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Abstract
Speculative Sampling (SpS) has been introduced
to speed up the inference of large language models
(LLMs) by generating multiple tokens in a single
forward pass under the guidance of a reference
model, while preserving the original distribution.
We observe that SpS can be derived through maxi-
mum coupling on the token distribution. However,
we find that this approach is not optimal as it ap-
plies maximum coupling incrementally for each
new token, rather than seeking a global maximum
coupling that yields a faster algorithm, given the
tree-space nature of LLM generative distributions.
In this paper, we shift our focus from distribu-
tions on a token space to those on a tree space.
We propose a novel class of Tree Monte Carlo
(TMC) methods, demonstrating their unbiased-
ness and convergence. As a particular instance
of TMC, our new algorithm, Accelerated Specu-
lative Sampling (ASpS), outperforms traditional
SpS by generating more tokens per step on aver-
age, achieving faster inference, while maintaining
the original distribution.

1. Introduction
Large language models (LLMs) have shown impressive per-
formance across a wide range of tasks such as text genera-
tion (Iyer et al., 2022; Chung et al., 2022), translation (Bojar
et al., 2017; Barrault et al., 2019), summarization (Liu &
Lapata, 2019), etc. The remarkable capabilities of these
models can largely be attributed to significant increases in
both the size of the models and the volume of data which
they’re trained on. However, a notable downside of these
models is their slow inference speed, which limits their
applicability in many scenarios.

This challenge has prompted the exploration of methods
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to accelerate the inference process without compromising
the quality of the outcomes. Speculative Sampling (SpS)
(Chen et al., 2023; Leviathan et al., 2023) is one recent
approach that aims to address this issue. SpS draws from
a more efficient reference model to generate what we call
reference tokens, and then uses the slower target model to
parallelly compute the probabilities of these tokens. Only
a subset of these reference tokens are retained as part of
the final sampling output. By employing a proper accep-
tance strategy, it’s possible to keep the output distribution
of the larger model intact. Moreover, by feeding batches of
reference tokens to the target model instead of processing
each token with a single forward pass, speculative sampling
could increase parallelism and reduce latency. This process
takes inspiration from speculative execution in processors,
thus earning its name. One of the key benefits of specula-
tive sampling is its ability to accelerate inference without
changes to the model architecture or retraining.

In Section 2, we will review the mathematical structure
underlying speculative sampling. We consider a joint distri-
bution formed by the sampling distribution of a reference
model and the probability that the target model accepts these
reference tokens. A reference token is accepted if and only
if it is sampled simultaneously by both the reference and
target models in this joint distribution. This mechanism
is closely related to the concept of maximum coupling, a
specific strategy in Monte Carlo simulations which aims
to maximize the probability of two or more stochastic pro-
cesses meeting at the same point. While commonly used in
Markov Chain Monte Carlo (MCMC) simulations to merge
chains, maximum coupling can also be applied to transfer
samples between two distinct distributions, like how spec-
ulative sampling aims to translate sampling results from a
reference distribution to a target distribution.

In Section 3, we present our key motivation of this paper:
speculative sampling is not always optimal. Although SpS
is derived from maximum coupling to ensure highest effi-
ciency, it applies maximum coupling incrementally for each
new token. Specifically, when generating more than one
reference token, the output space becomes a string space,
not a mere token space, but a product space of individual
token spaces. The maximum coupling within the string
space is not simply the product of maximum couplings in
each token space. Therefore, SpS is not optimal when the

1



Accelerated Speculative Sampling based on Tree Monte Carlo

number of generated reference tokens exceeds one. We will
illustrate this suboptimality and what the optimal solution
looks like with an example. We also highlight that the sam-
pling process must take into account the tree structure of
the generative space of LLMs, where each node represents
a potential token. This is where the concept of Tree Monte
Carlo methods comes into play.

In Appendix A, we introduces Tree Monte Carlo (TMC) as
methods for sampling paths within a tree-structured space.
We define the “tree-distribution” as the distribution among
all possible paths within the tree. The most interesting part
of TMC, compared to conventional Monte Carlo methods,
is that, the order of path introduce a natural partial order
among tree-distributions. This leads to the definition of
sub-distribution denoted as P1 ⪯ P2. We prove that sub-
samplers, which sample from a sub-distribution, could be
composed to recover the original distribution. The introduc-
tion of sub-samplers opens up new avenues to ensure that
the generative process on tree space adheres to the desired
distribution.

As a specific instance of TMC methods, we define Acceler-
ated Speculative Sampling (ASpS) in Appendix B, which
essentially modifies the sampling outcome of any given tree
sampler to construct a new sub-sampler. We demonstrate
that ASpS can correctly converge to the target distribution
of the target model, relying on the unbiased nature and con-
vergence properties of the sub-samplers. The inputs for
ASpS are identical to those used in SpS, involving reference
tokens sampled from a reference model, and the probability
distributions of both the target and reference models over
these reference tokens. The output space remains the same
as in SpS, yet ASpS tends to accept a higher average number
of tokens, thus leading to faster inference. In the section
Section 6, we show that ASpS accepts the same number of
tokens as SpS when the number of reference tokens equals
one, and it constantly outperforms SpS by accepting more
tokens when the number of reference tokens exceeds one.

Due to space limitation, we only show a digest of Appen-
dices A and B in the main paper, and move the complete
theory, derivation and proof to the appendix.

We summarize our contributions as follows:

• We propose TMC, which represents a paradigm shift from
distributions on token space to distributions on a tree
space. This includes a novel concept of sub-distributions
that are unique to the tree structure and the convergence
theorem of sub-samplers, which lay the foundational
work for theoretical guarantees on the convergence of
complex sampling methods over tree space. TMC offers
a unique perspective to the field of structured sampling
algorithms.

• We introduce ASpS, and provide theoretical guarantees

Reference
a b c

Target 0.5 0.3 0.2
a 0.3 0.3 0 0
b 0.4 0.1 0.3 0
c 0.3 0.1 0 0.2

Table 1. Single Token Generation with Speculative Sampling

that it maintains fidelity to the original distribution as
defined by the target model. ASpS requires the same
inputs as SpS without relying on additional information,
and it achieves faster inference speeds than SpS.

2. Background
We first examine the process of generating a single new
token through speculative sampling. Denote the token space
as Σ, the reference model as Pref , and the target model as P .
Upon sampling a token x from Pref , speculative sampling
generates a new token y with the probability:

Ps(y;x) =

min(1, P (x)
Pref (x)

) if y = x,
(1− P (x)

Pref (x)
)+(P (y)−Pref (y))+∑

z∈Σ(Pref (z)−P (z))+
if y ̸= x,

(1)

where (·)+ = max(0, ·). The joint distribution C(x, y) =
Pref(x)Ps(y;x), is just the solution to the maximum cou-
pling problem:

max
C

∑
x∈Σ

C(x, x)

s.t.
∑
y∈Σ

C(x, y) = Pref(x),
∑
x∈Σ

C(x, y) = P (y).

Consider a toy example in Table 1 where the vocabulary
Σ = {a, b, c}. The exact model probabilities are handpicked
for demonstration purposes. The couplings are highlighted
with colors indicating the number of tokens in agreement,
where light green means one matching token and dark green
indicates two. If the reference model samples a ‘b’ or ‘c’,
speculative decoding deterministically yields the same re-
sult. In the case of an ‘a’ being sampled, there’s a 60%
chance for ‘a’, and 20% chances each for ‘b’ and ‘c’. This
configuration is already optimal and leaves no room for
further refinement.

Speculative sampling (SpS) applies maximum coupling in-
crementally with each new token. Consider a scenario where
the reference model, upon sampling ‘a’, samples an addi-
tional token. The joint distribution for SpS is shown in
Table 2, where the notation aτ means that SpS accepts ‘a’
and does not proceed to generate another token.

The resulting joint distribution is stepwise product of
two maximum coupling. For instance, the probability
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Reference
a b c
0.5 0.3 0.2

aa ab ac
Accepted 0.2 0.2 0.1

a 0.3

aa 0.1 0.1 0 0
ab 0.1 0 0.1 0
ac 0.1 0.02 0.02 0.06
aτ 0 0 0 0 0 0

b 0.4 0.04 0.04 0.02 0.3 0
c 0.3 0.04 0.04 0.02 0 0.2

Table 2. An Illustration of Speculative Sampling Coupling

Reference
a b c
0.5 0.3 0.2

aa ab ac
Accepted 0.2 0.2 0.1

a 0.3

aa 0.1 0.1 0 0
ab 0.1 0 0.1 0
ac 0.1 0 0 0.1
aτ 0 0 0 0 0 0

b 0.4 0.05 0.05 0 0.3 0
c 0.3 0.05 0.05 0 0 0.2

Table 3. An Illustration of Accelerated Speculative Sampling

on the pairing (ac,b) is given by 0.02 = C(ac, b) =
C(a, b)Pref(c|a) = C(a, b)(Pref(ac)/Pref(a)) = 0.1 ×
(0.1/0.5).

3. Preliminary
We observe that SpS is not always optimal. In Table 2,
we notice that probability from (ac,b) can be reallocated
to enhance the overall strength of the coupling. An im-
proved solution is presented in Table 3, maintaining the
marginal distributions while increasing the average number
of accepted reference tokens.

Moving forward, this article aims to expand this improve-
ment into a formal method. To achieve this, it becomes nec-
essary to consider distributions on a tree space, where each
node represents a potential token. The sampling process
must comply with the inherent hierarchical relationships,
which inspires the introduction of Tree Monte Carlo in the
following section.

For instance, with a vocabulary of just two tokens, Σ =
{a, b}, and a target model with P (a|a) = 1/3 and P (b|a) =
2/3, we desire a joint distribution such as the one in Table 4.
Note that when the reference model generates ‘b’, sampling
cannot produce the sequences ‘aa’ or ‘ab’. The marginal
distribution of accepted reference tokens does not fully

Reference
a b
0.4 0.6

aa ab
Accepted 0.2 0.2

a 0.6
aa 0.13 0.13 0
ab 0.26 0.06 0.2
aτ 0.2 0 0 0.2

b 0.4 0 0 0.4

Table 4. Desired Joint Distribution in a Toy Example

replicate the target model—0.13 = Ps(aa) ̸= P (aa) =
0.2—yet it preserves the proportional relationship between
different branches—Ps(aa)

Ps(ab)
= P (a|a)

P (b|a) . This relationship mo-
tivates us to introduce the concept of sub-distribution, which
will be discussed in greater detail in the next section.

4. Tree Monte Carlo (TMC)
We start with a quick comparison to conventional Monte
Carlo methodology. Traditionally, Monte Carlo methods
involve sampling from a space X , which is inherently
equipped with a specific distribution P formalized by the
Kolmogorov axioms (Ω, F, P ), where Ω = X , F is a
σ-algebra, and P is a probability measure. To execute
the sampling process, one constructs a sampler function
sampler : B → X , where B is a source of randomness
that possesses a probability distribution PB . This source
could be, for instance, a perfectly random binary sequence
in B = {0, 1}N. The goal is to ensure that the result of the
sampling procedure sampler(b) is distributed according to
the probability P when the input b follows the distribution
PB .

In short, conventional Monte Carlo methodology takes a
probability distribution P defined over a space X , and the
goal is to design a sampler sampler : B → X such that
sampler(b) ∼ P when b ∼ PB .

Loosely speaking, Tree Monte Carlo (TMC) considers a tree
distribution (Definition A.3) P on the tree-structured space
(Definition A.2) X with S as the space of all paths and it
aims to design a tree sampler (Definition A.9) sampler :
B → S such that sampler(b) ∼ P ′ conforms to a sub-
distribution (Definition A.11) P ′ ⪯ P when b ∼ PB .

4.1. Tree Distribution and Sub-Distribution

This section will detail the formalism required to mathemati-
cally represent tree-structured spaces, tree distributions, and
sub-distribution.

Definition 4.1 (Path and Tree Space). A path σ is a finite
sequence, with the empty path ε = (). We define σi:j as
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the subsequence when i ≤ j or ε otherwise, σ + σ′ as the
concatenation of σ and σ′, σ + a as appending element a
to σ, and σ ≥ σ′ if σ = σ′ + σ′′ for some σ′′. σ > σ′

indicates strict extension (i.e., not equal). The length of a
path is denoted by len(σ).

A tree space X = (S,Σ) comprises a set of paths S = {σ =
(σ1, . . . , σn) | σi ∈ Σ(σ1:i−1),∀i ∈ [n]}, and a function Σ
representing the finite set of children for each node σ ∈ S.

On a tree space X , we can construct the prefix-induced σ-
algebra F : For any path s ∈ S, we consider the set of all
paths beginning with s, denoted by S≥s = {t ∈ S | t ≥ s}.
Then, we define F to be the smallest σ-algebra that contains
{S≥s|s ∈ S}.
Definition 4.2 (Tree distribution). A tree distribution is a
probability distribution on the tree space X formally rep-
resented as a triple (S, F, P̂ ), where F = σ({S≥s|s ∈ S})
and P̂ is the probability measure on the σ-algebra F .

We often work with several derived functions rather than
directly using P̂ :
Definition 4.3 (Path Probability and Support). For a given
tree distribution P , the probability of a path σ ∈ S is given
by P (σ) = P̂ (S≥σ). The support of the distribution, de-
noted as supp(P ), is the set of paths with non-zero proba-
bility, i.e., supp(P ) = {s ∈ S|P (s) > 0}.
Definition 4.4 (Child Node Probability). For each path
σ ∈ supp(P ) and each possible child a ∈ Σ(σ), we de-
fine the conditional probability of a given σ as P (a|σ) =
P (σ + a)/P (σ). Additionally, we introduce a special
symbol τ to represent termination at a node, and define
P (τ |σ) = 1 −

∑
a∈Σ(σ) P (a|σ) = P̂ ({σ})/P (σ), captur-

ing the probability that the path terminates at σ.
Theorem 4.5. If two tree distributions P1, P2 have the same
path probabilities, they are the same distribution. That is,

(∀σ ∈ S, P1(σ) = P2(σ)) =⇒ ∀U ∈ F, P̂1(U) = P̂2(U)

Definition 4.6 (Conditional Distributions on a Prefix).
Given a prefix path s ∈ supp(P ), we can induce a new
function P̂|s(U) = P̂ (U ∩ S≥s)/P̂ (S≥s), creating a new
probability measure that conditions on having a prefix s.
Equivalently, for any a ∈ Σ(σ), P|s(a|σ) is defined as
P (a|σ) if σ ≥ s and as the I(a = slen(σ)+1) if s > σ.
Definition 4.7 (Tree Sampler). A tree sampler is a function
sampler : B → S, where B is a source of randomness with
a given probability distribution PB , mapping each random
input to a path in the tree space S.
Definition 4.8 (Induced Tree Distribution by Sampler). Let
sampler : B → S be a tree sampler and PB the distribution
over B, for any set U ∈ F , the induced probability Ps is
defined as:

P̂s(U) = PB(sampler(b) ∈ U).

Now we define the crucial concept of a sub-distribution
within a tree space.
Definition 4.9 (Sub-distribution). Given two probability
distributions on the same tree space X , P1 and P2, we say
that P1 is a sub-distribution of P2, denoted as P1 ⪯ P2, if
the following holds:

∀σ ∈ supp(P1) ∩ supp(P2),∃c ∈ [0, 1],

∀a ∈ Σ(σ), P1(a|σ) = cP2(a|σ).
(2)

Note that sub-distribution is a partial order among tree-
distributions rather than a total order.
Theorem 4.10. For the sub-distribution P1 ⪯ P2, ∀σ ∈
S, P1(σ) ≤ P2(σ).

It is important to note that sub-distribution relationship is not
equivalent to that P1(σ) ≤ P2(σ) for all σ ∈ S; the latter is
just a necessary condition. A sub-distribution relationship
captures a more nuanced relation that involves both the
probabilities of prefixes and their child node probabilities.

4.2. Sub-Sampler and Its Convergence

We first introduce the concept of leaf-only tree distribution,
which conceptually represents the “target” of a tree Monte
Carlo process.
Definition 4.11 (Leaf-Only Tree Distribution). A tree dis-
tribution is called leaf-only if, for all paths σ ∈ supp(P )
with Σ(σ) ̸= ϕ, we have that P (τ |σ) = 0. This means that
the distribution assigns non-zero probability only to the leaf
nodes of the tree.

The leaf-only distribution is the maximal element in the
ordering of sub-distributions on a tree:
Theorem 4.12. If P1 ⪯ P2 and P1 is a leaf-only tree distri-
bution, then P2 is the same as P1.

The intuition is that a leaf-only distribution cannot be further
“refined”, and all probabilities are already allocated to the
leaves. Therefore it could serve as an endpoint for sequences
of tree Monte Carlo procedure.

Now we define the prefix tree sampler, which generates
sample that contains a specific prefix.
Definition 4.13 (Prefix Tree Sampler). A prefix tree sampler
is a function sampler : B × S → S that takes a random
input b ∼ PB and a prefix path σprefix ∈ S as inputs,
guaranteeing that ∀b, σprefix, sampler(b, σprefix) ≥ σprefix.

The induced distribution is expressed as:

P̂s(U ;σprefix) = PB(sampler(b, σprefix) ∈ U).

Definition 4.14 (Degenerate Prefix Tree Sampler). A prefix
tree sampler is called degenerate, if

∃σprefix,Σ(σprefix) ̸= ∅ ∧ Ps(τ |σprefix;σprefix) = 1.
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Definition 4.15 (Composition of Prefix Tree Samplers).
Considering two prefix tree samplers, samplerPs

and
samplerQs

, we define their composition by:

samplerPs◦Qs
(b, σprefix)

= samplerPs
(split1(b), samplerQs

(split2(b), σprefix)),

where b is assumed to be splittable into two independent
sources of randomness split1(b) and split2(b).

We denoted the n times self-composition as Pn
s .

The special case when n = 0 corresponds to a sampler that
does not extend the path at all:

samplerP 0
s
(b, σprefix) = σprefix.

This composition process is akin to forming Markov chains
on the space of tree paths S, where each composition step
can be viewed as a transition according to a Markov ker-
nel defined by the prefix tree samplers. Specifically, the
composite distribution for a set U is given by:

̂(Ps ◦Qs)(U ;σprefix) =
∑
σ′∈S

P̂s(U ;σ′)Q̂s({σ′};σprefix).

Definition 4.16 (Prefix Sub-Sampler). A prefix sub-sampler
is a type of prefix tree sampler Psub(·;σprefix) that yields
a sub-distribution of the original distribution when given
any prefix σprefix, provided that σprefix ∈ supp(P ). Specif-
ically,

∀σprefix ∈ supp(P ), Psub(·;σprefix) ⪯ P|σprefix
.

Theorem 4.17 (Prefix Sub-Samplers is Closed under Com-
position). Given a leaf-only tree distribution P and two pre-
fix sub-samplers Psub and Qsub, both P 0

sub and Psub ◦Qsub

are also prefix sub-samplers of P .

The above theorem highlights a distinct characteristic dif-
ferentiating Tree Monte Carlo (TMC) from the traditional
Markov chain Monte Carlo (MCMC). While traditional
MCMC methods also concern the composition of Markov
kernels, TMC is unique in that the composition of sub-
samplers maintains the order structure between tree distri-
butions. Such order structure is derived from hierarchical
nature of tree, and is absent in traditional Monte Carlo.

We can also establish monotone convergence under this
composition.

Theorem 4.18 (Monotonicity under Composition of Prefix
Sub-Samplers). Given a tree distribution P and two prefix
sub-samplers Psub and Qsub, for all paths σprefix, σ ∈ S,
the composition of the two sub-samplers satisfies:

(Psub ◦Qsub)(σ;σprefix) ≥ Qsub(σ;σprefix).

It is important to note that a stronger claim would not gener-
ally hold. We may wish for a stronger sense of monotonicity,
suggesting that Qsub is a sub-distribution of the composi-
tion, stated as

∀σprefix ∈ S, (Psub ◦Qsub)(·;σprefix) ⪰ Qsub(·;σprefix),

where the inequality is interpreted as sub-distributions. How-
ever, such a claim is not universally valid.

Finally, we prove the remarkable convergence property that
sub-sampler exhibits.
Theorem 4.19 (Convergence of Non-Degenerate Prefix Sub-
-Samplers to a Leaf-Only Distribution). Given a leaf-only
tree distribution P , a non-degenerate prefix sub-sampler
Psub, iteratively applied to itself, converges to P in point-
wise distance, more formally:

∀σp ∈ supp(P ),∀σ ∈ S, lim
n→∞

Pn
sub(σ;σp) = P|σp

(σ).

Apart from pointwise convergence for path probability, we
can also establish stronger convergence in terms of total
variation distance with better uniformity.
Theorem 4.20 (Uniform Convergence of Non-Degenerate
Prefix Sub-Samplers to a Leaf-Only Distribution). Given a
leaf-only tree distribution P , a non-degenerate prefix sub-
sampler Psub, iteratively applied to itself, converges to P in
total variation distance, more formally:

∀σp ∈ supp(P ), lim
n→∞

TV(P̂n
sub(·;σp), P̂|σp

) = 0,

where the total variation distance is defined as

TV(P̂n
sub(·;σp), P̂|σp

) = max
U∈F

(P̂n
sub(U ;σp)− P̂|σp

(U)).

Furthermore, the total variation distance is monotonically
decreasing with respect to n.

5. Accelerated Speculative Sampling (ASpS)
After establishing the convergence properties of sub-
samplers, the next challenge lies in how to construct such
sub-samplers. It is essential to align their design with the
specific structure of the problem at hand. In the following
section, we will establish SpS and ASpS as examples of
sub-samplers.

5.1. Construct Sub-Sampler from a Reference Sampler

Definition 5.1 (Pseudo Leaf-Only Distribution). A tree
distribution P is called pseudo leaf-only if ∀σ ∈
supp(P ), P (τ |σ) ∈ {0, 1}.

One example of pseudo leaf-only distributions can be ob-
tained by sampling with a reference model up to a predefined
depth.
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In this section, we address the following task: given a leaf-
only target distribution P and a pseudo leaf-only reference
distribution Pref ,how can we construct a sub-distribution
Ps ⪯ P for speculative sampling?

An additional requirement for speculative sampling is that
sampling process must respect the inherent tree structure.
For example, if a reference model Pref samples a reference
path σ = abc, under this guidance, it would not be possi-
ble to generate the sequence ba as a result. The reason is
that feeding the reference path into the target model only
yields distributions P (·|a), P (·|ab), P (·|abc), without any
knowledge of P (·|b). This observation leads us to define
the structure of neighborhoods within the tree space.
Definition 5.2 (Common Prefix). We define operation cp :
S × S → S as the common prefix of two paths.
Definition 5.3 (Neighbor Set). Given a sequence σ, we de-
fine following sets representing different notions of “neigh-
borhood” in the tree space:

S⪅σ={s ∈ S| len(cp(s, σ))≥ len(s)− 1, len(s) ≤ len(σ)}
S≈σ={s ∈ S| len(cp(s, σ)) ≥ len(s)− 1}

Definition 5.4 (Neighbor Distribution). A tree distribution
P is called neighbor distribution if the support of P̂ is re-
stricted to a neighbor set. For example, P̂N⪅({s};σ) ̸= 0

implies s ∈ S⪅σ , and P̂N≈({s};σ) ̸= 0 implies s ∈ S≈σ .

Speculative Sampling (SpS) and Accelerated Speculative
Sampling (ASpS) are both neighbor distributions. They can
be defined recursively:

P̂ ∗
N⪅({ε};ε)=1,

mSpS
ref (a;σ)= P̂ SpS

N⪅ ({σ};σ)Pref(a|σ)

mASpS
ref (a;σ)=Pref(a|σ)

m∗(a;σ)= P̂ ∗
N⪅({σ};σ)P (a|σ)

P̂ ∗
N⪅({σ + a};σ + a)=

min(m∗
ref(a;σ),m

∗(a;σ))

Pref(a|σ)

r∗(a;σ)=
(m∗

ref(a;σ)−m∗(a;σ))+∑
z∈Σ(σ)(m

∗
ref(z;σ)−m∗(z;σ))+

P̂ ∗
N⪅({σ + b};σ + a)=

r∗(a;σ)(m∗(b;σ)−m∗
ref(b;σ))+

Pref(a|σ)
P̂ ∗
N⪅({σ};σ + a)=0

P̂ SpS
N⪅ ({s};σ + a)= P̂ SpS

N⪅ ({s};σ)

P̂ASpS
N⪅ ({s};σ + a)=

rASpS(a;σ)

Pref(a|σ)
P̂ASpS
N⪅ ({s};σ)

P̂ ∗
N≈({σ + a};σ)=P (a|σ)P̂ ∗

N⪅({σ};σ)

P̂ ∗
N≈({σ};σ)=P (τ |σ)P̂ ∗

N⪅({σ};σ)

P̂ ∗
N≈({s};σ)= P̂ ∗

N⪅({s};σ)

where ∗ stands for either SpS or ASpS, and all s in the above
satisfies s ∈ S⪅σ \ {σ}.

The final sampling distributions for SpS and ASpS are given
composing the neighbor distribution and the reference dis-
tribution:

P SpS/ASpS
s (·) =

∑
σ∈S

P
SpS/ASpS
N≈ (·;σ)P̂ref(σ).

For both reference and target distributions, mref(a;σ) and
m(a;σ) denote the probability mass that can be used for cou-
pling. Since mASpS

ref (a;σ) ≥ mSpS
ref (a;σ), ASpS achieves

a stronger coupling. As an example, the following two
theorems illustrate ASpS’s superior strength over SpS.

Theorem 5.5. For every σ ∈ supp(Pref), it holds that

P̂ASpS
N⪅ ({σ};σ) ≥ P̂ SpS

N⪅ ({σ};σ).

Theorem 5.6. If that the expected length of sequences
sampled from the reference distribution is finite, i.e.,
E
s∼P̂ref

[len(s)] ≤ ∞, we have:

E
s∼P̂ASpS [len(s)] ≥ E

s∼P̂SpS [len(s)].

The following theorem guarantees that both SpS and ASpS
can be applied recursively to converge to the target distribu-
tion correctly.

Theorem 5.7. Both SpS and ASpS constitute sub-samplers,
i.e., P SpS/ASpS

s ⪯ P .

5.2. Application to LLM

For each LLM, there is a fixed token space Σ, within which
there exists a special token known as the end-of-sequence
(eos) token, eos ∈ Σ. Use use a predicate, terminated(s)
to represent whether the last token in the sequence s is
the eos token. An LLM is a probability distribution as
LLM(xn+1|x1, . . . , xn). A sequence can be continually
extended by sampling and appending tokens until the eos
token is reached, resulting in a terminated sequence.

A LLM constitutes a tree distribution. Note that all strings
forms a tree space:

S = (Σ \ {eos})∗ ∪ {s+ eos |s ∈ (Σ \ {eos})∗},

Σ(s) =

{
ϕ terminated(s),

Σ otherwise.

The tree distribution is defined as:

PLLM(a|σ) =

{
0 terminated(σ),

LLM(a|σ) otherwise.
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Algorithm 1 Accelerated Speculative Sampling (ASpS)
Input: ref token : Array[Σ, len ref]

P ref : Array[Array[float, vocab size], len ref]
{Pref(·| prefix+ ref token1:i), 0 ≤ i ≤ len ref −1}

P : Array[Array[float, vocab size], len ref +1]
{P (·|prefix+ ref token1:i), 0 ≤ i ≤ len ref}
len s← 0
P N← zeros like(P ref)
P N s s← 1
while len s < len ref do

if len s ̸= 0 then
P N[len s, ref token[len s]]← 0

end if
len s← len s+1
C1← max(0,P ref[len s, :]−P N s s×P[len s, :])
C2← C1[ref token[len s]]/ sum(C1)
P N← C2 /P ref[len s, ref token[len s]]× P N
P N[len s, :]← C2/P ref[len s, ref token[len s]]×

max(0,P N s s×P[len s, :]− P ref[len s, :])
P N[len s, ref token[len s]]←

min(1,P N s s×P[len s, ref token[len s]]/
P ref[len s, ref token[len s]])

P N s s← P N[len s, ref token[len s]]
assert sum(sum(P N)) = 1
{PN⪅(·;σ) is a probability}

end while
(gen len, last token)← sample(P N)
accepted token← ref token[1 : gen len−1]
accepted token . append(last token)
if accepted token = ref token then

accepted token . append(sample(P[len ref +1, :]))
gen len← gen len+1

end if
Output: accepted token : Array[Σ, gen len]

PLLM(τ |σ) =

{
1 terminated(σ),

0 otherwise.

With this connection between TMC and LLM, we can apply
ASpS to LLM as follows: 1. sample d reference tokens
from the reference model that is less computationally expen-
sive. 2. Calculate the neighbor distribution PASpS

N≈ (·;σ). 3.
Sample from the neighbor distribution to generate the final
output.

6. Implementation
The method defined in the previous section can be translated
into pseudo-code in Algorithm 1.

The computational complexity of Algorithm 1 is
O(len ref × vocab size). The primary time consumption
of speculative sampling lies in the forward passes of the

Table 5. Summary of accepted token numbers per step improve-
ment by ASpS over SpS. n is the number of reference token.

n SpS ASpS Improv. (%)
1 1.284± 0.001 1.284± 0.001 0.0± 0.1
2 1.381± 0.002 1.394± 0.002 0.9± 0.2
3 1.458± 0.002 1.485± 0.002 1.8± 0.2
4 1.454± 0.002 1.489± 0.002 2.4± 0.2
5 1.436± 0.002 1.467± 0.002 2.1± 0.2
6 1.482± 0.002 1.507± 0.003 1.7± 0.2
7 1.477± 0.002 1.520± 0.003 2.9± 0.3
8 1.496± 0.003 1.525± 0.003 1.9± 0.3
9 1.482± 0.003 1.532± 0.003 3.3± 0.3

10 1.468± 0.003 1.522± 0.003 3.7± 0.3

target model and reference model, which computes the
probability for each token. In comparison, the overhead
of Algorithm 1 is negligible as it only involves dozen of
vector operations.

To ensure numerical stability, we implement the algorithm
in log-space and handle corner cases such as division by
zero appropriately. Our implementations uses Huggingface
library (Wolf et al., 2019). It should be noted that this library
is not optimized for inference speed. Specifically, the wall-
time measurements may not accurately reflect the number
of floating-point operations due to memory bandwidth and
communication bottleneck.

While assessing the effectiveness of SpS and ASpS, a key
metric is the average number of accepted tokens. Impor-
tantly, this metric is independent of implementation details,
such as the choice of the deep learning library, making it a
robust indicator of performance.

In our experiments, we compare the Speculative Sampling
(SpS) and Accelerated Speculative Sampling (ASpS) meth-
ods using LLaMa-7b model (Touvron et al., 2023) as tar-
get model and LLaMa-68m model (Miao et al., 2023) as
reference model, on a translation task from the WMT16
dataset (Bojar et al., 2016). The complete experiment re-
sults with more tasks and model configurations are moved
to Appendix C due to space limitation.

Our experimental results show that when a single reference
token is used, the average number of accepted tokens for
ASpS is same as that of SpS. This is expected, as the issue
with SpS is that it does not apply maximum coupling across
the entire space. When there is only one reference token,
the token space is effectively the full space, and hence SpS
already achieves optimal coupling in this context, leaving
no room for ASpS to improve upon.

When the number of reference tokens exceeds one, ASpS
consistently accepts more tokens than SpS. This indicates
that SpS does not fully leverage the available information
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and remains sub-optimal. This improved performance un-
derscores the advantage of ASpS.

7. Related Works
7.1. Monte Carlo on Tree Space

The introduction of Tree Monte Carlo (TMC) algo-
rithms presents a unique perspective for sampling in tree-
structured space, diverging from both Monte Carlo Tree
Search (MCTS) and traditional Markov Chain Monte Carlo
(MCMC). Below, we outline the distinctions that separate
TMC from these well-established techniques.

7.1.1. DIFFERENCES FROM MONTE CARLO TREE
SEARCH

Monte Carlo Tree Search (MCTS) is a widely recognized
algorithm, particularly known for its applications in solving
game trees, for instance, in strategic games like Go and
Chess. MCTS combines tree search with random sampling
and has been fundamental for decision making in complex
environments. The essential focus of MCTS is on the win-
ning strategy, wherein the algorithm optimizes the selection
of moves that lead to a high probability of winning. It in-
volves a balance of exploration and exploitation, where the
search is directed towards more promising sub-trees as more
is learned about the game space.

Conversely, Tree Monte Carlo (TMC) algorithms have a
different aim: they are designed to sample from a tree dis-
tribution, effectively generating a single pathway through a
tree space. This process is relevant to structured probabilis-
tic models, where the interest lies in obtaining representative
samples from the distribution described by the tree. Unlike
MCTS, which specifically concentrates on the decision mak-
ing aspect in games, TMC is more about statistical inference
within hierarchical models.

7.1.2. DIFFERENCES FROM MARKOV CHAIN MONTE
CARLO

In traditional Markov Chain Monte Carlo (MCMC), the
principle is to construct and iteratively apply a Markov
kernel with the goal of obtaining a chain that converges to
the desired distribution. Therefore, TMC can be regarded as
a special case of MCMC methods. In both cases, the total
variation distance to the target distribution monotonically
decreases to zero, assuring convergence. However, there are
notable differences in the mechanisms and the underpinning
mathematical structures that distinguish the two.

TMC introduces a unique form of monotonicity tied to tree
structures, which is absent from the mathematical frame-
works typically seen in MCMC. TMC also operates dis-
tinctly by maintaining prefix sub-samplers which are closed

under composition, according to Theorem A.29.

Additionally, TMC does not rely on ergodicity to ensure
convergence. This departs from MCMC’s dependence on
the ergodic condition, which requires that every state is
reachable from any other in a finite number of steps. The
proof structures of convergence in TMC reflect a different
mathematical approach, highlighting unique monotonicity
properties associated.

By formalizing the concept of tree distributions and math-
ematically proving convergence properties specific to sub-
sampler, TMC contributes a unique perspective to the field
of sampling algorithms, expanding the toolkit available for
dealing with structured probabilistic models.

7.2. Accelerating LLM Inference

Speculative sampling (SpS) has emerged as a key advance-
ment for accelerating Large Language Model (LLM) infer-
ence without altering the model’s output distribution. The
foundational principles of SpS, as elucidated by Chen et al.
(2023) and Leviathan et al. (2023), operate independently
of the reference model’s design.

There has been significant exploration into the construction
of reference models. For instance, Monea et al. (2023)
employs the original model with “look ahead” tokens, while
Cai et al. (2023) suggests adding new heads after the last
hidden layer of the base model to predict further-ahead
tokens. Document retrieval has also been used as a reference
model (Yang et al., 2023; He et al., 2023).

One way to extend SpS involves shifting from sequence
input to tree input. Standard LLMs take sequences as input,
equivalent to a single path through a symbolic tree space.
Some studies have modified this approach by using trees
as input, allowing multiple branches to be processed in a
single forward pass, thus gathering more information to help
accelerate decoding (Cai et al., 2023; Spector & Re, 2023;
Miao et al., 2023; Yang et al., 2024). This requires altering
transformer implementations to replace causal attention with
tree attention. Furthermore, speculative sampling itself can
be recursively applied, using an additional reference model
to expedite the inference of the primary reference model
(Spector & Re, 2023).

Beyond SpS, other innovations include sacrificing the unbi-
ased property in exchange for more design flexibility (Kim
et al., 2023), or focusing solely on Greedy decoding (San-
tilli et al., 2023), where generation is modeled as solving a
system of equations using methods like Jacobi and Gauss-
Seidel iterative techniques for fixed-point finding.

Notably, just like SpS, ASpS is compatible with any refer-
ence model, so the improvement is orthogonal to the efforts
to enhance the reference model. Moreover, ASpS does not
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rely on more information than SpS but utilizes the available
information more effectively to achieve improvement.

8. Conclusion
We introduced Tree Monte Carlo (TMC), which includes
novel sub-distributions unique to tree space and conver-
gence guarantees for sub-samplers. These works provide
a theoretical backbone for the complex sampling methods
over tree spaces. We also proposed Accelerated Speculative
Sampling (ASpS), which enhances SpS without relying on
additional information and comes with theoretical guarantee
that it retains the target model’s distribution. In summary,
TMC and ASpS present significant steps forward in efficient
sampling methods for tree structures.
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This paper presents work whose goal is to advance the un-
derstanding of probabilistic methods on tree space and accel-
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A. Tree Monte Carlo (TMC)
We start with a quick comparison to conventional Monte Carlo methodology. Traditionally, Monte Carlo methods involve
sampling from a space X , which is inherently equipped with a specific distribution P formalized by the Kolmogorov axioms
(Ω, F, P ), where Ω = X , F is a σ-algebra, and P is a probability measure. To execute the sampling process, one constructs
a sampler function sampler : B → X , where B is a source of randomness that possesses a probability distribution PB . This
source could be, for instance, a perfectly random binary sequence in B = {0, 1}N. The goal is to ensure that the result of the
sampling procedure sampler(b) is distributed according to the probability P when the input b follows the distribution PB .

In short, conventional Monte Carlo methodology takes a probability distribution P defined over a space X , and the goal is
to design a sampler sampler : B → X such that sampler(b) ∼ P when b ∼ PB .

Loosely speaking, Tree Monte Carlo (TMC) considers a tree distribution (Definition A.3) P on the tree-structured space
(Definition A.2) X with S as the space of all paths and it aims to design a tree sampler (Definition A.9) sampler : B → S
such that sampler(b) ∼ P ′ conforms to a sub-distribution (Definition A.11) P ′ ⪯ P when b ∼ PB .

A.1. Tree Distribution and Sub-Distribution

This section will detail the formalism required to mathematically represent tree-structured spaces, tree distributions, and
sub-distribution.

Definition A.1 (Path). We define a path σ as a finite sequence (σ1, . . . , σn). The empty path is denoted by ε = (). We
adopt the following notations for operations on paths:

• Subsequence: σi:j refers to the subsequence (σi, σi+1, . . . , σj). If i > j, we define it to be the empty path for all
i > j, i.e., σi:j = ε.

• Concatenation: Given two paths σ = (σ1, . . . , σn) and σ′ = (σ′
1, . . . , σ

′
m), we write σ+σ′ to denote the concatenation

(σ1, . . . , σn, σ
′
1, . . . , σ

′
m).

• Appending an Element: For a path σ = (σ1, . . . , σn) and an element a, we denote σ + a as the path extended by a,
which is (σ1, . . . , σn, a).

• Order Relation: A path σ is said to be greater than or equal to a path σ′, denoted σ ≥ σ′, if there exists a path σ′′ such
that σ = σ′ + σ′′. The relation σ > σ′ holds if σ ≥ σ′ and σ ̸= σ′.

• Length Function: We define a length function len : S → N assigning the number of elements in the path sequence.

Definition A.2 (Tree Space). A tree space X is defined as a pair (S,Σ), where:

• S is the set of all valid paths, defined by

S = {σ = (σ1, . . . , σn) | σi ∈ Σ(σ1:i−1),∀i ∈ [n]}.

• Σ is a function enumerating the children of a node in the tree, where for each σ ∈ S, Σ(σ) is a finite set.

On a tree space X , we can construct the prefix-induced σ-algebra F : For any path s ∈ S, we consider the set of all paths
beginning with s, denoted by S≥s = {t ∈ S | t ≥ s}. Then, we define F to be the smallest σ-algebra that contains
{S≥s|s ∈ S}.
Definition A.3 (Tree distribution). A tree distribution is a probability distribution on the tree space X formally represented
as a triple (S, F, P̂ ), where F = σ({S≥s|s ∈ S}) and P̂ is the probability measure on the σ-algebra F .

We often work with several derived functions rather than directly using P̂ :

Definition A.4 (Path Probability and Support). For a given tree distribution P , the probability of a path σ ∈ S is given by
P (σ) = P̂ (S≥σ). The support of the distribution, denoted as supp(P ), is the set of paths with non-zero probability, i.e.,
supp(P ) = {s ∈ S|P (s) > 0}.
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Definition A.5 (Child Node Probability). For each path σ ∈ supp(P ) and each possible child a ∈ Σ(σ), we define the
conditional probability of a given σ as P (a|σ) = P (σ + a)/P (σ). Additionally, we introduce a special symbol τ to
represent termination at a node, and define P (τ |σ) = 1−

∑
a∈Σ(σ) P (a|σ) = P̂ ({σ})/P (σ), capturing the probability that

the path terminates at σ.

Theorem A.6. If two tree distributions P1, P2 have the same path probabilities, they are the same distribution. That is,

(∀σ ∈ S, P1(σ) = P2(σ)) =⇒ ∀U ∈ F, P̂1(U) = P̂2(U)

Proof of Theorem A.6. We observe that {S≥s|s ∈ S} constitutes a π-system by definition.

We define L = {U ∈ F |P̂1(U) = P̂2(U)}. It is clear that {S≥s|s ∈ S} ⊂ L ⊂ F . It can be verified that L is a λ-system
(also known as a Dynkin system). Specifically, L contains S since P̂1(S) = P̂2(S) = 1 by the nature of probability
measures. If U is in L, then its complement S \ U is also in L because P̂1(S \ U) = 1 − P̂1(U) = 1 − P̂2(U) =

P̂2(S \ U). Furthermore, for a sequence of pairwise disjoint sets U1, U2, . . . ∈ L, their union
⋃∞

n=1 Un is also in L because
P̂1(

⋃∞
i=1 Ui) =

∑∞
i=1 P̂1(Ui) =

∑∞
i=1 P̂2(Ui) = P̂2(

⋃∞
i=1 Ui).

By Dynkin’s π-λ theorem, L, as a λ-system, must contains the σ-algebra generated by the π-system, that is F = σ({S≥s|s ∈
S}) ⊂ L. Therefore we have F = L and probability measures P̂1 and P̂2 are the same for all sets in F .

As a corollary, one can uniquely specify a tree distribution through path probabilities P (σ) alone. Moreover, the tree distribu-
tion can be defined solely using child node probabilities P (a|σ) for all paths σ in supp(P ), as P (σ) =

∏n
i=1 P (σi|σ1:i−1)

for all paths with non-zero probability.

Definition A.7 (Conditional Distributions on a Prefix). Given a prefix path s ∈ supp(P ), we can induce a new function
P̂|s(U) = P̂ (U ∩ S≥s)/P̂ (S≥s), creating a new probability measure that conditions on having a prefix s. Equivalently, for
any a ∈ Σ(σ), P|s(a|σ) is defined as P (a|σ) if σ ≥ s and as the I(a = slen(σ)+1) if s > σ.

Theorem A.8. If for paths σ1 and σ2 in a tree distribution there is a non-zero probability conditioning on σ1 for path σ2,
i.e., P|σ1

(σ2) ̸= 0, then the paths σ1 and σ2 have a definite order relation; explicitly, either σ1 < σ2, σ1 = σ2, or σ1 > σ2.

Proof of Theorem A.8. By contradiction, assume there is no order relation between σ1 and σ2. Then their corresponding
sets defined in S do not intersect, more formally, S≥σ1

∩ S≥σ2
= ∅. This leads to the probability of σ2 given prefix σ1 to

be zero since P|σ1
(σ2) = P̂|σ1

(S≥σ2) = P̂ (S≥σ2 ∩ S≥σ1)/P̂ (S≥σ1) = 0, contradicting the assumption that P|σ1
(σ2) ̸= 0.

Thus, σ1 and σ2 must have a natural order relation within the tree structure.

Now we introduce the concept of a tree sampler.

Definition A.9 (Tree Sampler). A tree sampler is a function sampler : B → S, where B is a source of randomness with a
given probability distribution PB , mapping each random input to a path in the tree space S.

Unlike conventional Monte Carlo samplers, a tree sampler does not necessarily sample paths to their full length every time,
as some paths may not extend all the way down to leaf nodes, where Σ(σ) = ∅. This characteristic distinguishes tree
samplers from standard ones and often necessitates the composition of multiple tree samplers to reach leaf nodes in the tree.
We will discuss composition in more detail in the next sub-section.

Upon sampling, the tree sampler induces a distribution over the tree space:

Definition A.10 (Induced Tree Distribution by Sampler). Let sampler : B → S be a tree sampler and PB the distribution
over B, for any set U ∈ F , the induced probability Ps is defined as:

P̂s(U) = PB(sampler(b) ∈ U).

The path probability Ps and the child node probabilities Ps(a|σ) induced by the sampler can be computed as follows:

• For any σ ∈ S,
Ps(σ) = PB(sampler(b) ∈ S≥σ)

.

12



Accelerated Speculative Sampling based on Tree Monte Carlo

• For each σ ∈ supp(Ps), and for each child node a ∈ Σ(σ),

Ps(a|σ) =
∑

σ′≥σ+a

PB(σ
′ = sampler(b))/Ps(σ).

• The termination probability at node σ is given by:

Ps(τ |σ) = PB(σ = sampler(b))/Ps(σ).

Now we define the crucial concept of a sub-distribution within a tree space.

Definition A.11 (Sub-distribution). Given two probability distributions on the same tree space X , P1 and P2, we say that
P1 is a sub-distribution of P2, denoted as P1 ⪯ P2, if for every path σ, where child node probabilities P1(·|σ) and P1(·|σ)
are both defined, these two probabilities are proportional for all children a ∈ Σ(σ). More concisely,

∀σ ∈ supp(P1) ∩ supp(P2),∃c ∈ [0, 1],

∀a ∈ Σ(σ), P1(a|σ) = cP2(a|σ).
(3)

Note that sub-distribution is a partial order among tree-distributions rather than a total order.

We present the following properties about sub-distributions:

Theorem A.12. For the sub-distribution P1 ⪯ P2, ∀σ ∈ S, P1(σ) ≤ P2(σ).

Proof of Theorem A.12. The original definition Equation (3) for sub-distribution can be translated into

∀σ ∈ S, P2(σ) ̸= 0 =⇒ P1(σ) = 0 ∨ ∃c ∈ [0, 1],∀a ∈ Σ(σ), P1(a|σ) = cP2(a|σ)

Once we have established this, we consider two cases separately.

We first consider any σ for which P2(σ) ̸= 0. If P1(σ) = 0, it is immediate that P1(σ) ≤ P2(σ). Otherwise, considering
σ = (σ1, . . . , σn), we see that

P1(σ) =

n∏
i=1

P1(σi|σ1:i−1) ≤
n∏

i=1

ciP2(σi|σ1:i−1) ≤
n∏

i=1

P2(σi|σ1:i−1) = P2(σ),

where 0 ≤ ci ≤ 1 are the constants dictated by the sub-distribution relationship for each conditional probability along the
path. This proves that P1(σ) ≤ P2(σ) in the case where P2(σ) ̸= 0.

Next, for any σ such that P2(σ) = 0, we must show that P1(σ) is also 0. By the definition of a path probability as a product
of conditional probabilities, there must exist an index i for which P2(σ1:i−1) ̸= 0 and P2(σi|σ1:i−1) = 0. For this index
i, it follows that P1(σ1:i−1) ≤ P2(σ1:i−1) by the first part of our proof. If P1(σ1:i−1) = 0, then P1(σ1:i) = 0, and thus,
P1(σ) = 0. Otherwise, if P1(σ1:i−1) ̸= 0, then P1(σi|σ1:i−1) must also be 0 since it must be in proportion to P2(σi|σ1:i−1)
which is 0. This leads to

P1(σ1:i) = P1(σi|σ1:i−1)P1(σ1:i−1) ≤ P2(σi|σ1:i−1)P2(σ1:i−1) = P2(σ1:i) = 0.

We then have that P1(σ) = 0, which also satisfies P1(σ) ≤ P2(σ).

Theorem A.13. P1 ⪯ P2 =⇒ supp(P1) ⊂ supp(P2).

Theorem A.14. P1 ⪯ P2 =⇒ ∀σ ∈ supp(P1) ∩ supp(P2), P1(τ |σ) ≥ P2(τ |σ).

Proof of Theorem A.13. As a direct result of the order of the path probabilities, P2(σ) = 0 =⇒ P1(σ) = 0, therefore we
also derive that the support of P1 is a subset of the support of P2, i.e., supp(P1) ⊆ supp(P2).
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Proof of Theorem A.14. Considering the termination probability, we have:

P1(τ |σ) = 1−
∑

a∈Σ(σ)

P1(a|σ) = 1−
∑

a∈Σ(σ)

cP2(a|σ) ≥ 1−
∑

a∈Σ(σ)

P2(a|σ) = P2(τ |σ),

where c is the proportionality constant for the path σ given by the definition of sub-distribution. Since
∑

a∈Σ(σ) cP2(a|σ) ≤∑
a∈Σ(σ) P2(a|σ) due to 0 ≤ c ≤ 1, the inequality holds.

It is important to note that sub-distribution relationship is not equivalent to that P1(σ) ≤ P2(σ) for all σ ∈ S; the latter is just
a necessary condition. A sub-distribution relationship captures a more nuanced relation that involves both the probabilities
of prefixes and their child node probabilities.

We can also consider sub-distributions with respect to a specific prefix path σprefix ∈ S:
Definition A.15 (Prefix Sub-distribution). For two tree distributions P1 and P2 and a prefix path σprefix ∈ S, we say that
P1 is a sub-distribution of P2 under prefix σprefix, if for all paths σ in S≥σprefix

that are within the support of both P1 and
P2, there exists a constant c ∈ [0, 1] such that for all possible extensions a ∈ Σ(σ), the conditional probabilities are in
proportion:

∀σ ∈ S≥σprefix
∩ supp(P1) ∩ supp(P2),∃c ∈ [0, 1],

∀a ∈ Σ(σ), P1(a|σ) = cP2(a|σ).
Equivalently, P1|σprefix

⪯ P2|σprefix
.

Theorem A.16. A necessary and sufficient condition for P1 ⪯ P2 is that the following hold:

(∀σ ∈ S, ∀a, b ∈ Σ(σ),

P1(σ + a)P2(σ + b) = P1(σ + b)P2(σ + a))

∧(∀σ ∈ supp(P1) ∩ supp(P2), P1(τ |σ) ≥ P2(τ |σ))

Proof of Theorem A.16. Firstly, we show the necessity.

We first prove the first clause (∀σ ∈ S,∀a, b ∈ Σ(σ), P1(σ + a)P2(σ + b) = P1(σ + b)P2(σ + a)).

There are a few scenarios to consider:

For every σ in the intersection of the supports of P1 and P2, there exists a constant c ∈ [0, 1] such that for all a in
Σ(σ), P1(a|σ) = cP2(a|σ). Therefore, P1(σ + a) = P1(σ)P1(a|σ) = P1(σ)cP2(a|σ) = P1(σ)cP2(σ + a)/P2(σ).
Moreover, P1(σ + a)P2(σ + b) = P1(σ)cP2(σ + b)P2(σ + a)/P2(σ). By a similar argument, P1(σ + b)P2(σ + a) =
P1(σ)cP2(σ + a)P2(σ + b)/P2(σ). Due to the common factor, we thus have P1(σ + a)P2(σ + b) = P1(σ + b)P2(σ + a).

For any σ solely in the support of P2, i.e., σ ∈ supp(P2) \ supp(P1), P1(σ) = 0 holds true. Consequently, probabilities
of any extensions from such σ are also zero under P1. This implies P1(σ + a) = P1(σ + b) = 0, and consequently, the
product form P1(σ + a)P2(σ + b) = P1(σ + b)P2(σ + a) = 0 holds.

For any σ /∈ supp(P2), P2(σ) = 0, and hence P2(σ + a) = P2(σ + b) = 0. This ensures that P1(σ + a)P2(σ + b) =
P1(σ + b)P2(σ + a) = 0, again holding true.

Next, we prove the second clause (∀σ ∈ supp(P1) ∩ supp(P2), P1(τ |σ) ≥ P2(τ |σ)). This has already been proven in
Theorem A.14.

To prove sufficiency, we need to consider the given conditions in the other direction.

Starting with any σ ∈ supp(P1) ∩ supp(P2) such that there exists an a ∈ Σ(σ) with P2(σ + a) ̸= 0, we define
c = P1(σ+a)/P1(σ)

P2(σ+a)/P2(σ)
. For any b ∈ Σ(σ) with P2(σ + b) ̸= 0, we have that:

P1(σ + b)/P1(σ)

P2(σ + b)/P2(σ)
=

P1(σ + a)/P1(σ)

P2(σ + a)/P2(σ)
= c.

We need to prove that c ≤ 1. Due to P1(τ |σ) ≥ P2(τ |σ), we can see that:

P1(τ |σ) = 1−
∑

a∈Σ(σ)

P1(a|σ) = 1−
∑

a∈Σ(σ)

cP2(a|σ).
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On the other hand,
P2(τ |σ) = 1−

∑
a∈Σ(σ)

P2(a|σ).

Therefore P1(τ |σ) ≥ P2(τ |σ) leads to the conclusion that c ≤ 1.

In the case where no children of σ are possible under P2 (i.e., P2(σ + a) = 0 for all a ∈ Σ(σ)), we set c = 0. We must
show that P1(σ + a) = 0 for all such a. Since P2(τ |σ) = 1 due to there being no children of σ under P2, and given that
P1(τ |σ) ≥ P2(τ |σ) as stated in the condition, it follows that P1(τ |σ) = 1. This implies that all probabilities of extending
σ under P1 must be 0, meaning P1(a|σ) = 0 for all a ∈ Σ(σ). Therefore, for all such a, P1(σ + a) = 0, satisfying the
condition c = 0.

Inspired by Theorem A.12, we define a notion of pointwise distance between two distributions, specifically for a distribution
and its sub-distribution, as:

distσ(P1, P2) = P2(σ)− P1(σ).

The pointwise distance quantifies how much less likely P1 is to generate σ compared to P2. This distance is a measure of
the “gap” between them.

Later, we will define the sub-sampler and discuss how multiple sub-samplers can be composed. The most significant theorem
we aim to prove is the convergence of sub-samplers, under both pointwise distance and total variation distance.

A.2. Auxiliary Definition and Theorems

Definition A.17. The cut-off tail probability P [len>d] is defined for a tree-distribution P as the probability of all sequences
s in the sample space S which have a length exceeding d:

P [len>d] = P̂ ({s ∈ S| len(s) > d}).

Theorem A.18. For a tree distribution, as d approaches infinity, the cut-off tail probability vanishes:

lim
d→∞

P [len>d] = 0.

Proof of Theorem A.18.

lim
d→∞

P [len>d] = lim
d→∞

P̂ ({s ∈ S| len(s) > d})

= P̂ (

∞⋂
d=1

{s ∈ S| len(s) > d})

= P̂ (∅)
= 0.

Theorem A.18 could be useful for computing summation for the whole tree.

Theorem A.19 (Tree Expectation Theorem). Let P be a tree distribution and V : S → R be a function that satisfies the
unbiased condition:

∀σ ∈ supp(P ), P (τ |σ)V (σ) +
∑

a∈Σ(σ)

P (a|σ)V (σ + a) = V (σ).

Now consider the following scenarios where at least one condition holds:

(a) The tree has a finite depth, that is ∃d,∀σ ∈ S, len(σ) ≤ d.

(b) The change in value is bounded and the expected depth is finite. Specifically, ∃c,∀σ ∈ S, ∀a ∈ Σ(σ), |V (σ + a) −
V (σ)| ≤ c and Es∈P̂ [len(s)] <∞.
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(c) The function V is bounded across all sequences, i.e., ∃c, ∀σ ∈ S, |V (σ)| ≤ c.

Under these conditions, the expected value of V (σ) under the tree distribution P̂ is equal to the value at the root:

Eσ∼P̂ [V (σ)] = V (ε).

Moreover, the theorem still holds if we change the equality in the unbiased condition to a greater than or equal to (or less
than or equal to) relationship, with the result also changing to the corresponding inequality.

Proof of Theorem A.19. Consider V (σ) as a stochastic process where Xt = V (σ1:min(len(σ),t)). Let the filtration be
Ft = σ({S≥s|s ∈ S, len(s) ≤ t} ∪ {{s}|s ∈ S, len(s) ≤ t}) and stop time as τ = len(σ). Xt can be observed as a
martingale (or submartingale or supermartingale depending on the symbol in the equation) due to the unbiased condition.
The conclusion follows directly from applying the optional stopping theorem.

Theorem A.19 is inspired by the optional stopping theorem found in stochastic process theory and is applied to calculate the
expectation over an entire tree.

A.3. Sub-Sampler and Its Convergence

We first introduce the concept of leaf-only tree distribution, which conceptually represents the “target” of a tree Monte Carlo
process.

Definition A.20 (Leaf-Only Tree Distribution). A tree distribution is called leaf-only if, for all paths σ ∈ supp(P ) with
Σ(σ) ̸= ϕ, we have that P (τ |σ) = 0. This means that the distribution assigns non-zero probability only to the leaf nodes of
the tree.

The implication is that non-leaf nodes cannot harbor probability mass. We formalize this intuition with the following
theorem:

Theorem A.21. For a leaf-only tree distribution P , for any paths σ ∈ S, if P̂ ({σ}) ̸= 0, then we have Σ(σ) = ϕ, indicating
that σ is a leaf node.

Proof of Theorem A.21. We will prove the contrapositive: ∀σ ∈ S, if Σ(σ) ̸= ϕ, then P̂ ({σ}) = 0.

Suppose Σ(σ) ̸= ϕ. We consider two cases:

If σ ∈ supp(P ) for a leaf-only tree distribution, we have P (τ |σ) = 0 by definition. Thus, P̂ ({σ}) = P (τ |σ)P (σ) = 0.

If σ /∈ supp(P ), then P̂ ({σ}) ≤ P (σ) = 0 directly.

In either case, P̂ ({σ}) = 0.

The leaf-only distribution is the maximal element in the ordering of sub-distributions on a tree:

Theorem A.22. If P1 ⪯ P2 and P1 is a leaf-only tree distribution, then P2 is the same as P1.

Proof of Theorem A.22. Since P1 is a leaf-only tree distribution, all of its probability mass is concentrated on the leaf nodes:∑
σ∈S

P̂1({σ}) =
∑

σ∈{s∈S|Σ(s)=ϕ}

P̂1({σ}) = 1.

For every leaf σ where Σ(σ) = ϕ, we have P̂1({σ}) = P1(σ) and P̂2({σ}) = P2(σ). Due to the sub-distribution
relationship, it follows that P̂1({σ}) = P1(σ) ≤ P2(σ) = P̂2({σ}) for every σ.

Considering that the sum of probabilities over all leaf nodes for P1 equals 1, we can infer that the same sum under distribution
P2 is also 1, thus:

1 =
∑

σ∈{s∈S|Σ(s)=ϕ}

P̂1({σ}) ≤
∑

σ∈{s∈S|Σ(s)=ϕ}

P̂2({σ}) = 1.
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The inequality above is thus an equality. This implies that P̂1({σ}) = P̂2({σ}) for every σ in the support, and P2 must also
be a leaf-only tree distribution.

The intuition is that a leaf-only distribution cannot be further “refined”, and all probabilities are already allocated to the
leaves. Therefore it could serve as an endpoint for sequences of tree Monte Carlo procedure.

Now we define the prefix tree sampler, which generates sample conditioned on a prefix.

Definition A.23 (Prefix Tree Sampler). A prefix tree sampler is a function sampler : B × S → S that takes a random input
b ∼ PB and a prefix path σprefix ∈ S as inputs, guaranteeing that ∀b, σprefix, sampler(b, σprefix) ≥ σprefix.

This means that the sampler will output a path in S that contains σprefix as a prefix. The resulting path has an induced
distribution over the tree space, expressed as:

P̂s(U ;σprefix) = PB(sampler(b, σprefix) ∈ U).

This induced function allows us to calculate path probabilities and child node probabilities:

• Path Probability: For a given prefix path σprefix, we define the path probability of a path σ extending from this prefix
as

Ps(σ;σprefix) = PB(sampler(b, σprefix) ∈ S≥σ).

• Child Node Probability: Additionally, for each σ in the support of Ps(·;σprefix), which is defined as {s ∈
S|Ps(s;σprefix) > 0}, and for all extensions a ∈ Σ(σ), the conditional probability is given by

Ps(a|σ;σprefix) = Ps(σ + a;σprefix)/Ps(σ;σprefix).

• Termination Probability: The probability that the path terminates at σ, when σ is prefixed by σprefix, is

Ps(τ |σ;σprefix) = 1−
∑

a∈Σ(σ)

Ps(a|σ;σprefix)

=
PB(σ = sampler(b, σprefix))

Ps(σ;σprefix)
.

Definition A.24 (Degenerate Prefix Tree Sampler). A prefix tree sampler is called degenerate, if for a certain prefix σprefix

where Σ(σprefix) ̸= ∅, always produces a path that terminates at the given prefix, i.e.,

∃σprefix,Σ(σprefix) ̸= ∅ ∧ Ps(τ |σprefix;σprefix) = 1.

In other words, for the given prefix, the degenerate sampler does not extend the path any further; it ”stops” the path at the
prefix itself.

Definition A.25 (Prefix Tree Sampler Implementing a Tree Distribution). Given a prefix tree sampler sampler : B×S → S
that induces a tree distribution Ps(·;σprefix), and a tree distribution P , we say that the prefix tree sampler implements the
tree distribution P if

∀σprefix ∈ supp(P ), P|σprefix
(·) = Ps(·;σprefix).

Our final objective is to construct a prefix tree sampler which implement a leaf-only tree distribution. One way to achieve
this is through composition of a lot of tree samplers, each responsible for generating subsequent segments of the paths
starting from different prefixes.

Definition A.26 (Composition of Prefix Tree Samplers). Considering two prefix tree samplers, samplerPs
and samplerQs

,
we define their composition by:

samplerPs◦Qs
(b, σprefix)

= samplerPs
(split1(b), samplerQs

(split2(b), σprefix)),

where b is assumed to be splittable into two independent sources of randomness split1(b) and split2(b).
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We also define the self-composition of a sampler where we recursively apply the sampler to its own output for n steps, which
is denoted as Pn

s .

The special case when n = 0 corresponds to a sampler that does not extend the path at all:

samplerP 0
s
(b, σprefix) = σprefix.

This composition process is akin to forming Markov chains on the space of tree paths S, where each composition step can
be viewed as a transition according to a Markov kernel defined by the prefix tree samplers. Specifically, the composite
distribution for a set U is given by:

̂(Ps ◦Qs)(U ;σprefix) =
∑
σ′∈S

P̂s(U ;σ′)Q̂s({σ′};σprefix).

Path probabilities via composition are then calculated as:

(Ps ◦Qs)(σ;σprefix) =
∑
σ′∈S

Ps(σ;σ
′)Q̂s({σ′};σprefix).

When n = 0, the sampler simply returns the input prefix without any further sampling:

P̂ 0
s ({σprefix};σprefix) = 1,

P 0
s (σprefix;σprefix) = 1,

P 0
s (τ |σprefix;σprefix) = 1.

Theorem A.27 (Invariance of Leaf-Only Distribution Under Composition). Given two prefix tree samplers samplerPs
and

samplerQs
, where samplerQs

implements the leaf-only tree distribution P , the composed distribution (Ps ◦Qs) remains
equal to Qs for any set U in the σ-algebra F and any σprefix ∈ supp(P ).

Proof of Theorem A.27. We first reformulate the theorem we want to prove as

∀U ∈ F,∀σprefix ∈ supp(P ), ̂(Ps ◦Qs)(U ;σprefix) = Q̂s(U ;σprefix).

For all prefix paths σprefix ∈ supp(P ) and based on the assumption, we have that the induced subset distributions must
agree:

P̂|σprefix
(U) = Q̂s(U ;σprefix).

To prove the composition relation, we need to demonstrate that

̂(Ps ◦Qs)(U ;σprefix) =
∑
σ′∈S

P̂s(U ;σ′)Q̂s({σ′};σprefix) = P̂|σprefix
(U).

We observe that for any prefix σprefix ∈ supp(P ) and any path σ′ ∈ S such that Q̂s({σ′};σprefix) ̸= 0, we also have
P̂|σprefix

({σ′}) ̸= 0. Therefore, P̂ ({σ′}) ̸= 0 and the path σ′. Due to P̂ ({σ′}) = P (σ′)P (τ |σ′), we also have P (τ |σ′) ̸= 0
and P (σ′) ̸= 0. Since P is leaf-only, this implies P (τ |σ′) = 1. Moreover, the path σ′ is in the support of P . This proved
the following formula:

∀σprefix ∈ supp(P ), σ′ ∈ S, Q̂s({σ′};σprefix) ̸= 0 =⇒ P (τ |σ′) = 1 ∧ σ′ ∈ supp(P ).

For any σ′ ∈ supp(P ), if P (τ |σ′) = 1, we have Ps(τ |σ′;σ′) = P|σ′(τ |σ′) = P (τ |σ′) = 1 and P̂s({σ′};σ′) =

Ps(σ
′;σ′)Ps(τ |σ′;σ′) = 1. Therefore, P̂s(U ;σ′) equals 1 if σ′ ∈ U and 0 otherwise. This can be represented using the

indicator function I as P̂s(U ;σ′) = I(σ′ ∈ U). Specifically, we have that:

∀σ′ ∈ supp(P ), P (τ |σ′) = 1 =⇒ P̂s(U ;σ′) = I(σ′ ∈ U).
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Combining the above observations, the composition is computed as:

̂(Ps ◦Qs)(U ;σprefix) =
∑
σ′∈S

P̂s(U ;σ′)Q̂s({σ′};σprefix)

=
∑
σ′∈S

I(σ′ ∈ U)Q̂s({σ′};σprefix)

= Q̂s(U ;σprefix)

= P̂|σprefix
(U).

Notably, the above theorem concludes that leaf-only distributions are fixed points under the composition. This inspires us
to approximate a desired leaf-only tree distribution by iteratively composing a sequence of prefix samplers. In order to
theoretically establish the convergence, we introduce the following definitions.

Definition A.28 (Prefix Sub-Sampler). A prefix sub-sampler is a type of prefix tree sampler Psub(·;σprefix) that yields a
sub-distribution of the original distribution when given any prefix σprefix, provided that σprefix ∈ supp(P ). Specifically,

∀σprefix ∈ supp(P ), Psub(·;σprefix) ⪯ P|σprefix
.

Theorem A.29 (Prefix Sub-Samplers is Closed under Composition). Given a leaf-only tree distribution P and two prefix
sub-samplers Psub and Qsub, both P 0

sub and Psub ◦Qsub are also prefix sub-samplers of P .

Proof of Theorem A.29. For 0-fold composition, we recall that for n = 0, P 0
sub(σprefix;σprefix) = 1 and

P 0
sub(τ |σprefix;σprefix) = 1. We need to show that P 0

sub satisfies the definition of a prefix sub-sampler, i.e., for every
σprefix ∈ supp(P ), P 0

sub(·;σprefix) ⪯ P|σprefix
. Effectively, we must show that for all σ ∈ S≥σprefix

in the intersection of sup-
ports supp(P 0

sub(·;σprefix)) and supp(P ), there exists a c ∈ [0, 1] such that for all a ∈ Σ(σ), P 0
sub(a|σ;σprefix) = cP (a|σ).

For P 0
sub which does not perform any sampling, we can take c = 0.

For one-time composition, we have the composed sampler (Psub ◦Qsub) where the path probability for the composition is
given by the sum of products involving the output from both samplers:

(Psub ◦Qsub)(σ;σprefix) =
∑
σ′∈S

Psub(σ;σ
′)Qsub(σ

′;σprefix).

To demonstrate that the composition is also a prefix sub-sampler, we have to prove that, for all prefix paths in the support of
P , the composed sampler output is a sub-distribution of the original distribution when the prefix is considered, i.e.,

∀σprefix ∈ supp(P ), (Psub ◦Qsub)(·;σprefix) ⪯ P|σprefix
.

According to Theorem A.16, this is equivalent to

∀σprefix ∈ supp(P ),

(∀σ ∈ S≥σprefix
,∀a, b ∈ Σ(σ),

(Psub ◦Qsub)(σ + a;σprefix)P|σprefix
(σ + b)

= (Psub ◦Qsub)(σ + b;σprefix)P|σprefix
(σ + a))

∧ (∀σ ∈ S≥σprefix
∩ supp((Psub ◦Qsub)(·;σprefix)) ∩ supp(P|σprefix

),

(Psub ◦Qsub)(τ |σ;σprefix) ≥ P|σprefix
(τ |σ)).

We first prove the first half. For any paths σ ≥ σprefix, and for any children a, b ∈ Σ(σ), we will show that that the
proportions of extending the prefix by each child are preserved in the composed sub-sampler.

(Psub ◦Qsub)(σ + a;σprefix)P|σprefix
(σ + b)
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=
∑
σ′∈S

Psub(σ + a;σ′)Q̂sub({σ′};σprefix)P|σprefix
(σ + b).

According to Theorem A.12 In order for Psub(σ + a;σ′) to be non-zero, σ′ must have a definite order relation with σ + a,
specifically, σ′ < σ + a or σ′ ≥ σ + a. On the other hand, when Q̂sub({σ′};σprefix) is non-zero, σ′ must be either equal to
or extend σprefix, that is σ′ ≥ σprefix.

Breaking down the sum, we have:

(Psub ◦Qsub)(σ + a;σprefix)P|σprefix
(σ + b)

=
∑

σprefix≤σ′<σ+a

Psub(σ + a;σ′)Q̂sub({σ′};σprefix)P|σprefix
(σ + b)

+
∑

σ′≥σ+a

Psub(σ + a;σ′)Q̂sub({σ′};σprefix)P|σprefix
(σ + b)

=
∑

σprefix≤σ′≤σ

Psub(σ + a;σ′)Q̂sub({σ′};σprefix)P|σprefix
(σ + b)

+Qsub(σ + a;σprefix)P|σprefix
(σ + b).

In case σ′ ∈ supp(P ), we have

Psub(σ + a;σ′)P|σprefix
(σ + b) = Psub(σ + a;σ′)P|σ′(σ + b)P|σprefix

(σ′).

Due to the fact that Psub is a prefix sub-sampler, we have

Psub(σ + a;σ′)P|σ′(σ + b) = Psub(σ + b;σ′)P|σ′(σ + a).

Therefore
Psub(σ + a;σ′)P|σprefix

(σ + b) = Psub(σ + b;σ′)P|σprefix
(σ + a).

In case σ′ /∈ supp(P ), we have P|σprefix
(σ + b) = P|σprefix

(σ + a) = 0 and Psub(σ + a;σ′)P|σprefix
(σ + b) = Psub(σ +

b;σ′)P|σprefix
(σ + a).

Combining either case, we proved that

Psub(σ + a;σ′)P|σprefix
(σ + b) = Psub(σ + b;σ′)P|σprefix

(σ + a).

Moreover, due to the fact that Qsub is a prefix sub-sampler, we have

Qsub(σ + a;σprefix)P|σprefix
(σ + b) = Qsub(σ + b;σprefix)P|σprefix

(σ + a).

Thus, combining the factors, we conclude that:

(Psub ◦Qsub)(σ + a;σprefix)P|σprefix
(σ + b) = (Psub ◦Qsub)(σ + b;σprefix)P|σprefix

(σ + a).

Now for the second part, we consider the termination probabilities for σ ∈ S≥σprefix
when σ is within the intersection

of supports for the composed distribution (Psub ◦ Qsub)(·;σprefix) and P|σprefix
. We need to show that the termination

probability for the composed distribution is at least as large as for the original prefix-distribution:

(Psub ◦Qsub)(τ |σ;σprefix) ≥ P|σprefix
(τ |σ).

Given that P is a leaf-only tree distribution and considering the classification of paths σ, we distinguish two cases:

If Σ(σ) ̸= ϕ, implying σ is not a leaf, it holds that P|σprefix
(τ |σ) = 0 by the definition of a leaf-only distribution. Therefore,

it is trivial that (Psub ◦Qsub)(τ |σ;σprefix) ≥ P|σprefix
(τ |σ).

If Σ(σ) = ϕ, implying σ is a leaf, the termination probabilities for both P|σprefix
and (Psub ◦Qsub) at σ are 1. Hence, we

have equality,
(Psub ◦Qsub)(τ |σ;σprefix) = P|σprefix

(τ |σ) = 1.
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The above theorem highlights a distinct characteristic differentiating Tree Monte Carlo (TMC) from the traditional Markov
chain Monte Carlo (MCMC). While traditional MCMC methods also concern the composition of Markov kernels, TMC is
unique in that the composition of sub-samplers maintains the order structure between tree distributions. Such order structure
is derived from hierarchical nature of tree structure, and is absent in traditional Monte Carlo.

We can also establish monotone convergence under this composition.

Theorem A.30 (Monotonicity under Composition of Prefix Sub-Samplers). Given a tree distribution P and two prefix
sub-samplers Psub and Qsub, for all paths σprefix, σ ∈ S, the composition of the two sub-samplers satisfies:

(Psub ◦Qsub)(σ;σprefix) ≥ Qsub(σ;σprefix).

Proof of Theorem A.30. The path probability of the composition (Psub ◦Qsub) is given by taking the sum over all paths σ′

that are children of σ with respect to the sub-sampler Psub, weighted by the probability that σ′ is reached from σprefix using
the sub-sampler Qsub:

(Psub ◦Qsub)(σ;σprefix)

=
∑
σ′∈S

Psub(σ;σ
′)Q̂sub({σ′};σprefix)

≥
∑

σ′∈S≥σ

Psub(σ;σ
′)Q̂sub({σ′};σprefix)

=
∑

σ′∈S≥σ

Q̂sub({σ′};σprefix)

=Q̂sub(S≥σ;σprefix)

=Qsub(σ;σprefix)

Essentially, Psub acts as a refining step that extend the path σprefix in a way that respect target distribution P .

It is important to note that a stronger claim would not generally hold. We may wish for a stronger sense of monotonicity,
suggesting that Qsub is a sub-distribution of the composition, stated as

∀σprefix ∈ S, (Psub ◦Qsub)(·;σprefix) ⪰ Qsub(·;σprefix),

where the inequality is interpreted as sub-distributions. However, such a claim is not universally valid.

Finally, we prove the remarkable convergence property that sub-sampler exhibits.

Theorem A.31 (Convergence of Non-Degenerate Prefix Sub-Samplers to a Leaf-Only Distribution). Given a leaf-only tree
distribution P , a non-degenerate prefix sub-sampler Psub, iteratively applied to itself, converges to P in pointwise distance,
more formally:

∀σp ∈ supp(P ),∀σ ∈ S, lim
n→∞

Pn
sub(σ;σp) = P|σp

(σ).

Proof of Theorem A.31. For simple cases, the path probabilities are already aligned with what is required:

• If the path σ is neither a prefix nor an extension of σprefix, then the probability is zero and remains so. That is
Pn
sub(σ;σprefix) = 0 and P|σprefix

(σ) = 0.

• If the path σ ≤ σprefix, then the probability remains one, Pn
sub(σ;σprefix) = 1, P|σprefix

(σ) = 1, as per definition.

Excluding the simple cases, we assume now that σ > σprefix, and denote σ = σprefix + (a1, . . . , an).
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We define vectors bi and ci representing the probabilities calculated after i applications of the sub-sampler:

bi =


P i
sub(σprefix + a1:1;σprefix)

P i
sub(σprefix + a1:2;σprefix)

...
P i
sub(σprefix + a1:n;σprefix)

 , ci =


P̂ i
sub({σprefix + a1:0};σprefix)

P̂ i
sub({σprefix + a1:1};σprefix)

...
P̂ i
sub({σprefix + a1:n−1};σprefix)

 . (4)

We then characterize the relationship between bi and ci. Let bi,j denote the j-th component of bi and ci,j denote the j-th
component of ci, which are computed as follows:

bi,j = P i
sub(σprefix + a1:j ;σprefix),

ci,j = P̂ i
sub({σprefix + a1:j−1};σprefix).

The relationship between each bi,j and ci,j captures the way the path probabilities depends on the the probabilities of
intermediate nodes. Specifically, we have

bi,j

=P i
sub(σprefix + a1:j ;σprefix)

=[P i
sub(σprefix + a1:j−1;σprefix)− P̂ i

sub(σprefix + a1:j−1;σprefix)]

× P (aj |σprefix + a1:j−1)

=

{
(bi,j−1 − ci,j)P (aj |σprefix + a1:j−1) j > 1

(1− ci,j)P (a1|σprefix) j = 1

The second equality is based on the fact that Psub is a sub-sampler of P .

Expanding these recursive relationship, we have

bi,j = P|σprefix
(σprefix + a1:j)−

j∑
k=1

ci,kP|σprefix+a1:k−1
(σprefix + a1:j)

In matrix form, we have

bi =


P|σprefix

(σprefix + a1:1)
P|σprefix

(σprefix + a1:2)
...

P|σprefix
(σprefix + a1:n)

−Aci,

Ai,j = I(i ≥ j)P|σprefix+a1:j−1
(σprefix + a1:i).

Then we compute how ci change over iteration:

ci+1,j

=P̂ i+1
sub ({σprefix + a1:j−1};σprefix)

=
∑
σ′∈S

P̂sub({σprefix + a1:j−1};σ′)P̂sub({σ′};σprefix)

=
∑

σprefix≤σ′≤σprefix+a1:j−1

P̂sub({σprefix + a1:j−1};σ′)P̂sub({σ′};σprefix)

=

j∑
k=1

P̂sub({σprefix + a1:j−1};σprefix + a1:k−1)P̂sub({σprefix + a1:k−1};σprefix)
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=

j∑
k=1

P̂sub({σprefix + a1:j−1};σprefix + a1:k−1)ci,k

In matrix form, we have
ci+1 = Bci,

Bi,j = I(i ≥ j)P̂sub({σprefix + a1:i−1};σprefix + a1:j−1).

The iteration matrix described above is a lower triangular matrix with diagonal elements greater than 0 and less than 1, as
Psub is a prefix sub-sampler of P .

Given the lower triangular structure and the bounds on the diagonal, we can conclude that the limit of ci as i approaches
infinity exists and equals zero for each j, that is

lim
i→∞

ci,j = 0. (5)

With the limits of ci established as zeroes, the limits of bi exist and match the distribution P|σprefix
for every extended path

from the prefix σprefix. Hence we have:

lim
i→∞

bi,j = P|σprefix
(σprefix + a1:j)

for each segment a1:j of the path extending σprefix.

Therefore, we have proven

∀σprefix ∈ supp(P ),∀σ ∈ S, lim
n→∞

Pn
sub(σ;σprefix) = P|σprefix

(σ).

Apart from pointwise convergence for path probability, we can also establish stronger convergence in terms of total variation
distance with better uniformity.

Theorem A.32 (Uniform Convergence of Non-Degenerate Prefix Sub-Samplers to a Leaf-Only Distribution). Given a
leaf-only tree distribution P , a non-degenerate prefix sub-sampler Psub, iteratively applied to itself, converges to P in total
variation distance, more formally:

∀σp ∈ supp(P ), lim
n→∞

TV(P̂n
sub(·;σp), P̂|σp

) = 0,

where the total variation distance is defined as

TV(P̂n
sub(·;σp), P̂|σp

) = max
U∈F

(P̂n
sub(U ;σp)− P̂|σp

(U)).

Furthermore, the total variation distance is monotonically decreasing with respect to n.

Proof of Theorem A.32. First, we reformulate the total variation distance on the leaves of the tree:

• For all σ ∈ S such that Σ(σ) = ϕ (leaf nodes):

P̂n
sub({σ};σprefix) = Pn

sub(σ;σprefix) ≤ P|σprefix
(σ) = P̂|σprefix

({σ}).

• For all σ ∈ S such that Σ(σ) ̸= ϕ (non-leaf nodes):

P̂n
sub({σ};σprefix) ≥ P̂|σprefix

({σ}) = 0.
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Therefore, the total variation distance can be described as follows:

TV(P̂n
sub(·;σprefix), P̂|σprefix

)

=P̂n
sub(U ;σprefix)|U={s∈S|s≥σprefix,Σ(s)̸=ϕ}

=1− P̂n
sub(U ;σprefix)|U={s∈S|s≥σprefix,Σ(s)=ϕ}

From this reformulation, we can prove the monotonicity of total variation distance by noticing that for all σ ∈ {s ∈ S|s ≥
σprefix,Σ(s) = ϕ}, the probability P̂n

sub({σ};σprefix) = Pn
sub(σ;σprefix) is monotonically increasing as n increases, due

to Theorem A.30. As a result, the total variation distance TV(P̂n
sub(·;σprefix), P̂|σprefix

) is monotonically decreasing with
respect to n.

To handle the convergence, we can approach the total variation distance by considering it up to a certain length and the tail
probability after that length.

Let us define the cut-off total variation distance as:

TVd(P̂n
sub(·;σprefix), P̂|σprefix

) = P̂n
sub(U ;σprefix)|U={s∈S|s≥σprefix,Σ(s)̸=ϕ,len(s)≤d}.

Also, following Definition A.17, let us define the cut-off tail probability as:

P
[len>d]
|σprefix

= P̂|σprefix
({s ∈ S| len(s) > d}).

With these definitions, we can bound the total variation distance as follows:

TVd(P̂n
sub(·;σprefix), P̂|σprefix

)

≤TV(P̂n
sub(·;σprefix), P̂|σprefix

)

≤TVd(P̂n
sub(·;σprefix), P̂|σprefix

) + P
[len>d]
|σprefix

.

The left-hand side of the above claim is clear by definition:

max
U∈F

(P̂n
sub(U ;σprefix)− P̂|σprefix

(U))

≥(P̂n
sub(U ;σprefix)− P̂|σprefix

(U))|U={s∈S|s≥σprefix,Σ(s) ̸=ϕ,len(s)≤d}

=P̂n
sub(U ;σprefix)|U={s∈S|s≥σprefix,Σ(s) ̸=ϕ,len(s)≤d}

For the right-hand side, we have:

TV(P̂n
sub(·;σprefix), P̂|σprefix

)

=P̂n
sub(U ;σprefix)|U={s∈S|s≥σprefix,Σ(s)̸=ϕ}

=P̂n
sub(U ;σprefix)|U={s∈S|s≥σprefix,Σ(s)̸=ϕ,len(s)≤d}

+ P̂n
sub(U ;σprefix)|U={s∈S|s≥σprefix,Σ(s)̸=ϕ,len(s)>d}

=TVd(P̂n
sub(·;σprefix), P̂|σprefix

)

+ P̂n
sub(U ;σprefix)|U={s∈S|s≥σprefix,Σ(s)̸=ϕ,len(s)>d}

≤TVd(P̂n
sub(·;σprefix), P̂|σprefix

) + P̂n
sub(U ;σprefix)|U={s∈S| len(s)>d}

=TVd(P̂n
sub(·;σprefix), P̂|σprefix

) +
∑

σ∈S,len(σ)=d+1

Pn
sub(σ;σprefix)

≤TVd(P̂n
sub(·;σprefix), P̂|σprefix

) +
∑

σ∈S,len(σ)=d+1

P|σprefix
(σ)
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=TVd(P̂n
sub(·;σprefix), P̂|σprefix

) + P̂|σprefix
(U)|U={s∈S| len(s)>d}

=TVd(P̂n
sub(·;σprefix), P̂|σprefix

) + P
[len>d]
|σprefix

As shown in Theorem A.18, the tail probability vanishes as the cut-off length goes to infinity:

lim
d→∞

P
[len>d]
|σprefix

= 0

We also have that as n→∞, the total variation distance over paths that are up to length d converges to zero. For a given
length d, consider the set of all paths that extend σprefix but are not themselves leaves, and are of length ≤ d:

∀σ ∈ {s ∈ S|s ≥ σprefix,Σ(s) ̸= ϕ, len(s) ≤ d}.

From our previous result regarding the convergence of the path probability, specifically Equations (4) and (5), we know that
as n→∞, for each σ in the set:

lim
n→∞

P̂n
sub({σ};σprefix) = 0.

Using this, we can show that the cut-off total variation distance converges to zero:

lim
n→∞

TVd(P̂n
sub(·;σprefix), P̂|σprefix

)

= lim
n→∞

P̂n
sub(U ;σprefix)|U={s∈S|s≥σprefix,Σ(s)̸=ϕ,len(s)≤d}

= lim
n→∞

P̂n
sub({s ∈ S|s ≥ σprefix,Σ(s) ̸= ϕ, len(s) ≤ d};σprefix)

= lim
n→∞

∑
σ∈{s∈S|s≥σprefix,Σ(s)̸=ϕ,len(s)≤d}

P̂n
sub({σ};σprefix)

=
∑

σ∈{s∈S|s≥σprefix,Σ(s)̸=ϕ,len(s)≤d}

lim
n→∞

P̂n
sub({σ};σprefix)

=0

The exchange of limits and summation is allowed because the set over which we are summing is finite for a fixed length d.

Finally, we prove that the total variation distance converges to zero as n → ∞. For every positive integer d, the total
variation distance is bounded by the cut-off total variation distance plus the tail probability:

∀d ≥ 1, lim
n→∞

TV(P̂n
sub(·;σprefix), P̂|σprefix

)

≤ lim
n→∞

(TVd(P̂n
sub(·;σprefix), P̂|σprefix

) + P
[len>d]
|σprefix

) = P
[len>d]
|σprefix

.

Taking limits as d→∞ and using the earlier observation that the tail probability vanishes, we get:

lim
n→∞

TV(P̂n
sub(·;σprefix), P̂|σprefix

) ≤ inf
d≥1

P
[len>d]
|σprefix

≤ lim
d→∞

P
[len>d]
|σprefix

= 0.

On the other hand, by definition, the total variation distance must be non-negative, so we have:

lim
n→∞

TV(P̂n
sub(·;σprefix), P̂|σprefix

) = 0.

This proves the uniform convergence in total variation distance of the non-degenerate prefix sub-sampler to the leaf-only
distribution P .

B. Accelerated Speculative Sampling (ASpS)
After establishing the convergence properties of sub-samplers, the next challenge lies in how to construct such sub-samplers.
It is essential to align their design with the specific structure of the problem at hand. In the following section, we will
establish SpS and ASpS as examples of sub-samplers.
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B.1. Construct Sub-Sampler from a Reference Sampler

Definition B.1 (Pseudo Leaf-Only Distribution). A tree distribution P is called pseudo leaf-only if ∀σ ∈ supp(P ), P (τ |σ) ∈
{0, 1}. A pseudo leaf σ is one where Pref(τ |σ) = 1.

One example of leaf-only distributions can be obtained by sampling with a reference model over a predefined number of
steps.

In this section, we address the following task: given a leaf-only target distribution P and a pseudo leaf-only reference
distribution Pref ,1 how can we output a sub-distribution Ps ⪯ P ?

An additional requirement for speculative sampling is that sampling process must respect the inherent tree structure. For
example, if a reference model Pref samples a reference path σ = abc, under this guidance, it would not be possible
to generate the sequence ba as a result. The reason is that feeding the reference path into the target model only yields
distributions P (·|a), P (·|ab), P (·|abc), without any knowledge of P (·|b). This observation leads us to define the structure
of neighborhoods within the sampling space.

Definition B.2 (Common Prefix). The common prefix operation cp : S × S → S is defined for two paths σ1, σ2 ∈ S as
follows: If σ1 = σ + (a1, . . . , an1), σ2 = σ + (b1, . . . , bn2), and a1 ̸= b1, their largest common prefix is σ. If σ1 ≤ σ2 or
σ1 ≥ σ2, the largest common prefix is the shorter of the two paths.

Definition B.3 (Neighbor Set). Given a sequence σ, we define several sets representing different notions of “neighborhood”
in the tree space:

S<σ = {s ∈ S|s < σ}

S≤σ = {s ∈ S|s ≤ σ}

S≃σ = {s ∈ S| len(cp(s, σ)) ≥ len(s)− 1, len(s) = len(σ)}

S≳σ = {s ∈ S| len(cp(s, σ)) ≥ len(s)− 1, len(s) = len(σ) + 1}

S≲σ = {s ∈ S| len(cp(s, σ)) ≥ len(s)− 1, len(s) ≤ len(σ)− 1}

For convenience, S≈σ = S≃σ ∪ S≳σ ∪ S≲σ and S⪅σ = S≃σ ∪ S≲σ are also defined. The length condition len(cp(s, σ)) ≥
len(s)− 1 implies that the sequence s matches with σ up to at least its penultimate element.

Definition B.4 (Neighbor Distribution). A tree distribution P is called neighbor distribution if its support (supp(P̂ ) instead
of supp(P )) is restricted to a neighbor set. For example, P̂N⪅({s};σ) ̸= 0 implies s ∈ S⪅σ , and P̂N≈({s};σ) ̸= 0 implies
s ∈ S≈σ .

Speculative Sampling (SpS) and Accelerated Speculative Sampling (ASpS) are both neighbor distributions. They can be
defined recursively:

̂
P

SpS/ASpS

N⪅ ({ε}; ε) = 1,

mSpS
ref (a;σ) = P̂ SpS

N⪅ ({σ};σ)Pref(a|σ)

mASpS
ref (a;σ) = Pref(a|σ)

mSpS/ASpS(a;σ) =
̂

P
SpS/ASpS

N⪅ ({σ};σ)P (a|σ)

̂
P

SpS/ASpS

N⪅ ({σ + a};σ + a) =
min(m

SpS/ASpS
ref (a;σ),mSpS/ASpS(a;σ))

Pref(a|σ)

rSpS/ASpS(a;σ) =
(m

SpS/ASpS
ref (a;σ)−mSpS/ASpS(a;σ))+∑

z∈Σ(σ)(m
SpS/ASpS
ref (z;σ)−mSpS/ASpS(z;σ))+

1The choice of pseudo leaf-only reference distribution is made for simplicity, but rest assured, the derived Adaptive Speculative
Sampling (ASpS) is still applicable to non-pseudo leaf-only distributions, albeit potentially with sub-optimal sampling efficiency.
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̂
P

SpS/ASpS

N⪅ ({σ + b};σ + a) =
rSpS/ASpS(a;σ)

Pref(a|σ)
(mSpS/ASpS(b;σ)−m

SpS/ASpS
ref (b;σ))+

̂
P

SpS/ASpS

N⪅ ({σ};σ + a) = 0

∀s ∈ S⪅σ \ {σ}, P̂
SpS
N⪅ ({s};σ + a) = P̂ SpS

N⪅ ({s};σ)

∀s ∈ S⪅σ \ {σ}, P̂
ASpS
N⪅ ({s};σ + a) =

rASpS(a;σ)

Pref(a|σ)
P̂ASpS
N⪅ ({s};σ)

̂
P

SpS/ASpS
N≈ ({σ + a};σ) = P (a|σ) ̂

P
SpS/ASpS

N⪅ ({σ};σ)

̂
P

SpS/ASpS
N≈ ({σ};σ) = P (τ |σ) ̂

P
SpS/ASpS

N⪅ ({σ};σ)

∀s ∈ S⪅σ \ {σ},
̂

P
SpS/ASpS
N≈ ({s};σ) = ̂

P
SpS/ASpS

N⪅ ({s};σ)

The final sampling distributions for SpS and ASpS are given composing the neighbor distribution and the reference
distribution:

P SpS/ASpS
s (·) =

∑
σ∈S

P
SpS/ASpS
N≈ (·;σ)P̂ref(σ).

Note that SpS can be reformulated as follows:

P̂ SpS
N⪅ ({σ + b};σ + a) =


P̂ SpS
N⪅ ({σ};σ)min(1, P (a|σ)

Pref (a|σ) ) if a = b,

P̂ SpS
N⪅ ({σ};σ)

(1− P (a|σ)
Pref (a|σ)

)+(P (b|σ)−Pref (b|σ))+∑
z∈Σ(σ)(Pref (z|σ)−P (z|σ))+ if a ̸= b,

which resembles the solution for simple maximum coupling in Equation (1). Therefore, SpS applies maximum coupling
step by step.

For both reference and target distributions, mref(a;σ) and m(a;σ) denote the probability mass that can be used for coupling.
Since mASpS

ref (a;σ) ≥ mSpS
ref (a;σ), ASpS achieves a stronger coupling. As a result, both Theorems B.8 and B.9 illustrates

ASpS’s superior strength over SpS.

Lemma B.5. Given a pseudo leaf-only reference distribution Pref and one path σ ∈ supp(Pref) such that Σ(σ) ̸= ϕ, for
any s ∈ S⪅σ , the following holds:∑

a∈Σ(σ)

Pref(a|σ)P SpS/ASpS

N⪅ (s;σ + a) = P
SpS/ASpS

N⪅ (s;σ).

Proof of Lemma B.5. We prove this lemma by considering two cases for s.

When s = σ, we have∑
a∈Σ(σ)

Pref(a|σ)P SpS/ASpS

N⪅ (σ;σ + a)

=
∑

a∈Σ(σ)

Pref(a|σ)
∑
s≥σ

̂
P

SpS/ASpS

N⪅ ({s};σ + a)

=
∑

a∈Σ(σ)

Pref(a|σ)(
∑

b≥Σ(σ)

̂
P

SpS/ASpS

N⪅ ({σ + b};σ + a) +
̂

P
SpS/ASpS

N⪅ ({σ};σ + a))

=
∑

a∈Σ(σ)

min(m
SpS/ASpS
ref (a;σ),mSpS/ASpS(a;σ))

+
∑

a∈Σ(σ)

∑
b≥Σ(σ),b̸=a

rSpS/ASpS(a;σ)(mSpS/ASpS(b;σ)−m
SpS/ASpS
ref (b;σ))+
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=
∑

a∈Σ(σ)

min(m
SpS/ASpS
ref (a;σ),mSpS/ASpS(a;σ))

+
∑

a∈Σ(σ)

∑
b≥Σ(σ)

rSpS/ASpS(a;σ)(mSpS/ASpS(b;σ)−m
SpS/ASpS
ref (b;σ))+

−
∑

a∈Σ(σ)

rSpS/ASpS(a;σ)(mSpS/ASpS(a;σ)−m
SpS/ASpS
ref (a;σ))+

=
∑

a∈Σ(σ)

min(m
SpS/ASpS
ref (a;σ),mSpS/ASpS(a;σ))

+
∑

b≥Σ(σ)

(mSpS/ASpS(b;σ)−m
SpS/ASpS
ref (b;σ))+

−
∑

a∈Σ(σ)

(m
SpS/ASpS
ref (a;σ)−mSpS/ASpS(a;σ))+(m

SpS/ASpS(a;σ)−m
SpS/ASpS
ref (a;σ))+∑

z∈Σ(σ)(m
SpS/ASpS
ref (z;σ)−mSpS/ASpS(z;σ))+

=
∑

a∈Σ(σ)

(min(m
SpS/ASpS
ref (a;σ),mSpS/ASpS(a;σ))

+ (mSpS/ASpS(a;σ)−m
SpS/ASpS
ref (a;σ))+)

=
∑

a∈Σ(σ)

mSpS/ASpS(a;σ)

=
∑

a∈Σ(σ)

̂
P

SpS/ASpS

N⪅ ({σ};σ)P (a|σ)

=
̂

P
SpS/ASpS

N⪅ ({σ};σ)

For s ∈ S⪅σ \ {σ}, we have the following for SpS:∑
a∈Σ(σ)

Pref(a|σ)P̂ SpS
N⪅ ({s};σ + a)

=
∑

a∈Σ(σ)

Pref(a|σ)P̂ SpS
N⪅ ({s};σ)

=
̂

P
SpS/ASpS

N⪅ ({s};σ)

For ASpS, we have: ∑
a∈Σ(σ)

Pref(a|σ)P̂ASpS
N⪅ ({s};σ + a)

=
∑

a∈Σ(σ)

Pref(a|σ)
rASpS(a;σ)

Pref(a|σ)
P̂ASpS
N⪅ ({s};σ)

=
∑

a∈Σ(σ)

rASpS(a;σ)P̂ASpS
N⪅ ({s};σ)

=P̂ASpS
N⪅ ({s};σ)

Lemma B.6. For a pseudo leaf-only reference distribution Pref , ∀σ ∈ supp(Pref) where Σ(σ) ̸= ϕ, and for all b ∈ Σ(σ),
we have: ∑

a∈Σ(σ)

Pref(a|σ)P SpS/ASpS

N⪅ (σ + b;σ + a) = P
SpS/ASpS

N⪅ (σ;σ)P (b|σ).
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Proof of Lemma B.6. ∑
a∈Σ(σ)

Pref(a|σ)P SpS/ASpS

N⪅ (σ + b;σ + a)

=Pref(a|σ)P SpS/ASpS

N⪅ (σ + a;σ + a)

+
∑

a∈Σ(σ),a ̸=b

Pref(a|σ)P SpS/ASpS

N⪅ (σ + b;σ + a)

=min(m
SpS/ASpS
ref (a;σ),mSpS/ASpS(a;σ)

+
∑

a∈Σ(σ),a ̸=b

rSpS/ASpS(a;σ)(mSpS/ASpS(b;σ)−m
SpS/ASpS
ref (b;σ))+

=min(m
SpS/ASpS
ref (a;σ),mSpS/ASpS(a;σ)

+
∑

a∈Σ(σ)

rSpS/ASpS(a;σ)(mSpS/ASpS(b;σ)−m
SpS/ASpS
ref (b;σ))+

− rSpS/ASpS(b;σ)(mSpS/ASpS(b;σ)−m
SpS/ASpS
ref (b;σ))+

=min(m
SpS/ASpS
ref (a;σ),mSpS/ASpS(a;σ)

+ (mSpS/ASpS(b;σ)−m
SpS/ASpS
ref (b;σ))+

=mSpS/ASpS(b;σ)

=
̂

P
SpS/ASpS

N⪅ ({σ};σ)P (b|σ)

Lemma B.7. Given a pseudo leaf-only reference distribution Pref , for ∀σ ∈ supp(Pref), and ∀s ∈ S⪅σ , we have:

E
σ′∼P̂ref |σ

P
SpS/ASpS

N⪅ (s;σ′) = P
SpS/ASpS

N⪅ (s;σ).

Proof of Lemma B.7. Define the function V (s′) = P
SpS/ASpS

N⪅ (s;σ + s′) for subsequences s′. This function satisfies the
unbiased condition due to Lemma B.5. Applying the tree expectation theorem Theorem A.19, we can conclude that the
expected value of the neighbor distribution calculated from the conditional distribution Pref |σ is equal to the neighbor
distribution at σ.

Theorem B.8. For every σ ∈ supp(Pref), it holds that P̂ASpS
N⪅ ({σ};σ) ≥ P̂ SpS

N⪅ ({σ};σ).

Proof of Theorem B.8. Initially, we have that P̂ASpS
N⪅ ({ε}; ε) = P̂ SpS

N⪅ ({ε}; ε).

Assume that P̂ASpS
N⪅ ({σ};σ) ≥ P̂ SpS

N⪅ ({σ};σ) holds. Given that

̂
P

SpS/ASpS

N⪅ ({σ + a};σ + a) =
min(m

SpS/ASpS
ref (a;σ),mSpS/ASpS(a;σ))

Pref(a|σ)
,

mSpS
ref (a;σ) = P̂ SpS

N⪅ ({σ};σ)Pref(a|σ),

mASpS
ref (a;σ) = Pref(a|σ) ≥ P̂ SpS

N⪅ ({σ};σ)Pref(a|σ) = mSpS
ref (a;σ).

We have P̂ASpS
N⪅ ({σ+a};σ+a) ≥ P̂ SpS

N⪅ ({σ+a};σ+a). By applying mathematical induction, we completes the inductive
step and the proof of the theorem.

29



Accelerated Speculative Sampling based on Tree Monte Carlo

Theorem B.9. If that the expected length of sequences sampled from the reference distribution is finite, i.e., E
s∼P̂ref

[len(s)] ≤
∞, we have:

E
s∼P̂ASpS [len(s)] ≥ E

s∼P̂SpS [len(s)].

Proof of Theorem B.9. Firstly, we have:

E
s∼ ̂

P
SpS/ASpS
N≈ (·;σ)

[len(s)] = E
s∼ ̂

P
SpS/ASpS

N⪅
(·;σ)

[len(s)] +
̂

P
SpS/ASpS

N⪅ ({σ};σ)I(Σ(σ) ̸= ϕ).

Due to Theorem B.8, we haveP̂ASpS
N⪅ ({σ};σ) ≥ P̂ SpS

N⪅ ({σ};σ). Therefore, we only need to prove the following:∑
σ∈S

E
s∼P̂ASpS

N⪅
(·;σ)

[len(s)]P̂ref(σ) ≥
∑
σ∈S

E
s∼P̂SpS

N⪅
(·;σ)

[len(s)]P̂ref(σ)

For σ such that Σ(σ) ̸= ϕ, we have:∑
a∈Σ(σ)

Pref(a|σ)E
s∼ ̂

P
SpS/ASpS

N⪅
(·;σ+a)

[len(s)]

=
∑

a∈Σ(σ)

Pref(a|σ)
∑

s∈S≈σ

̂
P

SpS/ASpS

N⪅ ({s};σ + a) len(s)

=
∑

a∈Σ(σ)

Pref(a|σ)
∑

s∈S≳σ

̂
P

SpS/ASpS

N⪅ ({s};σ + a) len(s)

+
∑

a∈Σ(σ)

Pref(a|σ)
∑

s∈S⪅σ

̂
P

SpS/ASpS

N⪅ ({s};σ + a) len(s)

=
∑

a∈Σ(σ)

Pref(a|σ)P SpS/ASpS

N⪅ (σ;σ + a)(len(σ) + 1)

+
∑

a∈Σ(σ)

Pref(a|σ)
∑

s∈S⪅σ\{σ}

̂
P

SpS/ASpS

N⪅ ({s};σ + a) len(s)

=P
SpS/ASpS

N⪅ (σ;σ)(len(σ) + 1)

+
∑

s∈S⪅σ\{σ}

̂
P

SpS/ASpS

N⪅ ({s};σ) len(s)

=P
SpS/ASpS

N⪅ (σ;σ) +
∑

s∈S⪅σ

̂
P

SpS/ASpS

N⪅ ({s};σ) len(s)

=P
SpS/ASpS

N⪅ (σ;σ) + E
s∼ ̂

P
SpS/ASpS

N⪅
(·;σ)

[len(s)]

Define the difference in expected lengths when using ASpS and SpS as

V (σ) = E
s∼P̂ASpS

N⪅
(·;σ)

[len(s)]− E
s∼P̂SpS

N⪅
(·;σ)

[len(s)].

Then, for sequences σ where Σ(σ) ̸= ϕ, we see:∑
a∈Σ(σ)

Pref(a|σ)V (σ + a)

=
∑

a∈Σ(σ)

Pref(a|σ)(E
s∼P̂ASpS

N⪅
(·;σ+a)

[len(s)]− E
s∼P̂SpS

N⪅
(·;σ+a)

[len(s)])
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=PASpS
N⪅ (σ;σ)− P SpS

N⪅ (σ;σ) + E
s∼P̂ASpS

N⪅
(·;σ)

[len(s)]− E
s∼P̂SpS

N⪅
(·;σ)

[len(s)]

≥V (σ)

Utilizing the tree expectation theorem in Theorem A.19, we can deduce that:

∑
σ∈S

V (σ)P̂ref(σ) ≥ V (ε) = 0.

This further implies that:

∑
σ∈S

E
s∼P̂ASpS

N⪅
(·;σ)

[len(s)]P̂ref(σ) ≥
∑
σ∈S

E
s∼P̂SpS

N⪅
(·;σ)

[len(s)]P̂ref(σ),

which is precisely what we needed to prove. Therefore, the expected sequence length for ASpS is greater than or equal to
that for SpS, which illustrates ASpS’s superior strength.

The following theorem guarantees that both SpS and ASpS can be applied recursively to converge to the target distribution
correctly.

Theorem B.10. Both SpS and ASpS constitute sub-samplers, i.e., P SpS/ASpS
s ⪯ P .

Proof of Theorem B.10. As the target distribution P is a leaf-only distribution, P (τ |σ) is already minimized. We only need
to prove:

∀σ ∈ supp(P ) ∩ supp(Pref), ∀a, b ∈ Σ(σ), P SpS/ASpS
s (σ + a)P (σ + b) = P SpS/ASpS

s (σ + b)P (σ + a).

If Pref(τ |σ) = 1, we have:

P SpS/ASpS
s (σ + a) =

∑
σ′

P
SpS/ASpS
N≈ (σ + a;σ′)P̂ref({σ′})

=P
SpS/ASpS
N≈ (σ + a;σ)Pref(σ)

=P
SpS/ASpS

N⪅ (σ;σ)P (a|σ)Pref(σ),

If Pref(τ |σ) = 0, then:

P SpS/ASpS
s (σ + a) =

∑
σ′

P
SpS/ASpS
N≈ (σ + a;σ′)P̂ref({σ′})

=
∑

σ′′∈S≃σ+a

∑
σ′≥σ′′

P
SpS/ASpS

N⪅ (σ + a;σ′)P̂ref |σ′′({σ′})Pref(σ
′′)

=
∑

σ′′∈S≃σ+a

E
σ′∼P̂ref |σ′′

[P
SpS/ASpS

N⪅ (σ + a;σ′)]Pref(σ
′′)

=
∑

σ′′∈S≃σ+a

P
SpS/ASpS

N⪅ (σ + a;σ′′)Pref(σ
′′)

=
∑

b∈Σ(b)

P
SpS/ASpS

N⪅ (σ + a;σ + b)Pref(b|σ)Pref(σ)

=P
SpS/ASpS

N⪅ (σ;σ)P (a|σ)Pref(σ),

In either cases, we have:

P SpS/ASpS
s (σ + a)P (σ + b) =P

SpS/ASpS

N⪅ (σ;σ)Pref(σ)P (σ)P (a|σ)P (b|σ)

=P SpS/ASpS
s (σ + b)P (σ + a).

Therefore, according to Theorem A.16, we establish that P SpS/ASpS
s ⪯ P .
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B.2. Application to LLM

For each LLM, there is a fixed token space Σ, within which there exists a special token known as the end-of-sequence (eos)
token, eos ∈ Σ. Use use a predicate, terminated(s) to represent whether the last token in the sequence s is the eos token.
An LLM is a probability distribution as LLM(xn+1|x1, . . . , xn). A sequence can be continually extended by sampling and
appending tokens until the eos token is reached, resulting in a terminated sequence.

A LLM constitutes a tree distribution. Note that all strings forms a tree space:

S = (Σ \ {eos})∗ ∪ {s+ eos |s ∈ (Σ \ {eos})∗},

Σ(s) =

{
ϕ terminated(s),

Σ otherwise.

The tree distribution is defined as:

PLLM(a|σ) =

{
0 terminated(σ),

LLM(a|σ) otherwise.

PLLM(τ |σ) =

{
1 terminated(σ),

0 otherwise.

With this connection between TMC and LLM, we can apply ASpS to LLM as follows: 1. sample d reference tokens from
the reference model that is less computationally expensive. 2. Calculate the neighbor distribution PASpS

N≈ (·;σ). 3. Sample
from the neighbor distribution to generate the final output.

C. Full Experiment Results

n ATN PTT PPL
SpS ASpS Improv. (%) SpS ASpS Improv. (%) Change (%)

1 1.284± 0.001 1.284± 0.001 0.0± 0.1 0.028± 0.000 0.028± 0.000 −0.1± 0.3 0.0± 2.5
2 1.381± 0.002 1.394± 0.002 0.9± 0.2 0.028± 0.000 0.028± 0.000 0.8± 0.4 −0.5± 2.4
3 1.458± 0.002 1.485± 0.002 1.8± 0.2 0.029± 0.000 0.028± 0.000 1.6± 0.4 0.9± 2.5
4 1.454± 0.002 1.489± 0.002 2.4± 0.2 0.031± 0.000 0.030± 0.000 2.1± 0.4 1.9± 2.5
5 1.436± 0.002 1.467± 0.002 2.1± 0.2 0.033± 0.000 0.033± 0.000 1.6± 0.4 0.7± 2.5
6 1.482± 0.002 1.507± 0.003 1.7± 0.2 0.034± 0.000 0.034± 0.000 1.0± 0.5 2.1± 2.4
7 1.477± 0.002 1.520± 0.003 2.9± 0.3 0.036± 0.000 0.036± 0.000 2.3± 0.5 0.8± 2.4
8 1.496± 0.003 1.525± 0.003 1.9± 0.3 0.038± 0.000 0.037± 0.000 1.2± 0.5 0.7± 2.5
9 1.482± 0.003 1.532± 0.003 3.3± 0.3 0.040± 0.000 0.039± 0.000 2.4± 0.5 −0.3± 2.5

10 1.468± 0.003 1.522± 0.003 3.7± 0.3 0.042± 0.000 0.041± 0.000 2.6± 0.5 1.0± 2.5

Table 6. Summary of accepted token numbers per step (ATN) and per token time (PTN) improvement and perplexity (PPL) change for
ASpS over SpS. n is the number of reference token. We use LLaMa-7b model as target model and LLaMa-68m model as reference model
on machine translation task.
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n ATN PTT PPL
SpS ASpS Improv. (%) SpS ASpS Improv. (%) Change (%)

1 1.548± 0.001 1.548± 0.001 0.0± 0.1 0.023± 0.000 0.023± 0.000 −0.0± 0.1 0.0± 2.3
2 1.851± 0.001 1.869± 0.001 1.0± 0.1 0.021± 0.000 0.021± 0.000 0.8± 0.2 0.2± 2.3
3 2.006± 0.001 2.045± 0.002 1.9± 0.1 0.021± 0.000 0.020± 0.000 1.7± 0.2 −1.4± 2.3
4 2.125± 0.002 2.186± 0.002 2.9± 0.1 0.021± 0.000 0.020± 0.000 2.5± 0.2 3.8± 2.3
5 2.181± 0.002 2.270± 0.002 4.1± 0.1 0.022± 0.000 0.021± 0.000 3.7± 0.2 4.7± 2.3
6 2.204± 0.002 2.313± 0.002 5.0± 0.1 0.023± 0.000 0.022± 0.000 4.5± 0.2 −1.3± 2.3
7 2.223± 0.002 2.349± 0.003 5.7± 0.2 0.024± 0.000 0.023± 0.000 5.1± 0.3 0.3± 2.2
8 2.264± 0.002 2.386± 0.003 5.4± 0.2 0.025± 0.000 0.024± 0.000 4.8± 0.3 2.2± 2.3
9 2.238± 0.002 2.372± 0.003 6.0± 0.2 0.026± 0.000 0.025± 0.000 5.2± 0.3 0.4± 2.3

10 2.254± 0.002 2.412± 0.003 7.0± 0.2 0.027± 0.000 0.026± 0.000 6.1± 0.3 2.0± 2.3

Table 7. Summary of accepted token numbers per step (ATN) and per token time (PTN) improvement and perplexity (PPL) change for
ASpS over SpS. n is the number of reference token. We use LLaMa-7b model as target model and LLaMa-68m model as reference model
on text summarization task.

n ATN PTT PPL
SpS ASpS Improv. (%) SpS ASpS Improv. (%) Change (%)

1 1.487± 0.002 1.487± 0.002 0.0± 0.2 0.033± 0.000 0.033± 0.000 0.0± 0.2 0.0± 2.8
2 1.731± 0.003 1.748± 0.003 1.0± 0.3 0.030± 0.000 0.029± 0.000 0.9± 0.3 −1.6± 2.8
3 1.856± 0.004 1.904± 0.004 2.6± 0.3 0.029± 0.000 0.028± 0.000 2.4± 0.4 2.7± 2.9
4 1.920± 0.005 1.988± 0.005 3.5± 0.4 0.030± 0.000 0.029± 0.000 3.3± 0.4 −1.1± 2.9
5 1.942± 0.005 2.041± 0.006 5.1± 0.4 0.031± 0.000 0.029± 0.000 4.8± 0.5 2.9± 2.9
6 1.959± 0.005 2.074± 0.006 5.9± 0.4 0.032± 0.000 0.030± 0.000 5.4± 0.5 1.1± 2.9
7 1.977± 0.006 2.093± 0.007 5.8± 0.4 0.033± 0.000 0.031± 0.000 5.4± 0.5 3.8± 2.9
8 1.962± 0.006 2.107± 0.007 7.4± 0.5 0.034± 0.000 0.032± 0.000 6.8± 0.5 2.9± 3.0
9 1.976± 0.006 2.121± 0.007 7.3± 0.5 0.035± 0.000 0.033± 0.000 6.7± 0.5 0.3± 2.9

10 1.973± 0.006 2.112± 0.007 7.0± 0.5 0.037± 0.000 0.034± 0.000 6.4± 0.5 0.7± 2.8

Table 8. Summary of accepted token numbers per step (ATN) and per token time (PTN) improvement and perplexity (PPL) change for
ASpS over SpS. n is the number of reference token. We use LLaMa-13b model as target model and LLaMa-68m model as reference
model on open-ended text generation task.

n ATN PTT PPL
SpS ASpS Improv. (%) SpS ASpS Improv. (%) Change (%)

1 1.615± 0.002 1.615± 0.002 0.0± 0.2 0.035± 0.000 0.035± 0.000 0.0± 0.2 0.0± 3.0
2 1.987± 0.004 2.016± 0.004 1.5± 0.3 0.032± 0.000 0.031± 0.000 1.4± 0.3 −0.9± 3.2
3 2.233± 0.005 2.289± 0.005 2.5± 0.3 0.031± 0.000 0.030± 0.000 2.3± 0.4 −1.3± 3.0
4 2.373± 0.006 2.484± 0.007 4.7± 0.4 0.032± 0.000 0.031± 0.000 4.3± 0.5 0.7± 3.2
5 2.485± 0.007 2.621± 0.008 5.5± 0.5 0.033± 0.000 0.032± 0.000 5.2± 0.5 3.6± 3.0
6 2.534± 0.008 2.712± 0.010 7.0± 0.5 0.035± 0.000 0.033± 0.000 6.6± 0.5 −0.2± 2.9
7 2.536± 0.009 2.750± 0.010 8.5± 0.5 0.038± 0.000 0.035± 0.000 7.7± 0.6 −1.9± 2.9
8 2.568± 0.009 2.837± 0.011 10.5± 0.6 0.040± 0.000 0.036± 0.000 9.4± 0.6 −0.6± 2.9
9 2.585± 0.009 2.867± 0.012 10.9± 0.6 0.042± 0.000 0.038± 0.000 9.9± 0.6 −4.7± 2.9

10 2.591± 0.009 2.898± 0.012 11.8± 0.6 0.045± 0.000 0.040± 0.000 10.4± 0.6 0.8± 3.0

Table 9. Summary of accepted token numbers per step (ATN) and per token time (PTN) improvement and perplexity (PPL) change for
ASpS over SpS. n is the number of reference token. We use Opt-13b model as target model and Opt-125m model as reference model on
open-ended text generation task.
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n ATN PTT PPL
SpS ASpS Improv. (%) SpS ASpS Improv. (%) Change (%)

1 1.623± 0.002 1.623± 0.002 0.0± 0.2 0.022± 0.000 0.022± 0.000 −0.0± 0.2 0.0± 2.9
2 2.012± 0.004 2.036± 0.004 1.2± 0.3 0.021± 0.000 0.021± 0.000 1.1± 0.3 −0.6± 3.0
3 2.264± 0.005 2.328± 0.006 2.8± 0.3 0.022± 0.000 0.021± 0.000 2.7± 0.4 −1.9± 3.1
4 2.419± 0.007 2.539± 0.007 5.0± 0.4 0.023± 0.000 0.022± 0.000 4.7± 0.5 0.7± 3.0
5 2.520± 0.008 2.687± 0.009 6.6± 0.5 0.025± 0.000 0.023± 0.000 6.1± 0.5 −0.6± 3.0
6 2.581± 0.008 2.776± 0.010 7.5± 0.5 0.027± 0.000 0.025± 0.000 7.0± 0.5 −1.6± 2.9
7 2.598± 0.009 2.839± 0.011 9.3± 0.6 0.029± 0.000 0.027± 0.000 8.5± 0.6 −3.3± 3.0
8 2.644± 0.009 2.944± 0.012 11.3± 0.6 0.031± 0.000 0.028± 0.000 10.1± 0.6 −0.3± 3.0
9 2.673± 0.010 2.987± 0.013 11.7± 0.6 0.033± 0.000 0.030± 0.000 10.5± 0.6 −3.7± 3.0

10 2.677± 0.010 3.004± 0.013 12.2± 0.6 0.035± 0.000 0.032± 0.000 10.7± 0.6 −0.7± 3.0

Table 10. Summary of accepted token numbers per step (ATN) and per token time (PTN) improvement and perplexity (PPL) change for
ASpS over SpS. n is the number of reference token. We use Opt-6.7b model as target model and Opt-125m model as reference model on
open-ended text generation task.

n ATN PTT PPL
SpS ASpS Improv. (%) SpS ASpS Improv. (%) Change (%)

1 1.615± 0.002 1.615± 0.002 0.0± 0.2 0.019± 0.000 0.019± 0.000 −0.1± 0.4 0.0± 3.5
2 2.004± 0.003 2.035± 0.004 1.5± 0.3 0.019± 0.000 0.019± 0.000 1.4± 0.4 −1.7± 3.5
3 2.254± 0.005 2.322± 0.005 3.0± 0.3 0.020± 0.000 0.019± 0.000 2.8± 0.5 −0.8± 3.4
4 2.420± 0.006 2.542± 0.007 5.0± 0.4 0.022± 0.000 0.021± 0.000 4.7± 0.5 0.0± 3.2
5 2.512± 0.007 2.692± 0.009 7.2± 0.5 0.024± 0.000 0.022± 0.000 6.6± 0.6 −0.7± 3.2
6 2.583± 0.008 2.830± 0.010 9.6± 0.5 0.026± 0.000 0.024± 0.000 8.7± 0.6 2.0± 3.2
7 2.613± 0.009 2.908± 0.011 11.3± 0.6 0.028± 0.000 0.025± 0.000 10.0± 0.6 −3.6± 3.4
8 2.647± 0.009 2.964± 0.012 12.0± 0.6 0.031± 0.000 0.027± 0.000 10.6± 0.6 −0.0± 3.3
9 2.598± 0.009 2.943± 0.012 13.3± 0.6 0.034± 0.000 0.030± 0.000 11.6± 0.7 2.8± 3.2

10 2.715± 0.010 3.098± 0.014 14.1± 0.7 0.035± 0.000 0.031± 0.000 12.2± 0.7 −4.2± 3.3

Table 11. Summary of accepted token numbers per step (ATN) and per token time (PTN) improvement and perplexity (PPL) change for
ASpS over SpS. n is the number of reference token. We use GPT-Neo-2.7B model as target model and GPT-2 model as reference model
on open-ended text generation task.

n ATN PTT PPL
SpS ASpS Improv. (%) SpS ASpS Improv. (%) Change (%)

1 1.654± 0.002 1.654± 0.002 0.0± 0.1 0.023± 0.000 0.023± 0.000 0.0± 0.3 0.0± 3.3
2 2.075± 0.004 2.108± 0.004 1.6± 0.2 0.022± 0.000 0.022± 0.000 1.5± 0.4 −0.1± 3.3
3 2.373± 0.005 2.443± 0.006 2.9± 0.3 0.022± 0.000 0.022± 0.000 2.9± 0.5 −1.1± 3.3
4 2.559± 0.007 2.681± 0.007 4.8± 0.4 0.024± 0.000 0.023± 0.000 4.6± 0.5 0.4± 3.3
5 2.690± 0.008 2.881± 0.009 7.1± 0.5 0.025± 0.000 0.024± 0.000 6.6± 0.5 −1.0± 3.2
6 2.750± 0.009 3.037± 0.011 10.4± 0.5 0.027± 0.000 0.025± 0.000 9.3± 0.5 2.1± 3.2
7 2.811± 0.010 3.122± 0.012 11.1± 0.6 0.029± 0.000 0.026± 0.000 10.0± 0.6 −1.8± 3.3
8 2.839± 0.010 3.234± 0.013 13.9± 0.6 0.032± 0.000 0.028± 0.000 12.2± 0.6 −2.5± 3.4
9 2.876± 0.011 3.259± 0.014 13.3± 0.6 0.034± 0.000 0.030± 0.000 11.9± 0.6 1.2± 3.3

10 2.899± 0.011 3.313± 0.015 14.3± 0.7 0.036± 0.000 0.031± 0.000 12.2± 0.7 0.9± 3.3

Table 12. Summary of accepted token numbers per step (ATN) and per token time (PTN) improvement and perplexity (PPL) change for
ASpS over SpS. n is the number of reference token. We use GPT-2-xl model as target model and GPT-2 model as reference model on
open-ended text generation task.
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n ATN PTT PPL
SpS ASpS Improv. (%) SpS ASpS Improv. (%) Change (%)

1 1.498± 0.002 1.498± 0.002 0.0± 0.2 0.021± 0.000 0.021± 0.000 0.0± 0.4 0.0± 3.1
2 1.752± 0.003 1.768± 0.003 0.9± 0.3 0.020± 0.000 0.020± 0.000 0.8± 0.5 0.3± 3.0
3 1.872± 0.004 1.919± 0.004 2.5± 0.3 0.020± 0.000 0.019± 0.000 2.3± 0.5 −1.2± 2.9
4 1.959± 0.005 2.026± 0.005 3.4± 0.4 0.020± 0.000 0.020± 0.000 3.1± 0.5 −2.7± 3.0
5 1.997± 0.005 2.075± 0.006 3.9± 0.4 0.021± 0.000 0.021± 0.000 3.6± 0.6 −0.2± 3.0
6 2.001± 0.006 2.101± 0.006 5.0± 0.4 0.023± 0.000 0.021± 0.000 4.6± 0.6 −0.0± 3.0
7 2.009± 0.006 2.149± 0.007 7.0± 0.5 0.024± 0.000 0.022± 0.000 6.3± 0.6 1.7± 3.0
8 2.008± 0.006 2.169± 0.007 8.0± 0.5 0.025± 0.000 0.023± 0.000 7.2± 0.6 2.0± 3.1
9 2.015± 0.006 2.151± 0.007 6.8± 0.5 0.026± 0.000 0.025± 0.000 6.2± 0.6 −1.4± 3.1

10 2.003± 0.006 2.187± 0.008 9.2± 0.5 0.028± 0.000 0.025± 0.000 8.1± 0.6 1.0± 2.9

Table 13. Summary of accepted token numbers per step (ATN) and per token time (PTN) improvement and perplexity (PPL) change for
ASpS over SpS. n is the number of reference token. We use LLaMa-7b model as target model and LLaMa-68m model as reference model
on open-ended text generation task.

n ATN PTT PPL
SpS ASpS Improv. (%) SpS ASpS Improv. (%) Change (%)

1 1.401± 0.002 1.401± 0.002 0.0± 0.2 0.023± 0.000 0.023± 0.000 −0.0± 0.4 0.0± 2.4
2 1.573± 0.003 1.576± 0.003 0.2± 0.2 0.022± 0.000 0.022± 0.000 0.1± 0.4 0.2± 2.4
3 1.639± 0.003 1.659± 0.003 1.2± 0.3 0.023± 0.000 0.023± 0.000 1.0± 0.5 −0.3± 2.1
4 1.657± 0.004 1.685± 0.004 1.7± 0.3 0.024± 0.000 0.024± 0.000 1.5± 0.5 −0.5± 2.3
5 1.683± 0.004 1.714± 0.004 1.8± 0.3 0.025± 0.000 0.025± 0.000 1.6± 0.5 −0.8± 2.4
6 1.693± 0.004 1.728± 0.004 2.1± 0.4 0.027± 0.000 0.026± 0.000 1.8± 0.5 −1.1± 2.3
7 1.698± 0.004 1.741± 0.005 2.5± 0.4 0.028± 0.000 0.027± 0.000 2.3± 0.5 −0.9± 2.3
8 1.690± 0.004 1.729± 0.004 2.3± 0.4 0.030± 0.000 0.029± 0.000 2.0± 0.5 −0.4± 2.4
9 1.694± 0.004 1.736± 0.005 2.5± 0.4 0.031± 0.000 0.030± 0.000 2.3± 0.5 1.0± 2.6

10 1.696± 0.004 1.737± 0.005 2.4± 0.4 0.033± 0.000 0.032± 0.000 2.1± 0.5 −1.7± 2.3

Table 14. Summary of accepted token numbers per step (ATN) and per token time (PTN) improvement and perplexity (PPL) change for
ASpS over SpS. n is the number of reference token. We use LLaMa-2-7b model as target model and LLaMa-68m model as reference
model on open-ended text generation task.

n ATN PTT PPL
SpS ASpS Improv. (%) SpS ASpS Improv. (%) Change (%)

1 1.132± 0.001 1.132± 0.001 0.0± 0.1 0.029± 0.000 0.029± 0.000 −0.1± 0.2 0.0± 1.6
2 1.161± 0.001 1.164± 0.001 0.3± 0.1 0.031± 0.000 0.031± 0.000 0.2± 0.2 −0.5± 1.6
3 1.179± 0.001 1.182± 0.001 0.3± 0.1 0.033± 0.000 0.033± 0.000 0.1± 0.2 −0.6± 1.6
4 1.178± 0.001 1.181± 0.001 0.3± 0.1 0.035± 0.000 0.035± 0.000 0.1± 0.3 −0.9± 1.6
5 1.183± 0.001 1.187± 0.001 0.3± 0.1 0.037± 0.000 0.037± 0.000 0.0± 0.3 −0.5± 1.7
6 1.181± 0.001 1.187± 0.001 0.5± 0.1 0.040± 0.000 0.040± 0.000 0.2± 0.3 0.4± 1.7
7 1.181± 0.001 1.184± 0.001 0.2± 0.1 0.042± 0.000 0.042± 0.000 −0.1± 0.3 −0.6± 1.6
8 1.182± 0.001 1.188± 0.001 0.5± 0.2 0.044± 0.000 0.044± 0.000 0.2± 0.3 0.2± 1.7
9 1.184± 0.001 1.186± 0.001 0.2± 0.2 0.046± 0.000 0.046± 0.000 −0.1± 0.3 −0.6± 1.7

10 1.177± 0.001 1.185± 0.001 0.6± 0.2 0.048± 0.000 0.048± 0.000 0.3± 0.3 0.6± 1.7

Table 15. Summary of accepted token numbers per step (ATN) and per token time (PTN) improvement and perplexity (PPL) change for
ASpS over SpS. n is the number of reference token. We use LLaMa-2-7b model as target model and LLaMa-68m model as reference
model on machine translation task.
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n ATN PTT PPL
SpS ASpS Improv. (%) SpS ASpS Improv. (%) Change (%)

1 1.448± 0.001 1.448± 0.001 0.0± 0.1 0.024± 0.000 0.024± 0.000 −0.0± 0.2 0.0± 0.3
2 1.662± 0.001 1.666± 0.001 0.2± 0.1 0.023± 0.000 0.023± 0.000 0.2± 0.2 0.1± 0.3
3 1.761± 0.001 1.769± 0.001 0.5± 0.1 0.023± 0.000 0.023± 0.000 0.4± 0.2 0.0± 0.3
4 1.817± 0.001 1.827± 0.001 0.5± 0.1 0.024± 0.000 0.024± 0.000 0.4± 0.2 −0.2± 0.3
5 1.843± 0.002 1.857± 0.002 0.7± 0.1 0.025± 0.000 0.025± 0.000 0.5± 0.2 0.4± 0.3
6 1.851± 0.002 1.867± 0.002 0.8± 0.1 0.026± 0.000 0.026± 0.000 0.7± 0.2 0.0± 0.3
7 1.859± 0.002 1.870± 0.002 0.6± 0.1 0.028± 0.000 0.028± 0.000 0.4± 0.2 0.0± 0.3
8 1.865± 0.002 1.882± 0.002 0.9± 0.1 0.029± 0.000 0.029± 0.000 0.7± 0.2 −0.0± 0.3
9 1.867± 0.002 1.884± 0.002 0.9± 0.1 0.031± 0.000 0.030± 0.000 0.6± 0.2 0.1± 0.3

10 1.874± 0.002 1.889± 0.002 0.8± 0.1 0.032± 0.000 0.032± 0.000 0.5± 0.2 0.2± 0.3

Table 16. Summary of accepted token numbers per step (ATN) and per token time (PTN) improvement and perplexity (PPL) change for
ASpS over SpS. n is the number of reference token. We use LLaMa-2-7b model as target model and LLaMa-68m model as reference
model on text summarization task.

n ATN PTT PPL
SpS ASpS Improv. (%) SpS ASpS Improv. (%) Change (%)

1 1.384± 0.002 1.384± 0.002 0.0± 0.2 0.035± 0.000 0.035± 0.000 −0.1± 0.2 0.0± 2.1
2 1.539± 0.003 1.546± 0.003 0.5± 0.2 0.033± 0.000 0.033± 0.000 0.5± 0.3 0.2± 2.3
3 1.604± 0.003 1.617± 0.003 0.8± 0.3 0.034± 0.000 0.033± 0.000 0.7± 0.4 −1.5± 2.2
4 1.625± 0.003 1.652± 0.004 1.6± 0.3 0.035± 0.000 0.034± 0.000 1.4± 0.4 0.1± 2.3
5 1.647± 0.004 1.680± 0.004 2.0± 0.3 0.036± 0.000 0.035± 0.000 1.9± 0.4 0.0± 2.3
6 1.645± 0.004 1.679± 0.004 2.0± 0.3 0.038± 0.000 0.037± 0.000 1.8± 0.5 −0.6± 2.4
7 1.649± 0.004 1.693± 0.004 2.6± 0.3 0.039± 0.000 0.038± 0.000 2.4± 0.5 −0.7± 2.3
8 1.642± 0.004 1.677± 0.004 2.2± 0.3 0.041± 0.000 0.040± 0.000 1.9± 0.4 −1.6± 2.4
9 1.647± 0.004 1.678± 0.004 1.9± 0.3 0.042± 0.000 0.042± 0.000 1.7± 0.5 −0.9± 2.3

10 1.651± 0.004 1.682± 0.004 1.9± 0.4 0.044± 0.000 0.043± 0.000 1.6± 0.5 0.7± 2.3

Table 17. Summary of accepted token numbers per step (ATN) and per token time (PTN) improvement and perplexity (PPL) change for
ASpS over SpS. n is the number of reference token. We use LLaMa-2-13b model as target model and LLaMa-68m model as reference
model on open-ended text generation task.
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