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Abstract

In this paper, we consider a block coordinate descent (BCD) algorithm for training
deep neural networks and provide a new global convergence guarantee under strictly
monotonically increasing activation functions. While existing works demonstrate
convergence to stationary points for BCD in neural networks, our contribution is
the first to prove convergence to global minima, ensuring arbitrarily small loss. We
show that the loss with respect to the output layer decreases exponentially while
the loss with respect to the hidden layers remains well-controlled. Additionally,
we derive generalization bounds using the Rademacher complexity framework,
demonstrating that BCD not only achieves strong optimization guarantees but also
provides favorable generalization performance. Moreover, we propose a modified
BCD algorithm with skip connections and non-negative projection, extending our
convergence guarantees to ReLU activation, which are not strictly monotonic.
Empirical experiments confirm our theoretical findings, showing that the BCD
algorithm achieves a small loss for strictly monotonic and ReLU activations.

1 Introduction

Deep learning has driven remarkable progress across a wide range of fields, including computer
vision, natural language processing, and reinforcement learning, achieving state-of-the-art results
on numerous tasks. Despite these empirical successes, the theoretical understanding of the training
dynamics and optimization behavior of deep neural networks remains elusive, primarily due to the
highly non-convex structure of their loss landscapes [20]. A central open problem is the establishment
of convergence guarantees to global minima for gradient descent algorithms, particularly those
implemented through backpropagation in deep architectures comprising multiple layers. The neural
tangent kernel (NTK) framework [17] has provided partial theoretical insights by approximating the
training dynamics by a linearized one within a reproducing kernel Hilbert space (RKHS). However,
this linearized perspective does not fully capture the empirical efficacy of deep learning models. In
practice, deep learning often surpasses the performance of kernel methods, including those based on
NTK, suggesting that the NTK regime captures only a limited aspect of optimization capabilities.

As an alternative to backpropagation-based gradient methods, block coordinate descent (BCD), a
framework rooted in mathematical optimization (see, e.g., [341]), optimizes partitioned variable blocks
iteratively while holding others fixed, offering computational efficiency through partial parameter
updates. Its structure also supports parallel and distributed implementations [10, 21]], making it
well-suited for large-scale neural network training.

Given the highly non-convex nature of neural network loss landscapes, BCD-based approaches have
emerged as promising alternatives to conventional gradient-based approaches [[L1 16} 19,143} [29, 41,
24,131,142, 138]]. A widely adopted strategy in this setting is to partition the network parameters by
layer, treating the weights of each layer as individual blocks, allowing for sequential or alternating
updates, as illustrated in Figure[I] This layer-wise decomposition enables the reformulation of the

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Q
\/

O

\. \. \ J

wh Wa W3 Wy
Update by backpropagation

Auxiliary parameter

]
Update by block coordinate descent

Figure 1: Graphical comparison between backpropagation and block coordinate descent. In contrast,
the block coordinate descent approach introduces auxiliary variables V; ;, which serve as approxima-
tions of the hidden layer outputs, enabling layer-wise updates and a decoupled optimization structure
(see Section [ for details).

original global loss into a series of sub-objectives, each localized to a specific layer. These sub-
problems typically exhibit more tractable optimization properties compared to the full loss function,
thereby facilitating more efficient and stable training dynamics.

Building on the practical advantages of block coordinate descent (BCD) in neural network training,
recent research has increasingly examined its theoretical properties, particularly its convergence
behavior. However, the current literature on BCD for neural networks [43}41},142, 38| has been limited
to establishing convergence to stationary points, that is, points where the gradient vanishes. While
such results are of theoretical interest, they do not ensure convergence to global optima, particularly
in light of the highly non-convex loss landscapes intrinsic to deep neural networks [20} 32].

Understanding how neural network training can achieve global minima has emerged as a central
problem in the theoretical study of deep learning. Although BCD offers a promising alternative
to gradient-based methods, existing guarantees have not addressed this critical aspect, remaining
confined to local convergence results. To address this gap, we aim to establish convergence guarantees
to global minima for BCD applied to neural network training. Specifically, we consider multi-layer
neural networks and analyze a BCD-type algorithm in which each block update is performed via
standard (vanilla) gradient descent. Our main contributions are summarized as follows:

* We establish a global convergence guarantee for a block coordinate descent (BCD) algorithm
applied to the training of deep neural networks with strictly monotonically increasing
activation functions. To the best of our knowledge, this is the first theoretical result that
ensures convergence to global minima in deep neural networks with an arbitrary number
of layers, without relying on assumptions associated with the neural tangent kernel (NTK)
regime.

* Under the assumption that the training data are i.i.d., we derive generalization bounds for
networks trained via BCD. A cornerstone of our analysis is the boundedness of the weight
matrices at each layer—a property we establish as a direct consequence of the convergence
proof. Leveraging this boundedness together with the Rademacher complexity framework
introduced by [8]], we derive upper bounds on the generalization gap.

 Since ReLU does not satisfy the monotonicity condition required by our initial analysis,
the corresponding convergence results are not directly applicable. To address this issue, we
propose a modified BCD algorithm that integrates skip connections [16] and non-negative
projection steps. This augmentation enables us to extend our global convergence guarantees
to networks employing ReLU activations, thereby broadening the practical relevance and
applicability of our theoretical contributions.



2 Related Work

Convergence Guarantees for Gradient Descent and Stochastic Gradient Descent in Neural
Networks The convergence properties of gradient descent (GD) and stochastic gradient descent
(SGD) in the context of neural network training have been the subject of extensive theoretical
investigation in recent years. A prominent line of research focuses on the neural tangent kernel
(NTK) regime [17, 3} 4} [13] 44], wherein the training dynamics of highly overparameterized neural
networks are approximated by linear models in a reproducing kernel Hilbert space (RKHS). While
this framework facilitates global convergence analysis via convexity, it fails to capture the feature
learning capability of neural networks. In particular, models trained under the NTK regime often
exhibit minimal parameter movement from their initialization, thereby behaving more like kernel
methods than adaptive learners. In contrast, our analysis operates outside of this kernel-based setting
and does not rely on such overparameterization assumptions to ensure global convergence.

An alternative theoretical framework is the mean-field (MF) regime [28 12} 122, |35/ 130} 127]], which
interprets training dynamics as the evolution of probability measures over the parameter space. This
formulation enables the conversion of the original non-convex optimization problem into a convex
optimization over probability distributions. While the MF regime avoids the limitations of the NTK
approach by preserving feature learning behavior and allowing global convergence analysis, most
existing results are restricted to shallow architectures, typically two or three layers. In contrast, our
work provides global convergence guarantees for neural networks with an arbitrary number of hidden
layers.

More recently, [7]] introduced the concept of restricted strong convexity (RSC) to analyze neural
network training. This framework derives global convergence by assuming a correlation between
the gradients and outputs of neural networks throughout training. However, the validity and general
applicability of this correlation assumption remain to be fully established.

Generalization Error Bounds for Multi-Layer Neural Networks The study of generalization
properties in deep neural networks has also seen considerable progress [26], 137, (8,125 [15} 9} 5} 33]].
These works develop upper bounds on generalization error by evaluating the capacity of neural
networks using various complexity measures, such as VC-dimension, norms of weight matrices,
and spectral properties. However, most of these studies focus solely on capacity control and do
not address the optimization dynamics during training. While some recent studies have extended
generalization analysis to networks with more than two layers with global convergence guarantees,
many remain constrained to three-layer architectures [11 [2].

3 Preliminaries

3.1 Notations

For z € R, ||z|| denotes its Euclidean norm. We denote the d-dimensional identity matrix by I,. For

A € R™*™, the Frobenius norm is defined as || A r :== />, A7}, and the operator norm is defined

as ||Allop == sup || Az||. For two symmetric matrices A and B, we write A < B (A < B)if and only
llzll<1

if the matrix B— A is positive (non-negative) definite. For z = (z1,...,24)" € R?, diag(x) € R?*4

denotes a diagonal matrix whose j-th diagonal entry is x;. We denote min{a, b} =: a A b.

3.2 Problem Settings

We consider a supervised learning setup where we are given n training examples D = {(z;,y;)},, ,

with input vectors z; € R%» and corresponding labels 1; € R%ut. We define the data matrix as
X = (z1,...,2,)" € R™n_ Throughout this work, we consider a high-dimensional regime,
where the data points do not exceed the input dimension, i.e., n < dj,. To ensure the well-posedness
of our theoretical results, we impose the following assumption on the data matrix:

Assumption 3.1 (Full-rank data matrix). The matrix X has full row rank, i.e., rank(X) = n.

This assumption is essential for establishing global convergence guarantees. As demonstrated in the
proof of our main result, the existence of global minima cannot be ensured without Assumption



We consider a fully connected feedforward neural network with L layers, defined by
fNN(m) = WLO'(WL,10' ( ..O (Wgo(Wlx)) e )),
where o is an element-wise activation function. The weight matrices are specified as Wy € R *din

W; € R™*" forj € {2,...,L — 1}, and Wy, € R%u X7 We assume all hidden layers share a
common width r.

Next, we introduce our assumption on the activation function.

Assumption 3.2 (Activation). o : R — R is monotonically increasing and satisfies ¢(0) = 0.

Especially, there exists a constant 0 < « < 2 such that in{{ o’(x) > « holdg'| Moreover, o is
x€

¢-Lipschitz, i.e., for any uq, ug € R, |o(u1) — o(u2)| < £lu; — uz| holds.

A typical example of an activation function satisfying Assumption [3.2]is the LeakyReLU activation
defined by = — max{z,az} for a < 1, which satisfies the assumption with & = a and ¢ = 1.
On the other hand, the standard ReLU activation  — max{z, 0} does not satisfy Assumption
Nevertheless, we provide a global convergence result for networks with ReLU activation through a
modified BCD algorithm, as detailed in Section @

Given this neural network formulation, we formalize the supervised regression problem as

ngvn;\\fm(zi) —uill”, (M
where W = (W7y,..., W) denotes the collection of weight matrices. One of the most commonly

used methods for solving (I is the (stochastic) gradient method, which updates parameters based on
the gradient of the loss function. In contrast, we employ a layer-wise optimization method known as
block coordinate descent, which we introduce in the following section.

4 Block Coordinate Descent

In this section, we first introduce the basic concept of block coordinate descent (BCD) and then
describe the specific BCD algorithm considered in this paper. Originally developed within the field of
mathematical optimization (see, e.g., [34]), BCD is a general framework for solving high-dimensional
optimization problems by partitioning the set of variables into disjoint blocks and optimizing each
block iteratively while keeping the others fixed.

In our setting, instead of directly minimizing the original loss in (I, we introduce auxiliary variables
Vi, ..., Vi1, for each training input x;, where each Vj; ; € R" serves as an approximation of the
output of the j-th hidden layer for the i-th input. This leads us to reformulate the objective as:

n L—1
2 2
tin, F(W,V) Z WLVe-1: — vill +VZI lo(W; V1) = Viall™| 2)
i=1 j=
where v > 0 is a regularization hyperparameter, V; ; := x;, W = (W1,..., W), and V denotes

the collection of all auxiliary variables. In this formulation, the second term in () quantifies the
layer-wise reconstruction loss, measuring how well each auxiliary variable V; ; approximates the true
output of the j-th layer, and the first term corresponds to the prediction error at the output layer. By
construction, if (W*, V*) satisfies F'(W*, V*) = 0, then the corresponding weight matrices W*
form a global minimizer of the original problem (TJ).

One of the key advantages of the reformulated objective in (2) is that it allows us to treat the optimiza-
tion with respect to the weights of each layer Wy, ..., W, independently. This decoupling simplifies
the optimization process and enables efficient implementation strategies, such as parallelization.
Although various methods have been proposed for optimizing (2), we focus on a relatively simple
yet effective scheme: we update the weight matrices W; and the auxiliary variables V; ; sequentially,
starting from the output layer and proceeding backward through the network. Concretely, the update
sequence is given by

Wi, = Vi =Wy — - = Vi, — Wy,
by using the objective funtion (Z). We summarize the full algorithm considered in this paper in
Algorithm[I] In the following, we provide a detailed explanation of each step of the algorithm.

'If & is not differentiable, we assume that o(z1) — o(z2) > a(x1 — x2) forany z1, 2 € R.



1

e N & Ut s W N

[
| a——

Algorithm 1: Block Coordinate Descent

Input : K: outer iterations, Ky : inner iterations for Vj ;, Ky : inner iterations for Wy,

ny: step size for Vj is n‘(/V) n‘(,v) step sizes for weight updates

Initialization : (W7), gy N4, (W))a S N(O,r—Yforj=2,...,L.
Apply singular value bounding to W; for j = 2, ..., L (see Algorithm .
Set %z <« x;,and V}',i — J(Wj‘/jflyi) fOI'j =1,..., L—1.
for k < 1to K do
Wy, < Wi, —nld )VWL S W VL1 —will%s
fori+ 1ton do
| Vi< Ve —ovVv,_ WV — will%s
forj<—L—1t02d0
Wi Wi =ty Vir, iy o (WiVioaa) — Vial %
for i + 1tondo
for kln <+ 1to Ky do
‘ Victi < Vi1 — vV,
for k;, < 1to Ky do
| Wi e W=V, S (e (W Vo) — Vil

o(W;Vi—1a) = Vil

Remark 4.1. The introduction of auxiliary variables V; ; slightly increases memory usage with the
number of samples, but the computation for each block can be executed in parallel or distributed
across devices. In practice, this allows the method to scale efficiently even for moderately large
datasets.

Initialization: Each weight matrix W is initialized with Gaussian entries: A(0, d;.!) for W7, and
N(0,771) for j > 2. For layers j = 2 , L, we apply singular value bounding (SVB) [18]] by
computing the singular value decomposmon W UXV, clipping singular values in ¥ to the range
[s1, s2], and reconstructing W, = UX'V. The detalled implementation is provided in Algorlthml
and is deferred to Appendix Al idue to space hmltatlon‘

Originally introduced to stabilize gradient-based training, SVB also enhances BCD performance.
It improves the conditioning of the hidden layer loss ||o(W;V;_1;) — V;,;||* and mitigates large
activations by constraining the operator norm of W;. Auxiliary variables V; are then initialized
exactly as V; ; = o(W;V;_y,;) forallj=1,...,L —1, ¢=1,...,n, This approach ensures zero
hidden loss at initialization and promotes faster convergence.

Update of V:  We update the auxiliary variables V; ; via gradient descent with a common step size
71v, applying multiple iterations per update. For Vz,_; ;, we minimize the output loss:

2
Vi1 < Vo1 = vV WL Vi1 — will%,

which corresponds to solving the linear system W V;_1 ; = v;. A unique solution exists if W, €
Rdout X7 hag full row rank.

Forj =2,...,L — 1, we update V;_1 ; using the hidden layer loss:

Vi1 ¢ Vicri = vV, lo(W; Vi) = Vil

Assuming o satisfies Assumption[3.2] its strict monotonicity implies invertibility. Hence, updating
V; approximates solving W1V, ; = 0~ (Vj41,;). Provided W;11 € R™" is invertible, gradient
descent with a properly chosen 7y, will converge to a solution.

Note that, unlike the hidden representations V; ; for j < L — 1, the update of the final hidden
representation V7,1 ; (for the output layer) is performed only once per outer iteration, unlike the
hidden layers. This asymmetry is intentional and theoretically justified (see Appendix D)), since the
output-layer subproblem is linear and converges in a single step.

?Unlike [I8]], which applies SVB throughout training, we restrict it to initialization. With a suitably small
update step, the singular values of W) remain bounded, preserving the benefits of SVB without repeated
enforcement.



Remark 4.2. In Algorithm |1} each hidden representation V} ; is updated using only the local loss
lo(W;V;_1,) — V; ;|| instead of solving the full BCD subproblem that also involves the adjacent
layers. This simplified update is sufficient for convergence (see Theorem [5.1] since the hidden-layer
losses become very small after each outer iteration, and further updates would have little effect on the
overall optimization.

Update of 1V: Each weight matrix W} is updated using its corresponding loss term. For the
output layer, the loss is Z;;l |WLVL_1.: — y:|?, while for hidden layers j = 1,..., L — 1, we use
S lo(W;Vieaa) = Viall>.

Weights W; for j = 2,..., L are updated once per iteration using a step size 77‘(,[1,) (lineand@):

Wi < Wi — 1% Vi, Z IWLVE—1: = will%,
i=1

Wi Wy =@V, S lo(WVio1a) — Vil

i=1
. . . . . . (2) e )
In contrast, W, is updated multiple times per round using a different step size 7;;/ (line|11):

Wi Wi — i Vi, 3 o (WaVo,) — Vil

i=1

This asymmetry is essential for convergence. Since both W; and V;_ ; are updated for j > 2, a
single weight update suffices to ensure the hidden loss decreases linearly by applying multiple updates
to the auxiliary variables V;_1 ;, assuming the singular values of W; remain bounded. However,
multiple updates are unnecessary and may destabilize training when n > r, as exact minimizers may
not exist. For W7, fixed inputs V, ; = x; enable linear convergence under Assumption(din >n,
rank(X) = n), ensuring a global minimizer exists and justifying repeated updates.

Remark 4.3. Unlike prior BCD-based approaches that incorporate regularization or proximal
updates [43| 19, [29]], our method uses plain gradient descent. Though the convergence analysis is
tailored to this setting, the framework extends naturally to alternative loss functions, classification
tasks, and regularized objectives, as discussed in Appendix [B] In addition, the same framework can
be extended to handle non-bijective activations such as ReLU by incorporating skip connections and
non-negative projections (see Section [6).

5 Global Convergence of Block Coordinate Descent

In this section, we demonstrate that block coordinate descent (BCD) applied to neural networks with
activation functions satisfying Assumption [3.2] converges to global minima. That is, the objective
value F' can be made arbitrarily small through the proposed training procedure. We focus first
on the single-output case where d.,+ = 1. The extension to the multi-output case is discussed in
Appendix [C] Additionally, for the single-output setting, we derive a generalization error bound under
the assumption of i.i.d. data, utilizing the Rademacher complexity framework.

5.1 Global Convergence with Monotonically Increasing Activation

We consider the case of single-output regression (do,; = 1), for which the objective function takes
the form:

n L-1
min F(W, V) =} [(WLVL_M — )+ oW Vio10) = Vil |- 3)
’ i=1 j=1

We now state the first main result, the global convergence of BCD with activation satisfying Assump-
tion



Theorem 5.1. Suppose that activation o satisfies Assumption Let s = omin(X) denote

the smallest singular value of the data matrix X. Let R; = |WrVi_1,; — vyi| be the ini-

tial residual at the output layer, and define R = Z?zl Rf, Ryax = max R;, and Cxg =
K2

(%)L (4Rmaxnv + ﬁﬁ) Then, there exists a constant Cy > 0 such that under (s1,s2) =

3 5 1) nyt L (2 1 _ [ 3R _
(11 v < 16:[4’ ' < Sﬁ\évK (%) DWW S S maxle 2 and K = [n—vlog (T)—‘vKV =

30%.max||z; ||*rnC3
1 48v¢*(L—2)rnC3 _ 1 ax||a; % )
"’yah]\/ log ( aZe  Kw = 475062775,5) 1Og a2s%¢ , it holds

F(W,V) <e¢,
where W = (W1,... ., Wr)and V = (Vi 1,...,Vi_1,) are the output ofAlgorithm

The proof is provided in Appendix [D} Theorem establishes that the proposed BCD algorithm
provably converges to a global minimum. In particular, for any arbitrary accuracy level € > 0,
the algorithm guarantees that the objective function value can be made less than e. While the
definitions of the inner and outer loop iteration counts K, Ky, and Ky are somewhat technical,
the total number of gradient computations required to reach an e-accurate solution is bounded by
O (K(LKy + Kw)) = O (nLlog® (1))

The proof is divided into two key parts: (i) the output-layer loss linearly decreases monotonically
across outer iterations, and (ii) the hidden-layer losses remain sufficiently small at the end of each
iteration. Further details are deferred to Appendix

It is important to emphasize that the convergence guarantees provided in Theorem [5.1]fall outside the
scope of the neural tangent kernel (NTK) regime [17]], among other related frameworks. Specifically,
while the NTK regime assumes that the network parameters remain nearly constant throughout
training, our analysis accommodates settings in which the parameters may evolve by a constant
magnitude, i.e., change order Q(1).

Remark 5.2. While Assumption 3.1 requires the data matrix X € R™*%= to have full row rank, we
note that the proposed algorithm remains well-behaved even when n > d;,,. In this case, the residual
error at the first layer does not vanish completely but remains bounded, leading to an effective error
level €yoa1 = € + 01, Where d; represents the first-layer approximation error. When X approximately
spans the relevant subspace for V7 ;, d; is small, and the convergence behavior is qualitatively similar
to the n < d;, regime.

5.2 Generalization Error Bound

The objective of this subsection is to demonstrate that the BCD algorithm described in Algorithm [I]
not only enjoys strong convergence guarantees but also achieves favorable generalization performance.
To this end, we make the following assumption on the data distribution:

Assumption 5.3. The training sample {(z;,y;)}"; is independently sampled from a distribution
(z,y) ~ P. Under the distribution P, it holds that ||z|| < Bx and |y| < By almost surely.

This assumption is commonly used in generalization error analysis. The first part specifies the i.i.d.
nature of the data, while the boundedness conditions ensure that the loss remains controlled with high
probability. We next define the generalization gap:

Definition 5.4 (Generalization gap). The generalization gap is defined as the difference between
training and test error, that is,

n

Gap = E(; y)~p [(fNN(:U) - y)2] _ 1 Z(fNN(xl) — yi)2

We now present the main result of this subsection:

Theorem 5.5. Let fN N be the output of Algorithmunder the same condition as Theorem|5.1| Then,
under Assumption with probability at least 1 — & over the training samples {(x;,y;)}?_,, the
generalization gap satisfies

X 1 log(1/6
”T”(BY +25E LBy )d2 L3 (2r) % logr + (By + 250571 By)? Og(/)> .

n

GapSO(



The proof of Theorem5.5]is provided in Appendix [E] This result establishes that deep neural networks
trained via block coordinate descent not only converge to global minima but also generalize well,
extending guarantees beyond the NTK regime.

The derivation is based on the generalization analysis framework introduced by [8]], which bounds the
generalization gap in terms of the spectral norms of the weight matrices. As discussed in the previous
sections, our convergence analysis guarantees that the spectral norm of each W} remains bounded
throughout training. Combining this boundedness with the Rademacher complexity-based bounds in
[8]], we obtain a high-probability upper bound on the generalization error of trained networks.

6 ReLU Activation

In this section, we propose a modified BCD algorithm tailored explicitly for neural networks with the
ReLU activation function, defined as o(x) := max{z, 0}. This setting is excluded from the analysis
in Theorem [5.1] due to the violation of Assumption [3.2] which requires strict monotonicity. The
primary difficulty in handling ReL.U lies in its non-negative range. To achieve zero hidden layer loss
of the form ||o(W;V;_1)—V;||?, we must ensure that V; does not contain negative entries—otherwise,
the approximation cannot reach zero due to the non-negativity constraint imposed by ReLU. This
necessitates a modification to the original BCD algorithm (Algorithm [T).

6.1 BCD for Neural Networks with Skip Connection
To address this issue, we employ a residual network (ResNet) architecture [[L6]], incorporating skip
connections into the model. This modifies the BCD objective as follows:

L—-1
2 2
i F(W,V) Z[ WiVio1i =)+ > _leW;Viri) + Vicri — Vil

i=1 =2

+[le(WiVo,i) — V1,z'||2}a

3

where the hidden layer loss now includes the skip connection term V;_; ;, modifying the structure
compared to the original formulation in (3). To guarantee that the auxiliary variables Vj ; remain
within the feasible range of ReLU outputs, we introduce non-negative projection steps of the form
VJJr = maX{VJ i, 0}. The complete algorithm, incorporating skip connections and projections, is
detailed in Algorithm[3] which is deferred to Appendix [A]due to space limitations. In the following,
we provide a detailed explanation of this modified procedure.

The initialization and update procedures for weight matrices remain unchanged between Algorithm ]
and Algorithm[3] However, several modifications are introduced to accommodate the ReLU activation.
First, A]gorlthmlmcludes a non-negative prO]CCthIl V + V' applied to each V; ; after the inner
loop, ensuring the equation ||o(W;V;_1 ;) — V; ;|| = 0 is solvable by aligning with the non-negative
range of ReLU. Second, in contrast to Algorithm [ the output layer weights Wy, are held fixed
during training. This design ensures solvability of the equation W, V;,_; ; = y; under the constraint
Vi—1,; = 0. The following lemma formalizes this condition:

Lemma 6.1. Suppose the vector W, contains both positive and negative entries. Then, for any y;,
there exists a non-negative vector Vi,_y ; such that Wy Vi _1 ; = y;.

Lemma [6.T]ensures solvability if T/, has mixed-sign entries, a Condmon increasingly probable as
hidden layer width r grows. Specifically, the probability is 1 — 2T 57— under Gaussian initialization.
Moreover, we provide a concentration bound on the positive and negative components of W, relevant
to convergence rates:

Lemma 6.2. Let W, ~ N(0,7711,), wy == max{Wz,0"}, and w_ := min{Wy, 0" }. Then, for
any 8 > 0, with probability at least 1 — 26, w2, = |lwy | A |Jw_||* > 14/ 81%(,2/5) holds.

To simplify analysis, we fix W, throughout training, since extending the bound in Lemma[6.2]to
dynamic updates across iterations is non-trivial.

The update of W7 is performed via gradient descent (line[I2)). Notably, the ReLU activation is omitted
in this update. Since the projection step ensures V3 ; > 0, solving o(W1V, ;) = Vi ; reduces to
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Figure 2: Training loss of Algorithm [I] with Figure 3: Training loss of Algorithm [3] with
LeakyReLU activation (e = 0.5). ReLU activation.

solving the linear system WV, ; = Vi ;, which is more tractable. As in the previous section, we
consider the single-output case d,,; = 1. We now present the convergence result for Algorithm
applied to ReLU networks with skip connections.

Theorem 6.3. Define s, R;, Ruax, and Ck as in Theorem Then, there exists a constant

1 = L
Cy > 0 such that under (s1,s2) = (0,%), nv < 2wé,m A % 77{(/V) < %}’Fﬁ (2)",
(2) 1 _ 1 3R _[_s 245(L—2)rnC?3 _
WS st @d K = [giy—tog () | Ky = [ 23 log (#5224 ) | Ky =
3max||z;||*C
1 : .
Lmzngy 10g< ﬂ,zzhozas

F(W,V) <e¢,
where W = (Wy,... ., Wr)and V = (Vi 1,...,Vi_1,) are the output ofAlgorithm

The proof is provided in Appendix [} This result establishes a global convergence guarantee for BCD
applied to deep neural networks with ReL.U activation, under the skip-connection architecture.

7 Numerical Experiment

In this section, we conduct numerical experiments to empirically validate the theoretical results
established in Sections[d]and[6] Specifically, we confirm that the BCD algorithms for networks with
(i) strictly monotonically increasing activation functions (Algorithm [I)) and (ii) ReLU activation with
skip connections (Algorithm 3 successfully converge to global minima on a synthetic dataset. All
experiments were conducted using Google Colab with a T4 GPU. Each experiment is independently
repeated five times. We report the mean training loss along with standard deviation bands.

7.1 Monotonically Increasing Activation

We first evaluate BCD using a strictly monotonically increasing activation function. We apply
Algorithm [I] to a neural network with four hidden layers of width » = 30, using LeakyReLU
activation defined by o(z) = max{x, 0.5z}, which satisfies Assumption [3.2| with & = 0.5 and
¢ = 1. The training data consists of n = 500 samples generated from a teacher network with one
hidden layer and the same activation. Each input x; € R%% is sampled from a standard Gaussian
distribution, and the output y; is computed by the teacher network. We set the hyperparameters to
Ky = Kw = 100, and all step sizes ny = 771(,[1/) = 771(,[2/) =1

The results are shown in Figure 2] The blue curve represents the training loss. The training loss
monotonically decreases, and the layer-wise residuals remain small, which aligns with our theoretical
findings. To assess the effect of singular value bounding (SVB, Algorithm [2), we conduct an ablation
experiment where the network is trained without applying SVB. The red curve in Figure [2] shows
that, in this case, the loss stagnates around 10~3. This demonstrates that SVB contributes not only to
theoretical convergence but also to practical training stability and effectiveness.

To further examine the scalability of the proposed BCD algorithm, we conducted additional exper-
iments on deeper networks (L = 8,12); the results consistently showed monotonic loss decrease
across layers. Detailed results and plots are provided in Appendix [G|



7.2 ReLU Activation

We next evaluate Algorithm [3] on a ReLU-activated network with skip connections. We use the
same architecture as in the previous subsection: four hidden layers of width » = 30, with n = 500
training samples in R%%°, generated from a teacher network with ReLU activation. As before, we set

Ky = Kw = 100 and step sizes 5y = 77‘(41,) = 77‘(42/) =1.

Figure 3| shows the results. The blue curve represents the training loss using skip connections. As
expected, the loss decreases monotonically, and the internal residuals remain small. To demonstrate
the importance of skip connections, we also train a network without them. The red curve in Figure 3]
shows that training fails to converge in this case due to the ReLU non-negativity constraint, which
makes it challenging to match intermediate representations. This supports our theoretical conclusion
that skip connections are crucial for achieving global convergence under ReLLU activation.

8 Conclusion

In this work, we proposed a block coordinate descent (BCD) framework for training deep neural
networks and established global convergence guarantees under strictly monotonically increasing
activation functions. Our analysis demonstrated that the proposed method achieves arbitrarily small
training loss, and we further derived a generalization bound based on Rademacher complexity. To
address the challenges posed by non-monotonic activations such as ReL.U, we introduced a modified
BCD algorithm that incorporates skip connections and non-negative projections. This variant ensures
global convergence even in the presence of ReLU activations, thereby extending the applicability
of BCD to widely used modern architectures. Extensive numerical experiments corroborated our
theoretical findings, showing that the proposed algorithms perform effectively in practice for both
monotonic and ReL.U activation functions.
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A Omitted Pseudocode

In this section, we provide pseudocode for two procedures that were omitted in the main paper due to
space limitations. Specifically, we describe the Singular Value Bounding (SVB, Algorithm [2) and the
Block Coordinate Descent algorithm for ReLU activation (Algorithm 3).

Algorithm 2: Singular Value Bounding (SVB)

Input :WV;: weight matrix, (s1, s2): lower and upper bounds on singular values
Output : Regularized matrix with bounded singular values
1 Compute the singular value decomposition: (U, X, V') < SVD(W;);
2 foreach singular value s in the diagonal of 3. do
3 | s+ max{s;,min{sy,s}}; // Clip s to the interval [si, ss]
4 return UXV T

Algorithm 3: Block Coordinate Descent for ReLU Activation

Input : K: outer iterations, Ky : inner iterations for Vj ;, Kyy: inner iterations for W7,

Ny step size for Vj ;, n‘(,ll/), 77&2,): step sizes for weight updates

Initialization: (W))a, " N(0,d20),  (W)as = N(0,7~ 1) forj =2, ..., L.
Apply singular value bounding to W for j = 2, ..., L (see Algorithm2).
Set ‘/071‘ — x;,
Set ‘/1’@‘ — U(W1%7i).
Set ‘G,i < O'(ij;‘_lﬂ') + 1/3_171‘ fOI'j =2,... ,L—1.
1 for k < 1to K do
2 for i <+ 1tondo
3 Vi1 Ve, — vV, WL Vi1 — vill%
4 Vi—1,i + (Viz1,)™s
5 for j < L —1to2do
6
7
8
9

W Wj =l Vv, Sy lo(W;Vim1a) + Viera — Viall
for i + 1tondo

for k;, < 1to Ky do
Victi < Vi1 — vV,
Vicii < (Vi—)™s
1 for k;, < 1 to Ky do
12 | W W= Vi, S W Ve — Vil

o(W;Vi—1a) + Vi1 — Viall%s

2.
>

B Discussion of Extension

As mentioned in Remark[4.3] our convergence analysis is based on a simple variant of block coordinate
descent (BCD), where gradient descent is applied to minimize the standard squared loss. In this
section, we discuss possible extensions of the proposed algorithms (Algorithms[T]and 3] to broader
settings.

General Loss Functions. A natural and practically relevant extension is to replace the squared loss
with a general loss function £(-, -). This modification allows the framework to go beyond regression
and encompass classification and other supervised learning tasks. Under this extension, the objective
becomes:

n

L—1
tin F(W, V) =Y " W Vi) +7 Y lo(W;Vii:) = Vial? |

i=1 j=1

where only the output-layer loss differs from the original formulation in (3).
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The hidden layer loss term remains unchanged, so the analysis in Theorem [5.1]still applies to those
layers. Therefore, to establish convergence in this generalized setting, it suffices to prove that the
output layer subproblem involving W, and V1, _; converges globally under the new loss /.

For example, if ¢(-,) is strongly convex (e.g., logistic or cross-entropy loss), standard results in
convex optimization can be used to ensure convergence. A typical case is the cross-entropy loss for
multi-class classification:

out e W V 1)
KWLV 4:) = Zyzclog Ou’:p(( LVi-1i)e) 7
e exp(WLVi-1)e)

which is widely used for d,-class class1ﬁcat10n tasks.

Thus, although our main analysis focuses on regression using the squared loss, the BCD frame-
work and associated convergence guarantees can be extended to classification problems and other
supervised learning settings by appropriately modifying the output-layer loss.

Different Activation Functions Across Layers. While our analysis assumes that all layers share
the same activation function o, it is straightforward to extend the results to the case where each
layer uses a distinct activation o, pr0V1ded that each o satisfies Assumptlon@ In this case, the
convergence proof in Theorem- [5.1]remains valid by replacing o with o in the convergence argument
corresponding to the j-th layer.

Alternative Initialization Schemes. In Algorithm|[T] we initialize the weights W; using Gaussian
distributions and apply singular value bounding (SVB), while the auxiliary variables V} ; are initialized
exactly as V;;, = o(W;_1V;_1,;). However, global convergence only requires that the regularity
condition from Lemma@]be maintained throughout training. Hence, the initialization scheme is
flexible. In particular, Gaussian initialization is not necessary—alternative methods such as Xavier
initialization, which uses a uniform distribution with appropriately scaled bounds, can also be applied
as long as they yield well-conditioned weight matrices.

Activations Violating Assumption 3.2] We now consider the use of activation functions that
do not satisfy Assumption [3.2] including those beyond ReLU. Our analysis heavily relies on the
monotonicity of the activation function to ensure that the optimization landscape avoids undesirable
local minima caused by vanishing gradients (e.g., points where o’ = 0). Without monotonicity, there
is no guarantee that gradient-based updates will escape such critical points, which may result in
failure to reach the global minimum.

That said, some commonly used monotonic activations that violate Assumption [3.2] such as sigmoid
and tanh, are still of interest. The key challenge in analyzing these functions lies in their bounded
output ranges:

* Sigmoid: o(z) = m € (0,1),

e Tanh: o(z) = W € (~1,1).
In these cases, it becomes essential to ensure that the auxiliary variables V;; remain within the
output range of the corresponding activation function. This is analogous to the ReLU case, where we
enforce non-negativity through projection. As discussed in Section[6] we addressed this challenge
for ReL.U using skip connections. Similar techniques—such as range-aware projections or bounded
initialization—may be required to extend BCD to these bounded activations.

Training Loss with Regularization Terms. A line of work on BCD methods considers regularized
training objectives, where the loss function includes additional penalty terms. In this setting, the
objective takes the form:

)2
$1{1, F(W,V) ; [ WiVi—1i—yi)* +rw(Wr)
L—1

£ 2 (W3 Vimr,) = Vil 4w (W) + v (V) |.
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where ry and ry, denote regularization terms for weights and hidden representations, respectively.

In this setting, additional gradient terms appear in the update steps for ; and V; ;, corresponding
to the gradients of ry and ry,. While the inclusion of regularization complicates the convergence
analysis, global convergence can still be established under certain conditions—specifically, when the
regularizers are strongly convex. A common example is Tikhonov (or ¢2) regularization.

However, incorporating regularization introduces a trade-off between optimization and generalization.
In particular, to derive a generalization error bound analogous to Theorem [5.5] it is necessary
to carefully analyze the gap in training loss introduced by the regularization terms. This involves
quantifying how regularization affects the empirical risk and bounding its impact on the generalization

gap.

C Extension to Multi-Dimensional Output

‘We now consider the case of multi-dimensional outputs, where the loss function is given by:

n L-1
iy POV =30 IWaVioss =l +9 2 oW Vomn) = Vil
1= J=

with Y; € R%ut and dout > 1.

Compared to the scalar-output setting, the main challenge lies in analyzing the convergence of the
output-layer parameters Wy, and Vz_; ;. When rank(Wp,) > doyt, the linear system

WiVe—1: =1 @

has solutions, and the convergence analysis follows similarly to Theorem [5.1]using standard gradient
descent arguments.

However, when do,y > rank(W7,), the system (Ef[) may not admit a solution, making global con-
vergence unattainable without additional assumptions. To address this, we introduce the following
low-rank structure assumption on the labels:

Assumption C.1 (Low-Rank Label Representation). There exists an integer < d,y; and a matrix
Uy € R%uX7 guch that for all i € {1,...,n}, the label satisfies y; = U, 2; for some z; € R".

Under Assumption [C.1] the system () has a solution—for example, choosing Wy, = U; and
Vi1, = z;. However, the question remains whether gradient descent can find such a solution in
practice. To explore this, consider the gradient descent update for Wy, as in line 2] of Algorithm T}
For general d,;, the update can be written as:

W(k) W(k 2 (I_TIWZVLLZ'VJ—LZ') +77WU1222'VLT—1,2'-

i=1 i=1

Here, the first term implies that with a sufficiently small step size 1y, the norm of W, decays
exponentially in directions orthogonal to the span of {V},_1 ;}. Meanwhile, the second term injects

components aligned with U; . In particular, when the matrix >, z; VLT_M € R"*" is full rank, the
expression

n
T
Wi =nwl E 2iVi_1,
i=1
may serve as a solution to (@) if an appropriate inverse exists.

While this offers intuitive insight, rigorous convergence guarantees in the multi-output case are
non-trivial. Fortunately, a recent result by [39] addresses this issue:

Theorem C.2 (Theorem 1.1 in [39])). SupposeY = [y, ..., yn] € Rt X" satisfies Assumption
Let 51 and s, denote the smallest and largest singular values of Y, respectively. Assume all entries of
Wy, and V1 ; are initialized independently from N (0, §2), where

=0 ()
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57,62
Ts1

0 (s () + e (7))

Then, using step size n = O ( ) gradient descent satisfies Y i ||WrVi—1: — yil|* < € after

iterations.

To apply Theorem [C.2]to our BCD setting, two modifications are required relative to the proof of
Theorem 5.1¢

1. Replace the convergence argument for Wy, and V7,1 ; with Theorem yielding the
iteration bound from the theorem.

2. Adjust the initialization scheme: Theorem [C.2]assumes Gaussian initialization for both Wy,
and V7,1 ;, which differs from the exact-layer initialization V;; = o(W;_1V;_1 ;) used in
Theorem [5.1]

As discussed in Appendix [B] the exact-layer initialization mainly serves to ensure a small initial
objective value, and our analysis can be extended to other initialization schemes. Therefore, by
adopting Gaussian initialization and integrating Theorem [C.2] the convergence guarantees of BCD
can be extended to multi-output settings.

D Proof of Theorem [5.1]

In this section, we provide the proof to Theorem[5.1] The key notion is the block-wise analysis. First,
we provide the preliminary lemmas for the proof. After that, we prepare the block-wise analysis and
combine them.

Throughout this section, we suppose that the conditions in Theorem [5.1] are satisfied.

D.1 Preliminary Results

The following lemma immediately follows from the smoothness of the activation.

Lemma D.1. Let d > 1 an integer. For any x1, x5 € RY, it holds that ||o(z1) — o(x2)|]* <
€2||$1 - l‘QHQ.

Next, by utilizing Assumption we derive the following lemma.

Lemma D.2. For activation function satisfying Assumption[3.2] for any x, y € R, there exists & such
thata < ¢ < lando(z+vy) = o(x) + &y hold.

Proof. We first consider the case y > 0. Then, we have
Yy
oz +y)—o(x)= / o (x +t)dt > ay.
0

The Lipschitz continuity of o gives o(x + y) < o(z) + fy. Thus we get

o(z+y) - o)
y

a< =

<{,

which gives the conclusion.
The case y < 0 can be proven by substituting x and y in above discussion by  + y and —y.

In the case y = 0 we can take arbitrary £ with a < £ < £ to satisfy the assertion. O

This lemma gives the following proposition, which we utilize throughout the convergence analysis.

Proposition D.3. For activation functions satisfying Assumption and an integer d > 1, for
any x, y € R%, there exists a diagonal matrix E such that each diagonal entry Ej; of A satisfies
a<Zj <lando(z+y)=o(x)+Zy.
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Proof. Note that by Lemma|D.2| for each j = 1,...,d, there exists a Z;; satisfying o(z +y); =
o(z); + E;,y;. Then, E = diag(Z11, . . ., Zqq) satisfies the desired condition.

Next, we prove that the singular values of W; (j = 2, ..., L) are upper and lower bounded during
the training.

<

Lemma D.4 (Regularity of weight matrix W} during training). For j = 2,...,L, %

AL/2 (W WT) < )\rln/fx (W WT) < 2 always holds during the training.

min

To obtain this lemma, we utilize the following fact:

Lemma D.5 (Weyl’s inequality for singular values). Let A € R4*% pe a real-valued matrix, then,
for every matrix A € R4*% it holds that

m]?X ‘O’k(A + A) - Jk(A)| < Umax(A)v

where oi,(A) denotes the k-th largest singular value of A and oy,.x(A) denotes its maximum singular
value.

Proof of Lemma By Lemma|D.5] it suffices to show that every row w of W satisfies ||Aw|| <
ﬁ, where Aw denotes the difference between w at the start and end of the training. Indeed, this

implies

Omax(AW) = M (AWAWT) < | STA(AWAWT) < /TH(AWAWT)

p=1

1
= < .
1AW < 5

Combining this bound with % < Omin(Wj) < omax(W;) < %, which holds at the initialization,
gives the conclusion.

To this end, we prove ||Aw| < f This follows from

1AV wllo (V) = V| = 254y - [|diag(a (wV )V T (o (wV) = V')||
< 2PN (VVT) - lo(wV) — V||

(1) 2 L 1
<2 LCy - — < —
= Ly vELy - v (a) = 4K\/F7

where the second inequality follows from Lemma [D.6] and the last inequality follows from the
definition of 7]1(/‘1,). O

Lemma D.6. Ler ¢y = 2 max )y ., HVJZ||2, where V;s are the parameters at the initialization.
J

Under the same settings as Theorem let Cyy = cy +O((yyv tnK Ky)?). Then, Amax (V; VJT) <
Cy holds for j = 1,..., L — 1 during the training.

Proof. First, we have

Amax(V;V;T) < Z NASESAA! _tr<ZV,,»VjTi> Ztr (ViiVih)
j=1 i=1
:Z”Vl 2
i=1

This implies that we only need to evaluate the norm of Vj ;s during the training. Remind that the
update of V; is given by

&)

Vii+ Vii =29y W, D(o(W;V;:) — Vi),
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where D = diag(c’(W;V},;)). Let AV;; := 2yny W' D(0(W; Vi) — Vj41.i). Then, we have
||AV“|| = 2777VHW]TD(U(W]'VJ',1') - V]+1Z)H
< 2ynv - (Wil 1Dl lo(WV55) = Vigaill < dvlny Ck,
. . . 1/2 T
where in the second inequality, we use [|[W; ||, = Amax(W;W;") < 2 from Lemma D], < ¢

and ||o(WV;;) — Vjy1.4]| < Ck from (15) (Note that the objective function [|o(WV; ;) — Vj+17i||2
is monotonically decreasing from Lemma[D-8] (T3] always holds). Since the total number of updating
Vj,iis K - Ky, by using the triangle inequality we have

WViall < V33|l + K - Kv - dytnv Cie,
where ||V;7%|| is the initial value of V ;.
Substituting this bound to (3]), we obtain
Amax(V; V1) < Z [Vini|| + K - Koy - vty Cr)?

3

< S 2(Vis | + (i - Ky - avtny Cxe)?)
i=1

v+ O((yv InK Kv)?),

<c
where we use the inequality (a + b)? < 2a? + 2b? in the second inequality. Thus, we obtain the
conclusion. O

D.2 Analysis of Gradient Descent in a General Form

First, we introduce the key idea of analysis with general notationsﬂ Let us consider the regression
problem with an objective

b

2
Fgen(w) = Z(O’(MTLL'Q) - ya) ) (6)
a=1
where w € R? is a trainable parameter. Let w’ = w — NV Fgen(w), where w’ denotes the

parameter obtained by a single update of gradient descent with a step-size n > 0. Denote
X = (z1,...25)" € R®?and Y = (y1,...,y5)" € R®. Then, 22:1 (c(w'zq) — ya)2 =
lo(Xw) — Y||* holds and a straightforward calculation shows w’ = w — 2nX | D(o(Xw) — Y),
where D = diag((o/(w ' 1),...,0"(w'z))).

Now, we assume that there exists a unique optimal solution w* satisfying Fgen(w*) = 0, ie.,
Y = o(Xw*). Then, we have

2
l” = w*|I* = [lw = 7V Fgen(w) — w*||?

%12 * 2
= [lw = w* | = 20V Fyen(w) " (w — ") + 1| Vop Fyen (w) |

and

2(o(Xw) — o(Xw*)) DX (w — w*)
2(EX (w—w*)) DX (w — w*)
=2(w—w*) " X "EDX (w — w*)

> 22min (X TEDX) w — w*||?,

where Z is a diagonal matrix determined by Proposition and Apin (X T EDX) is the smallest
eigenvalue of X TZDX.

Vi Fgen(w) " (w = w”)

Moreover, we have the upper bound of the gradient as
IV Egen()|* = 12X T D(o(Xw) = Y)||* < WAmax (DX T X D)jo(Xw) — Y]},
where A\pax (DX T X D) > 0 is the largest eigenvalue of the matrix DX " X D.

30ur analysis is similar to that in [40 [14].
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D.3 Block-wise Convergence Analysis

According to the observation in Appendix [D.2] we provide the block-wise convergence analysis, that
is, the convergence analysis of the W; and V; of the each layer.

Updateof V;; (j =1,...,L —2) According to Algorithm([l} the update of Vj; (j = 1,...,L—1)
is written by

r 2
Vi = Via = 1mv 32 Vv, (0(wipVia) = (Visnd), ) )
p=1

where w, ,, denotes the p-th row of the weight matrix of the j-th layer W; and (V41 ;), denotes the
p-th component of V1 ;.

Despite the abuse of notation, we omit the layer index j and the sample index ¢ for notational
simplicity. We note that the analysis here can be independently applied to each layer and sample,
as shown in the proof of the main theorem; hence, this abbreviation does not matter in the proof of
Theorem [5.1] Then, (7) can be rewritten by

Ve Vo Y Vy(o(w,V) - V)7, ®)

p=1
where we denote V) := (Vj11,:)p.
Let Py (v) = 320 (o(wyv) — V) (= lo(Wv) — V/|[*) and V(©) be the initial point of V; of the
inner loop for each outer iteration (we also use abuse of notation here), and V(%) be the parameter
obtained by k iterations of the inner loop.
Under these settings, we first show the existence of global minima of Fy, as follows:

Lemma D.7 (Existence of v*). Suppose that % < omin(W) and 0z (W) < 2 hold. Let Av =
o(WV©) — V', Then, there exists a unique v satisfying Fyy (v*) = 0 and

2
Hv<0> —vl| < 2.
[0

Proof. Let Av == o (o(WV(©) 4 Av) — WV (O, Then, it follows that v* = V) + WAy
since

a(v<0> + W-lAv) _ (a-l (a(WV<0>) + Av)) - J(WV@)) + Av.

Now, o=V (-) is -Lipschitz and satisfies o(0) = 0. Then, we have [|Av|| < 1|/ Av| and conse-
quently

oo -

_ _ 2
= (WAl < W], - Av] < —[|Av].
This gives the assertion. O

Next, by using the observation in Appendix we provide the convergence analysis to the update
(3)-
Lemma D.8 (Convergence analysis of V). Under the same condition as Theorem[5.1} it holds that

21602 2
< ———exp (—avnvkz> HU(WV(O)) -V

2
a? 4 '

HO’(WV(k)) v

Proof. By lettinga — p, b — 7, £4 — Wy, Yo — Vj in @), we have

2
HV(’““) o ©)

2

() () i ()
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The second term can be bounded by

)

V. Fy (v<k>)T (V) = ") 2 22 (W EDW) [V = o ’

where D = diag( (o (w1 V™®),...,0'(w,V¥)) € R"*". Then, we have

a2

Amin (WTEDW) > 0 - Ayin (W W) > —,
where we use Lemma [D.4]for the last inequality.

Moreover, the third term can be bounded by
2
HVVFV (v<k>) H < Do (DWW D) |lo(Xw) — o(Xw*)|?

2
< 462/\max(WTW)Ho(WV(k)) — o(Wo*)

2

2
< .e2||WHipHV<k> | = 4£4Hv<k> ot

where we use Lemma[D.4]in the third and last inequalities and Lemma[D.T]in the third inequality.
By substituting these bounds to (9)), we obtain

HV(kJrl) P

2

k o’ k 2 2,2 pd||y (k 2
< ||V — _7’777VHV( ) vt + 4yl HV( ) —v*

2 2 2
< VP =0t =y (a - 4777v€4) HV("') —v*

2
2 2
_ (1 _ C‘WV> [ve -
4
where we use 7y < % in the last inequality. This implies

2 o N*1vw _ | o’ ©) _
s \L=7w HV — V|| sexp| vk HV —v

where we use 1 — z < exp(—) in the first inequality, and hence,

(v

2

2 2
< |[V® —o| - %WvHV(k) — v

)

2

)

-

HJ(WV““)) —V

2
< 4£2HV(’“) —

2
< 402 exp (O:LW}Vk> HV(O) — "

1642 a? 2
< __ )\ _ v/
=2 exp( 1 ’ynvk) Ha(WV ) Vv

which gives the conclusion. O

2

)

Finally, we provide a lemma evaluating distance to global minima based on the objective value:
Lemma D.9. Suppose that Fy/(v) < € holds. Then, |[v — v*|| < 2/e.

Proof. Since

€ > Fy(v) = |lo(Wo) — a(Wo*)||* > o?|[Wv — Wo*|)* >

v — ",

> =

we obtain [[v — v*| < 2/e. O
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Updateof W; (j =2,...,L —1) Letw;, € R" be the p-th row of the weight matrix W;. Then,
update of each w; ,, is given by

2
Wj,p S Wjp — W Z Vi, p( (w;pVji) — (Vj+1,i)p) ) (10)

For notational simplicity, we omit the layer index j and the node index p. Namely, the update (I0) is
simply rewritten by

W = w — VHWZV -Vi)5

where we denote V; := V;; and V/ = (Vj414)p. Let Fyw(w) = Y1 (c(wV;) — Vi) (=
o(wV) — V'||*) and w® be the initial point of wj,p of the inner loop for each outer iteration
(we also use abuse of notation here), and w(*) be the parameter obtained by & iterations of the inner
loop. Against to the argument of Fy, in the above paragraph, Fyy have not a solution w* satisfying
Fy (w*) = 0 especially when n > r. However, we can still ensure that the objective value remains
small during the update of W;.

Update of W; Let w, € R%" the p-th row of the weight matrix W. Then, the update of each w,,
is given by

Wp — Wy — 'an val( WpT;) — (Vl,i)p>2~ (11)

Despite the abuse of notation, we omit the node index p for notational simplicity. Namely, the update
(TT) is simply rewritten by

w® k= 777‘(,‘2,) ivw (U(w(kfl)xi) — Vi)2, (12)

i=1
where we denote V; := (V1 ;).
Let Fyy (w) == > i (o(wz;) — V;)*(= |lo(wX) — V||*) and w® be the initial point of w; of the

inner loop for each outer iteration (we also use abuse of notation here), and w*) be the parameter
obtained by k iterations of the inner loop.

Lemma D.10 (Existence of W*). Let Av := o(w® ;) — V;. Then, there exists a w* such that
Fy(w*) =0and

|

Proof. The proof is essentially same as that of Lemma O

We then provide the convergence analysis to the update by using the observation in Appendix
Lemma D.11 (Convergence analysis of W1). Under the same condition as Theorem[5.1]

¢ - max|a ||

liex Oé S (2 )k O)X 2 ’
04252 p 777 1 *

2
() i <
Proof. By letting a — 4, b — i, x, — z; and y, — V; in Appendix [D.2] we obtain

Hw<k+1> —w (13)

2 T 2 2
i = o () () o ()
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The second term can be bounded by

o (w<k>)T (09 = ") 2 22 (X TEDX) [0 ® — w ’

Then, we have
Amin (XTEDX) >a?. /\min(XTX) — o252,

Moreover, the third term can be bounded by
2
vaFW (w(k)) H < Dmax(DX T X D)o (Xw) — o(Xw*)||?
‘2
2 2
< maxay|* - 64V — o*

where we use Lemma [D.4]in the third inequality and Lemma[D.1]in the third inequality.
By substituting these bounds to (T3, we obtain

< 4€2Amax(XTX)Ho(Xw(k)) ~ o(Xw")

< 2)X|2,

’w(k) —w*

2
Hw(k+1) W

2 221

2 2
< Hw(’“) —w* +7 maXIIxill2Hw(k) —w”
7

- 204252777‘(,‘2,) Hw(k) —w*

< Hw(k) —w* (2)£4 *

2

)

*

2
2 2
— (2a282 — gy €1 - ma] | )Hw(k) —w
2
e - s -
@)

2
= (1 - a232fy77§,[2,)) Hw(k) —w*
where we use nwz/ < ﬁ

sz in the last inequality. This implies

2

o |

2 k 2
< (1 — a25277‘(,‘2,)> Hw(o) —w*|| < exp(fozzszn‘(,?,)k) Hw(o) —w*
where we use 1 — 2 < exp(—2x) in the first inequality, and hence,

2 2
o) =i < 2 (u® —ur)x

< -max||xi||2Hw(k) —w*
7

2
< % - max||z; | exp(_a2s2n§§>k) H“’(O) o

2 - max|lz|? :
_ exp(—a25277‘(,‘2,)k) Ha(w(O)X) — Vl‘

)

a?s?
which gives the conclusion.

D.3.1 Proof of Theorem [5.1]

Before providing the proof of Theorem 5.1} we introduce the following lemma:

Lemma D.12 (Bound on Awv at the output layer). Let R; := ’WJ»(O)VL(O_)M — Vi

. Then, we have

Vil = v < ariny.

Proof. By the construction of the algorithm, we have

k k—1 k k—1 k
Hvlsf)l,i - VI(/fl,i) = HQUV(WL( )V[(/fl,i) - yz)W£ )H

k k)1 (k—
< 2TIVHW£ )Hop : HW£ )VL(—l,li) —Yi

0)

< 4TIVHW£O)VL(—1,7: —yi|| = 4nv R,

which gives the conclusion.
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Then, we move to the proof to Theorem [5.1}

Proof of Theorem[5.1] Let us consider the decomposition of F as

L—1 n L-1 r

PR E =3 Pt 33 Fu

j=1 i=1 j=1p=1
where
Fr,=WiVi_1,;— vi)?, Iy = ZFL,i
and
2 n I
Fjip= W(U(WjVj—Li)p - (Vj,i)p) L =YY Fiay,
=1 p=1

for j =1,..., L — 1. The proof consists of two parts: (I) F;, is monotonically decreasing in the outer

loopand (D) F;, (j =1,...,L—1,i=1,...,n,p=1,...,7)is sufficiently small at the end of
each inner iteration.

(I) Bound on F;, The update of V7,1 ; is described by
VI = VS 2 (WD
Then, we have

WY EY g = (1 = 2nv||wi?| ) (WiVEY —u).

This results in
(k) W12\ h-1) ®)[|2) m(k—1) (k—1)
FL,i < (1277VHWL H > Fr; SeXP(‘“WHWL H )FL,i SeXP(*nV)FL,i )

where the second inequality follows from 1 — x < e™* and the last inequality from HWSC) H > %
This concludes

FI(Jk) <exp(—nvk) Féo).

Since F} O _R by the definition of R, after k = 1og ( ) iterations, F; (k) < £ holds.

(ID-() Bound on Fj (j = 2,...,L —1) Letus define Av'") as the initial value of o/(W;41Vj;) —

Vit for j = 1,...,L — 1 when we update V;, i at the kth outer iteration, where we denote
VL.i = y;. Then, by Lemma|[D.7]and Lemma[D.9] we have
k
Jass?] < S (o +v9)

foranyj=1,...,L —2and:=1,...,n. We have HAU(L’C—)MH < 4Rp.xnv by Lemma|D.12| By
using this bound, we can derive

2 2\ Ft 2
|acl®] < (4Rmaxnv + Hﬁ) <a) —gVe (14)
2 2\ *
< (4Rmax77V + 2_0[\/%> (OZ) (15)
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by induction. Indeed, (T4) holds for j = L — 1 with equality. Moreover, under the induction
hypothesis, it holds that

IN

k
s,

(o] +v4)

(e 20 2) 525529

9 9 L—(j-1) 2
<4Rmaan + Oé\/g> () - \/E

2
«a
2

IN
Q

2 - «a 2 -«
This concludes (T4) for j = 1,..., L — 1. Then, by using Lemma|[D.8] we have

1602 o? 2 2\ L 9 2
e 1) () (s 2]

4
Thus,
L 2
4 2 2 480*(L — 2)rn
kin = YN 1Og <<) <4Rmax77V + \/E> ( 2 ) 7)
ya2lny @ 2—a a?e
gives Fjip < 57=3),5, and hence, Fj < 5755 by summing up Fj; ;.

(II)-(ii) Bound on F; By using Lemma|D.11] we have

¢ - max]|z;]|”

n 9
7 2

S riin = I i) v o) -

1=

Since Avﬂ? < (4Rmax77v + ﬁﬁ) (z)Lil, we have

(03

e ow) -vi|" < z_j (i(HAm,i + e>)2

2 2 2 2L
= n<4Rmax77V + ﬁ) . <O(>

2—«a
Thus,
) 5 2 ro\2L 302 max||z|*r
kin = 7(2) log n (Rmaxnv + \/E) . () . #
a2s2yn\s 2—« o acse

gives Y0 F1;, < Sforp=1,...,r Thisresultsin F} = Y 7", 22:1 Fiip, <%

(IIT) Summing up all By combining all, after K outer iterations and Ky and Ky inner iterations,
we have

L—1 L-1
€ € €
F=F F.< - A —
L2 BS 34 gpogt 3 =6
Jj=1 ~~ =2 L =~
r Fy...,Fr 1 1
which gives the conclusion. O

E Proof of Theorem[5.3

Here, we provide the proof of Theorem[5.5] the generalization error bound of neural networks trained
by Algorithm
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Proof of Theorem[5.3] By using the bound on u and y supposed in Assumption[5.3] we have
|f(u) - y| < By + |WLU(WL,1 . O’(Wlu) e )|
< By + £||WL||OP||WL710'(WL72 S O’(Wlu) R )”

L
< By + (*7 | TTIW;,, | IWrul

j=2
< By + 28057 || < By + 280471 By,

Hence, by taking M = By + 21¢5~1 Bx and R(F) as what derived by Lemma|E.2|in Lemmal|E. 1}
we obtain the conclusion. L]

Lemma E.1 (Theorem 11.3 in [23])). For a hypothesis class F and a training data {(x;,y;) Y1, let
us define its (empirical) Rademacher complexity by

.
R(F)=E lsupJ f(u)] )
7 |feF N
where f(x) = (f(x1),..., f(x,)) and o is a random vector whose each component independently

takes value 1 with probability %. Suppose that |h(z) — y| < M a.s. for any h € F. Then, for any
0 < 0 < 1, with probability at least 1 — 6 over a sample, we have
1 « 2 log(2/9)
E [(h(z) —y)?] <= (h(z;) —yi)” + 2MR(F) +3M>\ | ———=.
WE (@) )] n;(( )~ 1) (F) o
Lemma E.2 (Rademacher complexity bound). Let F be the class of neural network predictors
obtained by Algorithm[I} Then, the Rademacher complexity of F can be bounded by

(1)12@

n

4
< ——=+1
R(}-)*n\/ﬁ—i_Og

with R = d;, (2r)FL3||U||? log(27?) (log n).

NG

To obtain this result, we apply the obtained bound on the spectral of W to the Rademacher complexity
bound shown in [8]] as follows:

Lemma E.3 (Lemma A.8 in [8]]). Assume activation functions {oj(')}JLzl such that each o is
p;-Lipschitz continuous and 0;(0) = 0. Let us define

Fi={orWiora(.o1W). ) [IWll,, < By [Willyy <8 1 <5< L)}

op —
Then, it holds that

)

R(F) < ni\/ﬁ +log (

where Rr > 0 is a constant defined by

L L /p\3d ’
Rr = || X||*log(2r?)(log n) Bjp; <Bj>
j=1 j=1 J

Proof of Lemma[E2} By applying Lemma[E3|with p; = --- = pp = 1, B; = 2, b1 = 2d;,, and
bj=2rforj=1,...,L —2and by, = 2, we obtain

L-1 L o\ % 3

Ry = || X||?log(2r*)(logn) | 4d;, H(Zr) Z <2>
j=2 j=1
= || X|I? log(2r?)(log n) - 4dyy, (2r)E 2 L31% = dy, (2r) L L3||U||? log(2r?) (log n),

which gives the conclusion. O
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F Proof of Theorem

F.1 Proof of Lemmal6.2]
Proof of Lemmal[6.2] First, we have E[[|w, [|?] = E[||w_||*] = 3. The first equality follows from
the symmetricity, and the second equality follows from
1 1 2 1 1 2
5 = SE[IWLl?] = SEwsl? + o IP] = 5 (E[lws ] +EJw[P)) = Eflws )

where we use E[||lw ||?] = E[||w_||?] in the last equality. Then, by using the concentration inequality
argument (see Example 2.11 in [36]] for example), we have

1 t2
P( w2 - 2] > t) < 2exp(—7"8)

8log(2/4)

forany ¢ € (0,1). By letting t = ==, we obtain
1 8log(2/6
P<|w+|2 <i- \/Og(/)> <5
2 r
Since the same argument holds with w_, taking a union bound concludes the assertion. O

F.2 Analysis of gradient descent with skip connection
We introduce the key idea of analysis with general notations similarly to Appendix [D} while there
exists a skip connection. Let us consider the regression problem with an objective

b
Frelu(w) = Z(U(sza) + wq — ya)27

a=1

where w € R? is a trainable parameter. Let w’' = w — nV,, 22:1 (U(waa) + Wy — ya)Q,
where w’ denotes the parameter obtained by a single update of gradient descent with a step-
size n. > 0. Denote X = (z1,...75)" € R>¥and Y = (yi,...,3)" € R’ Then,

S (o(w ey + w, — ya)2 = |lo(Xw) 4w —Y|” holds and a straightforward calculation

a=1

shows w’' = w—2n(X "D +1I)(oc(Xw) + w —Y), where D = diag((o/(w z1),...,0" (w xs))).

Now, we assume that there exists a unique optimal solution w* satisfying F;,(w*) = 0, i.e.,
Y = o(Xw*) + w*. Then, we have

' = w*||* = [[w = 7V Fregu (w) — w*||*
= [lw = w*||* = 29V Freru(w) " (w — w*) + 0?[|Vay Freru (w) |
and
Vo Fretu(w) " (w —w*)
=2(c(Xw)+w—o(Xw") — w*)T(DX + I)(w —w")
=2[EX + I)(w—w")] DX (w— w*)
=2(w—w*) (XTE+I)(DX + I)(w — w")

= 2w — w*|* + 2(w — w*) X TEDX (w — w*) + 2(w — w*) (X TE + DX)(w — w*),
(16)

where Z is a diagonal matrix whose all diagonal components are within [0, 1], whose existence is
guaranteed by the same argument as Proposition[D.3] Then, we evaluate the right hand side.
Lemma F.1. O <X D < I holds.

Proof. The assertion directly follows from o’ (u) € {0, 1} for arbitrary u € R. O
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Lemma F.2. Suppose || X||,, < 3. Then, the inequality (T6) > 3 |lw — w*||? holds.

Proof. Since X '=DX is a positive semi-definite matrix, we have

(M) > 2[w —w*|* — 2| X "=+ DXI|, w —w*|?
1 4
> (2-203)lo-wl > Jlo- o,
which gives the conclusion. O

Besides the lower bound on (T6), we have the upper bound of the gradient as
2
IV Fretu(w)||? = ||2X T D(0(Xw) +w —Y)|| (17)
< Do (XD + 1) (XD +1))|lo(Xw) + w - Y|,

where
Amax (XD + 1) (XD +1)) >0

is the largest eigenvalue of the matrix (XD + 1) (XD + I).
Moreover, we provide several lemmas, which we utilize in the proof of Theorem[6.3]
Lemma F.3. Suppose |[W{|,, < $and V' > 0. Then, if [c(WV) +V — V'||? < ¢, then

V- P <e oWy + @y v < T
Proof. Since c(WV) > 0and V > 0, we have

e loWV)+V =V P> N [oWV); + Vi - V12> Y (v)* = ||V - (V)*]
V;<0 V;<0

2
)

which gives the first conclusion. The second follows from
||O'(W(V)+) + (V)Jr — V’H
<|le(WW)H) —a(WV)+ (V)T =V + lc(WV)+V = V||
<|le(WWV)F) —aWV)||+ |V = V| + lo(WV)+V = V||

1 1
< HW((V)+ — V)H €% 4 €3 < 565 + 23 = geé,
where we use the triangle inequality in the first and second inequalities, and 1-Lipschitzness of the
ReLU activation in the third inequality. [

Lemma F4. Suppose that VO satisfies o(WV(O) + VO — V' = Av and V* satisfies c(WV*) +
Ve =V If W], <1, it holds that

1
v -ve| < = 1Al
Proof. We have
|Av|| = HU(WV“J)) +vO v = oWV ©®) + VO — gwvr) — v

> v — v - HU(WV(O)) — oWV
> vo — v+ - HW(V(O) —vY)
> [V - v - 1w, [v© - v
= (1=1wll, )|V = v

where we use the the triangle inequality in the first inequality, the 1-Lipschitzn continuity of ReLU
activation in the second inequality. Dividing each term by 1 — [[W{|,, gives the conclusion. O
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F.3 Preliminary Results

Lemma F.5 (Regularity of weight matrix W; during training). For j =2,...,L —1,
always holds during the training.

Willp < 3

Proof. By Lemma , it suffices to show that every of W; satisfies ||Aw]|| < ﬁ, where Aw

denotes the difference between w at the start and end of the training by the same as the proof of
Lemma[D:4l
1

To this end, we prove ||Aw|| < 157+ This follows from

M Vullo(V) +V = V| = 25y - ||diag(o’ (wV))V T (o(wV) + V = V)|
< mWAA2 (VVT) - lo(wV) +V = V)|

max

(1) 3\ 1

<2 ”1, WCv vz <———=

= w7tV (2) - 12K\r’

where the last inequality follows from the definition of 77‘(11,). O

Lemma F.6 (Bound on Av at the output layer). Let R; := ‘W;O) VL(O_)M — yi|. Then, we have

k k—1
”Vl(/f)l,i - VL(71,¢)

S 4Ri77v.

Proof. Since VL(’i)l > 0, we have

k k—1
HVL(JM - Vl(/fl,i)

_ H (VY — 2 (WY — ) ) v

= H (VL(]:}Z‘) -2 (WLVL(’S? - yi) WL) - V(k—l)H

)

k) (k=1 k
= HQUV(Wé )Vlsfl,i) - yz)Wi )H

k k)1 (k-1
< 277VHW£ ) o HWIE )VL(—l,z‘) —Yi
< 477VHW£O)VL(O_)M —Yi|| = 4nv Ry,
which gives the conclusion. O

F.4 Proof of Theorem[6.3]

Proof of Theorem|6.3] We follow the similar argument as that of Theorem[5.1] Let us consider the
decomposition of F' as

L—1 n L-1 r
F=Fp+y) F=) |FLit1) Y Fiin|:
j=1 i=1 J=1 p=1
where
Fr,=WiVi_1,;— i)’ Iy, = ZFL,i
i=1
and
2 n s
Fiip = (0WVimra)y + Vicrdo = Vi), )+ Fi =D Fiaw
i=1 p=1
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(I) Bound on F;, We only need to consider the case WLVL(k 111) y; # 0. The update of Vi, ; is
described by

k k * k k— .
VIE—)I,i = (VL( 111) = 2nv (WLVL( 1 z) yi) WL) = 1'5—)11 - ZUV(WLVL(—LI‘) = Y)W,

where we define w = (2ny (W, VL(’:? —y) ! (VL( 1 l) VL(k)1 ) Then, we have
WV — i = (L= 2 W) (WevE — ).
Then, we show an inequality
@ W, > min{|lwy |2, [Jw_|*}. (18)

First we consider a case WLVL( 1) — y; > 0. In this case, we have

(2m (Wovis) — v )m)

((vékllg_zn AT RSN Vékll})j

2y (W VI =) W), ifj e = {51 (W), <0},
— Q2 (WVEL) — i) (W), ifj € Jp = {5 | (Wi), > 0and V1) > 2ny (WLVL(’:}} _ yi)(WL)j},
(VLU:?) ) otherwise.
J
This gives

wTWL = Z(’J])j(WL)j

j=1
— 71 —
= Z (WL)f + Z 2y (WLVL(]il,li) - yt) (VL(liLli)) ,(WL)j
JETLIUT JE(J1UTR)e I
> (WL)? = Jlw_|?, (19)
JE€J1

where in the inequality we use (VL(k 111)) > 0and (Wg); > 0forj € (J; U Jo)".
FWLV* Y — y; < 0,itholds that
2y (WL VY — ) a
(o (52 ),
2ny (WeVE) =) W), ifj € = {5 | (W), = 0},

= dogy (Wev) — )W), ifj e Jo= {51 W), <0and VD > 2y (WLVﬁ;}Q - yi)(WL)j},
(VL(k 117)) _ otherwise.
J

This gives

j=1
2 k—1 L (k-1
= Z (WL)]- + Z 2nv (WLVL(A@) - yl) (VI(/fl,i)) .(WL)j
jES1UT FE(J1UJ2)¢ J
>y (Wi)? = [lwy |, (20)
JjE€J1
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where in the inequality we use (VL(]i_1 1.)) > 0and (W); < 0forj € (Jy UJ2). The two bounds
J

(T9) and (20) conclude (T8).

This results in

FE < (1 amy W) F

Z

< exp(—4nvaWL)F£’2 Y < exp((—ny min{ [lws |, |2 }) FEY,

where the second inequality follows from 1 — < e~* and the last inequality from . This
concludes

P < exp(—any min{ |, o | 1) £,

Since Féo) = R by the definition of R, as long as we set ny < 2 ] after k =

1
RENTPEE!
1
any min{ f[w |7,

(k) « €
T }1og( ) jterations, I}’ < £ holds.
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Vii—Vigiforj=1,. L — 1 when we update V; ; at the kth outer iteration, where we denote
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where we use (a + b)* < 2(a® + 0°) in the third inequality and ||[Wj1(|,, < § in the third and
fourth inequalities. Then, by substituting these bounds to (21, we obtain
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m Then, Lemma gives Fj; < m after the non-negative projection (line
is applied.

(ID-(ii) Bound on F; The update of W; is same as what We considered in Theorem @ (Algo-
rithm|[T) by setting « = ¢ = 1. Therefore, by using Lemma[D.T1} we have
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(III) Summing up all By combining all, after K iterations and Ky and Ky iterations, we have
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G Additional Experiments on Deeper Architectures

We conducted additional experiments to evaluate the scalability of the proposed BCD algorithm
on deeper networks trained with the LeakyReLLU activation (o« = 0.5). Networks with depths
L = 4,8, and 12 were trained on the same synthetic dataset and with the same hyperparameters as in
Section [Z1]

Figure []illustrates the training loss trajectories for each setting. As expected, deeper architectures
exhibit slower initial convergence due to increased optimization complexity. Nevertheless, the
loss consistently decreases over epochs for all depths, demonstrating that the proposed method
remains stable and effective even for substantially deeper models, in agreement with the theoretical
convergence results presented in Theorem 5.1.

100<

1072
[7)]
8
= 10741

10764

0 1000 2000 3000 4000
epoch

Figure 4: Training loss curves for networks of depth L =4, L = 8, and L = 12.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction—such as provable convergence of
BCD to global minima, extension to ReLU networks, and generalization guarantees—are
explicitly supported by theoretical results (Theorems|5.1] [5.5]and[6.3) and empirical evidence
(Section[7).
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: Section [6]discusses the limitations of extending the convergence guarantee
to ReLU due to its non-monotonicity, requiring modifications like skip connections. Ap-
pendix [B]also notes challenges when using non-monotonic activations or more general loss
functions.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper clearly states assumptions (e.g., Assumptions 3.1} [3.2]and [5.3) and
provides formal proofs in Appendix for the theoretical results in Sections 4 and [6]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]

Justification: Section E] outlines the network architecture, activation functions, data genera-
tion process, hyperparameters (e.g., step sizes, number of iterations), and settings for each
experiment.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: While the main paper confirms reproducibility through detailed descriptions,
code and data are to be released in the supplemental material, consistent with NeurIPS
anonymization guidelines.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section [/|provides a comprehensive description of hyperparameters, dataset
construction, network configuration, and training loop setup for both activation types.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Section[7]includes comparisons of training loss curves across different settings
(e.g., with and without singular value bounding or skip connections), and reports consistent
behavior across runs, effectively supporting the statistical significance of the observations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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10.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The experimental setup, including compute resources, is described in Section 7]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work does not involve sensitive data, human subjects, or deployment
concerns and aligns with ethical principles described in the NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Sections |l|and [§|mention that the theoretical insights into optimization and
generalization may benefit the understanding and reliability of deep learning. However,
broader societal implications (e.g., misuse) are not discussed in detail.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

37


https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The proposed methods do not pose high risk for misuse.No pretrained models
or scraped datasets are used.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The experiments use synthetic data and code developed by the authors. No
external assets are reused.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new algorithms (Algorithms [I]and [3), which are clearly
specified in pseudocode and supported by theoretical analysis and empirical results.

Guidelines:
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* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The work does not involve any human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The study does not involve human participants, hence IRB approval is not
applicable.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not use large language models in the methodology or experi-
mental pipeline.

Guidelines:
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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