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Abstract

Current pre-trained language models rely on001
large datasets for achieving state-of-the-art per-002
formance. However, past research has shown003
that not all examples in a dataset are equally im-004
portant during training. In fact, it is sometimes005
possible to prune a considerable fraction of the006
training set while maintaining the test perfor-007
mance. Established on standard vision bench-008
marks, two gradient-based scoring metrics for009
finding important examples are GraNd and its010
estimated version, EL2N. In this work, we em-011
ploy these two metrics for the first time in NLP.012
We demonstrate that these metrics need to be013
computed after at least one epoch of fine-tuning014
and they are not reliable in early steps. Further-015
more, we show that by pruning a small portion016
of the examples with the highest GraNd/EL2N017
scores, we can not only preserve the test ac-018
curacy, but also surpass it. This paper details019
adjustments and implementation choices which020
enable GraNd and EL2N to be applied to NLP.021

1 Introduction022

Large datasets have made the phenomenal perfor-023

mance of Transformer-based (Vaswani et al., 2017)024

pre-trained language models (PLMs) possible (De-025

vlin et al., 2019; Sanh et al., 2019; Liu et al., 2019;026

Clark et al., 2020; Bommasani et al., 2021). How-027

ever, recent studies show that a significant fraction028

of examples in a training dataset can be omitted029

without sacrificing test accuracy. To this end, many030

metrics have been introduced for ranking the exam-031

ples in a dataset based on their importance. One032

of these metrics is Forgetting Score (Toneva et al.,033

2019; Yaghoobzadeh et al., 2021) which recognizes034

the examples that are misclassified after being cor-035

rectly classified during training or are always mis-036

classifed. Datamap (Swayamdipta et al., 2020) is037

another technique for diagnosing datasets which038

uses confidence and variability metrics.039

GraNd and its approximation, EL2N, are two040

recently introduced metrics that have only been041

studied for image classification models and tasks 042

(Paul et al., 2021). The goal of this study is to 043

adapt these metrics for PLMs and apply them in 044

NLP tasks. We select a topic classification and a 045

natural language inference dataset to run our exper- 046

iments. We find that training with PLMs instead 047

of randomly initialized models, used in Paul et al. 048

(2021), brings new challenges. Besides, adapting 049

these metrics to NLP is non-trivial because of the 050

inherent differences between the visual and lan- 051

guage modalities. 052

In summary, our contributions are threefold: (1) 053

we adapt GraNd and EL2N metrics to the language 054

domain to identify important examples in a dataset; 055

(2) we show that in contrary to the results in com- 056

puter vision, early score computation steps are not 057

sufficient for finding a proper subset of the data in 058

NLP; and (3) we observe that pruning a small frac- 059

tion of the examples with the highest EL2N/GraNd 060

scores will result in better performance and in some 061

cases even better than fine-tuning on the whole 062

dataset. 063

2 Background 064

In this section, we describe the two metrics intro- 065

duced by Paul et al. (2021) for pruning the training 066

data: GraNd and its estimated variant, EL2N. 067

2.1 GraNd 068

Consider X = {xi, yi}Ni=1 to be a training dataset 069

for a given classification task withK classes, where 070

xi is the input (i.e. a sequence of tokens) and yi is 071

its corresponding label. To estimate the importance 072

of each training sample (xi, yi), Paul et al. (2021) 073

propose utilizing the expected value of the loss 074

gradient norm denoted as GraNd: 075

GraNd(xi, yi) = Ew ∥g(xi, yi)∥2 (1) 076

The vector g is the loss gradient with respect to 077

the model’s weights. This method is based on the 078

assumption that the expected impact of a sample on 079
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Figure 1: MNLI/AGNews accuracy of training BERT-base on the top 70%/50% of examples with the highest EL2N
or GraNd scores computed at various steps of fine-tuning. Each point is the average of three runs and the standard
deviation is shown as the shaded area. Early score computation steps are shown to result in lower accuracies.

the network weights (w) denotes the importance080

of that sample. By sorting and ranking the training081

data, a top subset could be used for the training082

process, while pruning out the remaining data with083

lower scores.084

Note that, unlike the original method stated by085

Paul et al. (2021), which initializes the entire net-086

work with random weights, we start our training087

with a pre-trained language model, a common prac-088

tice in current NLP. Therefore, we compute the089

GraNd scores only for the randomly initialized clas-090

sifier layer on top of the PLM.091

2.2 EL2N092

By defining ψ(k)(xi) = ∇wf
(k)(xi) for the kth093

logit, the loss gradient (g) can be written as:094

g(xi, yi) =

K∑
k=1

∇f (k)L(f(xi), yi)Tψ(k)(xi) (2)095

Since the L(f(xi), yi) is a cross entropy loss,096

∇f (k)L(f(xi), yi)T = p(xi)
(k) − y

(k)
i , where097

p(xi) is the output probability vector of the model.098

By assuming orthogonality and uniform sizes099

across logits for ψ over the training examples,100

the norm in Eq. 1 is approximately equal to101

∥p(xi)− yi∥2 (yi is the one-hot vector of the true102

label). As a result, an estimate of GraND is EL2N,103

which is defined as follows:104

EL2N(xi, yi) = Ew ∥p(xi)− yi∥2 (3)105

106
It is worth noting that this formulation is similar107

to the confidence metric defined by Swayamdipta108

et al. (2020). When computing confidence, the ex- 109

pected value is obtained by averaging the model 110

output probabilities across the training epochs. 111

However, as stated in Eq. 3, the EL2N expecta- 112

tion is over multiple weight initializations (w). 113

3 Experiments 114

In this section, we verify the effectiveness of GraNd 115

and EL2N (Paul et al., 2021) in the NLP domain. 116

Our experimental setup is similar to Paul et al. 117

(2021) for the followings: (1) models are trained 118

on the subsets of the data with higher GraNd and 119

EL2N scores; (2) based on the expectation over 120

multiple weight initializations mentioned in Eq. 1 121

and Eq. 3, we average the scores over five indepen- 122

dent training runs.1; and, (3) for putting our results 123

in context, we utilized random pruning as the base- 124

line2 and the accuracy of training on the whole 125

dataset with no pruning as the target performance. 126

Two major differences between these two se- 127

tups are mentioned here: (1) we used a pre-trained 128

model, i.e., BERT (Devlin et al., 2019), standard in 129

the NLP domain, whereas Paul et al. (2021) uses 130

vision models initialized with random weights; and 131

(2) as fine-tuning requires few epochs of training, 132

we computed the metrics over fine-grained steps 133

rather than epochs. 134

3.1 Datasets and Setup 135

Datasets. We evaluate our methods on two differ- 136

ent classification tasks. For natural language infer- 137

ence, we used MNLI dataset (Williams et al., 2018), 138

and for topic classification, we used AG’s News 139

1It is ten independent training runs in Paul et al. (2021)
2Random selection with the same proportion
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Figure 2: MNLI/AGNews accuracy of training BERT-base on the top k% of the examples with the highest
EL2N/GraNd scores computed after one epoch of fine-tuning. Each point is the average of three runs and the
standard deviation is shown as the shaded area. The performance grows as the preserved fraction increases.

(Zhang et al., 2015). We report the validation set140

(matched) and test set accuracy, respectively.141

Setup. We used the Transformers library from142

HuggingFace (Wolf et al., 2020) and BERT-base-143

uncased as our pre-trained language model.3 To144

fine-tune BERT, we trained the model for five145

epochs and selected the best performance, with146

3e-5 as the learning rate. For calculating GraNd147

and EL2N scores, we used batch sizes of 12 and 32148

respectively executed on a Tesla P100 GPU.149

3.2 Results150

Score computation step. Figure 1 demonstrates151

BERT’s performance on MNLI and AG’s News152

datasets after fine-tuning on the respective top 70%153

and 50% of examples, ranked by EL2N and GraNd154

scores. Most notably, early score computation steps155

are shown not to be reliable for obtaining a repre-156

sentative subset of the dataset to the extent that157

they may result in a lower performance than even158

random sampling. To further investigate this, Fig-159

ure 3 shows the distribution of labels in the top ex-160

amples chosen by EL2N across score computation161

steps. The distribution is extremely unbalanced in162

early steps which can explain the low performance163

of fine-tuning on high-scoring examples at the early164

stages. Moreover, the two datasets show different165

behaviours. AG’s News seems to provide accept-166

able scores after only 500 steps, while MNLI takes167

longer to reach the random baseline. For further168

3Our evaluations are based on the BERT’s base version
(12-layer, 768-hidden size, 12-attention head, 110M parame-
ters) due to the massive number of experiments and resource
limitations.
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Figure 3: The distribution of labels of top-70% exam-
ples with highest EL2N scores in MNLI across score
computation steps. The distribution is extremely unbal-
anced in early steps.

experiments we used the first epoch as the score 169

computation step which is 3,750 and 12,272 for 170

AG’s News and MNLI, respectively. 171

Preserved fraction. To examine how the size of 172

training set can affect the performance, we fine- 173

tuned the model using different percentages of the 174

entire dataset. Figure 2 shows the performance 175

of BERT-base trained on the top k% of the data 176

points with the highest EL2N/GraNd scores cal- 177

culated after one epoch of fine-tuning. As shown 178

in Figure 2, the models fine-tuned on smaller sub- 179

sets of the dataset could not perform as well as the 180

one fine-tuned on the whole dataset in both tasks 181

and scoring metrics. Albeit, we see the growing 182

performance as the preserved fraction increases. 183
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Figure 4: MNLI/AGNews accuracy of training BERT-base on the top 70% of examples with the highest EL2N/GraNd
scores computed at first epoch of fine-tuning with top k% deleted. An increase in performance is observed in both
datasets when deleting a small portion of highest scoring examples.

Interestingly, in MNLI, a model trained on the cho-184

sen subset performs worse than a random subset185

until 60% of data is preserved. This is contradict-186

ing with AG’s News where even in small portions,187

EL2N and GraNd could outperform random base-188

line. Nevertheless, the EL2N and GraNd scores are189

shown to be better than random pruning when we190

preserve 70% or more of the dataset.191

Noise examples. As discussed in recent research,192

datasets often include noisy examples, detection193

of which has been of interest (Swayamdipta et al.,194

2020; Jindal et al., 2019; Chen et al., 2022). We195

conducted an experiment to see whether removing196

the highest scoring examples in EL2N and GraNd,197

which might correspond to noisy examples (Paul198

et al., 2021), can improve the final performance.199

Figure 4 illustrates the performance of BERT-base200

after being trained on the top 70% of data and when201

the top k% of it is removed. An increase in perfor-202

mance can be seen in both datasets initially which203

can explain that deleting a conservative amount of204

the highest scoring examples can help the model205

to learn better. Remarkably, in the MNLI dataset206

we see that removing the top scoring examples207

achieves even higher accuracies than training on208

the whole dataset. This shows that, on the MNLI209

dataset, it is possible to reach higher performance210

when training on about 66% (70%-4%) than the211

whole 100%. On the AG’s News, however, pruning212

does not result in performance gain, but compara-213

ble performance can be obtained with only 67% of214

the data.215

Computation concerns. For computing EL2N216

scores, we employed the average across five seeds,217

and each seed is trained for one epoch. It is com- 218

putationally equivalent to total of five epochs of 219

training. However, we argue that it is possible to 220

use fewer seeds to achieve scores which highly cor- 221

relate to the mean of five seeds. Average spearman 222

correlation of the scores between each of those 223

seeds and the mean of five seeds is 0.9311 with 224

standard deviation of 0.0042 which shows that us- 225

ing only one seed can yield very similar results 226

to five seeds. The correlation increases to 0.9722 227

between average of two seeds and five seeds. This 228

sheds light on the fact that even with limited re- 229

sources, EL2N may find the important examples by 230

only fine-tuning a few seeds, each for one epoch. 231

4 Conclusions 232

We adapted two data pruning metrics from com- 233

puter vision, called EL2N and GraNd, to NLP. We 234

showed that despite the major differences between 235

the two fields, we can find subsets of data that 236

maintain or, in some cases, even improve the perfor- 237

mance. We demonstrated that unlike in vision, nei- 238

ther GraNd nor EL2N can yield acceptable perfor- 239

mances in early steps of fine-tuning. In summary, 240

at least one epoch of fine-tuning is necessary for 241

a reliable computation of either of the two scores. 242

Finally, we explained that, despite being dataset 243

dependent, pruning the highest scoring examples, 244

which may be related to noise, can achieve higher 245

accuracies than when training on the whole dataset. 246

A potential future work could be an end-to-end 247

pruning mechanism with a single fine-tuning pro- 248

cedure. 249
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