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Abstract

Mixture-of-Experts (MoE) models have recently gained steam in achieving the
state-of-the-art performance in a wide range of tasks in computer vision and natural
language processing. They effectively expand the model capacity while incurring
a minimal increase in computation cost during training. However, deploying
such models for inference is difficult due to their large model size and complex
communication pattern. In this work, we provide a characterization of two MoE
workloads, namely Language Modeling (LM) and Machine Translation (MT)
and identify their sources of inefficiencies at deployment. We propose three
optimization techniques to mitigate sources of inefficiencies, namely (1) Dynamic
gating, (2) Expert Buffering, and (3) Expert load balancing. We show that dynamic
gating improves maximum throughput by 6.21-11.55× for LM, 5.75-10.98× for
MT Encoder and 2.58-5.71× for MT Decoder. It also reduces memory usage by
up to 1.36× for LM and up to 1.1× for MT. We further propose Expert Buffering,
a new caching mechanism that only keeps hot, active experts in GPU memory
while buffering the rest in CPU memory. This reduces static memory allocation by
1.47×. Finally, we propose a load balancing methodology that provides additional
robustness to the workload. Our code is available at https://github.com/
hyhuang00/moe_inference.

1 Introduction

A machine learning model’s predictive ability increases with the number of parameters. Model
capacity has grown at an exponential rate of 10× per year [1], which in turn has driven demand for
computation. Mixture of Experts (MoEs) decouple model capacity from computational demands by
using conditionally, sparsely activated neural networks. They can reduce training costs yet improve
accuracy [2–4] for language modeling [5–8], machine translation [9], and image recognition [10, 11].

But training is only half the story. MoE inference is important yet challenging as large language
models are deployed for production services. Our experiments show MoE inference is relatively
inefficient, requiring much more time to perform the same number of calculations. In Section 3, we
show that MoEs are 15× slower for language models and 3× slower for machine translation compared
to their FLOP-equivalent dense counterparts. Distillation could shrink models and reduce latency but
harm model quality [6, 8, 2]. Optimizations could increase parallelism and GPU utilization, but they
narrowly target specific kernels for communication collectives and GPU computation [12, 13]. They
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Figure 1: Illustration of MoE Models. (a) MoE module uses a gating function to assign inputs to
experts [15]; (b) Dense Transformer Decoder Layer, which consists of Multi-head Attention (MHA)
followed by a Feed-Forward Network (FFN); (c) MoE Transformer Layer in which an FFN block
is replaced by a set of expert FFNs, which operate in parallel; (d) MoE Transformer with expert
parallelism. Each device hosts a subset of experts. Tokens assigned to remote experts are dispatched
via all-to-all communication.

lack a comprehensive analysis of inference costs and neglect inefficiencies in the MoE algorithms
themselves.

We explore optimizations for MoE inference to improve three important dimensions—token throughput,
memory use, load balance—without degrading model quality. We begin by identifying sources of
inefficiency in MoE inference, breaking down latency and memory use across components of the
model architecture. We find the gating function, which assigns tokens to experts, is a major contributor
to MoE’s high latency and large memory footprint.

We address MoE’s inefficiency with Dynamic Gating, a new gating function that better matches
each expert’s computational capacity to its token assignments, thereby reducing communication
and computation for placeholders. Dynamic gating reduces latency and memory use while enabling
inference with larger batch sizes and fewer GPUs. We implement this new gating function on an
open-source MoE Transformer [14]. Dynamic gating could be integrated with other optimizations for
distillation, communication collectives, and GPU kernels for even greater benefit.

Furthermore, we develop optimizations that allow experts to better use GPU memory and cores.
Expert Buffering exploits high temporal locality across experts. It allocates a fixed, but limited,
amount of GPU memory for hot, active experts and relies on CPU memory to buffer all other experts.
Less frequently accessed experts are brought into GPU memory as needed, significantly reducing
demand for GPU memory. Expert buffering is orthogonal to existing memory management techniques
such as offloading. Load Balancing mitigates severe load imbalance across experts. Although MoEs
are trained with a loss function encouraging load balance, the token distribution during training
often differs from that during inference. Our load balancing technique tracks and estimates expert
loads (and their hosting GPUs) based on runtime expert activation data. It then redistributes tokens
to balance the load, improving system robustness and reducing risks of out-of-memory errors and
oversubscribed GPUs.

We implement and evaluate these optimizations for language modeling (LM) and machine translation
(MT) tasks. These optimizations significantly improve inference throughput, memory use, and load
balance. Moreover, they outperform the state-of-the-art and previously proposed optimizations.

2 Background

In this section, we aims to provide a basic background for readers unfamiliar with MoE transformers.
A more detailed description on the MoEs and related works can be found in App. A.
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Mixture-of-Experts (MoEs) use different models for different inputs to improve versatility and
robustness [15]. An MoE consists of multiple, independent models (i.e., experts) and a gating
function that assigns inputs to experts. Each input activates only its assigned expert, allowing the
model capacity to expand “outrageously” with more tractable increases in computational cost.

MoE Transformer. The Transformer model architecture has defined the state-of-the-art for computer
vision and natural language processing [16, 17]. Illustrated in Figure 1, sparse MoE layers replace the
FFN block in the Transformer architecture with an MoE block that consists of multiple expert FFNs.
These layers use a gating function to decide which experts are most suitable for each token, and then
routes tokens to their corresponding experts. Typically, a token is routed to one or two experts in
a top-1 or top-2 gating policy. Compared to traditional Transformers, where the FLOP count per
batch scales linearly with the number of parameters, MoE networks require much less computation
and allow large models to be trained efficiently. MoE Transformers have reduced training costs for
large models [2, 6–8] and achieved high accuracy in vision, text, speech and multi-task learning
[18, 5, 19–21].

Expert Parallelism. MoE models present an interesting trade-off, requiring less computation but
more memory usage than traditional Transformers of the same capacity. Expert layers deploy many
additional FFNs, which increase model size and demands for GPU memory. GShard [2] addresses
these challenges with expert parallelism, distributing workload across multiple GPUs. Each GPU
holds a subset of expert FFNs and copy of all other parameters. All-to-all communication is required
when distributing tokens to experts and collecting results from experts.

3 Mixture-of-Experts Characterization

We characterize MoE Transformers for Language Modeling (LM) and Machine Translation (MT)
against FLOP-equivalent dense models. We study recent models on high-performance testbeds, and
a detailed description can be found in Table 1 and 2 in App. B. The mini batch size is set to 8 for
Language Modeling and 48 for Machine Translation, the largest feasible values under baseline.

3.1 Expert Activation

Under the baseline MoE design, an expert always processes a capacity of tokens regardless of the
number of tokens actually assigned. Experts configured with excess capacity will suffer longer
latencies and use more memory. But how much of this waste is incurred in practice? We answer this
question by analyzing expert activations on several tasks.

Language Modeling (LM). We use three domains—Wikipedia, PubMed, Github, from the PILE
dataset [22] as input following [8]. Fig. 5(a) in App. C.1 shows a highly imbalanced load across
experts. Multiple hot experts consistently receive a large share of tokens, while other experts
consistently receive a small share or no tokens at all. While all inputs show sparse expert activations,
the set of hot experts and their hotness levels vary across domains.

Machine Translation (MT). We evaluate expert activation by performing translation from English
to French, Japanese, and Austrian using validation data from NLLB-200 [9]. Fig. 5(b) in App. C.1
shows that MT also exhibits load imbalance and a small fraction of experts are hotter than others.
Noticeably, decoder activation is extremely sparse, and differs from the encoder in one key aspect:
it exhibit strong temporal locality. An expert may be active for several consecutive batch, then go
inactive again. This temporal locality for hot experts is key motivation for our expert buffering
optimization in Section 5.

3.2 Latency

Fig. 7 in App. C.2 examines inference latency. The MoE is 15× slower for language models (LM)
and 3× slower for machine translation (MT). While MoE model will be more accurate than the
FLOP-equivalent dense model, the MoE will exhibit much higher latencies than the dense. The
finding that MoEs perform the same number of FLOPs but require much more time illustrates the
need to mitigate the intrinsic inefficiency of MoE inference.

Fig. 9 in App. C.2 shows contributors to inference latency for different models and node counts. Prior
studies attribute MoE’s longer latency to frequent all-to-all communication [2], which is true for
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MoE training where computation is distributed across many nodes and all-to-all communication is
the main bottleneck. However, our characterization of MoE inference reveals that, while all-to-all
communication occurs in multi-node deployments, it is less significant to latency than the computation
for the gating function and experts. This finding informs our optimization in Sec. 4.

3.3 Memory Usage

Fig. 8 in App. C reveals contributors to MoE’s significant demands for memory capacity. For LM, the
dense model only requires 2.2GB on each GPU whereas the MoE requires up to 18.9GB, an increase
of 8.6×. For MT, the dense and MoE models use 7.0GB and 21.2GB, respectively, an increase of
3.0×. Beyond the static model parameter usage, MoE models also use much more dynamic memory
than dense models.

Fig. 10 in App. C illustrates dynamic memory use for the baseline MoE on the Pear cluster. A
significant amount of memory is allocated during the gating and reordering computation, and then
freed nearly instantaneously. Our close examination of the memory trace indicates that primary cause
of this memory use is batch matrix multiplication within the static gating function. We address this
challenge with dynamic gating in Section 4.

3.4 Load Imbalance

The root cause of MoE’s high latency and memory use lies in its static gating policy. Recent
implementations assume experts’ computational loads are balanced [23, 12, 5, 8]. Under this
assumption, token distribution can be simplified and implemented with all-to-all collectives, which
we detail later in Fig. 2a(1). Inefficiencies arise when assumptions about load balance fail. If
the gating function assigns fewer tokens than an expert’s capacity, the remaining capacity is filled
with placeholders (i.e., zeros). If more tokens are assigned than the expert’s capacity, excess
tokens are dropped, with their information retained only by residual connections. Dropping tokens
harms accuracy, so capacity C usually set to large values to prevent information loss and accuracy
fluctuations. However, large capacities increase latency and memory use. We find that it can leads to
a waste as large as 12.8× for LM and 64× for MT (see App. C.3 for detail).

We study whether waste during inference is avoidable. If the workload is well balanced and token
allocations across experts are comparable, we could reduce waste by simply scaling down expert
capacity. On the other hand, if expert activation is sparse, scaling down capacity risks dropping
tokens and harming model accuracy.

4 Dynamic Gating Optimization

Our characterization reveals a gap between assumptions and practice regarding load balance across
experts, which gap leads to poor performance and resource inefficiency during inference. Although
prior studies also notice load imbalance across experts [13, 12], they retain a gating policy that
increases expert capacity in response to severe imbalance. Such a policy seeks model accuracy by
ensuring the most heavily loaded experts do not drop tokens. But such a policy also exacerbates the
high latency and inefficient memory use we have observed.

We propose dynamic gating that tunes efficient, variable capacities for experts. This improves upon
static gating, which inefficiently sets large, fixed capacities. Changing the gating policy to permit
dynamism is non-trivial. Major MoE implementations rely on statically set expert capacities to
ensure all messages sent with all-to-all collectives are equally sized [13, 8, 10]. The NCCL all-to-all
primitive requires recipients to pre-allocate memory for messages between GPUs. With equally sized
messages, each GPU knows the required memory size beforehand. However, when message sizes
vary due to dynamic gating and differing token assignments, a lightweight message is needed to
notify each GPU recipient of its incoming tensor size.

Static Baseline Figure 2a(1) illustrates static gating, which constitutes our baseline. Here, S
represents the sequence length, C represents the Capacity Factor, E represents the number of
total experts, and D represents the dimension of each token. The gating function generates expert
assignments and translates them into E dispatch masks, each with dimension (S, S × C). Entries
in the mask are generated as follows. If token i is assigned to expert e and the e-th mask still has

4



(a) Comparison for gating implementation. (b) Illustration of Expert Buffering.

Figure 2: (a) Comparison between the static gating in [2, 8] and our implementation of dynamic
gating. We assume E=3, S=6, C=0.5 and top-1 gating in this example. (See Sec. 4.)(b) Illustration of
the Expert Buffering mechanism. We move the expert parameters to CPU memory to reduce burden
on GPU memory. (See Sec. 5.)

capacity, the i-th column of the first empty row is marked 1 and other entries are marked 0. This
process produces a highly sparse mask, which is a tensor with dimension (E, S, S×C) that contains
at most S 1’s. Input tokens are multiplied with the mask to reorder inputs into E sets of inputs, each
with S×C tokens, indicating the assignment of tokens to experts.

Dynamic Capacity for Gating Figure 2a(2) illustrates our new dynamic gating procedure, which
transfers a variable number of tokens to experts and devices. The procedure simplifies token
distribution by transforming a vector of gating decisions. First, the procedure performs an argsort to
generate indices that sort the decision vector by expert ID. Second, it uses the indices to produce a
sorted decision vector. Finally, it counts the number of occurrences of each expert in the decision
vector, thereby determining the number of tokens assigned to each expert.

Because the number of tokens assigned to each expert varies, dispatch requires two rounds of
communication. First, experts are notified about the number of incoming tokens (i.e., size) using an
all-to-all collective. This notification happens as soon as sizes are known, allowing its latency to be
hidden behind other computation. In parallel with this first round of communication, input tokens are
re-ordered with optimized indices and then split based on sizes. Second, the gating function transfers
the actual tokens with another all-to-all.

After all experts process their assigned tokens, tokens are collected with another all-to-all and sent
to their original devices. Tokens are restored to their original order. This re-ordering is typically
implemented using batch matrix multiplication but, as in the dispatch stage, the multiplication could
be replaced with a more efficient indexing operation.

Costs and Benefits Dynamic gating complexity is O(SD + S logS) where S is sequence length
and D is token dimension. The dispatch requires a sort of O(S logS), a bin-count of O(S), and an
indexing operation of O(SD). The complexity of dynamic gating is much smaller than that of static
gating, which requires batch matrix multiplication of O(S2EDC) to reorder tokens such that those
assigned to the same expert are contiguous. Dynamic gating eliminates the dispatch mask and avoids
the multiplication. Instead, it uses an indexing operation that directly places tokens in the desired
order.

Beyond this complexity analysis, dynamic gating incurs only modest additional communication costs.
An additional all-to-all notifies experts about the number of incoming tokens, a single integer that is
communicated at very low cost, which only 20 µs on average in our experiments.
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In exchange for these modest costs, dynamic gating offers several significant benefits. It enhances
model robustness by ensuring tokens are not dropped. When an expert receives more tokens, it adjusts
its capacity accordingly, preventing load from exceeding capacity and thus avoiding token loss.

Additionally, dynamic gating improves computational efficiency by eliminating empty placeholders.
When fewer tokens are sent, the expert is notified of the small load, avoiding unnecessary memory
allocation and communication bandwidth associated with placeholders.

5 Expert Buffering Optimization

Our analysis of expert activation patterns indicates that, although some experts are often inactive, all
experts are activated at least a few times across time and batches. This observation motivates our
buffering mechanism, which judiciously offloads expert parameters to CPU memory, freeing GPU
memory to hold frequently activated experts and enable larger batch sizes.

Figure 2b illustrates the buffering mechanism. During inference, each GPU hosts a number of experts
and receives their corresponding tokens. An active expert is one that receives tokens for the current
batch. If an active expert is not already present in GPU memory, a memory copy transfers expert
parameters from CPU memory into GPU memory. The transfer of parameters proceeds in parallel
with the transfer of tokens, allowing the buffering mechanism to overlap data movement and hide
latency.

Scarce GPU memory is managed with an eviction policy that accounts for expert activation patterns.
First, the policy evicts the experts that are not active in the current batch as these experts are less
likely to be used in the near future (i.e., concept of temporal locality). Second, the policy evicts
experts with the Last In, First Out (LIFO) policy.

The choice of the LIFO policy is rooted in how recent MoEs have been implemented. When a single
GPU hosts multiple experts, the MoE executes experts sequentially by increasing order of their IDs.
Suppose the GPU hosts E = 4 experts and caches parameters for 2 experts. Further suppose that the
batch activates experts 1, 2 and 3. The MoE Transformer first fetches and executes experts 1 and 2. It
then evicts expert 2 and fetches expert 3. By evicting expert 2 instead of expert 1, the cache retains
the expert with the shortest re-use distance.

No prior work exploits unique MoE characteristics to optimize memory use during inference. As a
caching strategy tailored for MoEs, expert buffering is orthogonal to prior memory efficiency schemes
and can be seamlessly integrated with other techniques, such as offloading [24, 3], for even greater
memory savings.

6 Load Balancing Optimization

Our analysis of token distribution indicates severe computational load imbalance across experts.
GPUs that host hot experts can become oversubscribed and vulnerable to out-of-memory errors.
GPUs that host cold experts can idle while waiting for others to complete their computation. These
observations motivate our load balancing technique, which colocates heavily loaded experts with
lightly loaded ones using run-time activation data.

Let Pmn denote expert placement where m∈{1, . . . , E} is expert ID and n∈{1, . . . , D} is device
ID. When Pmn = 1, the m-th expert is placed on the n-th device. Let Amb denote expert activation
where m is expert ID and b∈{1, . . . , B} is batch ID. Each value in Amb is the fraction of tokens from
batch b assigned to expert m.

The placement problem can be reduced to the multi-way, number partitioning problem [25], which
is NP-hard. Moreover, this optimization should be constrained such that each GPU hosts the same
number of experts. This constraint balances memory use across GPUs and simplifies communication
processes. The problem can be formulated as follows.

minmax
m,b

∣∣∣∣∣∑
n

PmnAmb −
1

D

∣∣∣∣∣ subject to
∑
m

Pmn =
E

D
∀n

Greedy Balancing. We implement a greedy algorithm to optimize the assignment of experts to GPUs.
The algorithm sorts experts by their average historical load Ãm and sequentially assigns experts to
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Figure 3: Throughput Comparison (Pear). Dynamic gating outperforms static, Tutel, and FastMoE
consistently. It outperforms Megablock as batchsize scales. Missing bars represent infeasible
combinations of policy and batch size.

GPUs in descending order. Each step in the sequence assigns an expert to the GPU with the smallest
expected load

∑
m PmnÃm. A GPU is excluded from consideration once it reaches designated load.

Anti-Correlation Balancing. Although the Greedy algorithm is effective when expert activations are
independent (LM, MT-Encoder), it is less effective when activations are correlated (MT-Decoder).
With correlated experts, the number of activations that are estimated from historical data Amb is a
poor indicator for load. We address this challenge with Anti-Correlation Balancing. Let Sab denote
the Pearson correlation between experts a and b that is observed in historical data. We revise the
estimate of a GPU’s expected load to

∑
m Pmn(Ãm + 0.5 ∗ Sam). This revision reduces load and

tends to improve expert buffering performance for MT-decoder.

7 Evaluation

There are few direct baselines for efficient MoE serving. We obtain robust baselines by re-
implementing and adapting previously proposed optimizations for inference. We preserve output
quality and deliberately exclude token dropping, which harms quality [26].

Methods. Fairseq is our baseline MoE implementation [8]. Tutel improves latency and memory use
with custom kernels [13]. It replaces the gating function’s sparse matrix multiplication with a hash
table lookup to distribute tokens, and creates a custom cumulative summation kernel to reorder inputs.
FasterMoE organizes experts into fine-grained groups, combining token communication and expert
execution within each group [27–29]. It overlaps the communication for one group with execution for
another group. FasterMoE also places hot experts on each GPU, reducing communication. Megablock
uses a custom kernel to execute experts and accelerate operations on a block-sparse matrix, which
organizes token inputs and outputs [30, 29]. Nevertheless, the custom kernel depends on features in
advanced GPUs, and may compromise backward compatibility. For Megablock, we adapt the experts’
MLPs to omit the bias term aligning with Megablock’s structural constraints.

Clusters. Table 2 details our experimental clusters. We use Apple to characterize MoE workloads
(Table 1) and study the impact of our proposed optimizations. Due to limited machine availability on
the Apple cluster, we perform additional experiments on Pear with NVIDIA’s Ampere. Although
our Ampere GPUs provide advanced features for Megablock’s custom kernels, they offer limited
memory capacity and restrict our experiments to a single node and smaller LM workloads. We report
an average of multiple throughput experiments.

7.1 Impact of Dynamic Gating

Single-Node. Fig. 3–4 indicate dynamic gating significantly increases throughput for varied batch
sizes, tasks, and clusters. LM throughput increases by 6.21× and 3.32× when compared against
Fairseq and Tutel, respectively. Similarly, MT-encoder’s throughput increases by 5.75× and 5.33×
while MT-decoder’s increases by 2.58× and 1.88×. Beyond throughput increases, dynamic gating
permits larger batch sizes by replacing the large dispatch mask with assignment indices and sorted
decision vectors.

Compared to other methods, our dynamic gating technique outperforms FasterMoE by up to 2.49×,
given the same batch size, by avoiding GPU kernel launch overheads. Moreover, our dynamic gating
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Figure 4: Throughput Comparison (Apple). Dynamic gating reduces memory use and communication,
enabling larger batches and faster processing compared to static gating. Expert buffering (EB) trades
latency for reduced memory use while maintaining high throughput. Load balancing (LB) can further
improve latency. Note LB is relevant only for dynamic gating where each expert receives a different
number of tokens. Missing bars indicate infeasible combinations of policy and batch size.

technique scales to larger batch sizes (and thus higher throughputs) better than Megablocks. Although
dynamic gating underperforms for small batch sizes (4–16), it outperforms by increasingly large
margins as batch size scales (32–80). When batch size is 80, dynamic gating outperforms Megablock
by 1.46×, demonstrating better scalability. We argue that performance under large batch sizes is
more important, as small batch sizes are uncommon in real-world inference workloads, particularly
in online serving scenarios. Inference with small batch sizes limits throughput due to the reduced
computational intensity. With the help of online batching [31], larger batch sizes can be easily
achieved and become more frequent than the small batch size case. We also provide a detailed
analysis on the underlying reason for the behavior in App. D.1.

Multi-Node. Fig. 4 shows performance when the system scales to two and four nodes. Dynamic
gating tunes expert capacity to token load, thereby eliminating wasted communication for placeholders.
More efficient communication translates into throughput gains when MoE models are deployed across
multiple nodes. Dynamic gating improves throughput by up to 11.55×, 10.98×, 5.71× for LM,
MT-Encoder, and MT-decoder, respectively, when compared against Fairseq’s static gating.

Memory Use. Fig. 11 assesses the impact on gating policy on memory use. Dynamic gating reduces
memory use by eliminating the mask for token dispatch and by avoiding computation for placeholders.
On the Apple cluster, memory use for activations falls by 79.6%, from 6.29GB to 1.28GB, when
performing LM inference with a batch size of 8. Similarly, memory use falls by 44.2%, from 1.89GB
to 1.05GB, when performing MT inference with a batch size of 8.

When activations use memory more efficiently, the MoE system can support larger batch sizes and
achieve higher performance. On the Apple cluster, dynamic gating permits LM and MT to use batch
sizes of 64 and 96, respectively. These batch sizes are 8× and 2× than those permitted by Fairseq’s
static baseline.

7.2 Impact of Expert Buffering

Cache Miss Rate. Each GPU deploys a cache to hold a subset of the experts assigned to it. When an
expert is not found in GPU memory, the system incurs additional latencies to transfer the desired
expert from CPU memory to GPU memory. For Apple’s MT tasks, we vary cache size from 16
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experts—which accommodates all experts, fully occupies GPU memory, and offers zero reduction
for static memory use—to 1 expert, which offers a 32% reduction in static memory use.

For each cache size, we report the global worst-case cache miss rate. The miss rate is global because
it counts misses based on accesses across all GPUs and their memories. The miss rate is worst-case
because it reports the highest miss rate across all GPUs and batches. This metric conservatively
estimates the least efficient scenario in cache utilization, offering valuable insights for predicting
throughput reduction.

Fig. 12(a) indicates cache miss rates for our LIFO policy approximates those from Belady’s MIN,
the theoretically optimal policy. The figure also indicates that cache miss rates improve most when
cache capacity is greater than 5 experts per GPU or 40 experts across 8 GPUs. This observation
corresponds with our prior finding that, on average, over 90 experts are not assigned any tokens by
the MT-decoder.

Throughput. Fig. 4 shows the impact of expert buffering for MT decoding. The cache accommodates
10 experts per GPU and 80 experts across 8 GPUs. This cache size is the point at which Fig. 12(a)
indicates diminishing benefits for cache misses.

For single-node inference, buffering negates some of the throughput gains from dynamic gating
as cache misses impact performance. Nonetheless, dynamic gating and expert buffering together
are still competitive with our baselines. For multi-node inference, dynamic gating and expert
buffering together report throughput gains of 2.21× and 4.30× over baselines for two and four nodes,
respectively.

Memory Use. Latency rises as memory use falls. Fig. 11 indicates buffering experts on CPU memory
reduces GPU static memory use, for expert parameters, by 2.25GB. But Fig. 13 reports that as cache
sizes shrink and memory use falls, latency rises as more experts are transferred between CPU and
GPU memories. As expert transfers consume the limited bandwidth between the CPU and GPU, data
rates peak at 12 GB/s and increase latency. New technologies that enhance CPU-GPU bandwidth
(e.g., NVIDIA’s Grace Hopper) can mitigate these latency issues when GPU memory capacity is
constrained and caching only a subset of experts is necessary.

7.3 Impact of Load Balancing

Load balancing (LB) can further improve latency. This optimization is particularly beneficial when
applied to multi-node settings or combined with expert buffering because balance improves cache
performance. Note LB is relevant only for dynamic gating where each expert receives a different
number of tokens.

We analyze load with and without our balancing optimizations using activation data from Section 3.1.
We separate this data into two halves: the first half of the activation data is used to generate a device
assignment for each expert, and the second half to estimate load under generated assignments. We
record Max load, which is the maximum share of the tokens received by a GPU across all batches.
Max load is a worst-case scenario and assesses risks from out-of-memory errors. We also record
Avg-Max load, which is the maximum share of the tokens received by a GPU averaged over all
batches. Avg-Max estimates typical load and assesses performance risks from oversubscribed GPUs.

Fig. 14 indicates that Greedy balancing successfully equalizes expert load for LM, reducing loads per
GPU from upwards of 0.6 to below 0.4. Fig. 4 shows how balanced load translates into performance.
First, Greedy balancing increases throughput by up to 1.11× and 1.19× when compared against pure
dynamic gating. Second, it permits larger batch sizes of 64 and 128 when LM is deployed on multiple
nodes. Greedy balancing is similarly effective for MT-encoder.

Anti-Correlation balancing is robust to MT-decoder’s correlated expert activations. It successfully
reduces Max and Avg-Max load in most cases, but the balanced load produces only modest throughput
gains of 1.02× when compared against pure dynamic gating.

8 Conclusion

We analyze the behavior of standard MoE Transformer workloads, pinpointing their inefficiencies
in inference latency and memory usage. We introduce a Dynamic Gating policy that significantly
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enhances efficiency in terms of latency and memory demands during inference. Building on this, we
propose an Expert Buffering mechanism, demonstrating its effectiveness in substantially reducing
memory requirements for MoE inference deployment with a nominal increase in latency. Additionally,
we implement load balancing, leveraging historical activation data and heuristic methods to bolster
deployment robustness.

Recent years witness the boom of MoE LLM models in commercial applications, including API
services and personal assistants [32–35], and as a result, much more research is needed for efficient
inference of MoE models. Techniques such as heterogeneous experts and token-dropping [12,
34] could offer trade-offs between performance and quality, which in turn could be potentially
supported by heterogeneous allocations of GPU resources. Heterogeneous experts would motivate
even intelligent and dynamic gating functions that assign tokens based on task difficulty. More efficient
interconnect (e.g., optical) could benefit expert movement as well as all-to-all communication, which
currently remain a challenge.
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A Related Work

While the MoE Transformer substantially reduces the training cost and FLOPS for large models,
the outrageous size of MoE Transformers and the complex expert parallelism [2] poses obstacles
for its deployment, including the high GPU memory requirement and the excessive communication
overhead of expert assignment. Various approaches have been invented to relieve these obstacles.
Switch Transformer [6] and ELSLM [8] use knowledge distillation to distill a large MoE Transformer
into a dense model. While distillation reduces the number of parameters, only a small portion (about
30%) of the accuracy gain can be retained. The MoS strategy proposed in DeepSpeed-MoE [12]
distills the knowledge to a smaller MoE Transformer with less layers and shared experts. SE-MoE
[3] uses pruning to reduce the number of experts in the model.

WideNet [36] and MPoE [37] reduce the number of parameters by enforcing parameter sharing.
Beyond reducing the parameters, other methods directly reduce computation and communication.
The BASE Layer and Switch Transformer also reduce the number of experts each token is assigned
to reduce the communication volume and computation. V-MoE [10] further reduces the number by
dropping out a large portion of tokens. Hash Layer [5] replaces the gating layer with a precomputed
hash function, which reduces the computation cost, but doesn’t alleviate the communication overhead.
As the MoE Transformer is a type of Transformer, techniques and optimized architectures that enhance
Transformer inference speed may apply. Relevant examples include Reformer[38], Longformer[39],
and Terraformer[40]. However, there is scant discussion of their application to MoE Transformers,
and interested readers may find a detailed review in [41] and benchmarks in [42].

In addition to direct modification of model architecture and parameters, deployment strategies,
such as offloading strategies and customized kernel functions are also being explored to reduce
the GPU resource usage and latency for inference. Offloading and swapping strategies such as
[43] swaps unused tensors form the GPU memory to the main memory to reduce the resource
requirement. However, existing strategies can only be applied on dense models. Applying these
strategies efficiently on conditional neural networks such as MoE is non-trivial, since the data flow
graph cannot be constructed in advance due to the conditional computation. FastMoE [27, 28] dissects
communication primitives and expert executions on group-basis to overlap these kernels, but it has
not been tested on large number of experts. Tutel [13] and DeepSpeed-MoE [12] improve MoE
model performance on datacenter-scale systems by combining system and architecture methods with
tailored kernels for both Transformer and MoE layers, and specialized communication primitives. The
approach combines expert parallelism, model parallelism, and tensor parallelism to significantly boost
throughput and reduce latency. However, DeepSpeed-MoE is not designed to conserve GPU resources
and therefore may be impractical for many academic users. Megablock [30] utilizes block-sparse
matrix to organize token inputs and combines consecutive expert MLPs into a single kernel, but it
requires advanced GPU architecture and does not support bias term in expert MLPs. SE-MoE [3]
utilizes Ring Memory offloading to reduce GPU usage, achieving better throughput than DeepSpeed-
MoE in low-resource scenarios. However, this approach does not leverage expert activation pattern
from MoE Transformers. MAD-Max is a performance modeling framework that enables better
computation and communication overlapping to improve training and inference throughput, but the
work only focuses on traditional MoE-based recommendation systems [44].

Recent years witness the boom of MoE LLM models in commercial applications, including API
services and personal assistants [32–35]. Among these models, two stand out for their notable
advancements: the Mixtral series [32] and the DeepSeek-MoE series [34], both of which merit brief
discussion.

The Mixtral series reduces the number of experts to eight, while replacing all dense transformer
decoder layers with MoE layers. but replaced all dense transformer decoder layer with MoE layer.
Such a design allows the model to be deployed on standard server workstations, which are typically
equipped with eight GPUs. The small scale of the model ensures the model can be deployed without
expert parallelism, placing it outside the scope of this paper.

On the other hand, the DeepSeek-MoE further extends the shared expert proposed in [12], and adopts
fine-grained expert separation to mitigate the feature collapse of MoE model [45]. Our optimizations
are relevant for DeepSeek-MoE because, even when the MoE layer activates multiple experts (e.g.,
six in 16B model), many of MoE’s inefficiencies remain. Expert sparsity remains a problem because
the total number of experts is large, especially due to DeepSeek-MoE’s approach to fine-grained
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Task Type Size E M C

LM-Small Dense 125M – – –
MoE 15B 512 2 0.05

LM Dense 355M – – –
MoE 52B 512 2 0.05

MT Dense 3.3B – – –
MoE 54.5B 128 4 1

Task Type Layers TD HD Vocab

LM-Small Dense/MoE 12 768 3072 51200

LM Dense/MoE 24 1024 4096 51200

MT Dense/MoE 48 2048 8192 256206

Table 1: Model detail for Language Modeling-Small (LM-Small), Language Modeling (LM) and
Machine Translation (MT). Hyperparameters include number of experts (E), MoE layer interval (M),
and expert capacity fraction (C). Model parameters include token dimension (TD), hidden dimension
(HD), and vocabulary size.

Cluster Apple Pear

CPU 2×Intel Xeon E5-2698 v4 2×Intel Xeon Gold 5317
with 700GB memory with 64GB memory

CPU-GPU 16GB/s via PCIe 3.0 32GB/s via PCIe 4.0

GPU
8×NVIDIA Tesla V100, 4×NVIDIA RTX A5000,
with 32GB memory with 24GB memory
connected by NVLink

# Nodes Single Node and Multi Node Single Node only

Table 2: Experimental Clusters.

expert separation. In this setting, our optimizations for expert buffering and load balancing will
reduce memory use and latency for multi-device inference. Using shared experts is tangential and
our optimizations could be extended to support them. For example, expert buffering would lock any
shared experts into the cache and prevent their eviction from GPU memory to CPU memory.

B Experimental Details

In this section, we provide additional details to the experiments we conducted in this paper. We use
the Python native time module to record latency and, separately, PyTorch Profiler to collect detailed
traces.

Table 1 details model parameters. The table specifies the number of experts (E), how often a FFN
is replaced by an MoE (M ), and each expert’s capacity fraction (C). We use capacity settings
recommended by [8, 9]. the table also details the model architecture and relevant parameters for
language tasks.

C Workload Characterization Details and Additional Discussion

C.1 Expert Activation

Fig. 5 and Fig. 6 illustrates the expert activation pattern measured over different workloads. In Fig. 5,
each row representing a batch and each column representing an expert. Colors indicate expert load
as a percentage of all tokens in the batch. Hot experts consistently receive a large share of tokens is
marked by intense color lines, while other experts receive a small share is marked by lighter color
lines.
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Figure 5: Expert activation patters on selected (a) LM and (b) MT layers. Activation reported as a
percentage of all tokens in batch. Activations exhibit significant, consistent imbalance on all tasks.

Figure 6: Average number of inactive experts for (a) LM, (b) MT encoder, (c) MT decoder. LM and
MT encoder activate most, if not all, experts. MT decoder exhibits extremely sparse activations.

In Fig. 5(b), we can see that certain experts in both the encoder and decoder receive a large share of
all tokens, nearly half of those in the full batch. Many experts receive few tokens. Encoder activation
is mostly dense as most experts are almost always activated whereas decoder activation is extremely
sparse.

Encoder activation patterns are similar across tasks. The encoder captures source language properties
(English), which are the same across the three translation tasks. Surprisingly, decoder activation
patterns are also similar across tasks despite differences in decoder architectures and target languages
(French, Japanese, Austrian).

C.2 Latency and Memory Breakdown

Fig. 7 shows the latency comparison between MoE and FLOP-equivalent dense model. For LM, the
dense model requires 74.2ms whereas the MoE requires more than 1.09s. For MT, the dense model
encodes and decodes in 101ms and 32ms, respectively, but the MoE requires 2.26s and 90ms.

Effects of Model Scaling. We optimize MoE inference based on our characterization of expert
computation. Expert activation and locality depends primarily on the number of experts, a value
that ranges from 128 to 512 in our studies. If the number of experts remains unchanged, the sparse
activations that underpin our optimizations will persist. This is the most likely scenario as MoE
models grow by increasing the size of each expert (i.e., feed forward network) or the number of
transformer layers rather than the number of experts.

Alternative scenarios seem less likely. If the number of experts were to shrink, activations may
become less sparse, experts may exhibit greater locality, and our optimizations may be less helpful.
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Figure 7: Inference latency for MoE and Dense models on single node. MoE is slower by 15× for
LM, 22× for MT encoding, and 3× for MT decoding.

Figure 8: Inference memory use for MoE and dense models. MoEs use more memory for expanded
model capacity (multiple experts) and model activations. Results shown using batch sizes of 8 and 48
for LM and MT, respectively.

Figure 9: Inference latency for MoE models. Beyond communication, the gating function and expert
execution are significant contributors to latency.
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Figure 10: Memory trace of baseline MoE implementation on Pear cluster. Gating and reordering
briefly allocates a large amount of memory.

However, reducing the number of experts would forgo the accuracy and efficiency benefits of scaling
models with MoEs [8]. If the number of experts were to increase, activations may become more
sparse and experts may exhibit less locality. This trend would make our optimizations more helpful
but seems unlikely as more experts would put further pressure on already scarce GPU memory
capacity.

C.3 Calculation on Waste Factor

Consider a sequence of S tokens for Language Modeling. If the MoE specifies E = 512 experts
and C = 0.05 capacity fraction, each expert is configured to process ECS = 512×0.05×S = 25.6S
tokens. However, if the MoE implements top-2 gating and each token is processed by two experts,
computation is required for only 2S tokens. Thus, experts are configured to compute on many more
tokens than they actually receive. This waste factor for LM is 25.6S/2S = 12.8×.

Similarly, for Machine Translation, each expert is configured to process ECS = 128×1×S = 128S
tokens, but the model requires computation for only 2S tokens due to top-2 gating. The waste factor
is 128S/2S = 64×. Such waste indicates MoE models typically perform a large amount of excess
computation and communication as well as consume a large amount of extra memory.

D Additional Experimental Results and Analysis

In this section, we present experimental results that are informative yet could not be included in the
main text due to space constraints.

D.1 Analysis on Latency

In this section, we provide a detailed analysis on the latency measured in Sec. 7.1. Specifically, we
compare our method with FasterMoE as well as Megablock on the methodology.

FasterMoE implements separate communication and computation kernels, which are executed concur-
rently to overlap and hide their latencies. This feature of FasterMoE is important for training, which
requires significant amounts of time in both kernels. But this feature also incurs significant kernel
launch overheads, which are hard to justify for inference, which spends less time in communication.

The essential difference between dynamic gating and Megablocks is the difference between several
dense matrix multiplications and a single sparse matrix multiplication. Dynamic gating assigns a
varied number of tokens to experts and then performs several multiplications on dense matrices. This
technique avoids computation on zeros and padding. And computation for dense matrices is more
efficient than that for sparse, leading to higher FLOP rates and inference throughput.
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In contrast, Megablocks concatenates experts into a large matrix and then performs a single multiplica-
tion on a blocked compressed sparse row (BCSR) matrix. The BCSR format also avoids computation
on zeros and padding, but incurs overheads from matrix metadata (column indices and row offsets)
and indexing multiple blocked sub-matrices. The inefficiency of sparse matrix computation grows
with matrix size, which in turn grows with batch size. Although dynamic gating requires several
dense matrix multiplications, the cost of launching these kernels depends only on the number of
experts and is constant as batch size increases.

D.2 Memory Usage

Fig. 11 illustrates the dynamic memory usage of various methods on the Pearcluster and the Ap-
plecluster. Memory use for activations is indicated by brighter colors in the figure. Note that GPU
memory usage is not solely attributable to expert parameters and activations. Additional factors, such
as memory fragmentation and cuBLAS workspaces, may also contribute to memory pressure and
out-of-memory errors. But because these elements are beyond the direct control of gating policy, our
evaluation focuses primarily on the GPU memory allocated to the MoE model and model activations.

D.3 Additional Figures and Results for Effect of Expert Buffering

Fig. 12 illustrates the cache miss rates under different policy. Figure 13 illustrates how the cache size
affects the latency.

D.4 Additional Figures and Results for Effect of Load Balancing

Fig. 14 illustrates the effect of load balancing on the maximum load. Results are normalized by total
batch size, which means numbers represent the share of the total number of tokens each GPU will
handle in the batch. We record Max load, which is the maximum share of the tokens received by a
GPU across all batches. Max load is a worst-case scenario and assesses risks from out-of-memory
errors. We also record Avg-Max load, which is the maximum share of the tokens received by a GPU
averaged over all batches. Avg-Max estimates typical load and assesses performance risks from
oversubscribed GPUs. Results show our policy successfully reduce risks from out-of-memory errors.

E Other Potential Optimizations

We explored several other techniques beyond those already detailed in this paper. Although these
explorations did not yield significant results, they may offer researchers insight or cautionary conclu-
sions.

Parallel Expert Execution. Figure 9 indicates expert execution is a significant contributor to latency.
Considering that each expert’s MLP processes only a small fraction of tokens, we attempted to
parallelize their execution by creating multiple CUDA streams (e.g., 2 or 4) on each GPU and
executing a distinct subset of experts with each stream. Separate CUDA streams parallelize the
execution of expert kernels, potentially increasing GPU utilization and reducing latency. Although
our experiments did indicate some overlap in expert execution, we found only modest performance
benefits accompanied by an increase in memory use due to the additional CUDA streams. Although
expert MLPs are relatively small, they are substantial enough to require explicit allocation of GPU
resources.

Expert Kernel Fusion. In an effort to enhance data locality and minimize kernel launch overheads,
we attempted to integrate separate expert MLPs into a unified kernel. We consolidated parameters of
the first layer from all expert MLPs into a single tensor and consolidated those in the second layer into
another tensor. We then implement a batch matrix multiplication kernel that concurrently executes
the first and second layers across all experts. Our experiments did not indicate any performance
benefits.
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Figure 11: Memory Use Comparison (Apple, Pear). Dynamic gating reduces memory use, enabling
larger batches. Expert buffering further reduces memory use for model parameters. Light shade is
dynamic memory for activations. Dark shade is static memory for model parameters. Missing bars
indicate infeasible cases.
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Figure 12: Cache Miss Rates. For a trace of MT-decoder’s expert activations, (a) misses with and
without load balancing and (b) misses compared against those from Belady’s MIN. Miss rates are
further reduced by load balancing.

Figure 13: Cache Sizes vs Latency. For MT-decoder, decreasing the cache size decreases memory
usage but increases latency. Cache size (reported in number of experts) per GPU marked on plot.

Figure 14: Load Balancing. Greedy and Anti-correlation algorithms balance load and reduce
maximum load across GPUs, reducing risks from out-of-memory errors or poor performance from
oversubscribed devices.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide solid experimental results on multiple computing clusters to
support the contribution we stated and the scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our method in certain less likely scenarios,
including when applied to larger model scales, small batch sizes, and varied tasks, as
detailed in the Methods and Evaluation sections

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose the publicly available dataset, model checkpoints and settings
needed to reproduce our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The dataset and model checkpoint used in our paper is open-sourced and can
be found online. Our code will also be open-sourced and is currently waiting for approval.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• We recognize that the procedures for this may vary significantly between institutions
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guidelines for their institution.
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