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Abstract

We present IBR, an Iterative Backward Rea-001
soning to solve the proof generation task on002
rule-based Question Answering (QA), where003
models are required to reason over a series of004
textual rules and facts to find out the related005
proof path and derive the final answer. We han-006
dle the limitations of existed works in two folds:007
1) enhance the interpretability of reasoning pro-008
cedure with detailed tracking, by predicting009
nodes and edges in the proof path iteratively010
backward from the question; 2) promote the011
efficiency and accuracy via reasoning on the012
elaborate representations of nodes and history013
path, without any intermediate texts that may014
introduce external noise during proof genera-015
tion. There are three main modules in IBR,016
QA and proof strategy prediction to obtain the017
answer and offer guidance for the following018
procedure; parent node prediction to determine019
a node in the existing proof that a child node020
will link to; child node prediction to find out021
which new node will be added to the proof. Ex-022
periments on both synthetic and paraphrased023
datasets demonstrate that IBR has a better in-024
domain performance as well as cross-domain025
transferability than state-of-the-art models.026

1 Introduction027

Endowing machines with reasoning capabilities is028

a longstanding problem (Newell and Simon, 1956a)029

in the field of AI. Though existing tasks such as030

multi-hop QA (Yang et al., 2018; Welbl et al.,031

2018) or logical-reasoning QA (Yu et al., 2020;032

Dua et al., 2019) impose a higher requirement on033

the reasoning capabilities, they usually just request034

for an answer without reasoning the procedure that035

make it interpretable. Recently, Clark et al. (2020)036

proposed new datasets and tasks for interpretable037

reasoning. Given a question, along with a set of038

facts (plain statements) and rules (implication re-039

lationships) that are expressed in natural language,040

there are two tasks: 1) predicting the binary an-041

Facts:

F1: Anne is blue. 

F2: Anne is rough. 

F9: Fiona is rough. 

F10: Harry is blue. 

Rules:

R1: All rough, blue people are cold. 

R2: All cold people are round.

R6: If Harry is blue then Harry is 

rough. 

R7: Quiet people are round.

R8: If someone is round and not 

cold then they are quiet. 

Q1: Harry is round.

A1: True

Proof:

F10

R2

R1

Q1

R6

F10

Q2: Fiona is not cold.

A2: True

Proof: Q2

R1

FAIL

R7

…

wrong 

branch

F9
redundant 

branch

…
…

Figure 1: Illustration of generating proof iteratively. Re-
garding the proof path as a graph, and using the question
as the initial node, other nodes and edges will be added
step by step. (The gold proof is the obtained path in a re-
verse order exclude the question). The main challenges
are wrong (cannot derive the answer) or redundant (can
derive the answer, but the path is longer than the optimal
one) branches may be involved at each step.

swer; 2) generating the proof path behind this an- 042

swer. Large-scale pretrained models have shown 043

strong performance on the first subtask in the early 044

work (Liu et al., 2019), but there still remain chal- 045

lenges for the second one. 046

Several approaches have been proposed 047

to simultaneously address the two subtasks. 048

PROVER (Saha et al., 2020) and PROBR (Sun 049

et al., 2021) tried to construct the reasoning path at 050

once, where two classifiers are used to determine 051

whether each node or edge is involved in the proof 052

path respectively based on corresponding encoded 053

representations. But they lack interpretability on 054

tracking the detailed reason for selecting each 055

step. To make proof generation more interpretable, 056

Proofwriter (Tafjord et al., 2021) and EVR (Liang 057

et al., 2021) decompose complex reasoning over 058

the question into multiple simple procedures, 059

resulting in iterative and intermediate processes 060

with the help of intermediate texts in backward 061
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order. Nevertheless, both of them suffer from062

efficiency and external errors issues. The reason063

is that they both require a large searching space,064

as they perform on the whole inferable texts065

and ignore the structure information from the066

history path have already derived. Moreover, the067

generation of intermediate text is costly and may068

introduce extra noise propagation.069

Inspired by the top-down AMR parsing (Cai070

and Lam, 2019), we present Iterative Backward071

Reasoning (IBR) for better proof generation. It gen-072

erates proof path iteratively starting from the core073

component for QA, i.e. question, making the pro-074

cess more interpretable with trackable intermediate075

states. Regarding a higher efficiency and accuracy,076

along with two challenges mentioned in Figure 1,077

the proof generation module of IBR simplifies the078

intermediate process of reasoning as well as avoids079

the unnecessary search for a possible unsuitable080

branch. To add a new node and edge to the path,081

there are two steps in IBR for each iteration: 1)082

finding out the next parent node, i.e. one existing083

rule or fact in the parsed history path that a new084

node will become its child; 2) determine which085

rule or fact that will be the new child node and086

added to the path. Equipped with question-aware087

representations from a pretrained encoder, along088

with structure-aware node and path features, our089

model can choose the optimal endpoint. It accom-090

plishes reasoning with the highest possibility to091

obtain a correct subsequent proof path based on092

relevant features, getting rid of intermediate texts093

while utilizing history path to avoid redundancy on094

all possible texts as previous iterative works.095

In addition, to make IBR applicable for samples096

with incomplete proof path, which are abandoned097

in former models like EVR (Liang et al., 2021), we098

employ a proof strategy predictor to output proof099

types. The predictions will be integrated into the100

later proof generation actions, making the process101

more controllable under different conditions.102

We validate our approach on several datasets that103

are widely used in previous studies (i.e. DU0-DU5,104

Birds-Electricity, and ParaRules) spanning differ-105

ent supervision settings (i.e. fully-supervised, few-106

shot, and zero-shot). Experimental results show107

that, compared to existing strong baselines, IBR108

can achieve the best overall performance of proof109

generation and comparable answer prediction accu-110

racy, along with noticeable generalization capabil-111

ity. Extensive analyses show that 1) the improve-112

ments come from our elaborately designed iterative 113

and simplified proof generation modules, and 2) 114

the latency could be significantly improved, con- 115

firming our claims. 116

2 Related Work 117

Question answering and reasoning. Endowing 118

machines to do reasoning over explicit knowledge 119

is a primitive task (Newell and Simon, 1956b). 120

Early works tried to solve it by converting texts into 121

logic forms (Newell and Simon, 1956b; Musen and 122

van der Lei, 20p). But such kinds of approaches 123

can be affected by the error propagation caused by 124

semantic parsing (Zettlemoyer and Collins, 2012; 125

Berant et al., 2013; Berant and Liang, 2014). 126

Lately, question answering (QA) is employed as 127

an important task for machine reasoning. Numer- 128

ous datasets were proposed, including synthesized 129

data (Weston et al., 2016), comprehension on natu- 130

ral texts (Rajpurkar et al., 2016; Joshi et al., 2017; 131

Fisch et al., 2019) or more complex relationship 132

reasoning (Tafjord et al., 2019; Lin et al., 2019). 133

There are also multi-hop QA (Yang et al., 2018; 134

Welbl et al., 2018) or logical QA datasets (Yu et al., 135

2020; Liu et al., 2020) where textual rules need to 136

be inferred implicitly. Plenty of studies try to solve 137

these problems via neural networks and achieve re- 138

markable performance (Joshi et al., 2020; Yu et al., 139

2018; Shao et al., 2020). Nevertheless, nearly all of 140

them only focus on the prediction of final answers 141

and neglect the acquisition of interpretable proofs. 142

Proof generation. NLProlog (Weber et al., 2019) 143

first employ logic programming to search a proof 144

then predict the answer in Multi-hop QA. Re- 145

cently, Clark et al. (2020) first propose new rule- 146

based QA datasets for this line of research that 147

include proof path, and present RuleTaker to an- 148

swer questions. Saha et al. (2020) argue that pro- 149

ducing answer proofs makes models more reliable 150

and propose PROVER, a transformer-based model 151

that predicts all nodes and edges within the proof 152

at once using their embeddings. PROBER (Sun 153

et al., 2021) further improves this framework us- 154

ing probabilistic graph modeling more variables. 155

There is also an increasing interest in solving proof 156

generation iteratively. EVR (Liang et al., 2021) 157

splits the question into sub-questions, using gener- 158

ated intermediate texts to guide proof step by step. 159

ProofWriter (Tafjord et al., 2021) employs a similar 160

idea but instead using intermediate textual conclu- 161

sions and a more powerful T5-11B model (Raffel 162
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R1 : All rough, blue people 

are cold. 

R2 : All cold people are 

round.

F1 : Anne is blue. 
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… [SEP]
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Figure 2: The Model architecture of IBR. 1) is only used once at the start, then 2) and 3) will be applied iteratively
to generate the whole proof. It also illustrates the state when adding F10 into the proof(F: facts, R: rules).

et al., 2020) for generation, which makes it hard163

to reproduce. IBR is also an iterative model, be-164

ing more interpretable than at-once models. It gets165

rid of intermediate texts and directly uses various166

representations to finish each reasoning step, im-167

proving efficiency and effectiveness.168

3 Methodology169

3.1 Task Definition170

We first formulate the proof generation task as fol-171

lows. Given a tuple (C,Q,A, P ), where C =172

{RFi} is the contexts containing several textual173

rules and facts RF , Q is the question, A ∈ {True,174

False} is the answer, and P indicates the proof path175

for the detailed reasoning procedure to derive A,176

our goal is twofold: 1) predicting the answer A,177

and 2) generating the proof path P . Taking DU0-178

DU5 (Clark et al., 2020) dataset as example, P is179

a single-directed acyclic graph having the shortest180

path to derive A. P can start from one or multiple181

nodes but must end in one node that directly entails182

or contradicts Q. A node in P can be a fact, a183

rule, or a special NAF node (Negation As Failure)1.184

Edges between nodes indicate the start nodes can185

be used to prove the end nodes during reasoning.186

Proofs in the dataset can be roughly classified ac-187

cording to their strategies S to prove the question:188

(1)Proof : the question can be directly proven to be189

True or False using the given C and NAF; (2) Fail-190

1A start node when the negation condition in the next node
has no corresponding fact nor rule node, it will be considered
as true. E.g., there is no item in C related to “Anne is big”, its
negation “Anne is not big” will be considered as true.

AttNoneg-D5-910-12

Facts:

F1: Anne is blue. F10: Harry is furry. 

Rules:

R3: All quiet, round people are rough. 

R5: Furry people are quiet. 

R7: Quiet people are round. 

Q1: Harry is not rough. A: False

Proof type: Proof 

R3
R5F10

R5F10 R7 R7R5FAIL

Q2: Erin is round. A: False

Proof type: Fail-proof

…

…

…

…

Figure 3: Examples of Proof and Fail-proof strategies.

Proof : the question cannot be explicitly deduced 191

barely using C as some key information is missed, 192

a positive statement is judged as False while a nega- 193

tive statement as True under such cases (Figure 3). 194

3.2 Overview 195

The proposed Iterative Backward Reasoning (IBR) 196

model will take Q as the initial node and produce 197

proof path P backward, from the end node to start 198

node. Two actions are included at each iteration: 199

(1) Predicting the new parent node, i.e. a node in 200

the derived proof path where a child node will be 201

added (except the first step that only Q exists); (2) 202

Predicting the child node, i.e. the fact or rule in 203

C that will be the child for the selected parent node. 204

After each iteration, a new node and an associated 205

edge will be added. After obtaining the whole 206

reasoning path, we remove Q and reverse all edges 207

to get the final proof P . 208

The Figure 2 illustrates our IBR model, which 209

can be divided into three main modules, (1) QA 210

3



and Strategy Prediction, (2) Parent Node Pre-211

diction, and (3) Child Node Prediction. In order212

to make the question Q can fully interact context C213

(facts and rules) and obtain better representations,214

IBR uses pretrained RoBERTa (Liu et al., 2019) as215

the backbone network. The input of RoBERTa is216

the concatenation of the question Q and the context217

C = {RFi}, separated by special [SEP ] tokens,218

denoted as [CLS] Q [SEP ] [SEP ] C [SEP ].219

IBR only uses the QA prediction and strategy220

prediction modules once at first to predict the an-221

swer A and the strategy (refer to §3.1, where the222

latter one will result in different proof generation223

procedures. In order to improve the reasoning effi-224

ciency as well as accuracy, instead of using gener-225

ated intermediate texts (Liang et al., 2021; Tafjord226

et al., 2021), all possible nodes (rules and facts)227

are represented by node embeddings in IBR. The228

initial state of the proof is only the representation229

of the question hQ, then the rest of the reasoning230

path will be constructed backward from it.231

Samples with Fail-Proof strategy differs from232

ones with Proof, because their proofs are usually233

short without sub-branch, and only consist of rules234

due to lacking essential supporting facts. To take235

the advantage of such a property distinction and236

extend the applicability compared to former mod-237

els (Liang et al., 2021) that can not generate proofs238

for Fail-Proof samples, we apply different actions239

in modules (1) and (2) depending on the output240

from strategy prediction.241

3.3 QA and Strategy Prediction Module242

This module predicts the answer A to the ques-243

tion Q and the corresponding strategy S of proof244

P . Since the representation of [CLS] token from245

pretrained models is proven to have the capabil-246

ity of modeling the whole input, we use it as the247

input feature for both predictions as they condi-248

tion the global information. The encoded [CLS]249

by RoBERTa, h[CLS] is passed to a linear layer250

and the softmax function σ for answer and strategy251

classification respectively,252

PQA= σ(fQA(h[CLS])),253

PStrategy = σ(fStrategy(h[CLS])).254

Here, fQA and fStrategy indicate the linear layer255

for QA classification and strategy classification,256

respectively. PQA and PStrategy are binary-class257

probability values, the former one for values in258

A ∈ {True, False} while the later one for values259

in S ∈ {Proof, Fail-proof}.260

3.4 Parent Node Prediction Module 261

This module predicts which node in the current rea- 262

soning path is going to be the next parent node that 263

a new child node will link to. To better represent 264

the sequential information of each possible node 265

(fact or rule), an LSTM (Hochreiter and Schmidhu- 266

ber, 1997) is used to further encode the token-level 267

embedding from RoBERTa. The hidden state in the 268

last step will be used as the textual representation 269

hgi of a possible parent node RFi. 270

In addition, selecting a node from the existing 271

proof path also needs global and structural mod- 272

eling on the history path. To make this procedure 273

more convenient and involving the reasoning or- 274

der information, the path will be regarded as a tree 275

structure and nodes are reordered by level traversal 276

from top to down. Since Q will always be the root 277

node of the tree, e.g., if Q have two children RF1 278

and RF3, and RF1 has a child RF2, the reordered 279

representation sequence is [hQ, hg1, hg3, hg2]. We 280

then utilize another LSTM model to encode the 281

reordered representation sequence of the current 282

reasoning path obtained before, extracting the over- 283

all state of the path, which is the hidden state hg at 284

the last time step in this LSTM. 285

A parent node attention based on the Trans- 286

former attention (Vaswani et al., 2017), taking hg 287

and the representation sequence of current path 288

Hp = [hQ, hg1 . . . hgt] as input, i.e. 289

Att(hg,Hp) = σ(fQ(hg)(fK(Hp))
T /d), (1) 290

is used to obtain the weights of all possible parents 291

nodes, where fQ and fK indicate linear layers, σ 292

is a softmax function, and d is the dimension of hg. 293

As we discussed in §3.2, different operations will 294

be employed for corresponding strategy types of 295

proofs. 1) If the predicted proof strategy is Proof, 296

we select the node with the highest weight as the 297

parent node RFp. 2) If the predicted proof strategy 298

is Fail-proof, we will use the last node in the cur- 299

rent path, i.e. hgt in HP , as the parent node RFp, 300

because no sub-branch is included in such proofs. 301

3.5 Child Node Prediction Module 302

This module predicts which node is added to the 303

proof path and linked to the parent node RFp ob- 304

tained before. To obtain the representations of 305

candidate child nodes, similar to §3.4, we apply 306

another LSTM model to the encoded RoBERTa em- 307

beddings and get hni for RFi. Since we discussed 308

a special NAF node in §3.1 which may contain 309
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information from the whole context, we utilize a310

linear layer fNAF to transform the [CLS] token311

embedding h[CLS] into its representation hNAF .312

Moreover, we initialize the representation hEND313

for a special END node, indicating the proof gener-314

ation process will finish here.315

During selecting the new child node, we need316

to consider not only the knowledge of the history317

path but also the state of the parent node. To better318

model such relationships, we propose a Path Focus319

Selection module to generate relevant features be-320

fore predicting the child node. We employ a 2-layer321

Transformer model along with a LSTM model, first322

encode the representations of node sequence Hp323

from Parent Node Prediction respectively, then fuse324

their hidden state via a linear layer fU ,325

hF = fU ([Trans(hgp,Hp,Hp); LSTM(Hp)]).
(2)326

Here, hgp is the representation of the selected par-327

ent node in §3.4, fU is the linear layer for feature328

fusing, while [·; ·] stands for concatenation. q, k, v329

in Trans(q, k, v) indicate the inputs corresponding330

to Query, Key, and Value for a transformer model,331

and only the hidden state in the last time step is332

remained in both Trans and LSTM. LSTM used333

here is a supplementary knowledge source for a334

better representation. Such an operation results in335

a feature hF that is aware of both the history proof336

path and the parent node that a child will link to.337

This feature hF will then be used in the Child338

Node Attention to calculate the attention weights339

on all possible child nodes. Particularly, an atten-340

tion model same as Eq. 1 is applied on hF and a341

series of child node representations obtained before342

Hc = [hn1 . . . hnk, hNAF , hEND], and the atten-343

tion weights will be Att(hF ,Hc). It contains all344

facts and rules in the context, and the special NAF345

node as well as END node.346

Similar to §3.4, we also apply different actions347

according to our predicted proof strategies before.348

(1) If the strategy is Proof, we will select the child349

node with the highest attention weight from all350

candidates as the new node in the proof path.351

(2) If the strategy is Fail-proof, since RFp is the352

last node during reasoning and this procedure is a353

first-order logical under such a situation, there is354

no need to make complex modeling on the derived355

path. Therefore, we directly use its parent node356

representation hgp rather than encoded state from357

Transformer in Eq. 2 to get hF . But LSTM will be358

remained to maintain some basic modeling capa-359

bility on the path. In child node attention, we mask 360

all fact nodes and select the one with the highest 361

weight among the remaining nodes, because such 362

kinds of proofs usually only contain rules and such 363

masking can avoid extra errors. 364

Moreover, it is worth noting that fact nodes have 365

a higher priority than rule nodes during inference, 366

due to the clearer subject information in facts. 367

3.6 Training and Inference 368

The whole model will be trained via binary cross- 369

entropy losses from all three above modules jointly, 370

L = LQA + LParent + LChild + α ∗ LStrategy. 371

LQA and LStrategy correspond to the loss of QA 372

prediction and strategy prediction, respectively. α 373

is a hyperparameter to reweigh the influence of 374

[CLS] token. LParent is the loss for parent node 375

prediction, where the cross-entropy is calculated be- 376

tween the attention weight vector and a one-hot vec- 377

tor indicating the gold parent node. While LChild 378

is in a similar way on child node prediction. Note 379

that samples labeled as Fail-proof strategy are not 380

involved in the training of parent node prediction, 381

as all their proof path are chains and the new parent 382

node is always the last node added to the path. So 383

learning on these data may introduce model bias. 384

During inference, IBR will first make predictions 385

on the answer A and strategy S, then generate par- 386

ent node and child node iteratively, until the special 387

END node is predicted as the new child node. 388

4 Experiments 389

Following former studies (Saha et al., 2020; Sun 390

et al., 2021), we evaluate our IBR2 on three datasets 391

and four settings including fully supervised learn- 392

ing, few-shot learning, zero-shot learning, and gen- 393

eralization. 394

4.1 Setup 395

Datasets. Experiments are conducted on three 396

datasets raised by Clark et al. (2020)3, where we 397

use the same test split as previous works for fair 398

comparison: 399

• DU0-DU5: Five synthesized datasets created by 400

translating hand-crafted rules and formal language 401

to natural language. It is divided by the highest 402

depth of proof, where DU stands for "Depth Upto" 403

(DU=0,1,2,3,5). Data in higher DU values will also 404

contain samples with lower depth. Note that proofs 405

2Refer to Appendix A.1 for implementation details.
3More details are given in Appendix A.2
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in DU0 only have one supporting or opposing fact.406

All related results are reported on DU5 test split.407

• Bird-Electricity: It is a test-only dataset that408

contains samples about birds and electric circuits.409

It is generated in the same way as DU0-DU5, but410

are in different domains as DU0-DU5.411

• ParaRules: This dataset consists of 40k ques-412

tions expressed in paraphrased natural language413

based on synthetic data, which is created by crowd-414

sourcing. Multiple facts get together in one state-415

ment here rather than separated in DU0-DU5.416

Baselines. We consider the following baselines4.417

• RuleTaker (RT) (Clark et al., 2020): a RoBERTa418

based model that only predicts answers.419

• PROVER (PV) (Saha et al., 2020): a method420

that treats the proof as a graph and predicts all its421

nodes and edges at once, also using RoBRTa model422

as the backbone, same as IBR.423

• PROBR(PB) (Sun et al., 2021): it improves424

PROVER by introducing the probabilistic graph425

that jointly consider the answer, nodes and edges.426

• EVR (Liang et al., 2021): an iterative model that427

predicts the next proof item by generating textual428

sub-questions based on logical operator. Note that429

this model is not applicable for samples whose430

proof strategy is Fail-proof discussed in §3.1, so431

we make comparison with it separately.432

Metrics. We closely follow previous works to433

evaluate the model performance with answer pre-434

diction (QA) accuracy and proof generation (PA)435

accuracy. Some samples may have multiple gold436

proofs. A generated proof is considered correct, as437

long as its nodes and edges match exactly with the438

nodes and the edges in any of the gold proofs. Full439

Accuracy (FA) is also included, where a sample is440

regarded as correct only both the predicted answer441

and proof are correct.442

4.2 Results on Fully Supervised Scenario443

We train IBR on the training split of the DU5444

dataset and evaluate on the test split of DU5. We445

compare the performance of IBR with baselines ex-446

cept for EVR in Table 1, while with EVR in Table 2447

where only partial test split is included, excluding448

samples whose proof strategy is Fail-proof. Be-449

cause EVR always fails on these samples (EVR on450

these excluded samples is given in Appendix A.5).451

Obviously, IBR achieves the best proof gener-452

ation accuracy (PA) as well as full accuracy (FA)453

4Results of baselines are obtained from the original papers
or by running the released code.

D 0 1 2 3 4 5 all

Cnt 6299 4434 2915 2396 2134 2003 20192

QA

RT 100 98.4 98.4 98.8 99.2 99.8 99.2
PV 100 99.0 98.8 99.1 98.8 99.3 99.3
PB 100 99.9 99.9 100 100 100 99.9
IBR 100 99.2 99.2 98.9 99.3 99.6 99.4

PA
PV 98.4 93.2 84.8 80.5 72.5 65.1 87.1
PB 98.4 94.3 86.1 82.0 76.1 72.2 88.8
IBR 99.5 95.6 93.0 90.7 86.5 81.7 93.5

FA
PV 98.4 93.1 84.8 80.5 72.4 65.1 87.1
PB 98.4 94.3 86.1 82.0 76.1 72.2 88.8
IBR 99.5 95.6 92.9 90.7 86.5 81.6 93.5

Table 1: Performance of different models on varying
proof depth (D) when trained on DU5. Cnt: sample
count, RT:RuleTaker, PV: PROVER, PB: PROBR.

D 0 1 2 3 4 5 all

Cnt 1934 1934 1934 1934 1934 1934 11604

QA EVR 99.4 99.3 96.9 93.3 88.9 88.3 94.4
IBR 100 99.3 99.6 99.3 99.6 99.5 99.5

PA EVR 95.8 92.5 87.7 79.3 77.3 68.8 83.6
IBR 98.8 96.4 94.7 92.2 88.7 83.6 92.4

FA EVR 95.8 92.5 87.7 79.3 77.3 68.8 83.6
IBR 98.8 96.3 94.6 92.2 88.7 83.5 92.3

Table 2: Performance of IBR compared to EVR on a
partial test split of DU5(exclude Fail-proof samples)
after training on train split of DU5.

among all baseline models, on samples with every 454

depth. Our model also shows a greater advantage 455

on samples with the deeper proof path, e.g. 81.7% 456

vs. 72.2 on PA when depth is 5, illustrating the 457

superiority of iterative models on complex proof 458

path. Besides, despite not being the best on answer 459

accuracy (QA), our model only has very narrow 460

gaps with the best one, which proves that IBR is 461

still a comprehensive model covering both subtasks. 462

When compare to EVR, also an iterative model, 463

IBR shows a significantly stronger performance on 464

all metrics, benefiting from our elaborate two-fold 465

reasoning process at each step. 466

4.3 Results on Few-shot Scenario 467

We also explore the performance of IBR when 468

training using fewer samples, ranging from 10k 469

to 30k to all the examples (70k) in DU5. The com- 470

parison between our model, PROVER(PV), and 471

PROBR(PB) is shown in Table 3, in all three met- 472

rics. Our model significantly has the best proof 473

generation performance than the other two base- 474

lines under all cases, due to the iterative architec- 475

ture requiring less global modeling capability and 476

thus fewer training samples. Although PB shows a 477
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Data QA PA FA
PV PB IBR PV PB IBR PV PB IBR

70k 99.3 99.9 99.4 87.1 88.8 93.5 87.1 88.8 93.5
30k 97.8 99.9 98.3 72.5 86.8 89.8 72.4 86.8 89.7
10k 87.1 99.9 94.3 44.0 72.4 75.7 42.7 72.3 75.4

Table 3: Few-shot performance comparison among IBR,
PROVER (PV), and PROBR (PB) on the full test split
of DU5 after trained on partial DU5 samples.

Data QA PA FA
EVR IBR EVR IBR EVR IBR

70k 94.4 99.5 83.6 92.4 83.6 92.3
30k 95.7 99.4 84.4 88.2 84.4 88.1
10k 96.2 97.9 82.8 71.2 82.8 70.8

Table 4: Few-shot performance comparison among EVR
and IBR on partial test split of DU5 (without Fail-proof
samples) after trained on partial DU5 samples.

promising answer prediction accuracy under few-478

shot settings, the performance of IBR is close to479

it while better than PV, e.g., 94.3 vs. 87.1 under480

10k. In addition, in Table 4, we also compare with481

EVR under the same settings but using a different482

test set that excludes Fail-proof samples. EVR483

outperforms IBR under the 10k setting for proof484

generation, but IBR is stronger if more training485

samples are available.486

4.4 Results on Zero-shot Scenario487

We further test the out-of-domain performance of488

IBR against baselines on Birds-Electricity dataset489

to evaluate their robustness, where B1 and B2 are490

two sets from the birds domain, and E1-E4 are491

four sets from the electricity domain. Results are492

shown in Table 5 and Table 6. Note that Fail-proof493

samples are still not involved in the comparison for494

EVR. Overall, our IBR achieves 2.5% promotion495

in PA while an equivalent result on QA, compared496

to PROVER. Despite being the best one on QA,497

PROBR is also defeated by IBR on both PA and FA.498

In addition, our model shows more improvement499

on the hardest E3 and E4 subsets, which further500

verifies its robustness. When it comes to EVR, we501

can find its cross-domain capability is relatively502

weak as it sees a significant drop on PA, and IBR503

is superior to it without any doubt. Because the504

cross-domain generation for intermediate texts is505

much harder, our usage of high-level node features506

to finished reasoning can alleviate this challenge.507

4.5 Generalization Ability508

Generalize to higher depths. Following the previ-509

ous work (Sun et al., 2021), we test the generaliza-510

Test B1 B2 E1 E2 E3 E4 all

Cnt 40 40 162 180 624 4224 5270

QA

RT 97.5 100.0 96.9 98.3 91.8 76.7 80.1
PV 95.0 95.0 100.0 100.0 89.7 84.8 86.5
PB 100.0 100.0 100.0 100.0 98.2 95.6 96.3
IBR 100.0 97.5 100.0 100.0 89.2 84.1 86.0

PA
PV 92.5 95.0 95.1 91.7 72.3 80.6 80.7
PB 100.0 100.0 97.5 93.3 79.3 77.7 79.3
IBR 100.0 100.0 95.6 94.4 80.2 82.4 83.2

FA
PV 92.5 95.0 95.1 91.7 71.8 80.6 80.5
PB 100.0 100.0 97.5 93.3 79.3 77.7 79.3
IBR 100.0 97.5 95.6 94.4 78.2 82.4 82.9

Table 5: Zero-shot performance comparison among
RuleTakers(RT), PROVER(PV), and PROBR(PB) on
Birds-Electricity dataset after training on DU5.

Test B1 B2 E1 E2 E3 E4 all

Cnt 28 28 72 90 312 1206 1736

QA EVR 67.8 64.2 83.3 80.0 76.2 83.8 81.6
IBR 100.0 96.4 100.0 100.0 92.9 100.0 98.6

PA EVR 32.1 35.7 58.3 50.0 45.5 70.3 63.1
IBR 100.0 100.0 91.6 91.1 91.3 95.2 94.3

FA EVR 32.1 32.1 58.3 50.0 45.5 70.3 63.1
IBR 100.0 96.4 91.6 91.1 87.1 95.2 93.5

Table 6: Zero-shot performance comparison among
EVR and IBR on partial Birds-Electricity dataset (ex-
clude Fail-proof samples) after training on DU5.

tion ability of IBR by first training the model on the 511

training splits of DU0, DU1, DU2, and DU3, then 512

test them on the test split of DU5 with deeper proof 513

path respectively5. Results are shown in Table 7. 514

We notice that all models suffer performance degen- 515

eration especially the depth of training set is lower 516

because it is hard for the model to learn complex 517

reasoning based on simple proof path. However, 518

IBR still realizes the best performance in terms of 519

PA and FA, especially on DU3, where it gets 4.2% 520

PA/FA promotion to PROBR and even outperforms 521

PROVER trained on the whole DU5 data. These 522

observations again prove that iterative approaches 523

can better learn the detailed reasoning step by step, 524

obtaining a better generalization capability than 525

at-once models. 526

Generalize to complex language. We also test 527

whether IBR can be applied to samples where ques- 528

tions and statements are expressed in more human- 529

like natural language. Following Clark et al. (2020), 530

we train models on the combined training parti- 531

tions of DU3 and ParaRules and test them on the 532

ParaRules test set. Table 8 demonstrates that our 533

5We remove the position embedding in path focus selection
to proceed to this test, see Appedix A.1 for details
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Data QA PA FA
PV PB IBR PV PB IBR PV PB IBR

DU0 68.7 56.9 53.5 44.4 50.7 47.0 42.8 41.3 47.0
DU1 73.7 97.7 73.1 63.8 63.9 64.6 61.9 63.9 64.5
DU2 89.6 99.9 89.6 72.6 74.5 76.3 72.3 74.4 76.2
DU3 98.6 99.9 98.6 79.1 83.2 87.4 79.1 83.2 87.4

DU5 99.3 99.9 99.4 87.1 88.8 93.5 87.1 88.8 93.4

Table 7: Performance of generalization ability between
PROVER (PV), PROBR (PB), and IBR when testing on
the test split of DU5, after trained on DU0, DU1, DU2,
DU3, and DU5, respectively.

D 0 1 2 3 4 all

Cnt 2968 2406 1443 1036 142 8008

QA
PV 99.7 98.6 98.2 96.5 88.0 98.4
PB 99.8 99.7 99.9 99.8 100 99.8
IBR 99.9 98.8 97.5 96.3 88.7 98.4

PA
PV 99.5 98.0 88.9 90.0 76.1 95.4
PB 99.5 98.0 88.9 90.1 82.4 95.6
IBR 99.8 98.8 91.1 89.0 75.3 95.9

FA
PV 99.4 97.3 88.7 89.9 76.1 95.1
PB 99.4 98.0 88.9 90.1 82.4 95.5
IBR 99.7 98.1 90.9 89.0 75.3 95.7

Table 8: Performance on ParaRules test set, after trained
on combined D3+ParaRules training partitions, includ-
ing PROVER (PV), PROBR (PB), and IBR.

model sees a slight promotion on PA/FA while a534

similar accuracy as PROVER on QA, indicating535

that IBR has good applicability when reasoning on536

more complicated and natural texts.537

5 Analysis538

5.1 Ablation Study539

To explore the effects between different compo-540

nents in our model, we consider the following abla-541

tions: 1) IBR +Gold-Parent: given the true parent542

node during inference to explore the accuracy of543

child node prediction; 2)IBR +Gold-Child: given544

the true child node to verify the accuracy of parent545

node prediction; 3) w/o QA: removing QA task546

in loss to check its impact on proof generation; 4)547

w/o node LSTM: using mean pooling rather than548

LSTM encoding to get the representations of nodes;549

5) w/o focus LSTM: Removing the supplementary550

LSTM in path focus selection.551

Through results on the whole DU5 test split552

given in Table 9, it can be seen that giving either553

gold parent nodes or child nodes can benefit the per-554

formance especially giving gold children, signify-555

ing our parent node prediction achieves promising556

accuracy while the prediction of child nodes can be557

improved. Moreover, IBR can still learn to gener-558

Models QA PA FA

IBR 99.4 93.5 93.5
IBR +Gold-Parent 99.4 95.6 95.3
IBR +Gold-Child 99.4 99.6 99.3
w/o QA - 93.7 -
w/o node LSTM 99.5 93.2 93.2
w/o focus LSTM 99.6 92.6 92.4

Table 9: Results of ablation studies on DU5 dataset.
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15s

20s

25s
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EVR IBR

Figure 4: Per-sample inference runtime (in second) of
EVR and IBR, on DU5 dataset with varying depths.

ate proofs without supervision from answers, while 559

LSTM encoders attribute to a better representation 560

of the node or the path that has been derived. 561

5.2 Latency Analysis 562

To demonstrate the computational efficiency of 563

IBR, we compare the per sample inference time 564

of IBR to EVR, also an iterative proof generation 565

model, on the test split of DU5. Both models are 566

tested on one NVIDIA Tesla-V100 GPU with 567

the same batch size. As shown in Figure 4, our IBR 568

could achieve up to ×146.9 speedup compared with 569

EVR, benefiting from our reasoning based on node 570

and path features rather than intermediate texts. It 571

is also noticeable that the runtime of EVR grows 572

linearly with depth, while such an effect is slight 573

on our model. Because EVR needs to infer on all 574

contexts at every step, but IBR uses a simplified 575

parent node prediction based on the derived path. 576

6 Conclusion 577

This paper presents IBR, a proof generation model 578

via iterative backward reasoning for rule-based QA 579

tasks. We equip the reasoning procedure with de- 580

tailed tracking by predicting nodes and edges in the 581

proof path iteratively backward from the question, 582

and allow the model to reason on the elaborate rep- 583

resentations of nodes and history path. Our model 584

is more interpretable than previous at-once mod- 585

els, and more effective and efficient than former 586

iterative models. Experiments also demonstrate 587

the superiority of IBR on proof generation under 588

various settings. 589
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A Appendix781

A.1 Implementation Details782

Parameter Value

Training Epochs 8
Optimizer AdamW
Batch Size 16
RoBERTa Learning rate 1e-5
QA and Strategy Pre Learning rate 1e-5
Parent Node Pre Learning rate 2e-4
Child Node Pre Learning rate 5e-4
All LSTM Learning rate 1e-3
Dropout Rate 0.1
LSTM hidden state for parent node

1024
and child node encoding
LSTM hidden state for path encoding

1024
in parent node prediction
Transformer hidden state in path

1024
focus selection
LSTM hidden state in path focus

256
selection
Seed 42

Table 10: Implementation details of IBR.

We implement our model based on PyTorch783

along with Huggingface-Transformers toolkit6. We784

use RoBERTaLage model7 as our backbone encoder785

to generate token-level representations. Table 10786

shows the implementation details of IBR, includ-787

ing learning rates for different modules. All linear788

layers used in our model have one layer. The model789

trained after 8 epochs will be used in the evalua-790

tion. Each epoch training takes 2 hours. We select791

these hyper-parameters according to tuning them792

empirically based on the performance on the vali-793

dation set of DU0-DU5. All experiments are run794

on NVIDIA Tesla-V100 GPUs. The performance795

of IBR fluctuates within one point. We release our796

code anonymously at https://anonymous.797

4open.science/r/IBR-ECC8.798

A.2 Dataset Details799

We will introduce the details of three datasets used800

in our experiment, all of them are firstly applied in801

rule-base QA and proof generation tasks in Clark802

et al., 2020.803

6https://github.com/huggingface/
transformers

7https://huggingface.co/roberta-large

Split D Num Fail-proof Num Proof Num Avg. Node

Train

0 21,359 14,597 6,762 0.62
1 15,380 8,618 6,762 1.82
2 10,112 3,350 6,762 3.37
3 8,389 1,627 6,762 4.98
4 7,456 694 6,762 6.90
5 6,987 225 6,762 9.26
all 69,683 29,111 40,572 3.35

Test

0 6,299 4,365 1,934 0.59
1 4,434 2,500 1,934 1.77
2 2,915 981 1,934 3.36
3 2,396 462 1,934 4.99
4 2,134 200 1,934 6.98
5 2,003 69 1,934 9.47
all 20,181 8,577 11,604 3.33

Table 11: The statistics of train and test split in DU5
dataset. Fail-proof and Proof indicate different proof
strategies we discussed in §3.1. Avg.Node indicates the
average node number in proof path.

DU0-DU5: A series of synthesized datasets 804

where rules and facts are all generated via manually 805

designed logical programming, while questions are 806

generated by combining random logical operations 807

among them. Data are divided into 5 subsets ac- 808

cording to their maximum reasoning depth (D) in 809

the proof path, D = 0, 1, 2, 3, 5. There are 100k 810

questions in each subset, where 70k / 10k / 20k 811

samples in the train / validation / test partition re- 812

spectively. D = 0 means that the question can be 813

proven directly using a fact in contexts. In our ex- 814

periment in §4, we only use the data from DU5 for 815

testing because it covers all possible depths, while 816

the train set is the train split in DU5 except §4.5, 817

where we use train split from DU0, DU1, DU2 and 818

DU3 for training. We provide some statistics of 819

DU5 in Table 11. 820

Birds-Electricity: It is a set of data that only 821

contains 5k test samples for the evaluation of ro- 822

bustness and out-of-domain performance of mod- 823

els. The Bird data only requires reasoning up to 824

depth 1 and 2 (B1 and B2), while Electricity data 825

have reasoning depths ranging from 1 to 4. Both of 826

them include new vocabulary that is not included 827

in DU0-DU5. 828

ParaRules: A more challenging dataset contains 829

paraphrased samples on the synthesized ones via 830

crowdsourcing. It has 40k questions against about 831

2k theories. The statements are expressed in a 832

more natural way, posing a discrepancy between 833

DU0-DU5. It has 28k / 4k / 8k samples in the 834

train / validation / test split respectively. In §4.5, 835

we combine it with the extensive DU3 for training, 836
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resulting in a train set containing 119k samples.837

A.3 Possible Limitations of Our Model838

Since our strategy prediction module and opera-839

tions corresponding to different strategies in node840

prediction modules are specially designed for the841

current datasets, we may need to redesign some842

specific operations if some new proof types are843

included in new datasets to reach the best perfor-844

mance. But we believe our architecture will still845

take effect without modification.846

A.4 Strategy Accuracy of IBR847

D Cnt Strategy Accuracy

0 6299 99.9
1 4434 99.1
2 2915 99.3
3 2396 99.0
4 2134 99.2
5 2003 99.7

All 20192 99.4

Table 12: Strategy accuracy of IBR on test split of DU5
after training on training split of DU5.

We provide the strategy prediction accuracy on848

DU5 in Table 12. It proves that IBR is also well849

able to make the predictions on the proof strategies.850

This is partly due to RoBERTa’s powerful repre-851

sentation capability. On the other hand, there is a852

certain connection between the answer to the ques-853

tion and the strategy, and there are some common854

elements at the semantic representation level that855

can be learned together.856

A.5 Performance of EVR and IBR on857

Fail-proof Samples858

As we have discussed in §4.2, EVR (Liang et al.,859

2021) is not applicable for samples containing Fail-860

proof proofs, because it cannot obtain proper in-861

termediate questions to proceed correct following862

reasoning. Here, we compare our model with EVR863

on these samples in DU0-DU5, as illustrated in864

Table 13. Although EVR can achieve promising865

performance on answer prediction (QA) for these866

samples, it cannot generate any correct proof path867

under such cases, which have already been dis-868

cussed in its original paper.869

D 0 1 2 3 4 5 all

Cnt 4365 2500 981 462 200 69 8577

QA EVR 99.7 99.1 98.9 99.1 98.5 100 99.4
IBR 100 99.1 98.3 97.6 96.5 100 99.3

PA EVR 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IBR 99.8 95.0 89.5 84.4 65.5 28.9 95.0

FA EVR 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IBR 99.8 95.0 89.5 84.4 65.5 28.9 95.0

Table 13: The performance of EVR and IBR on the par-
tial test split of DU5 that only contains samples whose
proofs strategies are Fail-proof.

A.6 Proof Generation samples 870

We provide some proof generation samples in Fig- 871

ure 5 for a better understanding of this task, where 872

questions, all contexts, and the proof path gener- 873

ated by our IBR are given (all consistent with the 874

given labels). 875

12



R1: If someone is nice and kind then they like the bear.

R2: If someone sees the dog and they eat the bear then the 

bear is cold. 

R3: If someone is big then they eat the cat. 

R4: If someone is big then they do not see the rabbit. 

R5: If someone is not big and they do not eat the dog then 

the dog is cold. 

R6: If someone is cold then they like the rabbit. 

R7: If someone likes the rabbit then they see the dog.

R8: If the dog eats the cat then the dog is kind. 

R9: If someone likes the dog and they do not eat the cat 

then the dog eats the bear. 

F1: The bear eats the cat.

F2: The bear eats the rabbit.

F3: The cat eats the dog. 

F4: The cat eats the rabbit. 

F5: The cat likes the bear.

F6: The cat sees the rabbit. 

F7: The dog is round. 

F8: The dog likes the bear. 

F9: The dog likes the cat. 

Q1: The bear is cold.

A1 : True

Proof generated by IBR:

Proof Depth = 3 , Strategy: Proof 

R2

Q2: The dog does not see the dog.

A2: False

Proof generated by IBR: 

Proof Depth = 3, Strategy: Proof

F10: The dog sees the bear. 

F11: The rabbit eats the bear.

F12: The rabbit is big. 

F13: The rabbit is cold. 

F14: The rabbit is not kind.

F15: The rabbit does not like the cat.

F16: The rabbit sees the bear. 

Rules: Facts:

F11

F13R7 R6

R7 R6 R6

NAF

NAF

Q3: The dog eats the bear.

A3: False

Proof generated by IBR: 

Proof Depth = 1, Strategy: Fail-proof

R9 FAIL

Figure 5: Some proof cases generated by IBR, along with all contexts and questions, including two proof strategies,
Proof and Fail-proof.
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