
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS IMPROVED SENTENCE REPRESENTATIONS
USING TOKEN GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Obtaining a single-vector representation from a Large Language Model’s (LLM)
token-level outputs is a critical step for nearly all sentence-level tasks. However,
standard pooling methods like mean or max aggregation treat tokens as an in-
dependent set, discarding the rich relational structure captured by the model’s
self-attention layers and making them susceptible to signal dilution. To address
this, we introduce GLOT, a lightweight, structure-aware pooling module that re-
frames pooling as relational learning followed by aggregation. Operating on the
outputs of a frozen LLM, GLOT first constructs a latent token-similarity graph, then
refines token representations with a graph neural network, and finally aggregates
them using a readout layer. Experimentally, our approach is remarkably robust and
efficient: on a diagnostic stress test where 90% of tokens are random distractors,
GLOT maintains over 97% accuracy while baseline methods collapse. Furthermore,
it achieves state-of-the-art performance on benchmarks like GLUE and MTEB
with 20x fewer trainable parameters and speeds up the training time by over 100x
compared with parameter-efficient fine-tuning methods. Supported by a theoretical
analysis of its expressive power, our work shows that learning over token graphs is
a powerful paradigm for the efficient adaptation of frozen LLMs.

1 INTRODUCTION

Large Language Models (LLMs) (Raffel et al., 2020; Lewis et al., 2020; Brown et al., 2020; Touvron
et al., 2023; Jiang et al., 2023) produce a sequence of token-level hidden states, yet many downstream
applications require a single vector embedding to represent an entire sentence or document. Therefore,
the process by which a sentence and its tokens’ hidden states are collapsed into a single vector
representation is critical. Standard practices typically rely on simple heuristics such as mean, max,
or using a dedicated [CLS] token. While these pre-defined approaches have been dominant in the
literature (Devlin et al., 2019; Liu et al., 2019; Reimers & Gurevych, 2019; Gao et al., 2021; Arora
et al., 2017; Wang et al., 2024), they can also be vulnerable when only a small subset of tokens carries
task-relevant signal amid many distractors, as has been recently studied in Brothers (2025).

Although Transformers (Vaswani et al., 2017) inherently model token interactions through self-
attention, standard sentence-level representation techniques discard this rich relational structure,
treating hidden states as an independent set of vectors. Indeed, this shortcoming was recently studied
for Vision-Transformers (Dosovitskiy et al., 2021) in Brothers (2025), who proposed to learn a
multilayer-perceptron (MLP)-based token scoring function. However, while this approach may
correctly up-weight the word “good”, it may fail to capture the effect of its negation with the word
“not”. This challenge is particularly acute for decoder-only LMs (e.g., GPT (Radford et al., 2019;
Brown et al., 2020) or LLaMA (Touvron et al., 2023)), whose causal attention mechanism optimizes
hidden states for next-token prediction rather than holistic sentence representation (Radford et al.,
2019; Brown et al., 2020).

Prior work shows that LLM token vectors have a strong directional bias: many of them point in similar
directions, and seemingly unrelated words have embeddings with high similarity (Ethayarajh, 2019;
Li et al., 2020). Therefore, sentence-level representations built on isolated tokens may be unreliable
for semantic understanding tasks. While these shortcomings can be addressed by fine-tuning the entire
model on downstream tasks, this approach is often computationally prohibitive for billion-parameter

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

106 107 108 109 1010

Trainable Parameters (log scale)

37.5

40.0

42.5

45.0

47.5

50.0

52.5
Pe

rfo
rm

an
ce

 (M
CC

 ×
 1

00
) Single-Sentence (CoLA)

106 107 108 109 1010

Trainable Parameters (log scale)
51

52

53

54

55

56

57

58

59

Pe
rfo

rm
an

ce
 (A

cc
ur

ac
y

%
) Sentence-Pair (RTE)

106 107 108 109 1010

Trainable Parameters (log scale)

40

50

60

70

80

Pe
rfo

rm
an

ce
 (S

pe
ar

m
an

 ×
 1

00
) Similarity (STSB)

[EOS] Mean Max AdaPool GLOT (Ours) Full FT LoRA Frozen LLM

Figure 1: Fine-tuning large language models for sentence embeddings is computationally expensive.
Our pooling method, GLOT, constructs a latent token-similarity graph from the outputs of a frozen
model. It then refines token representations with a graph neural network before aggregation. This
technique enables decoder-only models (like Mistral-7B), typically optimized for next-token predic-
tion, to produce powerful sentence-level representations without requiring any fine-tuning.

models (Lee et al., 2025; Gao et al., 2021). The immense cost of training, compounded by the need
for extensive hyperparameter optimization, makes full fine-tuning impractical for many applications.

To bridge this gap, we reframe the problem of collapsing token hidden states into a sentence-level
representation as learning over token graphs. To this end, we propose GLOT, a lightweight, structure-
aware module that operates on the token hidden states produced by LLMs to obtain a sentence-level
representation. Specifically, as illustrated in Figure 2, GLOT does the following: (i) constructs a
token-similarity graph from the LLM hidden states, (ii) propagates information across the graph
using a graph neural network, and (iii) aggregates the refined token representations using a readout
mechanism. The LLM backbone remains entirely frozen; only the GNN module and a task-specific
head are trained. This lightweight approach maintains a remarkably small memory footprint while
equipping decoder-only LMs to perform as powerful text embedding models.

Contributions. Our contributions are as follows:

• We introduce a new conceptualization of sentence-level representation from LLM hidden
states; rather than framing it as direct information compression like existing techniques, we
envision a relational learning approach via GNNs. In addition, our framework generalizes
common pooling methods like mean, max, and [CLS] pooling.

• We present GLOT, a compact and parameter-efficient module that enhances the performance
of both encoder- and decoder-only frozen backbones with 20x fewer trainable parameters
and over 100x faster training time than LLM fine-tuning-based methods.

• We provide extensive empirical validation for GLOT. Our evaluation shows that GLOT
consistently outperforms pre-defined pooling and learning-based methods, across a wide
range of tasks, including the GLUE benchmark for language understanding (Wang et al.,
2018), long-text classification on IMDB (Maas et al., 2011), and seven diverse tasks from
the large-scale MTEB benchmark (Muennighoff et al., 2023). Crucially, we introduce a
novel diagnostic stress test that confirms GLOT’s superior robustness to signal dilution, a
key failure mode for other methods.

• We provide a detailed analysis of our method’s components, demonstrating how the graph
construction impacts performance and quantifying its substantial computational efficiency
over fine-tuning methods.

To ensure reproducibility, we will publish the code and pre-trained models upon acceptance and
provide pseudo-code for our method in Appendix B.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

The Compressive Paradigm of Sentence-Level Representation. To obtain sentence-level represen-
tations from LLMs, existing methods consider a compression problem: collapsing tokens’ hidden
states into a single vector. This paradigm usually encompasses pre-defined rules like mean or max
selection, as well as learnable variants that learn token weights (Reimers & Gurevych, 2019; Gao
et al., 2021; Xing et al., 2024; Lee et al., 2025; Brothers, 2025). While effective in some cases,
these methods fundamentally discard relational structure. This can be derived from the theory of
permutation-invariant functions on sets, as done in DeepSets (Zaheer et al., 2017), however, only
looking at the tokens as completely independent items in a set does not paint the whole picture. As a
result, these approaches implicitly assume the LLM has already embedded all necessary relational
information. This assumption is often violated, especially for decoder-only models, which are opti-
mized for next-token prediction rather than holistic sentence understanding (Radford et al., 2019;
Brown et al., 2020). Indeed, recent work by Brothers (2025) shows such methods fail precisely
because they compress before performing relational learning. Our work, GLOT, directly addresses
this shortcoming by using advances from graph neural networks, which are also permutation invariant
but can also encode relational information.

Graph-Based Representations in NLP. Graph Neural Networks (GNNs) are natural tools for
relational learning; however, their prior applications in NLP differ from our problem of obtaining
sentence-level representation using a frozen LLM. Many of these works use graphs to represent corpus-
level tasks and solve them using GNNs rather than producing sentence-level embeddings. For example,
Yao et al. (2019) builds a single word-occurrence-based graph over the corpus for text classification,
and Huang et al. (2019) extends this approach for online inference and reduced memory consumption.
Recent works propose the usage of attention and diffusion dynamics (Liu et al., 2021) and interleaving
GNN and Transformer layers for improved text classification performance. Other approaches differ
in their architecture or output format. Late-interaction models like ColBERT (Khattab & Zaharia,
2020) preserve token granularity but produce multi-vector representations incompatible with standard
embedding interfaces. In contrast, GLOT is the first approach to construct a latent token-similarity
graph directly from frozen LLM hidden states, and perform explicit relational learning within the
pooling head to produce a single, robust sentence vector.

Global Representations in Other Domains. The challenge of creating a single, global representation
from a set of features is not unique to NLP. In computer vision, pooling has long been a central
component in convolutional neural networks (CNNs). While operations like max and average pooling
are used throughout these models (Krizhevsky et al., 2012; He et al., 2016), global pooling is critical
for producing a hoslistic representation. Techniques like global average pooling are used to collapse
the final spatial feature maps into a single feature vector for classification, effectively summarizing
the most salient features present in an image (Lin et al., 2013). In NLP, by contrast, pooling is
often treated as a final, routine step. Our work, GLOT, challenges this view by demonstrating that a
graph-neural-based sentence-level learning approach can unlock significant performance gains from
frozen language models, opening a new direction for efficient sentence-level model adaptation.

3 METHOD

In this section we formalize and discuss the properties of our method. We start by providing essential
notations and problem formulation in Section 3.1, followed by Section 3.2 where we present GLOT.

3.1 PROBLEM SETUP

Given a sequence of input tokens [x1, x2, · · · , xL] and a frozen LLM, the task is to design a function
fpool, that maps the sequence of token-level hidden states X = [x1,x2, · · · ,xL] ∈ RL×d, to a
single, sentence-level representation, z ∈ RD. This vector z is a critical input for many downstream
applications considered in this work, as follows:

• Single-Sentence Classification. For tasks like sentiment analysis, the vector z is fed into a
linear classifier, y = softmax(Wz + b) to obtain the sentence label, where W and b are
trainable parameters.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

��������������

���������
����
�

🔥

🔥

	�������������

�����������������

����

Figure 2: An overview of the GLOT pooling architecture. Given token hidden states from a frozen
language model, our trainable module performs three stages : (1) it constructs a latent token-similarity
graph, (2) a TOKEN-GNN performs relational learning to refine token representations, and (3) a
readout layer aggregates the refined vectors into a final sentence representation, z

• Sentence-Pair Classification. For tasks like entailment detection, two sentence vectors, za and
zb, are concatenated and passed to a linear classifier to obtain a label y = softmax(W[za∥zb] +
b), where ∥ denotes channel-wise concatenation.

• Similarity and Retrieval. For ranking, the semantic relatedness of two vectors, za and zb, is
measured with a function like cosine similarity, sim(za, zb) = z⊤a zb/∥za∥∥zb∥.

3.2 GLOT

We introduce GLOT, a trainable framework that transforms the token-level hidden states into a final,
sentence-level vector, z = GLOT(X). As illustrated in Figure 2, this process involves three stages:
(1) constructing a token graph, (2) refining token states with a graph neural network (GNN) denoted
TOKEN-GNN, and (3) performing a learnable readout. The steps are explained in the following:

Step 1: Token Graph Construction. Given token hidden states X = [x1,x2, · · · ,xL] ∈ RL×d that
are obtained from an LLM with hidden dimensionality d, after processing an input of length L, we
construct a token graph G = (V, E) where nodes |V| = L correspond to tokens. Edges are defined by
the cosine similarity Sij between token vectors xi and xj . To induce a sparse, semantic structure, we
only create edges where Sij exceeds a threshold τ , which is a hyperparameter, discussed in Section 4.

Step 2: Refinement with TOKEN-GNN. Next, we apply a lightweight graph neural network, dubbed
TOKEN-GNN, to refine the token representations by modeling their interactions. With token hidden
states X, we initialize node features H(0) = XWin ∈ RL×p using a learnable matrix Win ∈ Rd×p,
where p is the hidden dimension of the GNN. Overall, we apply K GNN layers to produce a set
of refined, structure-aware token representations H(K) = U = [u1, · · · ,uL] ∈ RL×p. Each layer
ℓ = 1, . . . ,K of the TOKEN-GNN computes:

a
(ℓ)
i = AGGREGATE

j∈Ni

(
h
(ℓ)
j

)
∈ Rp, (1)

h
(ℓ+1)
i = σ

(
W(ℓ)CONCAT(h

(ℓ)
i ,a

(ℓ)
i)

)
, (2)

where a
(ℓ)
i is the aggregated information from the neighbors Ni of token i, AGGREGATE is a

permutation-equivariant aggregation function like sum or mean, W(ℓ) ∈ Rp×2p is a learnable weight
matrix, and σ is a nonlinear activation function, with implementation details in Appendix B.

Step 3: Readout Layer. The set of refined token representations, U, is aggregated into the sentence
vector z via learnable scoring. A scalar importance score mi is computed for each refined token
vector ui, normalized using softmax to create weights π, and used to compute a weighted sum:

mi = v⊤ tanh(Wmui + bm), π = softmax(m), z =

L∑
i=1

πiui, (3)

where m = [m1, . . . ,mL].

Overall, GLOT aggregates token-level hidden states obtained from a frozen LLM, to obtain refined
and learnable sentence-level representations by modeling token–token relationships using a graph
and processing them using TOKEN-GNN.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Properties of GLOT. The GLOT framework extends several common methods for obtaining
sentence-level representations, which can be recovered as special cases. If we disable the TOKEN-
GNN by setting its number of layers to zero (i.e., K = 0), then the refined vectors are simply the
original hidden states (that is, ui = xi), and the framework reduces to a direct weighted pooling
mechanism. From here, we can model both standard pooling methods (like mean or CLS pooling) by
using fixed weights and adaptive scoring methods, like AdaPool from Brothers (2025), by keeping
the weights learnable.

These cases, where K = 0, fit into the DeepSets framework (Zaheer et al., 2017), in which all
elements xi are transformed individually ϕ(xi) before a global aggregation function. Instead, the
Token-GNN utilized in GLOT enables information exchange in the form of ϕ(xi,G), taking a more
global approach and allowing interactions between tokens. Bronstein et al. (2021) has shown
DeepSets to be a special case of convolutional GNNs with no edge connectivity and, thus, strictly less
powerful than message passing, an advantage we exploit in GLOT. The additional communication
introduced in GLOT between tokens’ representations allows it to model linguistic phenomena that
hinge on pairwise or multi-hop dependencies among the tokens. The GNN mechanism in GLOT
requires additional memory and computations, compared with pre-defined methods. Nonetheless,
we note that, in comparison to other methods, which require the fine-tuning of the entire backbone
LLMs, our GLOT strikes a balance between efficiency and effectiveness in downstream performance,
as is evident in Section 4 and Figure 1.

4 EXPERIMENTS AND DISCUSSION

We conduct a comprehensive evaluation of GLOT to validate our core hypothesis: obtaining
sentence-level representation via its reframing as relational learning before compression yields
superior sentence embeddings from frozen LLMs compared with traditional and recent learnable
approaches. Throughout our experiments, all backbone LLM models remain completely frozen; only
the lightweight GLOT head and a minimal task-specific classifier are trained. This design ensures
our approach is both parameter and resource-efficient. Our evaluation is guided by four key research
questions:

(RQ1) How does GLOT compare to standard pre-defined and learnable sentence-level representation
methods, across diverse LLMs and tasks?

(RQ2) Does explicit relational learning offer consistent improvements, especially for decoder-only
models?

(RQ3) Can our GLOT match or exceed the performance of fine-tuned models while maintaining the
computational efficiency of frozen LLMs?

(RQ4) How robust is GLOT to the signal dilution that affects traditional techniques?

4.1 EXPERIMENTAL SETUP

We evaluate GLOT against standard static (Mean, Max, CLS/EOS) and learnable pooling baselines
across a diverse set of frozen encoder (BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019))
and decoder (e.g., Llama (Meta AI, 2024), Mistral (Jiang et al., 2023)) models. The evaluation is
conducted on a wide range of tasks, including general language understanding (GLUE) (Wang et al.,
2018), long-text classification (IMDB) (Maas et al., 2011), and retrieval (MTEB) (Muennighoff et al.,
2023). To specifically test for relational robustness, we also introduce a synthetic diagnostic stress
test that measures performance under noise. Across all experiments, the LLM backbones remain
completely frozen. Full details on all models, baselines, benchmarks, training hyperparameters, and
evaluation protocols are provided in Appendix B.

4.2 GENERAL LANGUAGE UNDERSTANDING EVALUATION (GLUE BENCHMARK)

Across the GLUE benchmark, GLOT consistently outperforms all baselines on all LLMs, from
encoders like BERT to decoders like Mistral-7B. Table 1 provides the detailed scores, while Figure 4
of Appendix C visualizes the overall trend, showing that our GLOT’s advantage is consistent across
different task categories. This directly addresses (RQ1) and (RQ2).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: A comparison of pooling methods on the GLUE benchmark using six different frozen
backbones. The table reports standard metrics: MCC for CoLA, Spearman for STS-B, F1 for
MRPC/QQP, and Accuracy for the rest. Scores are multiplied by 100, with the best performance for
each model highlighted in bold.

Model Method CoLA SST-2 STS-B MRPC QQP MNLI-m MNLI-mm QNLI RTE WNLI
MCC ↑ ACC ↑ SPEA. ↑ F1 ↑ F1 ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑

B
E

R
T

[CLS] 22.66 83.83 61.08 79.58 19.70 43.86 45.03 54.75 50.90 45.07
Mean 19.55 82.91 74.96 80.28 29.01 43.86 45.16 56.43 51.62 52.11
Max 15.79 80.73 74.12 81.64 29.58 38.60 39.55 53.79 51.98 49.26

AdaPool 29.20 87.72 80.01 77.99 40.15 48.57 49.93 58.04 51.62 45.07
GLOT 47.49 90.25 83.86 82.58 62.19 54.39 54.47 61.08 59.21 54.93

R
oB

E
R

Ta

[CLS] 6.92 66.63 52.87 81.22 47.66 32.78 32.98 54.89 52.34 40.85
Mean 23.69 84.12 70.55 81.92 48.97 39.15 38.76 57.77 54.63 38.73
Max 22.06 79.10 66.39 81.52 44.69 35.54 35.37 52.49 52.22 52.81

AdaPool 26.80 90.97 71.12 80.78 57.71 42.51 44.24 59.72 50.45 41.90
GLOT 56.08 92.78 85.27 81.95 61.41 57.01 57.95 62.73 56.68 56.34

Sm
ol

L
M

2 [EOS] 7.63 77.75 52.77 81.03 38.11 41.14 42.66 53.23 49.10 47.88
Mean 12.30 79.81 56.39 80.60 32.34 40.50 41.06 55.97 54.15 42.25
Max 2.38 73.62 52.10 76.72 24.02 37.44 38.40 54.84 51.62 52.11

AdaPool 7.21 83.71 61.20 81.69 49.26 41.00 42.35 58.08 55.59 45.07
GLOT 39.23 90.25 76.28 82.24 62.32 53.42 53.64 59.86 57.40 63.38

Ti
ny

L
la

m
a [EOS] 8.33 73.85 64.63 80.31 41.46 39.33 40.92 56.19 47.29 45.07

Mean 5.93 73.85 61.29 80.67 41.46 39.50 40.83 57.51 49.58 45.07
Max 2.76 70.87 63.99 81.45 39.64 36.88 37.93 55.29 50.90 46.48

AdaPool 4.63 59.92 69.53 81.04 30.17 42.69 43.49 57.71 46.20 50.70
GLOT 17.61 80.73 71.77 82.54 59.92 48.04 49.34 63.77 57.40 53.52

L
L

aM
A

-3
B [EOS] 37.37 91.74 74.11 70.58 58.78 48.47 47.46 53.98 54.87 42.25

Mean 20.91 87.04 78.62 70.34 56.82 48.06 47.19 59.60 57.40 45.07
Max 13.49 84.51 73.27 67.64 51.17 40.89 40.77 55.84 49.45 47.88

AdaPool 43.32 92.54 81.93 71.81 49.37 49.56 50.59 58.48 55.23 47.88
GLOT 55.13 93.92 82.83 82.34 61.16 53.49 54.67 67.15 61.01 56.34

M
is

tr
al

-7
B [EOS] 38.63 92.55 72.36 76.32 51.68 48.18 48.33 50.82 50.90 40.85

Mean 38.61 89.91 77.96 77.22 57.44 47.86 48.08 53.46 53.07 42.25
Max 10.78 85.89 70.72 65.61 54.39 38.77 39.30 58.70 53.07 48.70

AdaPool 48.00 93.00 79.55 81.12 49.07 50.72 51.56 55.75 54.87 49.30
GLOT 54.30 94.38 80.51 82.83 64.07 51.66 53.22 60.93 59.21 56.34

GLOT achieves its most significant performance gains on tasks that require nuanced relational
understanding. On the Corpus of Linguistic Acceptability (CoLA) (Warstadt et al., 2018), for
instance, GLOT dramatically improves the Matthew’s Correlation Coefficient for BERT by a relative
improvement of 62.63% and 13.13% for Mistral-7B. This suggests that by explicitly modeling token
relationships, our approach better captures the grammatical structure essential for this task. Similarly,
on Quora Question Pairs (QQP), a paraphrase detection task, GLOT delivers a large performance
improvement margin over baselines for all tested architectures.

The consistent superiority on single-sentence classification (SST-2) (Socher et al., 2013b), semantic
similarity (STS-B) (Agirre et al., 2007), and inference (RTE) (Dagan et al., 2006; Bar Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al., 2009) tasks validates that our “relational learning
before compression” approach yields more robust and general-purpose embeddings than methods
that pool token states in isolation.

4.3 LONG-TEXT CLASSIFICATION

We assess performance on longer sequences using the IMDB dataset (Maas et al., 2011), where the
task is to classify paragraph-length reviews. As shown in Table 2, GLOT consistently outperforms all
baselines. For instance, it improves accuracy by nearly 4.5% for RoBERTa over the strongest baseline
and by an average of +10.1% relative improvement over the standard [EOS] token for decoder
models. This result highlights the effectiveness of our graph-based approach on long-form text;
unlike simple pooling, which can dilute sentiment signals across long contexts, GLOT’s relational
learning preserves and utilizes critical phrases for more accurate classification.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Accuracy (×100) on the IMDB long-text sentiment classification task. We freeze the
LLM backbones and train only the pooling heads and a linear classifier. The best result per model is
in bold.

Method BERT RoBERTa SmolLM2 TinyLlama LLaMA3.2-3B Mistral-7B

[CLS]/[EOS] 80.23 82.04 82.82 87.27 90.56 84.86
Mean 81.64 84.38 84.10 88.72 92.58 94.21
Max 60.78 58.80 63.41 75.45 80.90 64.43
AdaPool 85.45 90.91 91.56 92.61 95.71 95.66
GLOT 86.93 94.52 94.18 93.38 96.14 95.95

Table 3: Zero-shot performance on seven diverse tasks from the MTEB benchmark. Prior to
evaluation, we train all learnable pooling heads on the MS MARCO dataset. The best performance
for each frozen backbone is in bold.

Model Method EmotionClass. SciFact RedditClust. AskUbuntu STS12 TwitterSemEval SummEval
ACC ↑ NDCG@10 ↑ V-MEAS. ↑ MAP ↑ COS. SPEA. ↑ MAX AP. ↑ COS. SPEA. ↑

B
E

R
T

[CLS] 0.2412 0.0231 0.1417 0.4137 0.2153 0.3433 0.2792
Mean 0.3361 0.1769 0.2777 0.4584 0.3087 0.5613 0.2983
Max 0.2812 0.2771 0.2241 0.4553 0.3175 0.5450 0.3022

AdaPool 0.3513 0.2224 0.3403 0.4778 0.3941 0.5195 0.2918
GLOT 0.3715 0.2485 0.3630 0.5020 0.4862 0.5623 0.3068

R
oB

E
R

Ta

[CLS] 0.2759 0.0900 0.1908 0.4439 0.1667 0.4848 0.2347
Mean 0.2520 0.0825 0.1850 0.4621 0.3210 0.5456 0.2986
Max 0.2200 0.0116 0.1354 0.4491 0.2667 0.5000 0.2583

AdaPool 0.2135 0.0042 0.1475 0.4513 0.2026 0.4744 0.2276
GLOT 0.2909 0.2605 0.2184 0.4687 0.3688 0.5598 0.3083

Sm
ol

L
M

2 [EOS] 0.2252 0.0012 0.1418 0.4113 0.1900 0.3613 0.2271
Mean 0.2396 0.1313 0.1708 0.4428 0.3824 0.4256 0.2335
Max 0.1923 0.0385 0.0960 0.4382 0.2458 0.3650 0.2530

AdaPool 0.2360 0.1702 0.1905 0.4461 0.4322 0.4153 0.2591
GLOT 0.2471 0.1834 0.2306 0.4529 0.4754 0.4343 0.2628

Ti
ny

L
la

m
a [EOS] 0.2044 0.0042 0.0689 0.4275 0.1297 0.3532 0.2602

Mean 0.1898 0.0126 0.0687 0.4269 0.1633 0.3150 0.2450
Max 0.1820 0.0049 0.0591 0.4292 0.1842 0.3588 0.1178

AdaPool 0.2904 0.0602 0.1688 0.4004 0.0329 0.2811 0.2521
GLOT 0.2905 0.0916 0.1800 0.4341 0.2369 0.3804 0.2649

L
L

aM
A

-3
B [EOS] 0.2765 0.0087 0.1979 0.4420 0.2494 0.4141 0.1917

Mean 0.2920 0.4247 0.3034 0.4971 0.4296 0.4430 0.1924
Max 0.2478 0.4087 0.1943 0.4906 0.3367 0.4196 0.2347

AdaPool 0.2185 0.4140 0.2774 0.4946 0.3765 0.3216 0.2350
GLOT 0.3046 0.4586 0.3301 0.5103 0.4616 0.4431 0.2658

M
is

tr
al

-7
B [EOS] 0.2662 0.0033 0.1858 0.4352 0.2307 0.3846 0.2042

Mean 0.2995 0.3735 0.2544 0.4774 0.3824 0.4106 0.1964
Max 0.2142 0.2116 0.1015 0.4577 0.3017 0.4151 0.2470

AdaPool 0.2832 0.4268 0.2398 0.4767 0.3641 0.3510 0.2346
GLOT 0.3016 0.4414 0.2623 0.4821 0.3905 0.4221 0.2774

4.4 LARGE-SCALE BENCHMARKING ON MTEB

To assess GLOT’s performance as a general-purpose sentence encoder, we evaluate it on seven diverse
tasks from the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 2023). Since
many tasks are zero-shot, all learnable heads are first trained on the MS MARCO dataset (Bajaj et al.,
2016) with a contrastive loss while keeping the LLM backbones frozen. The specific MTEB tasks are
detailed in Appendix B.

The results in Table 3 show that GLOT is a robust performer across all tasks for both encoder- and
decoder-only architectures. For RoBERTa, GLOT achieves the best score on all seven tested tasks,
with a notable ×3 improvement on SciFact. This advantage extends to decoders: with the Llama-3B
backbone, GLOT secures a top performance of 0.5103 MAP on AskUbuntuDupQuestions, rivaling
strong encoder-only models. This strong general-purpose performance, achieved without expensive
backbone fine-tuning, provides a clear affirmative answer to (RQ3).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

50

60

70

80

90

100
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

)
20% Distractors 50% Distractors

110M 360M 1.1B 3B 7B
Parameters (log scale)

50

60

70

80

90

100

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

80% Distractors

110M 360M 1.1B 3B 7B
Parameters (log scale)

90% Distractors

[CLS]/[EOS] Mean Max AdaPool GLOT (Ours)
BERT RoBERTa SmolLM2 TinyLlama LLaMA-3B Mistral-7B

Figure 3: Robustness to signal dilution on the diagnostic stress test. Each of the four panels
displays the classification accuracy for all pooling methods at a specific distractor ratio, which
increases from 20% to 90%. Within each panel, backbone models are arranged along the x-axis by
their parameter count.

4.5 DIAGNOSTIC ANALYSIS: EVALUATING RELATIONAL ROBUSTNESS

To test for relational robustness under noise (RQ4), we design a synthetic diagnostic task inspired
by ‘signal-in-noise’ evaluations (Brothers, 2025) and the ‘Needle in a Haystack’ paradigm (Kam-
radt, 2023). The test involves injecting a short phrase containing a logical dependency (e.g.,
...not...keys...) into a long sequence of random words. A binary classifier must then
interpret the logic of the signal phrase, with difficulty controlled by increasing the distractor ratio
from 20% to 90%. The pseudo-code for synthetic data generation is presented in Algorithm 2 of
Appendix B.

The results in Figure 3 show a stark divergence. As noise increases, the accuracy of baseline methods
collapses; on Mistral-7B, AdaPool’s accuracy plummets from 92.2% to 78.4%, and Mean pooling
drops to 63.8%. In contrast, GLOT remains robust, maintaining over 97% accuracy even at the 90%
distractor level. This confirms that GLOT’s explicit token graph successfully bypasses the signal
dilution that plagues methods reliant on global summary statistics. Full results are available in Table 7
in Appendix C.

4.6 ABLATIONS AND ANALYSIS

We conduct a series of ablations and analyses to validate GLOT’s design choices and quantify its
computational efficiency.

Impact of Graph Sparsity. To understand the importance of constructing a well-formed semantic
graph, we ablate the similarity threshold parameter, τ , using the Mistral-7B backbone on GLUE
benchmark. As shown in Table 4, the graph structure is critical to performance. When τ = 0.0,
the graph is fully connected, allowing noisy or irrelevant token relationships to dilute the message
passing process, resulting in suboptimal performance on all tasks. As we increase τ , pruning weaker

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: An ablation study on the impact of graph sparsity in GLOT. This table shows performance
on GLUE tasks using the Mistral-7B backbone as we vary the similarity threshold (τ) for token graph
construction. All scores are multiplied by 100, and the best result for each task is in bold.

Method CoLA SST-2 STS-B MRPC QQP MNLI-m MNLI-mm QNLI RTE WNLI
MCC ↑ ACC ↑ SPEA. ↑ F1 ↑ F1 ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑

GLOT (τ = 0.0) 50.19 93.69 80.34 81.04 62.79 49.09 49.46 52.85 49.81 38.03
GLOT (τ = 0.2) 53.40 94.38 80.48 82.83 62.53 51.66 53.22 54.15 49.45 36.62
GLOT (τ = 0.4) 51.73 93.46 80.40 80.25 64.07 48.81 49.94 60.93 50.54 40.84
GLOT (τ = 0.6) 54.30 93.23 80.29 80.06 63.49 49.36 50.01 53.67 54.15 56.34
GLOT (τ = 0.8) 52.48 92.66 80.26 79.87 63.22 48.92 49.66 55.09 52.70 56.34

Table 5: A comparison of training methods by resource consumption and performance on the
CoLA task, using the Mistral-7B backbone. We contrast our frozen-backbone approach (GLOT)
against full fine-tuning (Full FT) and LoRA. Batch runtime is reported as the mean ± standard
deviation over 10 measurements.

Method # Trainable Params GPU Memory (GB)↓ Batch Runtime (ms)↓ MCC↑
Full FT + EOS 7.11B 32.59 1318.8± 1.1 49.63
LoRA (r = 64) + EOS 167.8M 33.50 1454.6± 1.1 48.23
GLOT (ours) 8.92M 0.42 13.4± 3.0 53.29

edges, performance steadily improves across most tasks, plateauing in the range of τ = 0.4− 0.6.
This confirms that not all token relations are equally important; by focusing on the strongest semantic
connections via relational learning, GLOT produces a more robust sentence representation.

Computational Efficiency. To address (RQ3), we compare the resource consumption of GLOT
against full fine-tuning (Full FT) and Parameter-Efficient Fine-Tuning (PEFT) with LoRA (Hu et al.,
2022). The results in Table 5 highlight the dramatic efficiency of our approach. GLOT requires only
8.92M trainable parameters, which is approximately 20× fewer than LoRA. This parameter efficiency
translates directly to a minimal memory footprint of only 0.42 GB, compared to over 32 GB for the
other methods. Consequently, GLOT is over 100× faster per training batch. This demonstrates that
our method provides a practical and accessible way to generate high-quality embeddings from large,
frozen LLMs on consumer-grade hardware.

5 CONCLUSION

As LLMs continue to scale, the computational cost of full fine-tuning becomes prohibitive, establish-
ing the need for improved pooling methods that operate on frozen backbones as a crucial research
problem. In this work, we addressed a fundamental limitation of standard pooling: that it treats token
hidden states as an independent set of vectors, discarding the rich relational structure captured by
language models. We introduced GLOT, a lightweight and parameter-efficient pooling head that
instantiates a new paradigm of relational learning followed by aggregation. GLOT first constructs a
latent token-similarity graph, refines token representations using a GNN, and then aggregates them
with an attention mechanism.

Through comprehensive experiments, we demonstrated that GLOT consistently outperforms strong
baselines across a wide range of tasks and on both encoder- and decoder-only models. Our diagnostic
stress test provided direct evidence that GLOT’s graph-based learning makes it remarkably robust to
the signal dilution that plagues traditional pooling. Furthermore, we showed that GLOT is up to two
orders of magnitude more computationally efficient than parameter-efficient fine-tuning techniques
like LoRA, making it a practical solution for adapting billion-parameter models.

Our findings challenge the view that pooling is a routine final step, showing instead that a carefully
designed, relational learning-based head can unlock significant performance from frozen models.
This work opens several avenues for future research, including exploring learnable graph construction
mechanisms and applying the “relational learning before compression” paradigm to other modalities,
such as pooling patch embeddings in Vision Transformers.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work primarily focuses on developing a new pooling methodology and is evaluated on publicly
available, standard academic benchmarks, including GLUE, MTEB, and IMDB. We do not use any
private or sensitive user data, and our experiments did not involve human subjects. We acknowledge
that the pre-trained language models used as backbones in our study may reflect societal biases
present in their training corpora. Our proposed method, GLOT, operates on the outputs of these
models and does not introduce new sources of bias, nor does it explicitly mitigate biases inherent in
the backbone models. We intend for this work to contribute to the development of more efficient and
robust NLP models, and we do not foresee any direct negative societal impacts from its application.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we will release our source code and all trained model
checkpoints upon the paper’s acceptance. Our methodology is described in Section 3, with detailed
pseudo-code available in Algorithm 1. Appendix B provides a comprehensive description of our
experimental setup, including the specific backbone models used, training and evaluation protocols,
and all hyperparameters. All datasets used in our experiments are standard benchmarks publicly
available through the Hugging Face Datasets library.

USAGE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we utilized LLMs. Its role was strictly limited to that of
grammatical assistance. The LLM was not used for research ideation, experimental design, data
analysis, or the generation of any core scientific content. The authors take full responsibility for all
content and claims presented in this paper.

REFERENCES

Eneko Agirre, Llu’is M‘arquez, and Richard Wicentowski (eds.). Proceedings of the Fourth Inter-
national Workshop on Semantic Evaluations (SemEval-2007). Association for Computational
Linguistics, Prague, Czech Republic, June 2007.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence
embeddings. In International conference on learning representations, 2017.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica,
Saurabh Tiwary, and Tong Wang. MS MARCO: A human generated machine reading comprehen-
sion dataset. In NeurIPS 2016 Deep Learning for Question Answering (InCoCo@NIPS) Workshop,
2016.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. The second PASCAL recognising textual entailment challenge. 2006.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini. The
fifth PASCAL recognizing textual entailment challenge. 2009.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges, 2021. URL https://arxiv.org/abs/2104.
13478.

Greyson Brothers. Robust noise attenuation via adaptive pooling of transformer outputs, 2025. ICML
2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1–61, 2023.

10

https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evaluating predictive uncertainty, visual object
classification, and recognising tectual entailment, pp. 177–190. Springer, 2006.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the International Workshop on Paraphrasing, 2005.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
International Conference on Learning Representations (ICLR), 2021.

Kawin Ethayarajh. How contextual are contextualized word representations? comparing the geometry
of bert, elmo, and gpt-2 embeddings. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 55–65, 2019.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. In Proceedings of EMNLP, pp. 6894–6910, 2021.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual entailment
and paraphrasing, pp. 1–9. Association for Computational Linguistics, 2007.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. Pmlr, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng Wang. Text level graph neural
network for text classification. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.),
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.
3444–3450, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1345. URL https://aclanthology.org/D19-1345/.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825.

Greg Kamradt. Needle In A Haystack: Pressure Testing LLMs.
Blog post, nov 2023. URL https://gregkamradt.com/blog/
needle-in-a-haystack-evaluating-llms-on-long-context-recall.
The original test and results that popularized the ’Needle in a Haystack’ method for evaluating
long-context recall in Large Language Models.

11

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/D19-1345/
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://gregkamradt.com/blog/needle-in-a-haystack-evaluating-llms-on-long-context-recall
https://gregkamradt.com/blog/needle-in-a-haystack-evaluating-llms-on-long-context-recall

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Omar Khattab and Matei Zaharia. ColBERT: Efficient and effective passage search via contextualized
late interaction over BERT. In Proceedings of SIGIR, pp. 39–48, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015. URL https://arxiv.org/abs/
1412.6980.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. NV-embed: Improved techniques for training LLMs as generalist embedding
models. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=lgsyLSsDRe.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 7871–7880, 2020.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Tomáš
Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen
Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue,
Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Arthur Mus-
tar, Sanchit Mangrulkar, Alexander M. Rush, and Thomas Wolf. Datasets: A community library for
natural language processing. In Proceedings of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations, pp. 175–184. Association for Computational
Linguistics, 2021. URL https://aclanthology.org/2021.emnlp-demo.21.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the sentence
embeddings from pre-trained language models. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 9119–9130, 2020.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv:1907.11692, 2019.

Yonghao Liu, Renchu Guan, Fausto Giunchiglia, Yanchun Liang, and Xiaoyue Feng. Deep attention
diffusion graph neural networks for text classification. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 8142–8152, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.642. URL https://aclanthology.org/2021.emnlp-main.642/.

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
text retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2421–2425, 2024.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150.
Association for Computational Linguistics, 2011.

Meta AI. Llama 3.2: New open and customizable models with vision and on-device
capabilities. Blog post, October 2024. URL https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/.

12

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=lgsyLSsDRe
https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2021.emnlp-main.642/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. Mteb: Massive text embedding
benchmark. In Proceedings of the 17th Conference of the European Chapter of the Association for
Computational Linguistics, pp. 2014–2037. Association for Computational Linguistics, 2023.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. Generative representational instruction tuning, 2025. URL https://arxiv.
org/abs/2402.09906.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814,
2010.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32. Curran Associates,
Inc., 2019.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 2019. URL https://openai.com/
research/language-models-are-unsupervised-multitask-learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of EMNLP, pp. 2383–2392. Association for
Computational Linguistics, 2016.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of EMNLP-IJCNLP, pp. 3982–3992, 2019.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic web
conference, pp. 593–607. Springer, 2018.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of EMNLP, pp. 1631–1642, 2013a.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pp. 1631–1642. Association for Computational Linguistics, 2013b.

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou. Whitening sentence representations for better
semantics and faster retrieval. arXiv preprint arXiv:2103.15316, 2021.

Yixuan Tang and Yi Yang. Pooling and attention: What are effective designs for llm-based embedding
models?, 2024. URL https://arxiv.org/abs/2409.02727.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Gan, Vighnesh Gante, Gartheeban Gholami, Vassilis Gkoumas, Kshitij Goyal,
Thomas Hart, Sunny Hsia, Jason Huang, Alexandra Ispas, Jack Jacob, Saumya Jha, Anirudh
Kumar, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,

13

https://arxiv.org/abs/2402.09906
https://arxiv.org/abs/2402.09906
https://openai.com/research/language-models-are-unsupervised-multitask-learners
https://openai.com/research/language-models-are-unsupervised-multitask-learners
https://arxiv.org/abs/2409.02727

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Todor Mihaylov, Igor Molybog, Ylan Morisot, Victor O’Beirne, Eoin O’Sullivan, Alexander
Pirogov, Roman Rabbat, Amjad Raghuraman, Sainbayar Ramjee, Ruan Ras, Jérémy Rault, Nicolas
Rolland, Baptiste Rozière, Mohit Sachan, Todd Sawyers, Mykola Seljan, Adrien Seznec, Sharan
Sun, Adel Tazairt, Gabriel Synnaeve, Yuxin Tan, Lilian Tang, Ross Taylor, Adina Williams, Jean
Kenebrew, Mannan Zaheer, Ahmed El-Kishky, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP. Association for Computational Linguistics, 2018.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving
text embeddings with large language models. arXiv preprint arXiv:2401.00368, 2023.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training, 2024. URL
https://arxiv.org/abs/2212.03533.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
arXiv preprint 1805.12471, 2018.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pp. 1112–1122. Association for Computational Linguistics,
2018. doi: 10.18653/v1/N18-1101.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45. Association for Computational Linguistics, 2020.
URL https://aclanthology.org/2020.emnlp-demos.6.

Jinming Xing, Dongwen Luo, Chang Xue, and Ruilin Xing. Comparative analysis of pooling
mechanisms in llms: A sentiment analysis perspective. arXiv preprint arXiv:2411.14654, 2024.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Proceedings of
ICML, pp. 5453–5462, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification. In
Proceedings of AAAI, pp. 7370–7377, 2019.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–983,
2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

14

https://arxiv.org/abs/2212.03533
https://aclanthology.org/2020.emnlp-demos.6
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORK

Fine-Tuning vs. Frozen Backbones for Embedding. A significant body of work adapts decoder-
only LLMs into powerful text embedding models through extensive fine-tuning (Wang et al., 2023;
Lee et al., 2025; Muennighoff et al., 2025; Ma et al., 2024; Tang & Yang, 2024). These methods
achieve state-of-the-art performance but require modifying the LLM backbone, often through full-
model training that is computationally prohibitive. GLOT sidesteps this entirely by operating on
completely frozen backbones. Our approach is therefore lightweight, accessible, and applicable to
both encoder-only and decoder-only models without expensive training.

The Geometry of Embedding Space. Recent studies reveal that token embeddings from LLMs
occupy anisotropic manifolds, which makes cosine similarity between pooled sentence vectors
unreliable (Ethayarajh, 2019; Li et al., 2020). While post-processing methods like whitening can
mitigate this (Su et al., 2021), they do not address the underlying information loss from pooling.
SBERT-style fine-tuning reshapes this geometry but is computationally expensive. Our work offers
an alternative: by constructing a similarity graph, GLOT operates on an approximation of the
intrinsic manifold geometry, preserving relational structures that are lost when pooling in the ambient
Euclidean space.

Applications of Graph Neural Networks. The success of Graph Neural Networks (GNNs) is
demonstrated by their wide-ranging application across numerous scientific and industrial domains.
In the life sciences, they have become a cornerstone for molecular property prediction and drug
discovery, where molecules are modeled as graphs of atoms and bonds (Gilmer et al., 2017; Xu
et al., 2019). Similarly, they are used to analyze complex protein-protein interaction networks in
bioinformatics. In the digital realm, GNNs power modern recommender systems by capturing the
intricate relationships between users and items (Ying et al., 2018), and they are essential for learning
over large-scale knowledge graphs (Schlichtkrull et al., 2018). Their foundational use case remains
the analysis of social networks, where they are applied to tasks like node classification and community
detection (Kipf & Welling, 2017; Hamilton et al., 2017). GNNs have also been successfully applied
in other areas, including modeling particle systems in physics simulations (Sanchez-Gonzalez
et al., 2020), processing 3D point clouds in computer vision, and solving complex combinatorial
optimization problems like the Traveling Salesperson Problem (Cappart et al., 2023).

B IMPLEMENTATION DETAILS

B.1 GENERAL SETUP

Hardware and Software. All experiments were conducted on a single NVIDIA A6000 GPU.
Our implementation is built using PyTorch (Paszke et al., 2019), with extensive use of the Hug-
ging Face ecosystem (Wolf et al., 2020), including transformers for backbone models and
datasets (Lhoest et al., 2021) for data loading. The graph-based components of our method are
implemented using PyTorch Geometric (Fey & Lenssen, 2019). Large-scale benchmarking was
performed using the mteb (Muennighoff et al., 2023) library, and retrieval metrics were calculated
using ranx.

Training Details. Unless otherwise noted, all trainable pooling heads were trained for 2 epochs
using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 2 × 10−4 and no weight
decay. We used a training batch size of 32 and an evaluation batch size of 64. For all experiments,
we used a fixed random seed of 42. To accelerate training, we implemented a feature to precompute
and cache the frozen backbone’s hidden states before training the pooling heads. We provide the
pseudocode for GLOT in Algorithm 1. The hyperparameter tuning shown in Table 6 using Weights
and Biases framework.

B.2 MODEL CONFIGURATIONS

Backbone Models. All backbone models were loaded from the Hugging Face Hub. For decoder-
only models, the tokenizer’s padding side was set to ‘right’. If a model did not have a pre-defined
padding token, the ‘[EOS]’ token was used.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 GLOT: Graph-based Token Pooling

Require: H ∈ RB×L×din : Batch of hidden states from a frozen LLM.
M ∈ {0, 1}B×L: Attention mask for the hidden states.
τ : Cosine similarity threshold for edge creation.
K: Number of layers in the TOKEN-GNN.

Ensure: Z ∈ RB×dout : Batch of final sentence embeddings.
1: function GLOT(H,M)
2: Glist ← []
3: for i = 1→ B do ▷ Step 1: Token Graph Construction
4: H ′

i ← H[i,M [i] == 1, :] ▷ Get valid tokens for sentence i
5: Si ← COSINESIMILARITY(H ′

i, H
′
i) ▷ Pairwise similarity matrix

6: Ai ← (Si > τ) ▷ Create adjacency matrix based on threshold
7: edge indexi ← ADJACENCYTOEDGES(Ai)
8: Glist.APPEND(nodes = H ′

i, edges = edge indexi)
9: end for

10: Gbatch ← BATCHGRAPHS(Glist) ▷ Combine graphs into a single batch
11: U0, edge index, batch idx← Gbatch.x,Gbatch.edge index,Gbatch.batch
12: Ulayers ← [U0]
13: for k = 1→ K do ▷ Step 2: Refinement with TOKEN-GNN
14: Uk−1 ← Ulayers[k − 1]
15: Uk ← GNN-LAYERk(Uk−1, edge index)
16: Ulayers.APPEND(Uk)
17: end for
18: Ufused ← JUMPINGKNOWLEDGECONCAT(Ulayers) ▷ Step 3: Feature Fusion
19: m← READOUTMLP(Ufused) ▷ Step 4: Readout Layer
20: π ← SOFTMAXBYGRAPH(m, batch idx) ▷ Normalize scores per sentence graph
21: Zpooled ← π ⊙ Ufused ▷ Apply attention weights
22: Z ← SCATTERADD(Zpooled, batch idx) ▷ Aggregate via weighted sum per graph
23: return Z
24: end function

Table 6: Hyperparameter search space for the GLOT pooling head. The final model configuration
was determined via a grid search over these values. The search was performed consistently across all
backbone models and datasets.

Hyperparameter Search Space
Optimization
Learning Rate {1e-3, 2e-4, 2e-5}
Weight Decay {0.0, 1e-5, 5e-5}
Token-GNN Architecture
GNN Layers (K) {2, 4}
GNN Hidden Dimension {64, 128, 256}
Jumping Knowledge {cat, max, mean, none}
Input Projection Dimension {128, 256, 512}
Graph Construction
Similarity Threshold (τ) {0.1, 0.3, 0.6}

Baseline Pooling Methods. We implemented all baselines within the same framework and evaluated
them to ensure a fair comparison.

• Static Methods: MEAN and MAX pooling operate over the non-padded token hidden states.
[CLS]/[EOS] pooling for encoder models takes the hidden state of the first token. For decoder
models, it takes the hidden state of the last non-padded token, identified via the attention
mask.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• AdaPool: Our implementation follows the original paper (Brothers, 2025), consisting of a
two-layer MLP with a Tanh activation that computes a scalar score for each token, followed
by a softmax and weighted average.

GLOT Configuration. Our GLOT is implemented using 2 layers of GATConv (Veličković et al.,
2018) with a hidden dimension of 128 and ReLU non-linearity (Nair & Hinton, 2010). As described
in the main paper, the graph is constructed by creating edges between tokens where their cosine
similarity exceeds a threshold of τ = 0.6. Following the GNN layers, we use a ‘cat’ mode for
Jumping Knowledge (Xu et al., 2018) to aggregate features from all layers before the final attention
readout.

B.3 BENCHMARK-SPECIFIC DETAILS

GLUE Benchmark. For all tasks from the General Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2018), we fine-tune the lightweight GLOT head and a task-specific linear
classifier jointly on the training sets. Sequences are truncated to a maximum length of 128 tokens.
For larger datasets (QQP, QNLI, MNLI), we train on a subsample of 20,000 examples.

CoLA: The Corpus of Linguistic Acceptability (Warstadt et al., 2018) requires the model to de-
termine if a sentence is grammatically correct. Task: Binary classification. Loss: Cross-
Entropy Loss.

SST-2: The Stanford Sentiment Treebank (Socher et al., 2013a) consists of movie reviews. Task:
Binary sentiment classification (positive/negative). Loss: Cross-Entropy Loss.

STS-B: The Semantic Textual Similarity Benchmark (Agirre et al., 2007) involves predicting a
similarity score between 1 and 5 for a pair of sentences. Task: Regression. Loss: Mean
Squared Error (MSE) Loss.

MRPC: The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) contains sentence
pairs. Task: Binary classification to determine if the sentences are paraphrases. Loss:
Cross-Entropy Loss.

QQP: The Quora Question Pairs dataset requires determining if two questions are semantically
equivalent. Task: Binary classification. Loss: Cross-Entropy Loss.

MNLI: The Multi-Genre Natural Language Inference corpus (Williams et al., 2018) provides a
premise and a hypothesis. Task: Three-class classification (entailment, contradiction,
neutral). Loss: Cross-Entropy Loss.

QNLI: The Question Natural Language Inference dataset, derived from SQuAD (Rajpurkar et al.,
2016). Task: Binary classification to determine if a context sentence contains the answer to
a question. Loss: Cross-Entropy Loss.

RTE: The Recognizing Textual Entailment datasets (Dagan et al., 2006; Bar Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009). Task: Binary classification to determine
if a premise entails a hypothesis. Loss: Cross-Entropy Loss.

Long-Text Classification (IMDB). For the IMDB Large Movie Review dataset (Maas et al., 2011),
sequences were truncated to a maximum length of 512 tokens. The dataset contains paragraph-length
movie reviews. Task: Binary sentiment classification. Loss: Cross-Entropy Loss.

MTEB Evaluation. For the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al.,
2023), we follow a two-stage process. First, the learnable pooling heads are trained on a large-scale
retrieval dataset, and then they are evaluated in a zero-shot setting on the downstream MTEB tasks.

• Training Stage: All learnable heads were trained on the MS MARCO (Bajaj et al., 2016)
passage ranking dataset. This involves predicting relevant text passages for a given query.
Task: Passage retrieval. Loss: A symmetric in-batch contrastive loss with a temperature of
0.07.

• Zero-shot Evaluation Stage: The trained encoders are then evaluated on the following
seven tasks without any further fine-tuning:

– EmotionClassification: A multi-class classification task on tweets.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 Synthetic Diagnostic Dataset Generation

Require: N : Number of samples to generate.
Require: L: Total sequence length of each sample.
Require: dr: The target distractor ratio (e.g., 0.2, 0.5, 0.8, 0.9).
Require: T : A set of signal phrase templates, each with an associated label (e.g., ‘(“...has [X] but

not [Y]”, 0)‘).
Require: VD: A large vocabulary of distractor words.

1: function GENERATEDIAGNOSTICDATA(N,L, dr, T ,VD)
2: D ← ∅ ▷ Initialize an empty dataset
3: LD ← ⌊L× dr⌋ ▷ Calculate number of distractor tokens
4: LS ← L− LD ▷ Calculate number of signal tokens
5: for i = 1 to N do
6: (template, label)← RandomChoice(T)
7: signal tokens← Instantiate(template) ▷ e.g., fill placeholders like [X] and [Y]
8: ▷ Ensure signal phrase fits the allocated length
9: if length(signal tokens) > LS then

10: signal tokens← signal tokens[: LS] ▷ Truncate if too long
11: else
12: padding ← LS − length(signal tokens)
13: signal tokens← concat(signal tokens,Sample(VD, padding)) ▷ Pad with

distractors if too short
14: end if
15: distractor tokens← Sample(VD, LD) ▷ Sample distractors with replacement
16: pinject ← RandomInt(0, LD) ▷ Choose a random injection point
17: sequence← concat(distractor tokens[: pinject], signal tokens, distractor tokens[pinject :

])
18: D ← D ∪ {(sequence, label)}
19: end for
20: return D
21: end function

– SciFact: A re-ranking task to verify scientific claims.
– RedditClustering: An unsupervised task to cluster Reddit comments.
– AskUbuntuDupQuestions: A retrieval task to find duplicate questions.
– STS12: A semantic similarity regression task.
– TwitterSemEval2015: A pair classification task for paraphrase detection.
– SummEval: A summarization evaluation task based on semantic similarity.

B.4 DIAGNOSTIC TASK GENERATION

The synthetic diagnostic task was created to isolate and test for relational understanding under noise.

• Signal Phrases: We created a small set of template phrases involving a logical dependency,
such as negation (e.g., “The file has [X] but not [Y]”).

• Distractors: The “haystack” was formed by sampling words randomly from a large general-
purpose vocabulary derived from English Wikipedia.

• Injection: For each example, a 256-token sequence of random distractor words was gener-
ated. A signal phrase was then injected at a random position within this sequence.

• Difficulty Control: The difficulty was controlled by the distractor ratio, which we varied
from 20

The final dataset consists of 10,000 training examples and 2,000 test examples for each distractor
ratio.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

110M 360M 1.1B 3.2B 7B
Parameters (log scale)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Pe

rfo
rm

an
ce

 (z
-s

co
re

)

Single-Sentence Classification

110M 360M 1.1B 3.2B 7B
Parameters (log scale)

Sentence-Pair Classification

110M 360M 1.1B 3.2B 7B
Parameters (log scale)

Semantic Textual Similarity
[CLS]/[EOS] Mean Max AdaPool GLOT (Ours)

Figure 4: Z-score normalized performance on the GLUE benchmark, aggregated by task
category. Performance, represented as a z-score, is plotted against the number of parameters in the
frozen backbone model (log scale). A higher z-score indicates better relative performance compared
to the average of all tested methods for that setting.

C ADDITIONAL RESULTS

GLUE Benchmark. To provide a high-level summary of the comprehensive GLUE results pre-
sented in Table 1, we visualize the performance trends in Figure 4. To compare performance across
different tasks and their associated metrics (e.g., Accuracy vs. MCC) on a single, unified scale, we
normalized the scores. The methodology was as follows: for each of the eight GLUE tasks and
for each of the six backbone models, we took the resulting scores of all five pooling methods and
calculated their mean (µ) and standard deviation (σ). Each individual score x was then converted
to a z-score via z = (x − µ)/σ. These z-scores were then averaged within their respective task
categories. A higher z-score indicates that a method’s performance is significantly above the average
of all tested methods for a given experimental setting. The plots clearly show that GLOT consistently
achieves the highest z-score, often one or more standard deviations above the mean performance.
This visualization powerfully reinforces our primary finding: the performance advantage of GLOT is
not confined to specific tasks or model scales but is a robust and general phenomenon.

C.1 DIAGNOSTIC TASK: DETAILED RESULTS AND ANALYSIS

To provide a controlled evaluation of relational robustness under noise (RQ4), we designed a
synthetic diagnostic task. Inspired by ‘signal-in-noise’ evaluations (Brothers, 2025) and the ‘Needle
in a Haystack’ paradigm (Kamradt, 2023), our stress test is specifically adapted to probe for relational
understanding rather than simple factual recall. We programmatically generate sequences by injecting
a short “signal phrase” with a logical dependency (e.g., negation) into a long sequence of random
distractor words. The task is a binary classification based on the logic within the signal phrase. We
systematically increase the task’s difficulty by increasing the distractor ratio from 20% to 90%. The
full generation process is detailed in Algorithm 2.

The complete results for this stress test are presented in Table 7. The data provides a clear and
quantitative confirmation of our hypothesis: GLOT’s performance remains remarkably stable even
at extreme noise levels, while the performance of all baseline methods degrades significantly as the
signal is diluted.

This trend is consistent across all architectures. For the encoder-only BERT backbone, GLOT’s
accuracy remains consistently above 97% across all distractor ratios. In contrast, the next-best
baseline, AdaPool, sees its performance drop sharply from 91.4% at 20% distractors to just 61.6% at
90% distractors. The pattern is mirrored in decoder-only models. With the Llama backbone, GLOT’s
accuracy is nearly perfect at low noise (99.6%) and stays high at 83.2% even at the extreme 90%
distractor ratio. All other methods, including using the standard ‘[EOS]’ token, see their performance
collapse, with most falling to near-chance levels. This analysis demonstrates that by explicitly
modeling token relationships, GLOT can reliably identify and reason over the crucial signal phrase,
whereas methods that rely on global summary statistics are overwhelmed by the distractor tokens.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Full results for the diagnostic stress test, which evaluates robustness to signal dilution.
The table reports the classification accuracy for all pooling methods across six backbones as the ratio
of distractor tokens in the input sequence increases from 20% to 90%. The best results for each
model are in bold.

Model Method 20% Distractors 50% Distractors 80% Distractors 90% Distractors

B
E

R
T

[CLS] 70.8 58.2 57.2 67.6
Mean 68.0 58.6 64.2 53.4
Max 57.4 50.8 51.6 50.4
AdaPool 91.4 78.8 65.6 61.6
GLOT 97.2 97.0 97.8 98.8

R
oB

E
R

Ta

[CLS] 83.6 63.4 51.6 48.6
Mean 73.2 64.6 67.8 57.2
Max 56.8 60.0 59.0 50.2
AdaPool 83.0 67.2 59.8 59.2
GLOT 92.6 99.2 98.8 98.2

Sm
ol

L
M

2 [CLS] 72.0 57.6 58.6 51.4
Mean 70.2 56.2 54.6 51.4
Max 54.0 50.6 46.2 51.4
AdaPool 78.2 57.6 54.2 55.2
GLOT 96.0 93.6 92.4 92.2

Ti
ny

L
la

m
a [EOS] 73.2 58.8 57.4 56.6

Mean 83.4 56.6 56.8 56.4
Max 76.4 54.0 58.8 51.4
AdaPool 78.4 66.4 57.4 53.0
GLOT 96.4 94.8 88.4 94.0

L
L

aM
A

-3
B [EOS] 84.4 69.8 69.0 68.4

Mean 82.4 65.0 64.4 61.8
Max 63.0 50.8 50.6 54.6
AdaPool 92.6 69.8 70.0 51.0
GLOT 99.6 95.4 89.8 93.2

M
is

tr
al

-7
B [EOS] 89.4 72.6 69.4 70.6

Mean 93.0 74.0 71.4 63.8
Max 60.8 60.0 57.4 55.6
AdaPool 92.2 86.6 85.0 78.4
GLOT 99.2 97.6 97.4 97.2

20

	Introduction
	Related Work
	Method
	Problem Setup
	Glot

	Experiments and Discussion
	Experimental Setup
	General Language Understanding Evaluation (GLUE Benchmark)
	Long-Text Classification
	Large-Scale Benchmarking on MTEB
	Diagnostic Analysis: Evaluating Relational Robustness
	Ablations and Analysis

	Conclusion
	Additional Related Work
	Implementation Details
	General Setup
	Model Configurations
	Benchmark-Specific Details
	Diagnostic Task Generation

	Additional Results
	Diagnostic Task: Detailed Results and Analysis

