 ratio.

1067 C ADDITIONAL RESULTS

1069 **GLUE Benchmark.** To provide a high-level summary of the comprehensive GLUE results pre-
 1070 sented in Table 1, we visualize the performance trends in Figure 4. To compare performance across
 1071 different tasks and their associated metrics (e.g., Accuracy vs. MCC) on a single, unified scale, we
 1072 normalized the scores. The methodology was as follows: for each of the eight GLUE tasks and
 1073 for each of the six backbone models, we took the resulting scores of all five pooling methods and
 1074 calculated their mean (μ) and standard deviation (σ). Each individual score x was then converted
 1075 to a z-score via $z = (x - \mu)/\sigma$. These z-scores were then averaged within their respective task
 1076 categories. A higher z-score indicates that a method’s performance is significantly above the average
 1077 of all tested methods for a given experimental setting. The plots clearly show that GLOT consistently
 1078 achieves the highest z-score, often one or more standard deviations above the mean performance.
 1079 This visualization powerfully reinforces our primary finding: the performance advantage of GLOT is
 1079 not confined to specific tasks or model scales but is a robust and general phenomenon.

1080 **Algorithm 2** Synthetic Diagnostic Dataset Generation

1081 **Require:** N : Number of samples to generate.

1082 **Require:** L : Total sequence length of each sample.

1083 **Require:** d_r : The target distractor ratio (e.g., 0.2, 0.5, 0.8, 0.9).

1084 **Require:** \mathcal{T} : A set of signal phrase templates, each with an associated label (e.g., ‘‘...has [X] but not [Y]’’, 0’).

1085 **Require:** \mathcal{V}_D : A large vocabulary of distractor words.

1086 1: **function** GENERATEDIAGNOSTICDATA($N, L, d_r, \mathcal{T}, \mathcal{V}_D$)

1087 2: $\mathcal{D} \leftarrow \emptyset$ ▷ Initialize an empty dataset

1088 3: $L_D \leftarrow \lfloor L \times d_r \rfloor$ ▷ Calculate number of distractor tokens

1089 4: $L_S \leftarrow L - L_D$ ▷ Calculate number of signal tokens

1090 5: **for** $i = 1$ to N **do**

1091 6: $(template, label) \leftarrow \text{RandomChoice}(\mathcal{T})$

1092 7: $signal_tokens \leftarrow \text{Instantiate}(template)$ ▷ e.g., fill placeholders like [X] and [Y]

1093 8: ▷ Ensure signal phrase fits the allocated length

1094 9: **if** $\text{length}(signal_tokens) > L_S$ **then**

1095 10: $signal_tokens \leftarrow signal_tokens[:L_S]$ ▷ Truncate if too long

1096 11: **else**

1097 12: $padding \leftarrow L_S - \text{length}(signal_tokens)$

1098 13: $signal_tokens \leftarrow \text{concat}(signal_tokens, \text{Sample}(\mathcal{V}_D, padding))$ ▷ Pad with

1099 distractors if too short

1100 14: **end if**

1101 15: $distractor_tokens \leftarrow \text{Sample}(\mathcal{V}_D, L_D)$ ▷ Sample distractors with replacement

1102 16: $p_{\text{inject}} \leftarrow \text{RandomInt}(0, L_D)$ ▷ Choose a random injection point

1103 17: $sequence \leftarrow \text{concat}(distractor_tokens[:p_{\text{inject}}], signal_tokens, distractor_tokens[p_{\text{inject}} :])$

1104 18: $\mathcal{D} \leftarrow \mathcal{D} \cup \{(sequence, label)\}$

1105 19: **end for**

1106 20: **return** \mathcal{D}

1107 21: **end function**

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121 **Figure 4: Z-score normalized performance on the GLUE benchmark, aggregated by task**
1122 **category.** Performance, represented as a z-score, is plotted against the number of parameters in the
1123 frozen backbone model (log scale). A higher z-score indicates better relative performance compared
1124 to the average of all tested methods for that setting.

1127 C.1 DIAGNOSTIC TASK: DETAILED RESULTS AND ANALYSIS

1129 To provide a controlled evaluation of relational robustness under noise (**RQ4**), we designed a
1130 synthetic diagnostic task. Inspired by ‘signal-in-noise’ evaluations (Brothers, 2025) and the ‘Needle
1131 in a Haystack’ paradigm (Kamradt, 2023), our stress test is specifically adapted to probe for relational
1132 understanding rather than simple factual recall. We programmatically generate sequences by injecting
1133 a short “signal phrase” with a logical dependency (e.g., negation) into a long sequence of random
distractor words. The task is a binary classification based on the logic within the signal phrase. We

1134 Table 7: **Full results for the diagnostic stress test**, which evaluates robustness to signal dilution.
 1135 The table reports the classification accuracy for all pooling methods across six backbones as the ratio
 1136 of distractor tokens in the input sequence increases from 20% to 90%. The **best** results for each
 1137 model are in bold.

1139	Model	Method	20% Distractors	50% Distractors	80% Distractors	90% Distractors
1140	BERT	[CLS]	70.8	58.2	57.2	67.6
1141		Mean	68.0	58.6	64.2	53.4
1142		Max	57.4	50.8	51.6	50.4
1143		AdaPool	91.4	78.8	65.6	61.6
1144		GLOT	97.2	97.0	97.8	98.8
1145	RoBERTa	[CLS]	83.6	63.4	51.6	48.6
1146		Mean	73.2	64.6	67.8	57.2
1147		Max	56.8	60.0	59.0	50.2
1148		AdaPool	83.0	67.2	59.8	59.2
1149		GLOT	92.6	99.2	98.8	98.2
1150	SmoLLM2	[CLS]	72.0	57.6	58.6	51.4
1151		Mean	70.2	56.2	54.6	51.4
1152		Max	54.0	50.6	46.2	51.4
1153		AdaPool	78.2	57.6	54.2	55.2
1154		GLOT	96.0	93.6	92.4	92.2
1155	TinyLlama	[EOS]	73.2	58.8	57.4	56.6
1156		Mean	83.4	56.6	56.8	56.4
1157		Max	76.4	54.0	58.8	51.4
1158		AdaPool	78.4	66.4	57.4	53.0
1159		GLOT	96.4	94.8	88.4	94.0
1160	LLaMA-3B	[EOS]	84.4	69.8	69.0	68.4
1161		Mean	82.4	65.0	64.4	61.8
1162		Max	63.0	50.8	50.6	54.6
1163		AdaPool	92.6	69.8	70.0	51.0
1164		GLOT	99.6	95.4	89.8	93.2
1165	Mistral-7B	[EOS]	89.4	72.6	69.4	70.6
1166		Mean	93.0	74.0	71.4	63.8
1167		Max	60.8	60.0	57.4	55.6
1168		AdaPool	92.2	86.6	85.0	78.4
1169		GLOT	99.2	97.6	97.4	97.2

1170
 1171
 1172
 1173
 1174 systematically increase the task’s difficulty by increasing the distractor ratio from 20% to 90%. The
 1175 full generation process is detailed in Algorithm 2.

1176 The complete results for this stress test are presented in Table 7. The data provides a clear and
 1177 quantitative confirmation of our hypothesis: GLOT’s performance remains remarkably stable even
 1178 at extreme noise levels, while the performance of all baseline methods degrades significantly as the
 1179 signal is diluted.

1180 This trend is consistent across all architectures. For the encoder-only BERT backbone, GLOT’s
 1181 accuracy remains consistently above 97% across all distractor ratios. In contrast, the next-best
 1182 baseline, AdaPool, sees its performance drop sharply from 91.4% at 20% distractors to just 61.6% at
 1183 90% distractors. The pattern is mirrored in decoder-only models. With the Llama backbone, GLOT’s
 1184 accuracy is nearly perfect at low noise (99.6%) and stays high at 83.2% even at the extreme 90%
 1185 distractor ratio. All other methods, including using the standard ‘[EOS]’ token, see their performance
 1186 collapse, with most falling to near-chance levels. This analysis demonstrates that by explicitly
 1187 modeling token relationships, GLOT can reliably identify and reason over the crucial signal phrase,
 1188 whereas methods that rely on global summary statistics are overwhelmed by the distractor tokens.

1188 **Table 8: Impact of Graph Topology (τ) on Performance and Linearity.** We compare the sensitivity
 1189 of BERT (top) and Mistral (bottom) to the threshold τ . *Linear Probing* indicates the accuracy of a
 1190 linear SVM trained on frozen GLOT embeddings, serving as a proxy for linear separability.

Threshold (τ)	STSB (Spear. \uparrow)	CoLA (MCC \uparrow)	RTE (ACC \uparrow)	Linear Probing (ACC \uparrow)
<i>BERT (Encoder-only)</i>				
$\tau = 0.0$	81.88	39.62	50.90	76.41
$\tau = 0.2$	82.12	39.82	50.90	76.51
$\tau = 0.4$	82.25	47.49	52.34	77.18
$\tau = 0.6$	83.86	43.16	59.21	77.56
$\tau = 0.8$	83.85	43.16	52.70	77.18
<i>Mistral-7B (Decoder-only)</i>				
$\tau = 0.0$	80.34	49.81	50.90	80.06
$\tau = 0.2$	80.48	49.45	50.90	81.20
$\tau = 0.4$	80.40	50.54	52.34	80.44
$\tau = 0.6$	80.29	54.15	59.21	81.40
$\tau = 0.8$	80.26	52.70	52.70	80.82

D ADDITIONAL ANALYSES

D.1 GRAPH TOPOLOGY AND REPRESENTATION QUALITY ANALYSIS

In this subsection, we expand upon the graph construction analysis presented in Table 4. To address the question of how graph topology influences representation quality beyond simple ablation, we conduct a detailed sensitivity analysis of the sparsity threshold τ on both encoder-only (BERT) and decoder-only (Mistral) backbones.

We evaluate performance across three semantically distinct tasks from GLUE (STSB, CoLA, and RTE). Furthermore, to provide a theoretical justification for the representation quality, we perform a **linear probing experiment**. In this setting, we freeze the sentence embeddings z generated by GLOT (with no classifier head trained) and train a standard linear SVM. The resulting accuracy serves as a direct quantitative measure of the linear separability of the pooled embeddings.

As shown in Table 8, we observe two key trends:

1. **Correlation with Linear Separability:** The threshold τ that yields the highest linear probing accuracy (typically $\tau = 0.6$) consistently aligns with the highest performance on downstream tasks (RTE and STSB). This suggests that the graph structure explicitly refines the manifold of the embeddings, making classes more linearly separable.
2. **Task-Dependent Topology:** Different tasks benefit from different levels of sparsity. For example, CoLA (linguistic acceptability) on BERT peaks at $\tau = 0.4$, while RTE (entailment) benefits from a sparser graph at $\tau = 0.6$. This confirms that the thresholding mechanism allows GLOT to adapt the graph topology to the specific semantic or syntactic needs of the task.

D.2 DETAILED EFFICIENCY AND SCALABILITY ANALYSIS

To fully analyze the computational cost (RQ3) and scalability to long contexts (RQ4), we provide extended benchmarks covering cross-model performance and a stress test of the graph construction step.

Cross-Model and Cross-Task Efficiency In Table 9, we compare GLOT against Full Fine-Tuning (Full FT) and LoRA ($r = 64$) across both encoder-only (BERT) and decoder-only (Mistral) architectures. We report performance on three semantically diverse tasks: CoLA (Grammar), STS-B (Similarity), and RTE (Entailment).

GLOT achieves a superior trade-off across both architectures:

1242 Table 9: **Cross-Model Efficiency Benchmarks.** We compare GLOT against Full Fine-Tuning and
 1243 LoRA. **MCC:** CoLA, **Spear.**: STSB, **ACC**: RTE. Runtimes are measured with batch size 32. GLOT
 1244 provides consistent efficiency gains across architectures.

Method	Trainable Params	GPU Mem. (GB) \downarrow	Runtime (ms) \downarrow	CoLA (MCC) \uparrow	STSB (Spear.) \uparrow	RTE (ACC) \uparrow
<i>Mistral-7B (Decoder-only)</i>						
Full FT + [EOS]	7.11B	32.59	1318.8 ± 1.1	49.63	55.68	55.23
LoRA ($r = 64$)	167.8M	33.50	1454.6 ± 1.1	48.23	54.54	53.43
GLOT (Ours)	8.92M	0.42	13.4 ± 3.0	53.29	80.51	59.21
<i>BERT (Encoder-only)</i>						
Full FT + [CLS]	109.5M	0.74	52.5 ± 0.1	38.31	60.10	56.68
LoRA ($r = 64$)	10.7M	0.86	77.4 ± 0.2	36.16	64.64	56.32
GLOT (Ours)	8.92M	0.42	13.4 ± 3.0	47.49	83.86	59.21

1257 Table 10: **Scalability Stress Test.** Graph construction time vs. total inference time (per sample) at
 1258 maximum context lengths (L_{max}). All times are in milliseconds (ms). Even at $L = 32K$, the graph
 1259 construction overhead is $\approx 1.3\%$ of the total runtime.

Backbone	Max Context (L_{max})	Graph Const. (ms)	Total Runtime (ms)	Overhead (%)
BERT	512	0.043 ± 0.002	5.36 ± 0.06	0.8%
TinyLlama-1.1B	2048	0.672 ± 0.001	143.15 ± 0.05	0.5%
SmolLM2	8192	4.46 ± 0.05	772.30 ± 0.11	0.6%
Llama-3B	8192	15.05 ± 0.37	2041.77 ± 0.19	0.7%
Mistral-7B	32768	303.47 ± 1.02	23460.29 ± 4.77	1.3%

- **Efficiency:** On Mistral-7B, GLOT reduces memory usage from $\approx 32\text{GB}$ (Full FT) to just 0.42GB and reduces batch runtime from $\approx 1318\text{ms}$ to 13.4ms ($100\times$ speedup).
- **Consistency:** The performance gains are not isolated to specific tasks; GLOT outperforms parameter-heavy baselines on all three benchmarks, confirming that the graph-based approach generalizes well across different semantic objectives.

1275 **Scalability to Long Contexts** A theoretical concern with graph-based pooling is the $\mathcal{O}(L^2)$ complexity of edge formation, which could potentially become a bottleneck for long sequences. To
 1276 investigate this, we benchmarked the graph construction time against the total forward pass runtime
 1277 across the maximum supported context lengths of our backbone models (up to 32K tokens for
 1278 Mistral-7B).

1279 As shown in Table 10, even at extreme lengths, the graph construction overhead remains a small
 1280 fraction of the total inference time. For instance, with Mistral-7B at a context length of 32,768 tokens,
 1281 graph construction takes ≈ 0.3 seconds, which is negligible compared to the computational cost of
 1282 the backbone’s forward pass (≈ 23.5 seconds). This confirms that the $\mathcal{O}(L^2)$ step does not hinder
 1283 scalability in practical long-context applications.

1286 D.3 EFFECT OF GNN BACKBONE ARCHITECTURE

1287 To evaluate the robustness of the GLOT framework and verify that our performance gains stem from
 1288 the graph-based paradigm rather than a specific architecture, we experimented with different GNN
 1289 backbones. In addition to GAT (Veličković et al., 2018) used in the main experiments, we evaluated
 1290 using GCN (Kipf & Welling, 2017) and GIN (Xu et al., 2019) architectures.

1291 Table 11 presents the comparative results for Mistral-7B and BERT, respectively. The results yield
 1292 two key observations: (i) **Robustness of the Paradigm:** Consistently across both LLM backbones
 1293 (Mistral and BERT), all graph-based variants (GCN, GAT, GIN) significantly outperform the set-based
 1294 AdaPool baseline. This validates our core hypothesis that modeling inter-sample relationships is
 1295 critical for performance. (ii) **Architecture Sensitivity:** The optimal GNN architecture appears to

1296 Table 11: **Performance comparison of different GNN backbones.** We evaluate the effectiveness of
 1297 different graph variants against the AdaPool baseline using both Mistral-7B and BERT embeddings.
 1298

1299 Method	1300 CoLA (MCC)	1300 STSB (Spearman)	1300 RTE (ACC)
<i>Mistral-7B (Decoder-only)</i>			
1302 AdaPool (No GNN)	48.00	79.55	54.87
1303 GLOT (GCN)	52.65	79.74	57.04
1304 GLOT (GAT) (Ours)	54.30	80.51	59.21
1305 GLOT (GIN)	59.30	79.73	59.30
<i>BERT (Encoder-only)</i>			
1307 AdaPool (No GNN)	29.20	80.01	51.62
1308 GLOT (GCN)	45.19	80.17	58.12
1309 GLOT (GAT) (Ours)	47.49	83.86	59.21
1310 GLOT (GIN)	47.78	80.71	57.04

1313 depend on the underlying LLM embeddings. For the larger Mistral-7B model, the more expressive
 1314 GIN outperforms if not competitive. However, for BERT, GAT remains the superior choice.
 1315

1317 D.4 COMPARISON WITH PROMPTING-BASED METHODS

1319 Our goal in this work is to treat token embeddings for a given sentence from frozen LLMs as a
 1320 semantic graph in the latent space. We reframe pooling as relational learning from token interactions,
 1321 rather than treating tokens as a set of independent vectors. Orthogonally, prompting methods use
 1322 hand-crafted prefixes (which are identical across all sentences and datasets) to obtain a representation
 1323 for the sentence.

1324 **Our goal is not to introduce a new memory-efficient pooling mechanism.** The computational
 1325 efficiency of GLOT is a consequence of keeping the backbone frozen, thereby eliminating the
 1326 requirement to store backbone gradients in memory and allowing the forward pass (to obtain token
 1327 embeddings) to be amortized as a dataset preparation step.

1328 Nevertheless, to contextualize our performance, we compare GLOT to prompting-based approaches,
 1329 including PromptBERT (Jiang et al., 2022), PromptEOL (Jiang et al., 2024), and Pretended Chain
 1330 of Thought and Knowledge Enhancement (Zhang et al., 2024). Table 13 presents the results on the
 1331 STS-B benchmark.

1332 As shown, GLOT consistently outperforms prompting methods on both encoder and decoder architec-
 1333 tures. These results confirm that explicitly learning relational structures over tokens is more effective
 1334 than input prompting for frozen LLMs.

1336 D.5 COMPARISON WITH CONTRASTIVE FINE-TUNING BASELINES

1339 We acknowledge the importance of established sentence embedding baselines such as Sentence-
 1340 BERT (Reimers & Gurevych, 2019), SimCSE (Gao et al., 2021), and recent adaptation methods like
 1341 LLM2Vec (BehnamGhader et al., 2024). A key distinction, however, is that these methods require
 1342 updating the backbone model (or altering attention mechanisms), whereas GLOT operates strictly on
 1343 a **frozen backbone**.

1344 To illustrate the performance-efficiency trade-off, Table 14 compares GLOT (using a frozen BERT
 1345 backbone) against fully fine-tuned SBERT (MPNet-v2) and SimCSE (BERT-sup) on three linguis-
 1346 tically diverse GLUE tasks. As shown, GLOT outperforms the fully fine-tuned baselines on tasks
 1347 requiring complex linguistic understanding, such as CoLA (+22.5 points) and RTE (+6.5 points).
 1348 While SimCSE retains a slight edge on semantic similarity (STS-B), GLOT remains highly competi-
 1349 tive (within 3.4 points) despite having approximately 12× fewer trainable parameters and requiring
 significantly less training time.

1350
1351

D.6 IMPACT OF RELATIONAL LEARNING VS. MODEL CAPACITY

1352
1353
1354
1355
1356

To verify that the performance gains of GLOT stem from its graph-based design rather than simply having more learnable parameters than standard pooling methods, we compared GLOT against a parameter-matched baseline. Specifically, we replaced the TOKEN-GNN module with a deep Multi-Layer Perceptron (MLP) of comparable capacity (9.2M parameters) and evaluated it using the Mistral-7B backbone.

1357
1358
1359
1360
1361
1362
1363
1364

Table 15 presents the results on three diverse GLUE tasks. As shown, GLOT consistently outperforms the parameter-matched MLP baseline across all tasks, despite using slightly fewer parameters (8.9M vs. 9.2M). The performance gap is most pronounced on STS-B (+6.4 points), where modeling fine-grained semantic similarity is critical. This difference highlights a fundamental limitation of the MLP, which processes the input tokens as a static vector. In contrast, GLOT employs a GNN over the token graph, enabling tokens (nodes) to explicitly exchange information via message passing. This confirms that the superior performance of GLOT is driven by *graph construction and relational learning*, not merely by learnable parameter capacity.

1365

D.7 INFERENCE-TIME COMPUTATIONAL COSTS

1366
1367
1368
1369
1370
1371

We benchmark the inference-time costs of GLOT (including graph construction and the GNN forward pass) against simpler pooling methods using the Mistral-7B backbone. We also report performance on representative datasets from the GLUE benchmark (CoLA for MCC, STS-B for Spearman, and RTE for Accuracy).

1372
1373
1374
1375
1376

Table 16 summarizes these results. As observed, the inference time is dominated by the forward pass through the large LLM backbone. Consequently, the inference-time costs are nearly identical across all pooling methods. GLOT requires only ≈ 600 MB of additional GPU memory and negligible additional runtime (≈ 3 ms) compared to the baselines. This efficiency is achieved through specialized sparse computation operations utilized in our implementation.

1377
1378
1379
1380

For a detailed breakdown of the specific graph construction overhead across varying backbones and context lengths, please refer to Table 10. These results collectively indicate that GLOT offers a highly efficient pooling mechanism for frozen LLMs, providing significant performance improvements with minimal computational overhead.

1381

D.8 UNIFIED COMPARISON OF EFFICIENCY AND PERFORMANCE

1382
1383
1384
1385
1386
1387

To provide a holistic view of the trade-offs between computational resources and downstream effectiveness, we present a unified comparison using the Mistral-7B backbone. Table 17 contrasts training efficiency (parameters and memory) against performance on three diverse tasks: CoLA (linguistic acceptability), STS-B (semantic similarity), and RTE (textual entailment).

1388
1389
1390
1391

As shown, GLOT introduces only a minor parameter increase compared to AdaPool (8.9M vs. 2.1M) yet yields significant gains across all metrics (e.g., +5.3 points on CoLA and +4.3 points on RTE). Furthermore, GLOT consistently outperforms the parameter-matched MLP baseline, confirming the value of the relational graph structure.

1392
1393
1394
1395
1396
1397

Most notably, when compared to fine-tuning approaches, GLOT outperforms both LoRA and Full Fine-Tuning on all three tasks. It achieves this while requiring $\approx 19\times$ fewer parameters than LoRA and $\approx 800\times$ fewer than Full FT, utilizing only a fraction of the GPU memory. This confirms that GLOT offers a “sweet spot,” delivering performance competitive with (or superior to) fine-tuning techniques while maintaining the computational efficiency of frozen methods.

1398
1399

D.9 VISUALIZING TOKEN CONTRIBUTIONS

1400
1401
1402
1403

To understand why graph-based pooling yields superior representations compared to set-based pooling or average pooling, we visualize the token contribution weights (π) assigned by different methods. Figure 5 illustrates the weight distribution for Mean Pooling, AdaPool (Brothers, 2025) and GLOT on samples from Quora Question Pairs dataset using a frozen BERT backbone. The visualization highlights a distinct difference in how these pooling methods prioritize information:

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
(a) Example 1: GLOT (blue) focuses on “DNA”, “genome”, and “individuals”, while suppressing the interrogative “What”.

1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
(b) Example 2: GLOT isolates the action “riding” and object “horse”, whereas AdaPool (grey) often attends to functional stop words like “a” or “person”.

1431
1432
1433
1434
1435
Figure 5: **Token Contribution Analysis with frozen BERT**. Visualization of learned token weights (π) on 2 examples. The **orange highlights** on the X-axis indicate the top-3 scoring tokens identified by GLOT. While Mean Pooling (green) is uniform and AdaPool (grey) tends to over-index on high-frequency functional words, GLOT (blue) consistently up-weights the semantic anchors essential for determining sentence equivalence.

1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

- **Mean Pooling** assigns a uniform weight of $(1/L)$ to all tokens. This approach suffers from a signal dilution, as tokens without meaning (e.g. ‘is’, ‘of’, ‘?’) contribute equally to the final representation as the important tokens.
- **AdaPool** weighs tokens non-uniformly and treats tokens independently. We observe that it frequently assigns high importance to functional words, syntactic markers or interrogatives (e.g., attending to ‘What’ or ‘a’). This suggests the method is overfitting to common patterns rather than semantic token interactions.
- Our **GLOT** exhibits a highly selective distribution. By refining the representations via the TOKEN-GNN before aggregation, GLOT identifies and assigns larger weights to semantically important tokens of the sentence. For example, in the query “What is the maximum number of genetically unique individuals that human genome allows?”, GLOT suppresses the interrogative “What” and places maximum weight on “genome” and “individuals”. Similarly, in “A person is riding a horse”, GLOT isolates the action “riding” and the object “horse”, whereas AdaPool focuses on the article “a”.

This analysis suggests that the graph structure enables GLOT to perform relational learning by exchanging information among the tokens thereby producing a robust embedding that is resilient to the distractors inherent in natural language.

1458

1459 Table 12: Comprehensive MTEB benchmark results. Datasets are grouped by task category, with the
 1460 category average reported in the shaded rows. The evaluation metric for each category is indicated in
 1461 parentheses: CLASSIFICATION (Accuracy), RETRIEVAL (NDCG@10), CLUSTERING (V-Measure),
 1462 STS (Spearman Correlation), RERANKING (MAP), PAIRCLASSIFICATION (Average Precision), and
 1463 SUMMARIZATION (Spearman Correlation). **Results marked with "x"** are still running, we will report
 1464 them when they finish.

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Dataset	[EOS]	Mean	MaxPool	AdaPool	GLOT
CLASSIFICATION (ACC \uparrow)	0.4910	0.5178	0.3917	0.4907	0.4727
AmazonCounterfactualClassification	0.5767	0.6301	0.6052	0.6076	0.6210
AmazonPolarityClassification	0.7858	0.6912	0.6447	0.6364	0.6299
AmazonReviewsClassification	0.3865	0.3544	0.2842	0.3068	0.3048
Banking77Classification	0.3127	0.4482	0.2704	0.4425	0.4730
EmotionClassification	0.2662	0.2995	0.2142	0.2832	0.3016
ImdbClassification	0.6209	0.7214	0.5982	0.6807	0.6704
MTOPDomainClassification	0.5783	0.6596	0.4323	0.6102	0.6103
MTOPIntentClassification	0.3036	0.4757	0.2465	0.3980	0.3970
MassiveIntentClassification	0.4265	0.3633	0.2083	0.4090	0.4254
MassiveScenarioClassification	0.5114	0.4374	0.2483	0.4707	0.4963
ToxicConversationsClassification	0.6446	0.6412	0.5347	0.5922	0.5950
TweetSentimentExtractionClassification	0.4808	0.4923	0.4150	0.4518	0.4495
RETRIEVAL (NDCG@10 \uparrow)	0.1157	0.2286	0.1459	0.2611	0.2658
ArguAna	0.0875	0.4162	0.0986	0.3164	0.3003
CQA Dupstack Retrieval	0.0106	0.0926	0.0291	0.0954	0.1143
ClimateFEVER	x	x	x	x	x
DBpedia	x	x	0.0095	x	x
FEVER	x	x	x	x	x
FiQA2018	0.0111	0.0333	0.0123	0.0840	0.0953
HotpotQA	x	x	0.0387	x	x
NFCorpus	0.0233	0.0253	0.0146	0.0925	0.1043
NQ	x	x	0.0036	x	x
QuoraRetrieval	0.5697	0.5332	0.5200	0.6030	0.6055
SCIDOCs	0.0035	0.0181	0.0187	0.0441	0.0480
SciFact	0.0033	0.3735	0.2116	0.4268	0.4414
TRECCOVID	0.0581	0.1706	0.1840	0.2643	0.2626
Touche2020	0.0037	0.0207	0.0217	0.0935	0.0037
MSMARCO	x	x	0.0040	x	x
CLUSTERING (V-MEAS. \uparrow)	0.2254	0.2995	0.2197	0.2910	0.2955
ArxivClusteringP2P	0.2979	x	0.3791	x	0.4548
ArxivClusteringS2S	0.2770	0.3009	0.1722	0.2858	0.2466
BiorxivClusteringP2P	0.1415	0.3588	0.2503	0.3593	0.3484
BiorxivClusteringS2S	0.1341	0.2336	0.1082	0.2049	0.1926
MedrxivClusteringP2P	0.1478	0.3018	0.2516	0.3140	0.3110
MedrxivClusteringS2S	0.1664	0.2414	0.1616	0.2287	0.2201
RedditClustering	0.1858	0.2544	0.1015	0.2398	0.2623
RedditClusteringP2P	0.2997	0.5755	0.4121	0.5553	0.2997
StackExchangeClustering	0.4214	0.4523	0.2215	0.4183	0.4116
StackExchangeClusteringP2P	0.2280	0.3522	0.2594	0.3493	0.3333
TwentyNewsgroupsClustering	0.1804	0.2007	0.0992	0.2189	0.2149
STS (COS. SPEA. \uparrow)	0.2840	0.4569	0.3656	0.4331	0.4596
BIOSSES	0.2697	0.6363	0.4927	0.5891	0.5406
SICK-R	0.4981	0.5095	0.4482	0.4494	0.4612
STS12	0.2307	0.3824	0.3017	0.3641	0.3905
STS13	0.3603	0.5370	0.4292	0.4607	0.5755
STS14	0.2045	0.4223	0.3550	0.4482	0.4980
STS15	0.2068	0.5396	0.4513	0.5387	0.5489
STS16	0.5413	0.5229	0.4721	0.5208	0.5635
STS17	0.1230	0.2122	-0.0283	0.1358	0.1456
STS22	0.0922	0.4334	0.3632	0.4203	0.4313
STS Benchmark	0.3135	0.3742	0.3716	0.4045	0.4414
RERANKING (MAP \uparrow)	0.4071	0.4163	0.4000	0.4136	0.4533
AskUbuntu DupQuestions	0.4352	0.4774	0.4577	0.4767	0.4821
MindSmallReranking	x	0.2815	x	0.2815	x
SciDocsRR	0.5188	0.5682	0.4427	0.5744	0.5647
StackOverflow DupQuestions	0.2675	0.3383	0.2997	0.3221	0.3133
PAIRCLASSIFICATION (AVG. PRE. \uparrow)	0.2914	0.5316	0.5605	0.5547	0.5754
SprintDuplicateQuestions	0.0840	0.4954	0.5239	0.5686	0.5528
TwitterSemEval2015	0.3846	0.4106	0.4151	0.3510	0.4221
TwitterURLCorpus	0.4058	0.6890	0.7425	0.7446	0.7513
SUMMARIZATION (COS. SPEA. \uparrow)	0.2042	0.1964	0.2470	0.2346	0.2774
SummEval	0.2042	0.1964	0.2470	0.2346	0.2774

1512

1513 Table 13: Performance comparison on the STS-B benchmark (Spearman correlation) between GLOT
1514 and prompting-based methods across Encoder and Decoder architectures.

1515

Method (Encoder Architectures)	STS-B
<i>BERT (Encoder-only)</i>	
PromptBERT	70.60
GLOT (Ours)	83.85
<i>Mistral-7B (Decoder-only)</i>	
PromptEOL	75.77
Pretended CoT	76.66
Knowledge Enhancement	74.09
GLOT (Ours)	80.51

1526

1527

1528 Table 14: Performance comparison between GLOT (frozen backbone) and fully fine-tuned contrastive
1529 baselines. Runtime is reported in milliseconds per batch. Best performance is in **bold**.

1530

Model	Runtime (ms) ↓	Params (M) ↓	CoLA (MCC) ↑	STS-B (Spear.) ↑	RTE (ACC) ↑
SBERT (MPNet-v2) (Song et al., 2020)	52.99 ± 0.08	109.50	17.70	86.70	54.51
SimCSE (BERT-sup) (Gao et al., 2021)	47.21 ± 0.09	109.50	24.91	87.27	52.70
GLOT (BERT)	13.40 ± 3.00	8.92	47.49	83.86	59.21

1534

1535

1536 Table 15: Ablation study comparing GLOT against a parameter-matched MLP baseline using the
1537 Mistral-7B backbone. Best results are in **bold**.

1538

Method	Params (M) ↓	CoLA (MCC) ↑	STS-B (Spear.) ↑	RTE (ACC) ↑
MLP	9.2	51.33	74.12	57.76
GLOT (Ours)	8.9	54.30	80.51	59.21

1543

1544

1545 Table 16: Inference-time cost and performance benchmark using the Mistral-7B backbone. Runtime
1546 is measured in seconds per batch. Best performance is in **bold**.

1547

Method	# Params	GPU Mem (GB) ↓	Runtime (s) ↓	MCC ↑	Spear. ↑	ACC ↑
[EOS]	8.2K	32.58	3.227 ± 0.006	38.63	72.36	50.90
Mean	8.2K	32.58	3.244 ± 0.003	38.61	77.96	53.07
Max	8.2K	32.58	3.259 ± 0.009	10.78	70.72	53.07
AdaPool	2.1M	32.58	3.249 ± 0.011	48.00	79.55	54.87
GLOT (Ours)	8.92M	32.64	3.252 ± 0.007	53.29	80.51	59.21

1554

1555

1556 Table 17: Unified comparison of training efficiency and performance using the Mistral-7B backbone.
1557 We categorize methods by computational cost. Best results are in **bold**.

1558

Category	Method	Trainable Params	GPU Mem (GB)	CoLA (MCC)	STS-B (Spear)	RTE (Acc)
Low Cost	Mean Pooling	0	< 0.1	38.61	77.96	53.07
	Max Pooling	0	< 0.1	10.78	70.72	53.07
	AdaPool	2.1 M	< 0.1	48.00	79.55	54.87
	MLP Baseline	9.2 M	0.42	51.33	74.12	57.76
High Cost	LoRA ($r = 64$)	167.8 M	33.5	48.23	54.54	53.43
	Full Fine-Tuning	7,110 M	> 40.0	49.63	55.68	55.23
Proposed	GLOT (Ours)	8.9 M	0.42	53.29	80.51	59.21