
Learning-Augmented Dynamic Submodular
Maximization

Arpit Agarwal
Indian Institute of Technology Bombay

aarpit@iitb.ac.in

Eric Balkanski
Columbia University

eb3224@columbia.edu

Abstract

In dynamic submodular maximization, the goal is to maintain a high-value solu-
tion over a sequence of element insertions and deletions with a fast update time.
Motivated by large-scale applications and the fact that dynamic data often exhibits
patterns, we ask the following question: can predictions be used to accelerate the
update time of dynamic submodular maximization algorithms?
We consider the model for dynamic algorithms with predictions where predictions
regarding the insertion and deletion times of elements can be used for preprocessing.
Our main result is an algorithm with an O(poly(log η, logw, log k)) amortized
update time over the sequence of updates that achieves a 1/2− ϵ approximation
for dynamic monotone submodular maximization under a cardinality constraint
k, where the prediction error η is the number of elements that are not inserted
and deleted within w time steps of their predicted insertion and deletion times.
This amortized update time is independent of the length of the stream and instead
depends on the prediction error.

1 Introduction

Submodular functions are a well-studied family of functions that satisfy a natural diminishing returns
property. Since many fundamental objectives are submodular, including coverage, diversity, and
entropy, submodular optimization algorithms play an important role in machine learning [18, 8],
network analysis [17], and mechanism design [31]. For the canonical problem of maximizing
a monotone submodular function under a cardinality constraint, the celebrated greedy algorithm
achieves a 1−1/e approximation guarantee [27], which is the best approximation guarantee achievable
by any polynomial-time algorithm [26]. Motivated by the highly dynamic nature of applications such
as influence maximization in social networks and recommender systems on streaming platforms, a
recent line of work has studied the problem of dynamic submodular maximization [20, 25, 28, 10, 11,
6, 7]. In the dynamic setting, the input consists of a stream of elements that are inserted or deleted
from the set of active elements, and the goal is to maintain, throughout the stream, a subset of the
active elements that maximizes a submodular function.

The standard worst-case approach to analyzing the update time of a dynamic algorithm is to measure
its update time over the worst sequence of updates possible. However, in many application domains,
dynamic data is not arbitrary and often exhibits patterns that can be learned from historical data.
Very recent work has studied dynamic problems in settings where the algorithm is given as input
predictions regarding the stream of updates [14, 22, 9]. This recent work is part of a broader research
area called learning-augmented algorithms (or algorithms with predictions). In learning-augmented
algorithms, the goal is to design algorithms that achieve an improved performance guarantee when the
error of the prediction is small and a bounded guarantee even when the prediction error is arbitrarily
large. A lot of the effort in this area has been focused on using predictions to improve the competitive
ratio of online algorithms (see, e.g., [23, 30, 32, 24, 12, 3, 4, 19, 15, 5]), and more generally to
improve the solution quality of algorithms.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

For dynamic submodular maximization with predictions, Liu and Srinivas [22] considered a
predicted-deletion model and achieved, under some mild assumption, a 0.3178 approximation
and an Õ(poly(k, log n))1 update time for dynamic monotone submodular maximization under a
matroid constraint of rank k and over a stream of length n. This approximation is an improvement
over the best-known 1/4 approximation for dynamic monotone submodular maximization (without
predictions) under a matroid constraint with an update time that is sublinear in n [7, 11]. Since the
update time of dynamic algorithms is often the main bottleneck in large-scale problems, another
promising direction is to leverage predictions to improve the update time of dynamic algorithms.

Can predictions help to accelerate the update time of dynamic submodular maximization algorithms?

We note that the three very recent papers on dynamic algorithms with predictions have achieved
improved update times for several dynamic graph problems [14, 22, 9]. However, to the best of our
knowledge, there is no previous result that achieves an improved update time for dynamic submodular
maximization by using predictions.

Our contributions. In dynamic submodular maximization, the input is a submodular function
f : 2V → R≥0 and a sequence of n element insertions and deletions. The active elements Vt ⊆ V at
time t are the elements that have been inserted and have not yet been deleted during the first t updates.
The goal is to maintain, at every time step t, a solution St ⊆ Vt that is approximately optimal with
respect to Vt while minimizing the number of queries to f at each time step, which is referred to as
the update time. As in [14, 9], we consider a prediction model where, at time t = 0, the algorithm is
given a prediction regarding the sequence of updates, which can be used for preprocessing. More
precisely, at time t = 0, the algorithm is given predictions (t̂+a , t̂

−
a) about the insertion and deletion

time of each element a. A dynamic algorithm with predictions consists of two phases. During the
precomputation phase at t = 0, the algorithm uses the predictions to perform queries before the start
of the stream. During the streaming phase at time steps t > 0, the algorithm performs queries, and
uses the precomputations, to maintain a good solution with respect to the true stream.

In this model, there is a trivial algorithm that achieves a constant update time when the predictions
are exactly correct and an O(u) update time when the predictions are arbitrarily wrong. Here, u
is the update time of an arbitrary algorithm A for the problem without predictions. This algorithm
precomputes, for each future time step t, a solution for the elements that are predicted to be active at
time t and then, during the streaming phase, returns the precomputed solutions while the prediction is
correct and switches to running algorithm A at the first error in the prediction. Thus, the interesting
question is whether it is possible to obtain an improved update time not only when the predictions
are exactly correct, but more generally when the error in the predictions is small. An important
component of our model is the measure for the prediction error. Given a time window tolerance w,
an element a is considered to be correctly predicted if the predicted insertion and deletion times of a
are both within w times steps of its true insertion and deletion times. The prediction error η is then
the number of elements that are not correctly predicted. Thus, η = 0 if the predictions are exactly
correct and η = Θ(n) if the predictions are completely wrong.

For dynamic monotone submodular maximization (without predictions) under a cardinality con-
straint k, Lattanzi et al. [20] and Monemizadeh [25] concurrently obtained dynamic algorithms with
O(poly(log n, log k)) and O(polylog(n) · k2) amortized update time, respectively, that achieve a
1/2− ϵ approximation. More recently, Banihashem et al. [7] achieved a 1/2− ϵ approximation with
a O(k · polylog(k)) amortized update time. Our main result is the following.
Theorem. For monotone submodular maximization under a cardinality constraint k, there is a
dynamic algorithm with predictions that, for any tolerance w and constant ϵ > 0, achieves an
amortized expected query complexity per update of O(poly(log η, logw, log k)), an approximation
of 1/2− ϵ in expectation, and a query complexity of Õ(n) during the precomputation phase.

We note that, when the prediction error η is arbitrarily large, our algorithm matches the
O(poly(log n, log k)) amortized expected query complexity per update in [20]. It also achieves
an approximation that matches the optimal approximation for dynamic algorithms (without predic-
tions) with update time that is sublinear in n. An intriguing open question is whether an improvement
in update time can be obtained in the predicted-deletion model of [22] with no preprocessing and
instead a predicted deletion time for each element a is given at the time when a is inserted.

1In this paper, we use the notation Õ(g(n)) as shorthand for O(g(n) logk g(n)).

2

Related work. For monotone submodular maximization under a cardinality constraint, dynamic
algorithms with O(poly(log n, log k)) and O(polylog(n) · k2)) amortized update time that achieve a
1/2 approximation were concurrently obtained in [20, 25]. Recently, Banihashem et al. [7] gave a
1/2 approximation algorithm with a O(k · polylog(k)) amortized update time. Chen and Peng [10]
showed that any dynamic algorithm with an approximation better than 1/2 must have poly(n)
amortized query complexity per update. For matroid constraints, Chen and Peng [10] obtained an
insertion-only algorithm. As mentioned in [29], the streaming algorithm in [13] can be adapted to
also give an insertion-only algorithm. Two 1/4-approximation dynamic algorithms with Õ(k) and
Õ(polylog(n) · k2) amortized update time were concurrently obtained in [7] and [11].

Algorithms with predictions have been studied in a wide range of areas, including online algorithms
[23, 30], mechanism design [1, 33], and differential privacy [2]. Improved update times for several
dynamic graph problems were very recently obtained by leveraging predictions [14, 22, 9]. In
particular, Liu and Srinivas [22] obtained, under some mild assumption on the prediction error,
a 0.3178 approximation and a Õ(poly(k, log n)) update time for dynamic monotone submodular
maximization under a matroid constraint of rank k in the more challenging predicted-deletion model.
Thus, by using predictions, this result improves the 1/4 approximation achieved, without predictions,
in [7] and [11] (but does not improve the 1/2 approximation for cardinality constraints). The results
in [22] use a framework that takes as input an insertion-only dynamic algorithm. In contrast, we
develop a framework that uses a fully dynamic algorithm and a deletion-robust algorithm.

2 Preliminaries

A function f : 2V → R defined over a ground set V is submodular if for all S ⊆ T ⊆ V and
a ∈ V \ T , we have that fS(a) ≥ fT (a), where fS(a) = f(S ∪ {a}) − f(S) is the marginal
contribution of a to S. It is monotone if f(S) ≤ f(T) for all S ⊆ T ⊆ V . We consider the canonical
problem of maximizing a monotone submodular function f under a cardinality constraint k.

In dynamic submodular maximization, there is a stream {(at, ot)}nt=1 of n element insertions and
deletions where ot ∈ {insert, deletion} and at is an element in V . The active elements Vt are the
elements that have been inserted and have not been deleted by time t. We assume that (at, insertion)
and (at, deletion) can occur in the stream only if at ̸∈ Vt and at ∈ Vt, respectively, and that each
element is inserted at most once.2 The goal is to maintain a solution St ⊆ Vt that approximates the
optimal solution over Vt, which we denote by Ot. Since our algorithmic framework takes as input a
dynamic algorithm, we formally define dynamic algorithms in terms of black-box subroutines that
are used in our algorithms.
Definition 1. A dynamic algorithm DYNAMIC(f, k) consists of the following four subroutines to
process a stream {(at, ot)}nt=1. DYNAMICINIT(f, k) initializes a data structure A at t = 0. If
ot = insertion or ot = deletion, DYNAMICINS(A, at) or DYNAMICDEL(A, at) insert in A or
delete from A element at at time t. At time t, DYNAMICSOL(A) returns St ⊆ V (A) s.t. |S| ≤ k,
where V (A) = Vt is the set of elements that have been inserted in and not been deleted from A.

A dynamic algorithm achieves an α-approximation in expectation if, for all time steps t, E[f(St)] ≥
α · maxS⊆Vt:|S|≤k f(S) and has a u(n, k) amortized expected query complexity per update if its
expected total number of queries is n · u(n, k).
In dynamic submodular maximization with predictions, the algorithm is given at time t = 0
predictions {(t̂+a , t̂−a)}a about the insertion and deletion time of elements a. The prediction error η is
the number of elements that are incorrectly predicted, where an element a is correctly predicted if it
is inserted and deleted within a time window, of size parameterized by a time window tolerance w,
that is centered at the time at which a is predicted to be inserted and deleted.
Definition 2. Given a tolerance w ∈ Z+, predictions {(t̂+a , t̂−a)}a∈V , and true insertion and deletions
times {(t+a , t−a)}a∈V , the prediction error is η = |{a ∈ V : |t̂+a − t+a | > w or |t̂−a − t−a | > w}|.

We note that η = w = 0 corresponds to the predictions being exactly correct and η = O(n) and
w = O(n) corresponds to thems being arbitrarily wrong. We also emphasize that our model does not
require knowing the entire ground set V at t = 0. Elements that are not known at t = 0 are assumed
to have predicted arrival and departure times equal to infinity, and contribute to the prediction error η.

2If an element a is re-inserted, a copy a′ of a can be created.

3

Deletion-robust submodular maximization. Our framework also takes as input a deletion-robust
algorithm, which we formally define in terms of black-box subroutines. A deletion-robust algorithm
finds a solution S ⊆ V that is robust to the deletion of at most d elements.

Definition 3. Given a function f : 2V → R, a cardinality constraint k, and a maximum number of
deletions parameter d, a deletion-robust algorithm ROBUST(f, V, k, d) consists of a first subroutine
ROBUST1(f, V, k, d) that returns a robust set R ⊆ V and a second subroutine ROBUST2(f,R,D, k)
that returns a set S ⊆ R \D such that |S| ≤ k.

A deletion-robust algorithm achieves an α approximation if, for any f , V , k, and d, the subroutine
ROBUST1(f, V, k, d) returns R such that, for any D ⊆ V such that |D| ≤ d, ROBUST2(f,R,D, k)
returns S such that E[f(S)] ≥ α · maxT⊆V \D:|T |≤k f(T). Kazemi et al. [16] show that there is
a deletion-robust algorithm for monotone submodular maximization under a cardinality constraint
such that ROBUST1 returns a set R of size |R| = O(ϵ−2d log k + k). It achieves a 1/2 − ϵ
approximation in expectation, ROBUST1 has O(|V |·(k+ϵ−1 log k)) query complexity, and ROBUST2
has O

(
(ϵ−2d log k + k) · ϵ−1 log k

)
query complexity.

The algorithmic framework. We present an algorithmic framework that decomposes dynamic
algorithms with predictions into two subroutines, PRECOMPUTATIONS and UPDATESOL. The
remainder of the paper then consists of designing and analyzing these subroutines. We first introduce
some terminology. An element a is said to be correctly predicted if |t̂+a − t+a | ≤ w and |t̂−a − t−a | ≤ w.
The predicted elements V̂t consist of all elements that could potentially be active at time t if correctly
predicted, i.e., the elements a such that t̂+a ≤ t + w and t̂−a ≥ t − w. During the precomputation
phase, the first subroutine, PRECOMPUTATIONS, takes as input the predicted elements V̂t and outputs,
for each time step t, a data structure Pt that will then be used at time t of the streaming phase to
compute a solution efficiently. During the streaming phase, the active elements Vt are partitioned into
the predicted active elements V 1

t = Vt ∩ V̂t and the unpredicted active elements V 2
t = Vt \ V̂t. The

second subroutine, UPDATESOL, is given V 1
t and V 2

t as input and computes a solution S ⊆ V 1
t ∪ V 2

t
at each time step. UPDATESOL is also given as input precomputations Pt and the current prediction
error ηt. It also stores useful information for future time steps in a data structure A.

Algorithm 1 The Algorithmic Framework

Input: function f : 2V → R, constraint k, predictions {(t̂+a , t̂−a)}a∈V , tolerance w

1: V̂t ← {a ∈ V : t̂+a ≤ t+ w and t̂−a ≥ t− w} for t ∈ [n]

2: {Pt}nt=1 ← PRECOMPUTATIONS(f, {V̂i}nt=1, k)
3: V0, A← ∅
4: for t = 1 to n do
5: Update active elements Vt according to operation at time t
6: V 1

t ← Vt ∩ V̂t, V 2
t ← Vt \ V̂t

7: ηt ← current prediction error
8: A,S ← UPDATESOL(f, k,A, t, Pt, V

1
t , V

2
t , V̂t, ηt)

9: return S

3 The warm-up algorithm

In this section, we present subroutines that achieve an Õ(η + w + k) amortized update time and a
1/4− ϵ approximation in expectation. These warm-up subroutines assume that the error η is known.
They take as input a dynamic algorithm (without predictions) DYNAMIC and a deletion-robust
algorithm ROBUST algorithm. The proofs are all deferred to the appendix.

The precomputations subroutine A main observation is that the problem of finding a solution
S1 ⊆ V 1

t among the predicted active elements corresponds to a deletion-robust problem over
V̂t where the deleted elements D are the predicted elements V̂t \ Vt that are not active at time t.
WARMUP-PRECOMPUTATIONS thus calls, for each time t, the first stage ROBUST1 of ROBUST,

WARMUP-PRECOMPUTATIONS(f, {V̂i}nt=1, k) = {ROBUST1(f, V̂t, k, d = η + 2w)}nt=1.

4

The algorithm sets the maximum number of deletions parameter d for ROBUST1 to η + 2w because
the number of predicted elements V̂t \ Vt that are not active at time t is at most η + 2w (Lemma 8).

The updatesol subroutine WARMUP-UPDATESOL finds a solution S1 ⊆ V 1
t by calling ROBUST2

over the precomputed Pt and deleted elements D = V̂t \ Vt. To find a solution S2 ⊆ V 2
t among the

unpredicted active elements, we use DYNAMIC over the stream of element insertions and deletions
that result in unpredicted active elements V 2

1 , . . . , V
2
n , which is the stream that inserts elements

V 2
t \ V 2

t−1 and deletes elements V 2
t−1 \ V 2

t at time t. The solution S2 is then the solution produced
by DYNAMICSOL over this stream. The solution S returned by UPDATESOL is the best solution
between S1 and S2.

Algorithm 2 WARMUP-UPDATESOL

Input: function f , constraint k, data structure A, time t, precomputations Pt, predicted active
elements V 1

t , unpredicted active elements V 2
t , predicted elements V̂t

1: S1 ← ROBUST2(f, Pt, V̂t \ V 1
t , k)

2: if t = 1 then A← DYNAMICINIT(f, k)
3: for a ∈ V 2

t \ V (A) do DYNAMICINS(A, a)
4: for a ∈ V (A) \ V 2

t do DYNAMICDEL(A, a)
5: S2 ← DYNAMICSOL(A)
6: return A, argmax{f(S1), f(S2)}

The analysis of the warm-up algorithm We first analyze the approximation. We let α1 and α2

denote the approximations achieved by ROBUST and DYNAMIC. The first lemma shows that solution
S1 is an α1 approximation to the optimal solution over the predicted active elements V 1

t and that
solution S2 is an α2 approximation to the optimal solution over the unpredicted active elements V 2

t .

Lemma 1. At every time step t, E[f(S1)] ≥ α1 · OPT(V 1
t) and E[f(S2)] ≥ α2 · OPT(V 2

t).

The main lemma for the amortized query complexity bounds the number of calls to DYNAMICINS.

Lemma 2. WARMUP-UPDATESOL makes at most 2η calls to DYNAMICINS on A over the stream.

The main result for the warm-up algorithm is the following.

Theorem 1. For monotone submodular maximization under a cardinality constraint k, Algorithm 1
with the WARMUP-PRECOMPUTATIONS and WARMUP-UPDATESOL subroutines achieves, for any
tolerance w and constant ϵ > 0, an amortized expected query complexity per update during the
streaming phase of Õ(η+w+k), an approximation of 1/4−ϵ in expectation, and a query complexity
of Õ(n2k) during the precomputation phase.

In the next sections, we improve the dependencies on η, w, and k for the query complexity per
update from linear to logarithmic, the approximation from 1/4 to 1/2, and the precomputations query
complexity from O(n2k) to Õ(n). We also remove the assumption that the prediction error is known.

4 The UpdateSol subroutine

In this section, we improve the dependencies in η, w, and k for the amortized query complexity
from linear to logarithmic, which is the main technical challenge. For finding a solution over the
predicted active elements V 1

t , the main idea is to not only use precomputations Pt, but also to
exploit computations from previous time steps t′ < t over the previous predicted active elements
V 1
t′ . As in the warm-up subroutine, the new UPDATESOLMAIN subroutine also uses a precomputed

deletion-robust solution Pt, but it requires Pt to satisfy a property termed the strongly robust property
(Definition 4 below), which is stronger than the deletion-robust property of Definition 3. A strongly
robust solution comprises two components Q and R, where R is a small set of elements that have a
high marginal contribution to Q. The set Q is such that, for any deleted set D, f(Q\D) is guaranteed
to, in expectation over the randomization of Q, retain a large amount of f(Q).

Definition 4. A pair of sets (Q,R) is (d, ϵ, γ)-strongly robust, where d, k, γ ≥ 0 and ϵ ∈ [0, 1], if

5

• Size. |Q| ≤ k and |R| = O(ϵ−2(d+ k) log k) with probability 1,

• Value. f(Q) ≥ |Q|γ/(2k) with probability 1. In addition, if |Q| < k, then for any set
S ⊆ V \R we have fQ(S) < |S|γ/(2k) + ϵγ.

• Robustness. For any D ⊆ V s.t. |D| ≤ d, EQ[f(Q \D)] ≥ (1− ϵ)f(Q).

The set P returned by the first stage ROBUST1(f, V, k, d) of the deletion-robust algorithm of Kazemi
et al. [16] can be decomposed into two sets Q and R that are, for any d, ϵ > 0 and with γ = OPT(V),
where OPT(V) := maxS⊆V :|S|≤k f(S), (d, ϵ, γ)-strongly robust.3 Thus, with the ROBUST algorithm
of [16], the set Pt returned by WARMUP-PRECOMPUTATIONS can be decomposed into Pt and Qt that
are, for any ϵ > 0, (2(η+2w), ϵ, OPT(V̂t))-strongly robust. We omit the proof of the (d, ϵ, γ)-strongly
robust property of ROBUST1 from [16] and, in the next section, we instead prove strong-robustness
for our PRECOMPUTATIONSMAIN subroutine which has better overall query complexity than [16].

The UPDATESOLMAIN subroutine proceeds in phases. During each phase, UPDATESOLMAIN
maintains a data structure (B,A, ηold). The set B = Qt′ is a fixed base set chosen during the first
time step t′ of the current phase. A is a dynamic data structure used by a dynamic submodular
maximization algorithm DYNAMIC that initializes A over function fB , cardinality constraint k− |B|,
and a parameter γ to be later discussed. If a new phase starts at time t, note that if (Qt, Rt) are
strongly robust, then the only predicted active elements V 1

t that are needed to find a good solution
at time t are, in addition to B = Qt, the small set of elements Rt that are also in V 1

t . Thus to
find a good solution for the function fB , (Rt ∩ V 1

t) ∪ V 2
t are inserted into A. The solution that

UPDATESOLMAIN outputs at time step t are the active elements B ∩ Vt that are in the base for the
current phase, together with the solution DYNAMICSOL(A) maintained by A.

Algorithm 3 UPDATESOLMAIN

Input: function f , data structure (B,A, ηold), constraint k, precomputations Pt = (Qt, Rt), t, upper
bound η′t on prediction error, V 1

t , V 2
t , Vt−1, parameter γt

1: if t = 1 or |Ops⋆(A)| > ηold
2 + w then ▷ Start a new phase

2: B ← Qt

3: A← DYNAMICINIT(fB , k − |B|, γ = γt(k − |B|)/k)
4: for a ∈ (Rt ∩ V 1

t) ∪ V 2
t do DYNAMICINS(A, a)

5: ηold ← η′t
6: else ▷ Continue the current phase
7: for a ∈ Vt \ Vt−1 do DYNAMICINS(A, a)
8: for a ∈ (ELEM(A ∩ Vt−1) \ Vt do DYNAMICDEL(A, a)

9: S ← (B ∪ DYNAMICSOL(A)) ∩ Vt

10: return (B,A, ηold), S

During the next time steps t of the current phase, if an element a is inserted into the stream then a is
inserted in A (independently of the predictions). If an element is deleted from the stream, then if it
was in A, it is deleted from A. We define Ops⋆(A) to be the collection of all insertion and deletion
operations to A, excluding the insertions of elements in (Rt ∩ V 1

t) ∪ V 2
t at the time t where A was

initialized. The current phase ends when Ops⋆(A) exceeds ηold/2 + w. Since the update time of the
dynamic algorithm in [20] depends on length of the stream, we upper bound the length of the stream
handled by A during a phase.

The approximation The parameter γt corresponds to a guess for OPTt := OPT(Vt). In Section 6,
we present the UPDATESOLFULL subroutine which calls UPDATESOLMAIN with different guesses
γt. This parameter γt is needed when initializing DYNAMIC because our analysis requires that
DYNAMIC satisfies a property that we call threshold-based, which we formally define next.
Definition 5. A dynamic algorithm DYNAMIC is threshold-based if, when initialized with threshold
parameter γ such that γ ≤ OPTt ≤ (1 + ϵ)γ, a cardinality constraint k, and ϵ > 0, it maintains a
data structure At and solution SOLt = DYNAMICSOL(At) that satisfy, for all t, f(SOLt) ≥ γ

2k |SOLt|
and, if |SOLt| < (1− ϵ)k, then for any set S ⊆ V (At), we have fSOLt(S) <

|S|γ
2k + ϵγ.

3The size of R in [16] is O(d log k/ϵ) which is better than what is required to be strongly robust.

6

Lemma 3. The DYNAMIC algorithm of Lattanzi et al. [20]4 is threshold-based.

The main lemma for the approximation guarantee is the following.

Lemma 4. Consider the data structure (B,A, ηold) returned by UPDATESOLMAIN at time t. Let t′
be the time at which A was initialized, (Qt′ , Rt′) and γt′ be the precomputations and guess for OPTt′
inputs to UPDATESOLMAIN at time t′. If (Qt′ , Rt′) are (d = 2(ηold + 2w), ϵ, γt′)-strongly robust,
γt′ is such that γt′ ≤ OPTt ≤ (1 + ϵ)γt′ , and DYNAMIC is a threshold-based dynamic algorithm,
then the set S returned by UPDATESOLMAIN is such that E[f(S)] ≥ 1−5ϵ

2 γt′ .

The update time We next analyze the query complexity of UPDATESOLMAIN. Recall that u(n, k)
denotes the amortized query complexity per update of DYNAMIC.

Lemma 5. Consider the data structure (B,A, ηold) returned by UPDATESOLMAIN at time t. Let t′ be
the time at which A was initialized and (Qt′ , Rt′) be the precomputations input to UPDATESOLMAIN
at time t′. If precomputations (Qt′ , Rt′) are (d = 2(ηold + 2w), ϵ, γ) strongly-robust, then the total
number of queries performed by UPDATESOL during the t− t′ time steps between time t′ and time t
is O(u((ηold + w + k) log k, k) · (ηold + w + k) log k). Additionally, the number of queries between
time 1 and t is upper bounded by O(u(t, k) · t).

5 The Precomputations subroutine

In this section, we provide a PRECOMPUTATIONS subroutine that has an improved query complexity
compared to the warm-up precomputations subroutine. Recall that the warm-up subroutine computes
a robust solution over predicted elements V̂t, independently for all times t. The improved PRECOM-
PUTATIONS does not do this independently for each time step. Instead, it relies on the following
lemma that shows that the data structure maintained by the dynamic algorithm of [20] can be used to
find a strongly robust solution without any additional query.

Lemma 6. Let DYNAMIC(γ, ϵ) be the dynamic submodular maximization algorithm of [20] and A
be the data structure it maintains. There is a ROBUST1FROMDYNAMIC algorithm such that, given
as input a deletion size parameter d, and the data structure A at time t with γ ≤ OPTt ≤ (1 + ϵ)γ, it
outputs sets (Q,R) that are (d, ϵ, γ)-strongly robust with respect to the ground set Vt. Moreover, this
algorithm does not perform any oracle queries.

The improved PRECOMPUTATIONSMAIN subroutine runs the dynamic algorithm of [20] and then,
using the ROBUST1FROMDYNAMIC algorithm of Lemma 6, computes a strongly-robust set from
the data structure maintained by the dynamic algorithm.

Algorithm 4 PRECOMPUTATIONSMAIN

Input: function f : 2V → R, constraint k, predicted elements V̂1, . . . , V̂n ⊆ V , time error
tolerance w, parameter γ, parameter h

1: Â← DYNAMICINIT(f, k, γ)
2: for t = 1 to n do
3: for a ∈ V̂t \ V̂t−1 do DYNAMICINS(Â, a)

4: for a ∈ V (Â) \ V̂t do DYNAMICDEL(Â, a)

5: if |V (Â)| > 0 then Qt, Rt ← ROBUST1FROMDYNAMIC(f, Â, k, 2(h+ 2w))

6: return {(Qt, Rt)}nt=1

The parameters γ and h correspond to guesses for OPT and η respectively.

Lemma 7. The total query complexity of the PRECOMPUTATIONSMAIN algorithm is n · u(n, k),
where u(n, k) is the amortized query complexity of calls to DYNAMIC.

4Note that the initially published algorithm in [20] had an issue with correctness, we refer to the revised
version.

7

6 The full algorithm

The UPDATESOLMAIN and PRECOMPUTATIONSMAIN subroutines use guesses γt and h for the
optimal value OPTt at time t and the total prediction error η. In Appendix D, we describe the
full UPDATESOLFULL and PRECOMPUTATIONSFULL subroutines that call the previously defined
subroutines over different guesses γt and h. The parameters of these calls must be carefully designed
to bound the streaming amortized query complexity per update and precomputations query complexity.
By combining the algorithmic framework (Algorithm 1) together with subroutines UPDATESOLFULL
and PRECOMPUTATIONSFULL, we obtain our main result.
Theorem 2. Algorithm 1 with subroutines UPDATESOLFULL and PRECOMPUTATIONSFULL is a dy-
namic algorithm that, for any tolerance w and constant ϵ > 0, achieves an amortized expected query
complexity per update during the streaming phase of O(poly(log η, logw, log k)), an approximation
of 1/2− ϵ in expectation, and a query complexity5 of Õ(n) during the precomputation phase.

Note that the query complexity per update during the streaming phase and the query complexity
during the precomputation phase both have a polynomial dependence on ϵ. Additionally, note that our
update bound is not constant even when the prediction error is 0. However, with the following simple
change, our algorithm achieves a constant update time when the predictions are exactly correct, while
also maintaining its current guarantees: (1) as additional precomputations, also compute a predicted
solution St for each time t assuming the predictions are exactly correct, (2) during the streaming
phase, as long as the predictions are exactly correct, return the precomputed predicted solution St. At
the first time step where the predictions are no longer exactly correct, switch to our main algorithm in
the paper.

7 Experiments

7.1 Experimental Setup

Benchmarks. We compare our DYNAMICWPRED algorithm to two benchmarks. The first is
the DYNAMIC submodular maximization algorithm of [20], which does not use predictions. The
second is the OFFLINEGREEDY algorithm that computes an offline greedy solution Ŝt at each
time step t based on the set V̂t of available items in the predicted stream. In the streaming phase,
it outputs the solution Ŝt ∩ Vt at time t based on the available items Vt. Note that this algorithm
does not make any queries other than the queries used for pre-computation. These benchmarks are at
two extremes in terms of their reliance on the predictions. DYNAMICWPRED uses the DYNAMIC
algorithm of [20] and the ROBUST algorithm of [16] as subroutines. We implemented our algorithm
and OFFLINEGREEDY in C++, and used the C++ implementation of DYNAMIC that is provided by
[20]. We set ϵ = 0.2 for all algorithms.

Metrics. We report the total number of oracle calls made by each algorithm when processing the
actual stream (a,o). This does not include any oracle calls during the pre-computation phase. We
also report the average function value 1

n

∑
t∈[n] f(St) of the output sets over time steps t ∈ [n]. Each

experiment is repeated 5 times and the average values are reported.

Datasets and submodular function. We perform experiments on a subset of the Enron dataset
from the SNAP Large Networks Data Collection [21]. We select a set V of 200 nodes from the graph,
and consider the subgraph induced by V ∪N(V) where N(V) is the set of neighboring nodes of
V . This resulted in a subgraph with 7845 vertices and 20033 edges. The submodular function is the
dominating set objective function over the ground set V with |V | = 200. Specifically, for a subset
of nodes S ⊆ V , we define f(S) = |N(S) ∪ S|, where N(S) is the set of neighboring nodes of S.
This function is monotone and submodular.

5We note that, despite the amortized query complexity of Lattanzi et al. [20] being in expectation, the
asymptotic bound on the precomputation query complexity can hold deterministically, instead of in expectation,
by forcing PRECOMPUTATIONSFULL to terminate if it has performed a number of queries that is larger than ϵ−1

times its expected number of queries (note that the precomputation query complexity only depends on known
parameters, n and k). By Markov’s inequality, such an early termination happens with probability at most ϵ.
Thus, even with no guarantees on the approximation achieved in these early termination cases, the loss in the
expected approximation caused by this forced termination is at most 1− ϵ.

8

0.0 0.2 0.4 0.6 0.8 1.0
prediction error: η

103

104

105

nu
m

be
r

of
qu

er
ie

s

Enron: effect of prediction error

DynamicWPred
Dynamic
OfflineGreedy

5 10 15 20 25 30
cardinality: k

103

104

105

nu
m

be
r

of
qu

er
ie

s

Enron: effect of cardinality

0 5 10 15 20 25 30
window size: w

103

104

105

nu
m

be
r

of
qu

er
ie

s

Enron: effect of window size

0.0 0.2 0.4 0.6 0.8 1.0
prediction error: η

1000

1500

2000

fu
nc

ti
on

va
lu

e

Enron: effect of prediction error

5 10 15 20 25 30
cardinality: k

1400

1600

1800

2000

2200

2400

2600

fu
nc

ti
on

va
lu

e

Enron: effect of cardinality

0 5 10 15 20 25 30
window size: w

1800
1900
2000
2100
2200
2300
2400
2500
2600

fu
nc

ti
on

va
lu

e

Enron: effect of window size

Figure 1: The number of queries and function value of our algorithm, DYNAMICWPRED, and the two
benchmarks for the Enron data and sliding window stream with l = 50 as a function of the prediction error η
with k = 10 and w = 0 (column 1), as a function of the cardinality parameter k with η = 0.25 and w = 0
(column 2), and as a function of the window size parameter w with k = 20 and η = 0.125 (column 3).

Generation of true stream. We consider the sliding window protocol from [20] in order to generate
the dynamic stream of insertions and deletions. Specifically, we process the nodes V in an arbitrary
order and consider a sliding window of size l. When the window reaches a node a, we add the
operation (a, insert) to the dynamic stream. Similarly, after l steps when the node a leaves the
window, we add the operation (a, delete) to the dynamic stream. Since, |V | = 200, we have n = 400
for all experiments. We report results with l = 50 (observations were similar for other values of l).

Generation of predicted stream. Given a target prediction error η and window size w, we generate
the predicted stream for our experiments by adding perturbations to the actual stream such that
Definition 2 is satisfied. Note that we add these perturbations while maintaining the consistency
of the stream, i.e. the insertion of an element always happens before its deletion. In particular, we
first select a set E of η/2 elements uniformly at random and let T denote the set of all insertion and
deletion times of these elements in the actual stream. For each e ∈ E, we assign new insertion and
deletion times in the predicted stream by randomly drawing from T . We make sure that these new
insertion and deletion times are consistent and are at least a distance of w from the corresponding old
times. The insertion and deletion times for e ̸∈ E remain the same so far. Now, for each e, e′ /∈ E, we
randomly swap an their operations (e, o) and (e′, o′) that are within a distance of w while maintaining
consistency.

7.2 Experiment Results

Experiment Set 1. We first consider the effect of the prediction error η on the function value. For
ease of exposition, we overload the notation and report the fractional prediction error, i.e. prediction
error divided by the length of the stream n. From the first column of Figure 1, we observe that our
algorithm outperforms OFFLINEGREEDY in terms of function value when the prediction error is
reasonably large, and always achieves a similar function value as DYNAMIC. Since DYNAMIC does
not use the predictions, its performance remains constant as a function of the prediction errors. The
performance of OFFLINEGREEDY deteriorates quickly as a function of η as it completely relies on
the predictions. Note that the function value achieved by OFFLINEGREEDY is not zero even in the
case of large prediction error. This is because the error is not adversarial and some elements from its
offline solution remain active during the streaming phase.

We also consider the effect of η on the number of oracle calls. Figure 1 shows that the number
of oracle calls of our algorithm is much better than DYNAMIC in the case of low prediction error,
and is also not much worse in the case of large prediction error. This shows that our algorithm has
consistency in the case of low η, but also robustness in the case of large η. The number of oracle calls
of OFFLINEGREEDY is very small as it completely relies on the prediction.

9

Experiment Set 2. We also consider the effect of cardinality parameter k on the function value and
number of oracle calls. It can be observed from the second column of Figure 1 that the function value
increases for all algorithms as a function of k. Moreover, the rate of increase for the number of oracle
calls made by our algorithm is similar to the rate of increase of DYNAMIC. Experiment Set 3. We
consider the effect of the window size parameter w on the function value and number of oracle calls.
Figure 1 shows that the window size has almost no impact on the function value of our algorithm.
The number of oracle calls for our algorithm grows as a function of the window size but this growth
is very small.

8 Limitations

To obtain an asymptotic improvement over the best-known amortized query complexity per update,
the prediction error η needs to be subpolynomial in the length of the stream n, which is relatively
small. However, our experimental results show that in practice the number of queries performed
by our algorithm outperforms the number of queries of existing algorithm without predictions even
when the prediction error is relatively large. Another limitation is the assumption that the algorithm is
given all predictions at time t = 0. An intriguing open question is whether an improvement in update
time can also be obtained in the predicted-deletion model where there is no preprocessing and instead
a predicted deletion time for each element is given at the time when it is inserted.

References
[1] Priyank Agrawal, Eric Balkanski, Vasilis Gkatzelis, Tingting Ou, and Xizhi Tan. Learning-

augmented mechanism design: Leveraging predictions for facility location. EC, 2022.

[2] Kareem Amin, Travis Dick, Mikhail Khodak, and Sergei Vassilvitskii. Private algorithms with
private predictions. arXiv preprint arXiv:2210.11222, 2022.

[3] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online
matching problems with machine learned advice. NeurIPS, 2020.

[4] Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning
augmented algorithms. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

[5] Siddhartha Banerjee, Vasilis Gkatzelis, Artur Gorokh, and Billy Jin. Online nash social welfare
maximization with predictions. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022. SIAM, 2022.

[6] Kiarash Banihashem, Leyla Biabani, Samira Goudarzi, MohammadTaghi Hajiaghayi, Peyman
Jabbarzade, and Morteza Monemizadeh. Dynamic constrained submodular optimization with
polylogarithmic update time. ICML, 2023.

[7] Kiarash Banihashem, Leyla Biabani, Samira Goudarzi, MohammadTaghi Hajiaghayi, Peyman
Jabbarzade, and Morteza Monemizadeh. Dynamic algorithms for matroid submodular maxi-
mization. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 3485–3533. SIAM, 2024.

[8] Jeff Bilmes. Submodularity in machine learning and artificial intelligence. arXiv preprint
arXiv:2202.00132, 2022.

[9] Jan van den Brand, Sebastian Forster, Yasamin Nazari, and Adam Polak. On dynamic graph
algorithms with predictions. In Proceedings of the 2024 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 3534–3557. SIAM, 2024.

[10] Xi Chen and Binghui Peng. On the complexity of dynamic submodular maximization. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages
1685–1698, 2022.

10

[11] Paul Duetting, Federico Fusco, Silvio Lattanzi, Ashkan Norouzi-Fard, and Morteza Zadi-
moghaddam. Fully dynamic submodular maximization over matroids. In Proceedings of the
40th International Conference on Machine Learning, pages 8821–8835, 2023.

[12] Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Secretaries with
advice. In Proceedings of the 22nd ACM Conference on Economics and Computation, pages
409–429, 2021.

[13] Moran Feldman, Paul Liu, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. Streaming
submodular maximization under matroid constraints. In 49th International Colloquium on
Automata, Languages, and Programming (ICALP 2022). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2022.

[14] Monika Henzinger, Barna Saha, Martin P Seybold, and Christopher Ye. On the complexity of
algorithms with predictions for dynamic graph problems. In 15th Innovations in Theoretical
Computer Science Conference (ITCS 2024). Schloss-Dagstuhl-Leibniz Zentrum für Informatik,
2024.

[15] Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Online knapsack with
frequency predictions. Advances in Neural Information Processing Systems, 34, 2021.

[16] Ehsan Kazemi, Morteza Zadimoghaddam, and Amin Karbasi. Scalable deletion-robust submod-
ular maximization: Data summarization with privacy and fairness constraints. In Jennifer G. Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of
Proceedings of Machine Learning Research, pages 2549–2558. PMLR, 2018.

[17] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a
social network. In KDD, 2003.

[18] Andreas Krause and Daniel Golovin. Submodular function maximization. Tractability, 3:71–
104, 2014.

[19] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online schedul-
ing via learned weights. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1859–1877. SIAM, 2020.

[20] Silvio Lattanzi, Slobodan Mitrović, Ashkan Norouzi-Fard, Jakub M Tarnawski, and Morteza
Zadimoghaddam. Fully dynamic algorithm for constrained submodular optimization. Advances
in Neural Information Processing Systems, 33:12923–12933, 2020.

[21] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[22] Quanquan C Liu and Vaidehi Srinivas. The predicted-deletion dynamic model: Taking advantage
of ml predictions, for free. arXiv preprint arXiv:2307.08890, 2023.

[23] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
J. ACM, 68(4):24:1–24:25, 2021.

[24] Michael Mitzenmacher. Scheduling with predictions and the price of misprediction. In 11th
Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020.

[25] Morteza Monemizadeh. Dynamic submodular maximization. In Advances in Neural Information
Processing Systems, 2020.

[26] George L Nemhauser and Laurence A Wolsey. Best algorithms for approximating the maximum
of a submodular set function. Mathematics of operations research, 3(3):177–188, 1978.

[27] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations
for maximizing submodular set functions i. Mathematical programming, 14(1):265–294, 1978.

11

http://snap.stanford.edu/data

[28] Binghui Peng. Dynamic influence maximization. Advances in Neural Information Processing
Systems, 34:10718–10731, 2021.

[29] Binghui Peng and Aviad Rubinstein. Fully-dynamic-to-incremental reductions with known
deletion order (eg sliding window). In Symposium on Simplicity in Algorithms (SOSA), pages
261–271. SIAM, 2023.

[30] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML predic-
tions. In Advances in Neural Information Processing Systems, pages 9661–9670, 2018.

[31] Yaron Singer. Budget feasible mechanisms. In 2010 IEEE 51st Annual Symposium on founda-
tions of computer science, pages 765–774. IEEE, 2010.

[32] Shufan Wang, Jian Li, and Shiqiang Wang. Online algorithms for multi-shop ski rental with
machine learned advice. Advances in Neural Information Processing Systems, 33, 2020.

[33] Chenyang Xu and Pinyan Lu. Mechanism design with predictions. In Lud De Raedt, editor,
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-
22, pages 571–577. International Joint Conferences on Artificial Intelligence Organization,
2022.

12

A Missing proofs from Section 3

Lemma 8. Assume that the predicted stream has, with a time error tolerance w, a prediction error at
most η. Then, at any time step t, |V̂t \ Vt| ≤ η + 2w.

Proof. Let E = {a ∈ V : |t̂+a − t+a | > w or |t̂−a − t−a | > w}. Hence, for all a ̸∈ E, we have
|t̂+a − t+a | ≤ w and |t̂−a − t−a | ≤ w. By Definition 2, we have that |E| = η. We first note that any
a ∈ V̂t \ E such that t̂+a ≤ t − w and t̂−a > t + w also belongs to Vt. This is because a ̸∈ E

implies that t+a ≤ t and t−a > t. Hence, the only elements that are present in V̂t \ E but are absent
from Vt are such that t̂+a > t − w or t̂−a ≤ t + w. Since, the only elements in V̂t are such that
t̂+a ≤ t + w and t̂−a ≥ t − w, this implies that there can be at most 2w such elements. Combining
with the fact that |E| = η, we get |V̂t \ Vt| ≤ |E|+ |(V̂t \ E) \ Vt| ≤ η + 2w.

Lemma 1. At every time step t, E[f(S1)] ≥ α1 · OPT(V 1
t) and E[f(S2)] ≥ α2 · OPT(V 2

t).

Proof. We first show that at every time step t, f(S1) ≥ α1 · OPT(V 1
t). Fix some time step t. First,

note that
Pt \ (V̂t \ V 1

t) = (Pt \ V̂t) ∪ (Pt ∩ V 1
t) = Pt ∩ V 1

t

where the second equality is since Pt ⊆ V̂t. In addition, we have that |V̂t\V 1
t | = |V̂t\Vt| ≤ η+2w =

d, where the inequality is by Lemma 8. With D = V̂t\V 1
t such that |D| ≤ d, R = Pt, and N = V̂t, we

thus have by Definition 3 that the output S1 of ROBUST2(f, Pt, V̂t \V 1
t , k) = ROBUST2(f,R,D, k)

is such that S1 ⊆ Pt ∩ V 1
t and

E[f(S1)] ≥ α1 · max
S⊆V̂t\D:
|S|≤k

f(S) = α1 · max
S⊆V 1

t :
|S|≤k

f(S) = α1 · OPT(V 1
t).

Next, we show that at every time step t, f(S2) ≥ α2 · OPT(V 2
t). Observe that the algorithm

runs the dynamic streaming algorithm DYNAMIC over the sequence of ground sets V 2
0 , . . . , V

2
n . By

Definition 1, the solutions returned by DYNAMIC at each time step achieve an α2 approximation. Since
these solutions are S2

1 , . . . , S
2
n, we get that for every time step t, f(S2

t) ≥ α2 maxS⊆V 2
t :|S|≤k f(S).

Lemma 9. For any monotone submodular function f : 2N1∪N2 → R, if S1 and S2 are
such that f(S1) ≥ α1 · maxS⊆N1:|S|≤k f(S) and f(S2) ≥ α2 · maxS⊆N2:|S|≤k f(S), then
max{f(S1), f(S2)} ≥ 1

2 ·min{α1, α2} ·maxS⊆N1∪N2:|S|≤k f(S).

Proof. Let O = {o1, . . . , ok} = argmaxS⊆N1∪N2:|S|≤k f(S) be an arbitrary ordering of the optimal
elements. We have that

max
S⊆N1∪N2:|S|≤k

f(S) = f(O)

=

k∑
i=1

f{o1,··· ,oi−1}(oi)

≤
k∑

i=1

1[oi ∈ N1]f{o1,··· ,oi−1}∩N1
(oi) +

k∑
i=1

1[oi ∈ N2]f{o1,··· ,oi−1}∩N2
(oi)

= f(O ∩N1) + f(O ∩N2)

≤ max
S⊆N1:|S|≤k

f(S) + max
S⊆N2:|S|≤k

f(S)

≤ f(S1)/α1 + f(S2)/α2

≤ 2max{f(S1), f(S2)}/min{α1, α2}

where the first inequality is by submodularity.

13

By combining Lemma 1 and Lemma 9, we obtain the main lemma for the approximation guarantee.

Lemma 10. At every time step t, max{f(S1), f(S2)} ≥ 1
2 ·min{α2, α1} · OPT(Vt).

Lemma 2. WARMUP-UPDATESOL makes at most 2η calls to DYNAMICINS on A over the stream.

Proof. The number of calls to DYNAMICINS is |{a : ∃t s.t. a ∈ V 2
t \ V 2

t−1}|. Since V 2
t \ V 2

t−1 =

(Vt \ V̂t) \ (Vt−1 \ V̂ 1
t−1),

|{a : ∃t s.t. a ∈ V 2
t \ V 2

t−1}| ≤ |{a : ∃t s.t. a ∈ (Vt \ Vt−1) \ V̂t}|
+ |{a : ∃t s.t. a ∈ (V̂t−1 \ V̂t) ∩ Vt}|.

Next, we have

|{a : ∃t s.t. a ∈ (Vt \ Vt−1) \ V̂t}| = |{a : a ̸∈ V̂t+a
}|

= |{a : t̂+a > t+a + w or t̂−a < t+a − w}|
≤ |{a : t̂+a > t+a + w or t̂−a < t−a − w}|
≤ |{a : |t̂+a − t+a | > w or |t̂−a − t−a | > w}|
≤ η

Similarly,

|{a : ∃t s.t. a ∈ (V̂t−1 \ V̂t) ∩ Vt}| = |{a : a ∈ Vt̂−a +w}|
= |{a : t−a ≥ t̂−a + w}|
≤ |{a : |t̂+a − t+a | > w or |t̂−a − t−a | > w}|
≤ η

Combining the above inequalities, we get that the number of calls to DYNAMICINS is |{a : ∃t s.t. a ∈
V 2
t \ V 2

t−1}| ≤ 2η.

Theorem 1. For monotone submodular maximization under a cardinality constraint k, Algorithm 1
with the WARMUP-PRECOMPUTATIONS and WARMUP-UPDATESOL subroutines achieves, for any
tolerance w and constant ϵ > 0, an amortized expected query complexity per update during the
streaming phase of Õ(η+w+k), an approximation of 1/4−ϵ in expectation, and a query complexity
of Õ(n2k) during the precomputation phase.

Proof. We choose DYNAMIC to be the algorithm from [20] and ROBUST to be the algorithm from
[16]. By Lemma 10, and since we have α1 = α2 = 1/2− ϵ, the approximation is 1

2 ·min{α2, α1} =
1
2 ·min{ 12 − ϵ, 1

2 − ϵ} ≥ 1
4 − ϵ.

For the query complexity during the streaming phase, by Lemma 2, the total number of calls to
DYNAMICINS on A is O(η). The total number of calls to DYNAMICDEL on A is also O(η) since an
element can only be deleted if it has been inserted. Thus, the total number of insertions and deletions
handled by the dynamic streaming algorithm DYNAMIC is O(η). Since the amortized expected query
complexity per update of DYNAMIC is O(poly(log n, log k)), we get that the amortized expected
number of queries performed when calling DYNAMICINS, DYNAMICDEL, and DYNAMICSOL on A
is O(η · poly(log η, log k)/n). For the number of queries due to ROBUST2, at every time step t, the
algorithm calls ROBUST2(f, Pt, (V̂t\V 1), k) with maximum number of deletions d = η+2w, which
causes at most Õ (η + w + k) queries at each time step t since the query complexity of ROBUST2 is
Õ (d+ k). The total amortized expected query complexity per update during the streaming phase is
thus Õ(η+w+ k). For the query complexity during the precomputation phase, the query complexity
of ROBUST1 is Õ(|V |k) and there are n calls to ROBUST1, so the query complexity of that phase is
Õ(n2k).

14

B Missing proof from Section 4

Lemma 3. The DYNAMIC algorithm of Lattanzi et al. [20]6 is threshold-based.

Proof. The first condition that f(SOLt) ≥ γ
2k |SOLt| follows directly from the fact that each element

e that is added to SOLt has a marginal contribution of at least γ/2k to the partial solution. Some
elements could have been deleted from the partial solution since the time e was added, but this can
only increase the contribution of e due to submodularity.

We will now show that if |SOLt| < (1− ϵ)k then for any S ⊆ V (At) we have fSOLt(S) <
|S|γ
2k + ϵγ.

We will use the set X defined in the proof of Theorem 5.1 in [20]. The proof of Theorem 5.1 in
[20] shows that |SOLt| ≥ (1− ϵ)|X|. Using this, the condition that |SOLt| < (1− ϵ)k implies that
|X| < k. Hence, we fall in the case 2 of the proof of Theorem 5.1 which shows that f(e|X) ≤ γ/2k
for all e ∈ Vt \ SOLt. We then have that

fSOLt(S) = f(S ∪ SOLt)− f(SOLt) ≤ f(S ∪X)− f(SOLt)
= f(S ∪X)− f(X) + f(X)− f(SOLt)
≤ f(X ∪ S)− f(X) + f(X)− (1− ϵ)f(X)

≤
∑
e∈S

fX(e) + ϵf(X)

≤ |S| · γ
2k

+ ϵ · 1 + ϵ

1− ϵ
· γ ,

where the inequality f(X) ≤ 1+ϵ
1−ϵγ follows because f(X) ≤ f(SOLt)/(1− ϵ) ≤ 1+ϵ

1−ϵ · γ.

Lemma 4. Consider the data structure (B,A, ηold) returned by UPDATESOLMAIN at time t. Let t′
be the time at which A was initialized, (Qt′ , Rt′) and γt′ be the precomputations and guess for OPTt′
inputs to UPDATESOLMAIN at time t′. If (Qt′ , Rt′) are (d = 2(ηold + 2w), ϵ, γt′)-strongly robust,
γt′ is such that γt′ ≤ OPTt ≤ (1 + ϵ)γt′ , and DYNAMIC is a threshold-based dynamic algorithm,
then the set S returned by UPDATESOLMAIN is such that E[f(S)] ≥ 1−5ϵ

2 γt′ .

To prove Lemma 4, we first bound the value of Qt′ ∩ Vt.

Lemma 11. Consider the data structure (B,A, ηold) returned by UPDATESOLMAIN at time t. Let t′
be the time at which A was initialized, (Qt′ , Rt′) and γt′ be the precomputations and guess for OPTt′
inputs to UPDATESOLMAIN at time t′. If precomputations (Qt′ , Rt′) are (d = 2(ηold + 2w), ϵ, γt′)-
strongly robust, then we have

E[f(Qt′ ∩ Vt)] ≥ (1− ϵ)f(Qt′) ≥ (1− ϵ)|Qt′ |γt′/(2k).

Proof. We first show that |Qt′ \ Vt| ≤ d. We know that Qt′ ⊆ V̂t′ . Firstly, we have |V̂t′ \ Vt′ | ≤
ηt + 2w ≤ ηold + 2w due to the Lemma 8. Next, note that the number of insertions and deletions
Ops⋆(A) to A between time t′ and t is at most ηold

2 +w, otherwise A would have been reinitialized due
to the condition of UPDATESOLMAIN to start a new phase. This implies that |Vt′ \ Vt| ≤ ηold + 2w.
Hence, we have that

|Qt′ \ Vt| ≤ |V̂t′ \ Vt| ≤ |V̂t′ \ Vt′ |+ |Vt′ \ Vt| ≤ 2(ηold + 2w) = d.

We conclude that E[f(Qt′ ∩ Vt)] ≥ (1 − ϵ)f(Qt′) ≥ (1 − ϵ)|Qt′ |γt′
2k , where the first inequality

is by the robustness property of strongly-robust precomputations and the second by their value
property.

Proof of Lemma 4. There are three cases.

1. |Qt′ | ≥ k. We have that E[f(S)] ≥ E[f(Qt′ ∩ Vt)] ≥ (1− ϵ)|Qt′ |γt′
2k ≥ (1− ϵ)γt′

2 , where
the first inequality is by monotonicity and since S ⊇ B ∩ Vt = Qt′ ∩ Vt, the second by
Lemma 11, and the last by the condition for this first case.

6Note that the initially published algorithm in [20] had an issue with correctness, we refer to the revised
version.

15

2. |DYNAMICSOL(A)| ≥ (1 − ϵ)(k − |Qt′ |). Let SOLt = DYNAMICSOL(A) and recall that
A was initialized with DYNAMICINIT over function fQt′ with cardinality constraint k− |B|
and threshold parameter γt′(k − |B|)/k. We get

E[f(S)] = E[f(Qt′ ∩ Vt) + fQt′∩Vt(SOLt)] definition of S
≥ E[f(Qt′ ∩ Vt) + fQt′ (SOLt)] submodularity

≥ (1− ϵ)|Qt′ |
γt′

2k
+E[fQt′ (SOLt)] Lemma 11

≥ (1− ϵ)|Qt′ |
γt′

2k
+

γt′(k − |B|)/k
2(k − |B|)

|SOLt| Definition 5

≥ (1− ϵ)|Qt′ |
γt′

2k
+

γt′

2k
(1− ϵ)(k − |Qt′ |) case assumption

≥ (1− ϵ)γt′

2
.

3. |Qt′ | < k and |SOLt| < (1 − ϵ)(k − |Qt′ |): Recall that Rt′ ⊆ V̂t′ . Also, let R̄t =

(Vt ∩Rt′) ∪ (Vt \ V̂t′). In this case, we have that
f(Ot) ≤(a) E[f(Ot ∪ SOLt ∪Qt′)]

= E[f(SOLt ∪Qt′)] +E[fSOLt∪Qt′ (Ot \ R̄t)] +E[fSOLt∪Qt′∪(Ot\R̄t)(Ot ∩ R̄t)]

≤(b) E[f(SOLt ∪Qt′)] +E[fQt′ (Ot \ R̄t)] +E[fSOLt(Ot ∩ R̄t)]

≤(c) E[f(SOLt ∪Qt′)] + |Ot \ R̄t| ·
γt′

2k
+ ϵγt′ +E[fSOLt(Ot ∩ R̄t)]

≤(d) E[f(SOLt ∪Qt′)] + |Ot \ R̄t| ·
γt′

2k
+ ϵγt′ + |Ot ∩ R̄t| ·

γt′

2k
+ ϵγt′

≤(e) E[f(SOLt ∪Qt′)] + (1 + 4ϵ)
γt′

2
.

where (a) is by monotonicity, (b) is by submodularity, (c) is since (Qt′ , Rt′) are (d =
2(ηold + 2w), ϵ, γt′)-strongly robust (value property) and since we have that Ot \ R̄t =

Ot \ ((Vt ∩Rt′)∪ (Vt \ V̂t′)) ⊆ V̂t′ \Rt′ and Qt′ < k, (d) is since DYNAMIC is threshold-
based, |SOLt| < (1− ϵ)(k − |Qt′ |), and R̄t ⊆ V (A), and (e) is since |Ot| ≤ k. The above
series of inequalities implies that

E[f(SOLt ∪Qt′)] ≥ f(Ot)−
(1 + 4ϵ)γt′

2
=

(1− 4ϵ)γt′

2
.

We conclude that
E[f(S)] = E[f((Qt′ ∪ SOLt) ∩ Vt)] definition of S

= E[f((Qt′ ∩ Vt) ∪ SOLt)] SOLt ⊆ Vt

≥ E[f(Qt′ ∩ Vt)] +E[fQt′ (SOLt)] submodularity
≥ (1− ϵ)f(Qt′) +E[fQt′ (SOLt)] Lemma 11
≥ (1− ϵ) ·E[f(SOLt ∪Qt′)]

≥ (1− 5ϵ)γt′

2
Lemma 5. Consider the data structure (B,A, ηold) returned by UPDATESOLMAIN at time t. Let t′ be
the time at which A was initialized and (Qt′ , Rt′) be the precomputations input to UPDATESOLMAIN
at time t′. If precomputations (Qt′ , Rt′) are (d = 2(ηold + 2w), ϵ, γ) strongly-robust, then the total
number of queries performed by UPDATESOL during the t− t′ time steps between time t′ and time t
is O(u((ηold + w + k) log k, k) · (ηold + w + k) log k). Additionally, the number of queries between
time 1 and t is upper bounded by O(u(t, k) · t).

Proof. The only queries made by UPDATESOL are due to calls to DYNAMIC. Hence, we calculate
the total number of operations Ops(A) between time t′ and t. The number of insertions at time t′ is

|Rt′ ∩ V 1
t′ |+ |V 2

t′ | =(1) O((ηold + w + k) log k) + |V 2
t′ |

≤(2) O((ηold + w + k) log k) + ηold

= O((ηold + w + k) log k)),

16

where (1) is by the size property of the (d = 2(ηold +2w), ϵ, γ) strongly-robust precomputations and
(2) is since |V 2

t′ | ≤ ηt′ ≤ η′t′ = ηold.

Moreover, the total number of operations Ops∗(A) between time t′ +1 and t is at most ηold/2+w =
d/4, otherwise A would have been reinitialized due to the condition of UPDATESOLMAIN to start a
new phase. Hence, the total query complexity between time t′ and time t is at most u(O((ηold + w +
k) log k), k− |Qt′ |) ·O((ηold +w+ k) log k) = O(u((ηold +w+ k) log k, k) · (ηold +w+ k) log k).

In the case t′ = 1, the number of operations at time t′ is 1 since |Vt′ | = 1, and the number of
operations from time 2 to t is at most t− 1. This gives the bound of O(u(t, k) · t) when t′ = 1.

C Missing proofs from Section 5

Lemma 6. Let DYNAMIC(γ, ϵ) be the dynamic submodular maximization algorithm of [20] and A
be the data structure it maintains. There is a ROBUST1FROMDYNAMIC algorithm such that, given
as input a deletion size parameter d, and the data structure A at time t with γ ≤ OPTt ≤ (1 + ϵ)γ, it
outputs sets (Q,R) that are (d, ϵ, γ)-strongly robust with respect to the ground set Vt. Moreover, this
algorithm does not perform any oracle queries.

Proof. We will first set up some notation. The algorithm of [20] creates several buckets
{Ai,ℓ}i∈[R],ℓ∈[T] where R = O(log k/ϵ) is the number of thresholds and T = O(log n) is the
number of levels. A solution is constructed using these buckets by iteratively selecting Si,ℓ from
Ai,ℓ starting from the smallest (i, ℓ) = (0, 0) to the largest (i, ℓ) = (R, T). The buffer at level ℓ
is denoted by Bℓ. Each set Si,ℓ is constructed by iteratively selecting elements uniformly at ran-
dom (without replacement) from the corresponding bucket. More precisely, given indices i, ℓ, the
algorithm adds elements e to the solution Si,ℓ one by one in line 7 of Algorithm 6 in [20] only if
f(e|S) ≥ τi ≥ γ/2k.

We will now show how to construct (Q,R) from the DYNAMIC data structure A. Note that we will
extract (Q,R) by observing the evolution of the data-structure A. Hence, we do not need to make
any additional oracle queries in order to extract (Q,R).

The following algorithm gives a procedure for extracting (Q,R) by observing the actions of the
peeling algorithm (Algorithm 6) in [20].

Algorithm 5 ROBUST1FROMDYNAMIC

Input: function f : 2V → R, dynamic data-structure A, constraint k, deletion parameter d,
parameter ϵ

1: Q← ∅
2: R← ∅
3: for ℓ ∈ [T] do
4: for i ∈ [R] do
5: if n/2ℓ > d

ϵ + k then
6: Q← Q ∪ Si,ℓ

7: else
8: R← R ∪Ai,ℓ ∪Bℓ

9: return Q,R

We will now show that the conditions required in Definition 4 by the above algorithm.

• Size. The fact that |Q| ≤ k follows using the Q ⊆ ∪i,ℓSi,ℓ = S where S is the solution
output by DYNAMIC with |S| ≤ k.

We will now show that the size of R = O(log k
ϵ · (

d
ϵ + k)). Let ℓ̄ ∈ [T] be the largest value

such that the corresponding bucket size n/2ℓ̄ is at least d/ϵ+ k. Recall that

R = ∪ℓ<ℓ̄Bℓ ∪
(
∪i∈[R] Ai,ℓ

)
.

17

We first have that

| ∪ℓ<ℓ̄ Bℓ| ≤
∑
ℓ<ℓ̄

n/2ℓ ≤ 2n/2ℓ̄−1 = O(
d

ϵ
+ k) .

Secondly,

| ∪ℓ<ℓ̄ ∪i∈[R]Ai,ℓ| ≤
∑
ℓ<ℓ̄

∑
i∈[R]

n/2ℓ ≤ log k

ϵ
· 2n/2ℓ̄−1 = O

(log k
ϵ
·
(d
ϵ
+ k

))
.

Combining the above inequalities gives us the desired bound on the size of R.

• Value. The fact that f(Q) ≥ |Q|γ/2k follows directly using the property of the dynamic
algorithm of [20] an element e is added to Si,ℓ during a call to Bucket-Construct(i, ℓ) only
if fS′(e) ≥ τi where τi ≥ γ/2k and S′ is the partial solution. It is possible that some of the
elements of the partial solution have been deleted since the last time Bucket-Construct was
called on index (i, ℓ), but the marginal contribution of e can only increase with deletions
due to submodularity.

We now show that, if |Q| < k, then for any for any set S ⊆ V \ R we have fQ(S) <
|S|γ/(2k)+ ϵγ. Let Q′ denote the set of elements in Q at the time when Level-Construct(ℓ̄)
was called last. We have

fQ(S) = f(Q ∪ S)− f(Q) ≤ f(Q′ ∪ S)− f(Q)

≤ f(Q′ ∪ S)− f(Q′) + f(Q′)− f(Q)

≤ f(Q′ ∪ S)− f(Q′) + f(Q′)− (1− ϵ)f(Q′)

≤
∑
e∈S

fQ′(e) + ϵf(Q′)

≤ |S| · γ
2k

+ ϵ · 1 + ϵ

1− ϵ
· γ ,

where the inequality f(Q′) ≤ 1+ϵ
1−ϵγ follows because f(Q′) ≤ f(Q)/(1− ϵ) ≤ 1+ϵ

1−ϵ · γ, and
the inequality fQ′(e) ≤ γ/2k follows by considering two cases: (1) e was inserted before
the latest time Level-Construct(ℓ̄) was called in which case e cannot have high marginal
contribution to Q′ as otherwise it would have been inserted in Q′, (2) e was inserted after
the latest time Level-Construct(ℓ̄) was called in which case either e has low marginal
contribution to Q′ or it would be included in the set R.

• Robustness. For any set D ⊆ V such that |D| ≤ d, EQ[f(Q \D)] ≥ (1 − ϵ)f(Q). We
have that

f(Q) =
∑
ℓ≥ℓ̄

∑
i∈[R]

∑
j∈[|Si,ℓ|]

fSpartial
ℓ,i,j

(eℓ,i,j) .

where eℓ,i,j is the j-th element that was added to Si,ℓ and Spartial
ℓ,i,j is the partial solution

before the j-th element was added. We have that

∑
ℓ≥ℓ̄

∑
i∈[R]

|Si,ℓ|τi ≥ f(Q) ≤ (1 + ϵ)
∑
ℓ≥ℓ̄

∑
i∈[R]

|Si,ℓ|τi

18

Since, each element in Si,ℓ is selected from a set of size at least d/ϵ, it can only be deleted
with probability at most ϵ. We have that

E[f(Q \D)] =
∑
ℓ≥ℓ̄

∑
i∈[R]

∑
j∈[|Si,ℓ|]

E[1[eℓ,i,j ̸∈ D] · fApartial
ℓ,i,j

(eℓ,i,j)]

≥
∑
ℓ≥ℓ̄

∑
i∈[R]

∑
j∈[|Si,ℓ|]

E[1[eℓ,i,j ̸∈ D] · fSpartial
ℓ,i,j

(eℓ,i,j)]

≥
∑
ℓ≥ℓ̄

∑
i∈[R]

∑
j∈[|Si,ℓ|]

Pr(eℓ,i,j ̸∈ D) · τi

≥ (1 + ϵ)
∑
ℓ≥ℓ̄

∑
i∈[R]

|Si,ℓ|τi

≥ 1 + ϵ

1− ϵ
f(Q).

Lemma 7. The total query complexity of the PRECOMPUTATIONSMAIN algorithm is n · u(n, k),
where u(n, k) is the amortized query complexity of calls to DYNAMIC.

Proof. It is easy to observe that the algorithm makes at most n calls to DYNAMICINS or
DYNAMICDEL since

∑
t |V̂t \ V̂t−1| + |V̂t−1 \ V̂t| ≤ n. Hence, the total query complexity due

to calls to DYNAMIC is n · u(n, k). Moreover, the calls to ROBUST1FROMDYNAMIC do not in-
cur any additional queries due to Lemma 6. Hence, the total number of queries performed in the
precomputation phase is given by n · u(n, k).

D Missing proofs from Section 6

The UPDATESOLMAIN and PRECOMPUTATIONSMAIN subroutines use guesses γt and h for the
optimal value OPTt at time t and the total prediction error η. In this section, we describe the
full UPDATESOLFULL and PRECOMPUTATIONSFULL subroutines that call the previously defined
subroutines over different guesses γt and h. The parameters of these calls must be carefully designed
to bound the streaming amortized query complexity per update and precomputations query complexity.

D.1 The full PRECOMPUTATIONS subroutine

We define H = {n/2i : i ∈ {log2(max{ n
k−2w , 1}), · · · , log2(n) − 1, log2 n}} to be a set of

guesses for the prediction error η. Since PRECOMPUTATIONSMAIN requires a guess h for η,
PRECOMPUTATIONSFULL calls PRECOMPUTATIONSMAIN over all guesses h ∈ H . We ensure
that the minimum guess h is such that h + 2w is at least k. The challenge with the guess γ of
OPT needed for PRECOMPUTATIONSMAIN is that OPT can have arbitrarily large changes between
two time steps. Thus, with V̂1, . . . , V̂n ⊆ V , we define the collection of guesses for OPT to be
Γ = {(1 + ϵ)0 mina∈V f(a), (1 + ϵ)1 mina∈V f(a), . . . , f(V)}, which can be an arbitrarily large
set.

Instead of having a bounded number of guesses γ, we consider a subset V̂t(γ) ⊆ V̂t of the predicted
elements at time t for each guess γ ∈ Γ such that for each element a is, there is a bounded number
of guesses γ ∈ Γ such that a ∈ V̂t(γ). More precisely, for any set T , we define T (γ) := {a ∈ T :
ϵγ
k ≤ f(a) ≤ 2γ} and Γ(a) = {γ ∈ Γ : f(a) ≤ γ ≤ ϵ−1kf(a)}. The PRECOMPUTATIONSFULL

subroutine outputs, for every time step t, strongly-robust sets (Qγ,h
t , Rγ,h

t), for all guesses γ ∈ Γ and
h ∈ H . If V̂t(γ) = ∅, we assume that Qγ,h

t = ∅ and Rγ,h
t = ∅.

19

Algorithm 6 PRECOMPUTATIONSFULL

Input: function f , constraint k, predicted active elements V̂1, . . . , V̂n ⊆ V , time error tolerance
w

1: for γ ∈ Γ such that |V̂t(γ)| > 0 for some t ∈ [n] do
2: for h ∈ H do
3: {(Qγ,h

t , Rγ,h
t)}nt=1 ← PRECOMPUTATIONSMAIN(V̂1(γ), . . . , V̂n(γ), γ, h)

4: return {{(Qγ,h
t , Rγ,h

t)}γ∈Γ,h∈H}nt=1

Lemma 12. The total query complexity of PRECOMPUTATIONSFULL is

O(n · log(n) · log(k) · u(n, k)).

Proof. For any γ ∈ Γ, let nγ be the length of the stream corresponding to predicted active elements
V̂1(γ), . . . , V̂n(γ). By Lemma 7, the total query complexity is∑

γ∈Γ

|H|nγu(nγ , k) ≤
∑
γ∈Γ

log(n) · 2|V̂ (γ)| · u(n, k)

= 2(log n)u(n, k)
∑
a∈V̂

|Γ(a)|

= O(log(n) · u(n, k) · n · log k).

D.2 The full UPDATESOL subroutine

UPDATESOLFULL takes as input the strongly robust sets (Qγ,h
t , Rγ,h

t), for all guesses γ ∈ Γ and
h ∈ H . It maintains a data structure {(Bγ , Aγ , ηγ)}γ∈Γ where (Bγ , Aγ , ηγ) is the data structure
maintained by UPDATESOLMAIN over guess γ for OPT. UPDATESOLMAIN is called over all guesses
γ ∈ Γ such that there is at least one active element a ∈ Vt(γ). The precomputations given as input to
UPDATESOLMAIN with guess γ ∈ Γ are (Q

γ,η′
t

t , R
γ,η′

t
t) where η′t ∈ H is the closest guess in H to

the current prediction error ηt that has value at least ηt. Note that η′t is such that η′t + 2w ≥ k due to
the definition of H . The solution returned at time t by UPDATESOLFULL is the best solution found
by UPDATESOLMAIN over all guesses γ ∈ Γ.

Algorithm 7 UPDATESOLFULL

Input: function f : 2V → R, data structure A, constraint k, precomputations Pt =

{(Qγ,η
t , Rγ,η

t)}γ∈Γ,η∈H , time t, current prediction error ηt, V 1
t , V 2

t , V̂t

1: {Aγ}γ∈Γ ← A
2: η′t ← min{h ∈ H : h ≥ ηt}
3: for γ ∈ Γ such that |Vt(γ)| > 0 do
4: Aγ , Sγ ← UPDATESOLMAIN(f,Aγ , k, (Q

γ,η′
t

t , R
γ,η′

t
t), t, η′t, V

1
t (γ), V

2
t (γ), Vt−1(γ), γ)

5: A← {Aγ}γ∈Γ

6: S ← argmaxγ∈Γ:|Vt(γ)|>0 f(S
γ)

7: return A,S

Lemma 13. The UPDATESOLFULL algorithm has, over the n time-steps of the streaming phase, an
amortized query complexity per update of O

(
log2(k) · u(η + w + k, k)

)
.

Proof. For every γ ∈ Γ, we consider the following stream associated to γ: {(a′t, o′t)}nt=1 where
(a′t, o

′
t) = (at, ot) if γ ∈ Γ(at) and (a′t, o

′
t) = (null, null) otherwise. null is a dummy symbol

denoting an absence of an insertion or deletion. Let nγ be the number of insertion/deletions in this
new stream, i.e., nγ =

∑n
t=1 1[at ̸= null].

Using Lemma 5 the total query complexity due to a single phase corresponding to a (γ, ηγ) pair is
O(u((ηγ + w + k) log k, k) · (ηγ + w + k) log k). Next, note that there is a one-to-one mapping
between insertions/deletions to Aγ at line 9 or line 11 of UPDATESOL and elements of the stream

20

{(a′t, o′t)}nt=1. Thus, since a phase ends when |Ops⋆(A)| > ηγ/2 + w, all phases except the last
phase process at least ηγ/2 + w non-null elements from the stream {(a′t, o′t)}nt=1. Thus, if there are
at least two phases corresponding to nγ then the total query complexity over these ηγ/2+w non-null
elements is O(u(ηγ +w + k, k) · (ηγ +w + k) log k · nγ

ηγ/2+w). Since, ηγ/2 +w > k we have that
the amortized query complexity over nγ non-null elements is O(u(ηγ + w + k, k) · log k). We also
have that O(u(ηγ + w + k, k) · log k) = O(u(η + w + k, k) · log k) because either η + 2w > k
which implies that ηγ + w = O(η + w) or η + 2w < k in which case ηγ + w + k = O(k).

If there is only one phase, i.e. when nγ ≤ ηγ/2+w, then the amortized query complexity for the first
phase is upper bounded by u(nγ , k) = O(u(ηγ/2 + w, k)). Thus, the amortized query complexity
due to γ is O(u(η + w + k, k) log k), for any γ ∈ Γ. We get that the total query complexity is∑

γ∈Γ

O(u(η + w + k, k) · nγ · log k) =
∑
γ∈Γ

∑
a∈Γ(a)

O(u(η + w + k, k) log k)

=
∑
a∈V

∑
γ∈Γ(a)

O(u(η + w + k, k) log k)

= O(n log2 k) · u(η + w + k, k)

D.3 The main result

By combining the algorithmic framework (Algorithm 1) together with subroutines UPDATESOLFULL
and PRECOMPUTATIONSFULL, we obtain our main result.

Theorem 2. Algorithm 1 with subroutines UPDATESOLFULL and PRECOMPUTATIONSFULL is a dy-
namic algorithm that, for any tolerance w and constant ϵ > 0, achieves an amortized expected query
complexity per update during the streaming phase of O(poly(log η, logw, log k)), an approximation
of 1/2− ϵ in expectation, and a query complexity7 of Õ(n) during the precomputation phase.

Proof. The dynamic algorithm DYNAMIC used by the PRECOMPUTATIONS and UPDATESOL sub-
routines is the algorithm of Lattanzi et al. [20] with amortized expected update time u(n, k) =
O(poly(log n, log k)). By Lemma 13, the amortized expected query complexity is

O
(
log2(k) · u(η + 2w + k, k)

)
= O (poly(log(η + w + k), log k)) .

For the approximation, consider some arbitrary time t. Let γ⋆ = max{γ ∈ Γ : γ ≤ (1− ϵ)OPTt}.
Let OPT′t := maxS⊆Vt(γ⋆):|S|≤k f(S). We have that

OPT′t ≥ f(Ot ∩ Vt(γ
⋆)) ≥(1) f(Ot)−

∑
o∈Ot∩Vt(γ⋆)

f(o) ≥(2) f(Ot)− k · ϵγ
⋆

k
≥(3) (1− ϵ)OPTt

where (1) is by submodularity, (2) is by definition of Vt(γ
⋆), and (3) by definition of γ⋆. Consider

the calls to UPDATESOL by UPDATESOLFULL with γ = γ⋆. Let t′ be the time at which Aγ⋆

t

was initialized by UPDATESOL with precomputations (Qt′ , Rt′) = (Q
γ⋆,η′

t′
t′ , R

γ⋆,η′
t′

t′), where this
equality is by definition of UPDATESOLFULL.

Next, we show that the conditions to apply Lemma 4 are satisfied. By definition of
PRECOMPUTATIONSFULL and Lemma 6, (Qt′ , Rt′) are (d = 2(η′t′+2w), ϵ, γ⋆)-strongly robust with
respect to Vt(γ

⋆) with γ⋆ = γt′ . Since η′t′ ≥ ηt′ , we have that (Qt′ , Rt′) are (d = 2(ηold+2w), ϵ, γ⋆).
We also have that

γt′ ≤ (1− ϵ)OPTt ≤ OPT′t ≤ OPTt ≤ (1 + ϵ)γt′/(1− ϵ).

7We note that, despite the amortized query complexity of Lattanzi et al. [20] being in expectation, the
asymptotic bound on the precomputation query complexity can hold deterministically, instead of in expectation,
by forcing PRECOMPUTATIONSFULL to terminate if it has performed a number of queries that is larger than ϵ−1

times its expected number of queries (note that the precomputation query complexity only depends on known
parameters, n and k). By Markov’s inequality, such an early termination happens with probability at most ϵ.
Thus, even with no guarantees on the approximation achieved in these early termination cases, the loss in the
expected approximation caused by this forced termination is at most 1− ϵ.

21

Thus, with ϵ′ > 0 such that (1 + ϵ′) = (1 + ϵ)/(1 − ϵ), we get γt′ ≤ OPT′t ≤ (1 + ϵ′)γt′ . By
Lemma 3, DYNAMIC is a threshold-based algorithm. Thus, all the conditions of Lemma 4 are
satisfied and we get that the solution Sγ⋆

t returned by the call to UPDATESOL with γ = γ⋆ at time
t, where Aγ⋆

t was initialized by UPDATESOL at time t′ with γ = γ⋆, is such that E[f(Sγ⋆

t)] ≥
1−5ϵ′

2 γ⋆ ≥ (1 − ϵ) 1−5ϵ′

2 OPTt. Finally, since UPDATESOLFULL returns, among all the solutions
returned by UPDATESOL, the one with highest value, it returns a set St such that E[f(St)] ≥
E[f(Sγ⋆

t)] ≥ (1− ϵ) 1−5ϵ′

2 OPTt. Finally, the precomputation query complexity is by Lemma 12 with
u(n, k) = O(poly(log n, log k)).

22

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The theoretical contributions mentioned in the abstract and introduction are
formalized as theorems with complete proofs and we perform experiments validating the
theory.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in a separate section. The computational efficiency
of the proposed algorithms is clearly stated in the main theorems.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

23

Answer: [Yes]
Justification: We provide a comprehensive proof for all the theoretical results and state all
the assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: all the information needed for reproducibility of the experimental results is
included.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We are not submitting the code because one of the libraries we extensively
use/modify requires several conditions for distributing derivatives of their library. We did
not have time to satisfy all these conditions before the deadline. However, we have carefully
read these conditions and will definitely be able to meet these conditions before the potential
camera-ready deadline, at which point we would release our code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the information about the dataset and hyperparameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: we only conduct small scale experiments to validate our theoretical results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: we only compute small scale experiments which can be run within a few
minutes on a CPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: the main contribution of this work is theoretical and we do not anticipate any
negative societal impact of our model.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

26

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our experiments pose no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: we cite the code due to [20] used in our work and we respect the license of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

27

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No crowdsourcing involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

28

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Preliminaries
	The warm-up algorithm
	The UpdateSol subroutine
	The Precomputations subroutine
	The full algorithm
	Experiments
	Experimental Setup
	Experiment Results

	Limitations
	Missing proofs from Section 3
	Missing proof from Section 4
	Missing proofs from Section 5
	Missing proofs from Section 6
	The full Precomputations subroutine
	The full UpdateSol subroutine
	The main result

