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ABSTRACT

Solving partial differential equations (PDEs) by numerical methods meet compu-
tational cost challenge for getting the accurate solution since fine grids and small
time steps are required. Machine learning can accelerate this process, but struggle
with weak generalizability, interpretability, and data dependency, as well as suf-
fer in long-term prediction. To this end, we propose a PDE-embedded network
with multiscale time stepping (MultiPDENet), which fuses the scheme of numer-
ical methods and machine learning, for accelerated simulation of fluid flows. In
particular, we design a convolutional filter based on the structure of finite differ-
ence stencils with a small number of parameters to optimize, which estimates the
equivalent form of spatial derivative on a coarse grid to minimize the equation’s
residual. A physics block with a 4th-order Runge-Kutta integrator at the fine time
scale is established that embeds the structure of PDEs to guide the prediction. To
alleviate the curse of temporal error accumulation in long-term prediction, we in-
troduce a multiscale time integration approach, where a neural network is used to
correct the prediction error at a coarse time scale. Experiments across various PDE
systems, including the Navier-Stokes equations, demonstrate that MultiPDENet
can accurately predict long-term spatiotemporal dynamics, even given small and
incomplete training data, e.g., spatiotemporally down-sampled datasets. Multi-
PDENet achieves the state-of-the-art performance compared with other baseline
models, with over 5× speedup compared to classical numerical methods.

1 INTRODUCTION

Complex spatiotemporal dynamical systems, e.g., climate system (Schneider et al., 2017), fluid dy-
namics (Ferziger et al., 2019), and material science (Wang & Sun, 2018; Liu & Wang, 2019), are
fundamentally governed by partial differential equations (PDEs). To capture the intricate behaviors
of these systems, various numerical methods have been developed. Direct Numerical Simulation
(DNS) is a widely used method for solving PDEs. It requires specifying initial conditions (ICs),
boundary conditions (BCs), and PDE parameters, followed by discretizing the equations on a grid
using techniques like finite difference (FD), finite element (FE), finite volume (FV), or spectral
methods. Despite their accuracy, traditional numerical methods face significant challenges, particu-
larly high computational costs (Goc et al., 2021), when addressing with high-dimensional problems
or necessitating fine spatial and temporal resolutions.

Recent advances in deep learning have introduced neural-based approaches (Lu et al., 2021; Li
et al., 2021; Gupta & Brandstetter, 2023) for solving PDEs. These data-driven methods eliminate
the need for explicit theoretical formulations, enabling networks to learn underlying patterns directly
from data through end-to-end training. While promising, these approaches face notable challenges,
including a heavy dependence on large training datasets and limited generalization. For instance,
achieving accurate predictions becomes particularly challenging when models encounter unseen ICs
or scenarios beyond the training distribution.

A representative work in the field of scientific computing introduces a novel paradigm with Physics-
informed neural networks (PINNs) (Raissi et al., 2019), which incorporates physical prior knowl-
edge (such as PDE residuals and I/BCs) as constraints within the loss function. This approach allows
the network to fit the data while simultaneously maintaining a certain degree of physical consistency.
Variants of PINNs (Raissi et al., 2020; Wang et al., 2020; Eshkofti & Hosseini, 2023) have shown
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notable success across various domains, reducing the dependency on extensive datasets to some de-
gree. However, such methods still face scalability and generalizability challenges when applied to
complex nonlinear dynamical systems. Additionally, optimizing complex loss functions (Rathore
et al., 2024) and ensuring model interpretability remain challenges.

A series of approaches have been proposed to integrate physics into neural networks (NNs) to over-
come the above challenges. For instance, PeRCNN (Rao et al., 2022; 2023), which uses feature
map multiplication to construct polynomial combinations for approximating the underlying PDEs,
can capture the latent spatiotemporal dynamics even with low-resolution, noisy, and sparse data,
demonstrating strong generalizability. Nevertheless, this method suffers from error accumulation,
degrading its performance in long-term predictions. Another approach (Kochkov et al., 2021; Sun
et al., 2023), combining NNs with numerical methods, aims to accelerate the simulation process on
coarse grids. These hybrid methods leverage traditional solvers for stability and NNs for accuracy.
However, they often rely heavily on NN capabilities and often requires large amounts of data.

To overcome these limitations, we propose MultiPDENet, a PDE-embedded network that incorpo-
rates multiscale time-stepping (as shown in Figure 1), to efficiently simulate spatiotemporal dynam-
ics, e.g., turbulent fluid flows, on coarse spatial and temporal grids with limited data. Notably, it
integrates a trainable neural solver for precise predictions at micro time scales, while employing a
NN to correct errors at macro time steps. Additionally, by embedding PDEs, MultiPDENet offers
enhanced generalizability. The primary contributions of this work are summarized as follows:

• We developed MultiPDENet, a PDE-embedded network with multiscale time-stepping, for
accelerated fluid flow simulations on spatiotemporal coarse grids. By integrating neural
solver with PDEs, MultiPDENet achieves great generalizability and efficiency.

• Leveraging the structure of finite difference stencils, we introduced a symmetric convolu-
tional filter that approximates the equivalent form of derivatives on coarse grids, aiming to
reduce the residual error of the governing PDEs.

• Experimental results across various datasets, covering 1D and 2D equations (e.g., complex
reaction-diffusion processes and turbulent flows), demonstrate the effectiveness of MultiP-
DENet in accelerating long-term simulations.

2 RELATED WORK

Numerical Methods. Numerical methods have been extensively applied to solve PDEs. Approaches
such as FD (Thomas, 2013), FE (Zienkiewicz et al., 2005), and FV methods (Moukalled et al.,
2016) discretize the continuous domain into mesh grids, transforming PDEs into algebraic equations
that can be solved with high accuracy. However, these methods often require fine spatiotemporal
grids and substantial computational resources to achieve accurate solutions, particularly in high-
dimensional spaces. This leads to two main challenges: (1) the need for repeated computations when
conditions change (e.g., ICs); (2) the demand for fast simulations in many industrial applications.

Machine Learning Methods. Building on the success of machine learning in fields like natural lan-
guage processing (Vaswani, 2017) and computer vision (He et al., 2016), these techniques have also
been applied to solving PDEs. With abundant labeled data, it is possible to train end-to-end mod-
els to predict solutions. Representative works include ResNet (Lu et al., 2018; Ruthotto & Haber,
2020), CNN-based models (Bhatnagar et al., 2019; Stachenfeld et al., 2022; Gupta & Brandstetter,
2023), Transformers-based models (Cao, 2021; Geneva & Zabaras, 2022; Li et al., 2024) and Graph-
based models (Brandstetter et al., 2022b). Many notable neural operators (Lu et al., 2021; Li et al.,
2021; Wen et al., 2022; Rahman et al., 2023; Bonev et al., 2023), which learn a mapping between
functional spaces, enable the approximation of complex relationships in PDEs. While these meth-
ods show promise in learning complex dynamics and approximating solutions, they often require
substantial amounts of labeled data.

Physics-inspired Learning Methods. Recently, physics-inspired learning methods have demon-
strated impressive capabilities in solving PDEs, which can be classified into two categories accord-
ing to the way of adding prior knowledge: physics-informed and physics-encoded. The physics-
informed methods take PDEs and I/BCs as a part of the loss functions (e.g., the family of PINN
(Raissi et al., 2019; 2020; Wang et al., 2020; Tang et al., 2024), PhySR (Ren et al., 2023)). On the
other hand, the physics-encoded methods employ a different approach that preserves the structure of
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Figure 1: Schematic of MultiPDENet for learning Navier-Stokes flows. (a), Overall model architec-
ture. (b), Physics block. (c), learnable PDE block.

PDEs, ensuring that the model adheres to the given equations to capture the underlying dynamics,
e.g., EquNN (Wang et al., 2021), TiGNN (Hernández et al., 2023), and PeRCNN (Rao et al., 2023).
In addition, other related studies (Long et al., 2018; 2019; So et al., 2021; Kossaczká et al., 2021;
Kim & Choi, 2022) have explored the use of CNN as alternative spatial derivative operators for
approximating derivatives and capturing the dynamics of interest.

Hybrid Learning Methods. Hybrid learning methods combine the strengths of numerical ap-
proaches and NNs to improve prediction accuracy. For efficient modeling of spatiotemporal dy-
namics, these methods can be trained on coarse grids. Representative methods include FV-based
neural methods (Kochkov et al., 2021; Sun et al., 2023), FD-based neural methods (Zhuang et al.,
2021; Liu et al., 2024), and spectral-based neural methods (Dresdner et al., 2023; Arcomano et al.,
2022). While these approaches show efficacy in modeling spatiotemporal dynamics, their represen-
tation capacities are often limited by the fixed structure of their numerical components. As a result,
most of these models still require large amounts of training data.

3 METHODOLOGY

3.1 PROBLEM DESCRIPTION

Let’s consider a general spatiotemporal dynamical system governed by the following PDE:

ut = F(u,u2, . . . ,∇u,∆u, . . . ;λ) + f (1)

where u(x, t) ∈ Rn denotes the physical state in the spatiotemporal domain Ω× [0, T ]; ut the first-
order time derivative term; F(·) a linear/nonlinear functional parameterized by PDE parameters λ
(e.g., the Reynolds number Re); ∇ the Nabla operator is defined as [∂x, ∂y, ...]T; and f the source
term. Additionally, we define I(u,ut;x ∈ Ω, t = 0) = 0 and B(u,∇u, · · · ;x ∈ ∂Ω) = 0
specified ICs and BCs, where ∂Ω represents the domain boundary.

We aim to accelerate the simulation of fluid flows by using a PDE-embedded network with multi-
scale time stepping based on a limited training data (sparse in both spatial and temporal scales). The
model is capable of rapid simulation, achieving high solution accuracy while demonstrating strong
generalizability across varying ICs, source terms, complex domains, and PDE parameters.

3.2 MODEL ARCHITECTURE

In this section, we introduce MultiPDENet and show how our model efficiently captures the under-
lying spatiotemporal dynamics. As illustrated in Figure 1(a), predicting uk+1 from the input uk

involves two main components: the Physics block and the MaNN block.
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3.2.1 MULTI-SCALE FORWARD TIME STEPPING SCHEME

While the learnable neural solver can be used independently, its accuracy for long-term prediction
is limited due to error accumulation. To address this issue, we introduce a multi-scale time step-
ping scheme, incorporating micro-scale and macro-scale steps, to improve predictive accuracy and
enables fast prediction of PDE solutions on coarse spatiotemporal grids. Specifically, we define
two types of time stepping: micro-scale step and macro-scale step, to enhance the performance of
spatiotemporal dynamics prediction. At the macro scale, given the coarse solution uk at time tk,
MultiPDENet is expected to predict the next-step solution uk+1 at tk+1, which can be expressed as:

uk+1 = uk +

M∑
m=1

δūk
m + MaNN(uk,∆t, dx) (2)

where ∆t denotes the macro-scale time interval, and dx the spatial resolution of mesh grid. Here,
δūk

m is the incremental update produced by the Physics block (see Section 3.2.2) at each micro step,
as shown in Eq. (3), where M denotes the number of micro-scale time steps in one macro-scale step
(e.g., M = 4 in our study). The MaNN block (see Section 3.2.4) refines these incremental updates
generated by the Physics block on coarse grids, yielding the final update for the macro step.

3.2.2 PHYSICS BLOCK: A LEARNABLE NEURAL SOLVER

To accurately predict at the micro-scale step, we developed a neural solver, referred to as the Physics
Block, as illustrated in Figure 1(b). This solver is designed to ensure the stability (Hoffman &
Frankel, 2018), accuracy, and efficiency of its predictions by adhering to the Courant-Friedrichs-
Lewy (CFL) conditions (LeVeque, 2007). The Physics Block comprises three main components:
the Poisson Block, the PDE Block, and the MiNN Block. The solution update for each micro-scale
time step can be describe as ūk

m+1 = ūk
m + δūk

m, where

δūk
m =

∫ tk+mδt

tk+(m−1)δt
[B (ũ(τ),∇ũ(τ), · · · ;λ) + f(τ)] dτ + MiNN

(
ūk
m,Ξ

k
m(p, ∇̂û, ∇̂2û, ∇̂p, f , Re)

)
(3)

Here, ūk
m represents the intermediate state at m-th micro-scale step initialized at time tk (note that

ūk
1 = uk). We denote ũ(τ) ≜ u(x̃, τ), where x̃ depicts the coordinates of coarse grid. Moreover, λ

can be set as trainable if unknown. B represents the PDE block, used for approximatingF in Eq. (1).
To keep the accuracy and ensure the stability, the PDE block is designed based on the RK4 integrator
(see Appendix Section A.3) and consists of the correction block and a trainable filter bank. Since
the considered micro-scale time interval is relatively large, the MiNN block is used as a corrector
to refine the solution. More details can be found in Appendix Section A. In fact, the Physics block
can be used for prediction independently (e.g., the quantitative results for the NS dataset predictions
using purely the Physics block are presented in Table 3, labeled Model C).

PDE Block. The PDE block computes the residual of the governing PDEs. It incorporates a
learnable filter bank with symmetry constraints, which calculates derivative terms based on the cor-
rected solution produced by a correction block. These terms are then combined into the governing
PDEs, a learnable form of F in Eq. (1). This process is incorporated into the RK4 integrator (see
Appendix Section A.3) for solution update which can be expressed as

B
(
ūk
m, · · · ,∇ūk

m,∇2ūk
m, · · · ;λ

)
← F

(
ūk
m, · · · , ∇̂ˆ̄uk

m, ∇̂2 ˆ̄uk
m, · · · ;λ

)
(4)

where B denotes the PDE block, and ūk
m the coarse solution (aka, solution on coarse grids) at micro-

scale time tk +mδt. Here, ˆ̄uk
m refers to the neural-corrected state of the coarse solution, which is

obtained through the Correction block (see Appendix Section A.1 for details). This corrected state
ˆ̄uk
m is used to estimate spatial derivatives, namely, ˆ̄uk

m = NN(ūk
m). Note that ∇̂ and ∇̂2 represent

trainable Nabla and Laplace operators, respectively, each consisting of a symmetrically constrained
convolution filter, e.g., an enhanced FD kernel to approximate spatial equivalent derivatives. By uti-
lizing the RK4 integrator, we can project the coarse solution to the subsequent micro-scale time step.
Despite the reduced resolution causing some information loss, this learnable PDE block enables a
closer approximation of the equivalent form of the derivatives on coarse grids. This addition serves
as a fully interpretable “white box” element within the overall network structure.
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Poisson Block. In solving incompressible NS equations, the pressure term, p, is obtained by solv-
ing an associated Poisson equation. To compute the pressure field, we implemented a special-
ized pressure-solving module shown in Figure S1(a). This module solves the Poisson equation,
∆p = ψ(u), where ψ(u) = 2 (uxvy − uyvx) for 2D problems (the subscripts indicate the spatial
derivatives along xory directions). To compute the pressure, we employ a spectral method (Poisson
solver) based on ψ(ūk

m) to calculate p̄km. As shown in Figure S1(b), this approach dynamically
estimates the pressure field from the velocity inputs, removing the need for labeled pressure data.

3.2.3 ADAPTIVE FILTER WITH CONSTRAINT
0

0

0

0

0

0

0

0

0

1st-order
derivative filter

2nd-order
derivative filter

Figure 2: Symmetric filter

Traditional FD methods often yield inaccurate derivatives
on coarse grids. To address this, we propose a learnable fil-
ter with constraints that approximates equivalent derivatives
on coarse grids, minimizing the PDE residuals during train-
ing and thereby improving the model’s predictive accuracy.
By leveraging the symmetry of central difference stencils,
our filter maintains structural integrity while enhancing network flexibility. As shown in Figure 2,
we construct two 5 × 5 symmetric matrices, each requiring only six learnable parameters due to
symmetry constraints. These matrices are designed to compute the first-order (g′) and second-order
(g′′) derivatives, respectively. In the matrix of g′′, s = 4× (a3+a4+a5+a6)+2× (a1+a2). This
design leverages the structural properties of central difference methods. By satisfying the Order of
Sum Rules (Long et al., 2018), this filter can achieve up to fourth-order accuracy in approximating
the derivatives through the optimization of trainable parameters.

3.2.4 NN BLOCK

To alleviate the error accumulation during long-term predictions on coarse grids, we introduce the
MiNN and MaNN blocks, operating at micro- and macro-scales, respectively. The MiNN Block
employs a lightweight model (e.g., FNO, DenseCNN (Liu et al., 2024)) for efficient micro-step
predictions, whereas the MaNN Block delivers more accurate predictions at larger steps (Gupta &
Brandstetter, 2023). In this study, we utilized FNO as the MiNN block and UNet as the MaNN
block. The significance of these blocks is evident from the ablation studies presented in Table 3.

MiNN Block. The MiNN block is designed to rectify error accumulation during micro-scale time
step predictions. As shown in Figure 1(b) in the upper path, ūk

m is first corrected by the correction
block, and p̄km is computed by the Poisson block. Inputs, including solution states {ūk

m, p̄
k
m} and

their derivative terms, forcing term, and Reynolds number, are fed into the MiNN block (see Figure
S1(d)). The MiNN block continuously refines the PDE block’s outputs on the fly. For detailed
information of the MiNN block settings, please refer to Appendix Table S5.

MaNN Block. Although the Physics block offers real-time corrections for the MiNN outputs, errors
still accumulate in long-term predictions. To mitigate error accumulation in long-term predictions
given training data sampled at large time steps (e.g., 128∆t for the NS dataset), we introduce the
MaNN block. As depicted in Figure 1(a), the MaNN block takes the current velocity field uk as
input, and updates the solution uk+1 which is obtained by integrating the outputs from both the
upper and lower paths. During the backpropagation, the MaNN block learns to correct the coarse
solution output of the Physics block in real time, ensuring that their combined results more closely
align with the ground truth. The configuration details for this block are found in Appendix Table S6.

4 EXPERIMENT

In this section, we validate the performance of our method against several baseline models on various
PDE datasets. We then perform generalization tests across different external forces (f ), Reynolds
numbers (Re), and domain sizes on the Kolmogorov flow (KF) dataset. Finally, we present ablation
studies to demonstrate the contributions of each component in our model.

4.1 SETUP

Dataset. We generate the data using high-order FD/FV methods with high resolution under peri-
odic boundary conditions and then downsample it spatially and temporally to a coarse grid. The
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Table 1: Overview of datasets and training configurations. Note that “→” denotes the downsampling
process from the high resolution (simulation) to the low resolution (training and testing).

Dataset Numerical Spatial Time Steps # of Training # of Testing Macro-step Micro-step
Method Grid (Temporal Grid) Trajectories Trajectories Rollout Rollout

KdV Spectral 256 → 64 10000 → 2000 3 10 10 4
Burgers FD 1002 → 252 2000 → 200 5 10 10 4
GS FD 1282 → 322 4000 → 200 3 10 1 4
NS FV 20482 → 642 153600 → 1200 5 10 1 4
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Figure 3: An overview of the comparison between our MultiPDENet and baselines, including pre-
dicted solutions (left), correlation curve (middle), and error distributions (right). (a)-(c) show the
qualitative results on KdV. (d)-(f) show the qualitative results on Burgers. (g)-(i) show the qualita-
tive results on GS. These PDE systems are trained with grid sizes of 64, 25×25, 32×32, respectively.

low-resolution dataset is used for both training and testing. We consider four distinct dynamical
systems: Korteweg-de Vries (KdV), Burgers, Gray-Scott (GS), and Navier-Stokes (NS) equations.
Each dataset is divided into 90% for training and 10% for validation. We segment trajectories into
data series, where each sample includes multi snapshots (e.g., for the KdV dataset, the sample length
is set to 10, as detailed in Table 1) separated by a time step ∆t, the 2nd to the last snapshot serves as
the training labels. During training, we use only 3–5 trajectories for each system, and evaluate them
on 10 distinct trajectories. For further details, please refer to Appendix Section B.

Model training. Our objective is to accelerate flow simulations with all computations anchored
to coarse grids. During training, the model solely predicts the solutions for subsequent time steps,
employing Mean Squared Error (MSE) as the loss metric. Unlike PINNs, our MultiPDENet directly
embeds PDEs into its architecture, resulting in a loss function that exclusively comprises data loss,
given by: J (λ) = 1

BN

∑B
i=1

∑N
j=1MSE

(
Ȟij ,Hij

)
, where Ȟij denotes the coarse solution pre-

dicted by model rollout for the j-th sample in the i-th batch, and Hij is the corresponding ground
truth. Here,N denotes the number of batches,B the batch size, and λ the trainable PDE parameters.

Model generalization. The generalization of MultiPDENet is evaluated across ICs, PDE param-
eters (e.g., Re), force terms, and computational domain sizes (e.g., different mesh grids). The
model integrates ICs through its time-marching mechanism, ensuring robust generalization when
trained effectively. The Reynolds number (Re) is represented via a two-dimensional embedding,
Reembb = 1

Re · (a ⊗ b), using trainable vectors a and b. This embedding, applied in both the
PDE and MiNN blocks, reduces error propagation from the diffusion term on coarse grids and en-
hances generalization acrossRe values. The force term is incorporated into the learnable PDE block
and the MiNN block, where it serves as both a PDE feature and an input feature map as shown in
Figure S1(c), enabling joint learning of force variations for better generalization.
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Evaluation metrics. We evaluate the performance of our model using four metrics: Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), Mean Normalized Absolute Difference (MNAD),
and High Correlation Time (HCT). For detailed definitions, please refer to Appendix Section D.

Baseline models. To ensure a comprehensive comparison, we selected several baseline models,
including FNO (Li et al., 2021), UNet (Gupta & Brandstetter, 2023), TSM (Sun et al., 2023), LI
(Kochkov et al., 2021), DeepONet (Lu et al., 2021), and PeRCNN (Rao et al., 2023). Details are
found in Appendix Section E.

4.2 SOVLING PDE SYSTEMS

Table 2: Results for MultiPDENet and baselines. For KdV,
Burgers, and GS, we inferred upper time limits of 50 s, 1.4 s,
and 1200 s, for the test set as the system dynamics stabilized
within these trajectories. These time limits were used in
HCT to calculate the evaluation metrics.

Case Model RMSE (↓) MAE (↓) MNAD (↓) HCT (s)

KdV

FNO 0.9541 0.4607 0.3469 10.0833
PhyFNO 0.4120 0.3022 0.2139 13.90

UNet 1.9887 1.5722 1.6158 3.1250
DeepONet NaN NaN NaN 0.1500

MultiPDENet (Ours) 0.1536 0.1110 0.0833 39.8
Improvement (↑) 62.7% 63.3% 61.1% 186.3%

Burgers

FNO 0.0980 0.0762 0.062 0.3000
UNet 0.3316 0.2942 0.2556 0.0990

DeepONet 0.2522 0.2106 0.1692 0.0020
PeRCNN 0.0967 0.1828 0.1875 0.4492

MultiPDENet (Ours) 0.0057 0.0037 0.0031 1.4000
Improvement (↑) 94.1% 95.1% 95.0% 211.7%

GS

FNO 8774 1303 1303 270
UNet NaN NaN NaN 20

DeepONet 0.4113 0.2961 0.2898 568
PeRCNN 0.1763 0.1198 0.1198 640

MultiPDENet (Ours) 0.0573 0.0294 0.0298 1400.0
Improvement (↑) 67.5% 75.5% 75.1% 118.8%

NS

FNO 1.0100 0.7319 0.0887 2.5749
UNet 0.8224 0.5209 0.0627 3.9627

LI NaN NaN NaN 3.5000
TSM NaN NaN NaN 3.7531

DeepONet 2.1849 1.0227 0.1074 0.1126

MultiPDENet (Ours) 0.1379 0.0648 0.0077 8.3566
Improvement (↑) 83.2% 87.6% 87.7% 110.9%

KdV. The primary challenge of
this dataset lies in accurately captur-
ing the complex interplay between
nonlinearity and dispersion, leading
to phenomena like soliton formation
(Gardner et al., 1967). As shown
in Figure 3(a), each baseline model
struggles to produce accurate predic-
tions, with DeepONet exhibiting sig-
nificant divergence. In contrast, Mul-
tiPDENet demonstrates superior ac-
curate predictions for ICs outside the
training range. The correlation curve
in Figure 3(b) highlights the signif-
icantly higher correlation of Multi-
PDENet compared to the baselines.
The error distribution in Figure 3(c)
confirms its lower error levels. Table
2 shows our model’s generalizabil-
ity, with performance improvements
ranging from 61.1% to 186.3%.

Burgers. As shown in Figure 3(d),
the solution snapshots predicted by MultiPDENet are significantly more accurate than those of the
baseline models. The baseline models, limited by the sparse training data, produce incorrect pre-
dictions. The correlation curve in Figure 3(e) shows that MultiPDENet maintains a high correlation
with the ground truth throughout the prediction, while other baseline models diverge. This is further
evidenced by the error distribution in Figure 3(f), demonstrating that MultiPDENet’s error is over an
order of magnitude lower than that of the baselines. Table 2 confirms these findings, showing that
MultiPDENet achieves improvements exceeding 94.1% across all evaluation metrics.

GS. This reaction-diffusion system is highly nonlinear, making it challenging to capture its complex
patterns (see Figure 3(g)). Only MultiPDENet accurately predicts the trajectory evolution. The base-
line models struggle to learn the spatiotemporal dynamics, and even PeRCNN, despite its embedded
physics, produces inaccurate predictions due to the limited and sparse training data. Figure 3(h)
demonstrates the superior correlation of MultiPDENet’s predictions with the ground truth. The er-
ror analysis in Figure 3(i) reveals significantly lower error levels for MultiPDENet, often by 1 to 2
orders of magnitude smaller compared to the baselines. Table 2 further validates this observation,
with MultiPDENet achieving improvements of 67.5% to 118.8% over the best baseline.

NS. We evaluate a KF with Re = 1000 across different ICs, governed by the NS equation. Figure
4(a) shows the trajectory snapshots predicted by MultiPDENet and the baseline models over 10 s.
Our model outperforms DNS 512, accurately capturing both global and local correction patterns.
The neural methods, particularly FNO, exhibit poor generalization, producing granular and erro-
neous solutions. Among the Physics + ML baselines, TSM performs the best, but starts to produce
incorrect patterns at t = 5 s due to error accumulation. The correlation curve in Figure 4(b) supports
these findings. Our model also achieves a spectrum energy distribution closely matching the ground
truth (see Figure 4(c)). Table 2 highlights a performance improvement of over 83.2%. Even with
20% less training data, our model still maintains strong generalizability (see Appendix Table S3).
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Figure 4: Comparison of MultiPDENet and baseline models on Kolmogorov flow with Re = 1000.
(a) shows the evolution of predicted vorticity fields for reference, MultiPDENet and baselines, start-
ing from the same initial velocities. (b) shows the correlation curve across 500 time steps. (c) shows
the scaled energy spectrum scaled by k5 averaged between time steps 100 and 500.

4.3 MODEL GENERALIZATION

To assess our model’s ability to capture the underlying dynamics, we conducted generalization tests
on the KF flow dataset. The model was initially trained on 5 sets of trajectories, where the forcing
term is defined as f = sin(4y)ηx − 0.1u with Re = 1000 and ηx = [1, 0]T . After training, we
tested MultiPDENet on 10 different sets of trajectories, each with varying Reynolds numbers (Re)
and forcing terms (f ), to evaluate its performance across a range of different ICs.

Generalization test on Reynolds numbers. Firstly, we evaluate the generalizability of MultiP-
DENet across four different Reynolds numbers: Re = {500, 800, 1600, 2000}. The varying Re
values result in trajectories with differing levels of complexity. Figure 5(a) displays the accurate
predictions made by our model at time step 300 for different Re. Figure 5(b) shows the correlation
curves between the predicted and ground truth trajectories, while Figure 5(c) highlights the error
distributions, which remain consistently below 0.1, indicating a low error level.

Generalization test on external forces. Next, we performed the generalization test using 4 distinct
external forces. As shown in Figure 5(d), MultiPDENet accurately predicts the trajectories for all
external forces. Notably, the downward trend in the correlation curve for f2 parallels the behavior
observed in Figure 4(b), likely because f alters only the periodic function without changing the wave
number. The error analysis in Figure 5(e) confirms that the error levels remain below 0.1.

In summary, MultiPDENet demonstrates remarkable generalizability, showcasing its ability to cap-
ture the underlying dynamics across multiple temporal scales. The embedded learnable PDE module
within our model is crucial for enabling robust and accurate predictions.

4.4 TEST ON FLOW WITH Re = 4000

Turbulence at highRes presents significant challenges for prediction due to its nonlinearity and com-
plex vortex structures. To further demonstrate the superior capability of our model, we conducted an
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Figure 7: MultiPDENet applied to a larger domain. (a) Predicted trajectories within 4π × 4π. (b-c)
Correlation and error distribution comparison with the numerical method.

additional experiment with a high Reynolds numberRe = 4000 (see details in Table S2) maintaining
the experimental setup of Section 4.1. After training, the model was tested on 10 trajectories with
new ICs. Figure 6(a) illustrates the snapshots predicted by MultiPDENet over 600 timesteps, demon-
strating sustained accuracy even at time step 450. The correlation curve in Figure 6(b) highlights
the superiority of our model compared to DNS 1024. The error analysis in Figure 6(c) confirms
this performance, with errors consistently below 0.01. These results demonstrate the effectiveness
of MultiPDENet for higher Reynolds number, e.g., Re = 4000, within domain [0, 2π]2.

4.5 TEST ON FLOW WITHIN LARGER DOMAINS

We extend the spatial domain from [0, 2π]2 to [0, 4π]2 to further evaluate our model’s generalizabil-
ity over larger mesh grids in a more complex scenario. Larger domains introduce diverse physical
phenomena, challenging the model to capture global and local dynamics on coarse grids. Using the
same 64×64 grid, we tested our trained model on 10 unseen trajectories (details in Appendix B). As
shown in Figure 7(a), the snapshots over 300 time steps remain accurate. The correlation curve in
Figure 7(b) demonstrates that our model’s performance closely matches or exceeds DNS 1024. The
error distribution in Figure 7(c) shows error levels comparable to DNS 1024. Notably, our model
achieves a speedup of 49× compared to the FV-based DNS method.
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4.6 ABLATION STUDY Table 3: Results of the ablation study.
Ablated Model RMSE (↓) MAE (↓) MNAD (↓) HCT (s)

Model A 0.1601 0.0711 0.0085 7.904
Model B 0.2432 0.1156 0.0137 7.8633
Model C 0.2632 0.1402 0.0186 7.3146
Model D 0.2503 0.1410 0.0145 7.0783
Model E 0.2958 0.1453 0.0180 6.6856
Model F 0.4338 0.2401 0.0285 5.9768
Model G NaN NaN NaN 1.4193
Model H 1.2023 0.9256 0.1122 0.6227
Model I 0.4357 0.2321 0.0278 6.2481

MultiPDENet 0.1379 0.0648 0.0077 8.3566

To quantify the contribution of each mod-
ule, we conducted ablation experiments on
the KF dataset. Specifically, we compared
the following model variations: (1) Model
A (no Poisson block); (2) Model B (no fil-
ter structure constraint); (3) Model C (only
Physics block for prediction); (4) Model D
(FD convolution instead of symmetric fil-
ter); (5) Model E (no correction block); (6)
Model F (no MiNN block); (7) Model G (no MaNN block); (8) Model H (no Physics block); (9)
Model I (forward Euler); and (10) the full model.

As shown in Table 3, removing the Poisson block degrades our model’s performance, emphasizing
the importance of decoupling p from u in the NS equation. Relaxing the filter structure constraint
also leads to performance degradation, highlighting the effectiveness of our proposed kernel for
PDE solution. Using only the physics block for prediction is feasible, but yields significantly lower
performance compared to the full model.

Replacing the convolution kernel with FD stencils results in poorer performance, indicating that
fixed-value FD kernels are unsuitable for coarse grids. Omitting the correction block also degrades
the model prediction, highlighting the necessity of field correction in coarse grid scenarios. While
the model can still accurately predict up to 5.9 s without the MiNN block, the error increases by
nearly 4×, suggesting that training on micro-scale time steps is insufficient for long-term prediction.

Removing the MaNN block limits the model to accurate predictions at micro-scale time steps, but it
fails to maintain stability at macro-scale time steps. Errors accumulate rapidly, leading to instability
and divergence of predictiopn. This underscores the importance of the MaNN block for long-term
stability. Without the Physics block, the model struggles to make accurate predictions with limited
sparse training data, relying solely on the neural network namely, U-Net. This demonstrates the
Physics block’s crucial role in long-term prediction capabilities. Using the forward Euler integrator
instead of RK4 leads to a significant decrease in prediction accuracy. Therefore, RK4 was employed
for the micro-scale steps to effectively ensure the stability of our model. In summary, all components
of MultiPDENet contribute meaningfully to its performance and are essential for its success.

5 CONCLUSION
Table 4: Computational time for a given accu-
racy (e.g., correlation≥ 0.8) on the NS dataset.

Iterm Re = 1000 Re = 4000 x ∈[0,4π]2

DNS 1024 135 s 130 s 133 s

MultiPDENet 26 s 19 s 21 s

Speed up 5× 7× 6×

We introduce an end-to-end physics-encoded net-
work (aka, MultiPDENet) with multi-scale time
stepping for accelerated simulation of spatiotem-
poral dynamics such as turbulent flows. MultiP-
DENet consists of a multi-scale temporal learning architecture, a learnable physics block for solu-
tion prediction at the fine time scale, where trainable symmetric filters are designed for improved
derivative approximation on coarse spatial grids. Such a method is capable of long-term predic-
tion on coarse grids given very limited training data. MultiPDENet outperforms other baselines
through extensive tests on fluid dynamics and reaction-diffusion equations. In particular, such a
model excels in generalizability over ICs, Reynolds numbers, and external forces in the turbulent
flow experiments. MultiPDENet also exhibits strong stability in long-term prediction of turbulent
flows, effectively capturing both global and local patterns in larger computational domains. We also
tested the computational efficiency of trained MultiPDENet for accelerated flow prediction (more
details shown in Appendix Section F.2). For a certain given accuracy (e.g., correlation ≥ 0.8), Mul-
tiPDENet achieves ≥ 5× speedup compared with GPU-accelerated DNS (Table 4), e.g., JAX-CFD,
where all the tests were performed on a single Nvidia A100 80G GPU. However, MultiPDENet still
faces some unresolved challenges. Firstly, the model currently only handles regular grids, due to the
limitation of convolution operation used in the model. In the future, we aim to address this issue by
incorporating graph neural networks to manage irregular grids. Secondly, the model has only been
currently tested on 1D and 2D problems . We will extend it to 3D systems in our future work.
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IMPACT STATEMENT

The aim of this research is to develop a novel physics-encoded learning scheme to accelerate predic-
tions and simulations of spatiotemporal dynamical systems. This method can be applied to various
fields, including weather forecasting, turbulent flow prediction, and other simulation tasks. Our
work is solely intended for scientific purposes and poses no potential ethical risks.

REPRODUCIBILITY

Our model is easily reproducible, with key training details, data details, and model settings provided
in the Appendix. The code (which will be made publicly available after peer review) can further
help researchers in replicating our results.
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APPENDIX

A THE DETAILS OF MULTIPDENET

A.1 CORRECTION BLOCK

The correction block leverages a neural network to refine the coarse solution, with the Fourier Neural
Operator (FNO) (Li et al., 2021) as the correction mechanism within this block. FNO functions by
decomposing the input field into frequency components, processing each frequency individually,
and reconstructing the modified spectral information back into the physical domain via the Fourier
transform. This layer-wise update process is expressed as:

vl+1(x̃) = σ
(
Wlvl(x̃) +

(
K(ϕ)vl

)
(x̃)

)
, (S1)

where vl(x̃) denotes the latent feature map at the l-th layer, defined on the coarse grid x̃. The
initial feature map is v0(x̃) = P (ūk

m), where P is a local mapping function that projects ūk
m

into a higher-dimensional space. The kernel integral transformation is defined as K(ϕ)(z) =
iFFT(Rϕ · FFT(z)), which applies the Fourier transform, spectral filtering via Rϕ, convolution
in the frequency domain, and the inverse Fourier transform to the latent feature map z. Here, ϕ rep-
resents the trainable parameters, σ(·) is the GELU activation function, and Wl denotes the weights
of the linear layer. After passing through an L-layer FNO, the refined coarse solution is computed as
ˆ̄uk
m = Q(vL(x̃)), where Q projects the latent representation of the final layer back into the original

solution space.

In the correction block, we set L = 2. For the Burgers equation, we configure the model with modes
= 12, width = 12, and a projection from 12 channels to 50 channels. For the GS case, we use the
same configuration: modes = 12, width = 20, with a projection from 20 channels to 50 channels.
For the KdV equation, the setup is defined as modes = 32 and width = 64, with a projection from 64
channels to 128 channels. The NS case, however, requires a different setup: modes = 25, width =
20, with a projection from channel = 20 to channel = 128.

A.2 PHYSICS BLOCK

To accurately predict at the micro-scale step, we developed a neural solver called the Physics Block,
ensuring stability, accuracy, and efficiency through adherence to the Courant-Friedrichs-Lewy (CFL)
conditions (LeVeque, 2007). The Physics Block comprises three key components: the Poisson Block
(Figure S1a-b), the PDE Block (Figure 1c), and the MiNN Block (Figure S1c).

Poisson Solver. The pressure field is computed using the spectral method, which involves solving
the Poisson equation:

∆p = ψ(u). (S2)

Here, ψ(u) = 2 (uxvy − uyvx) represents the source term for the pressure.

Applying the Fast Fourier Transform (FFT) to Eq. (S2), we obtain:

−(φ2
x + φ2

y)p
∗ = ψ∗(u), (S3)

a

Construct Poisson
Solver

b

Filter
Bank

Poisson Block

I FFT IFFT

FFT      - Fast Fourier Transform
IFFT     - Inverse Fast Fourier Transform

- Wavenumbers in the    and    direction

Poisson Solver c

Gather feature terms
 

Neural
Network

Filter
Bank

          Block

O

I

Figure S1: Components of Physics Block. (a), Poisson block. (b), Poisson solver. (c), MiNN block.
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Figure S2: Periodic BC padding.

where φx and φy are the wavenumbers in the x and y directions, respectively. Assuming φ2
x+φ

2
y ̸=

0, we can solve for the pressure in the frequency domain:

p∗ =
ψ∗(u)

−(φ2
x + φ2

y)
. (S4)

Finally, the pressure field is recovered in the spatial domain using the inverse FFT (iFFT):
p = iFFT [p∗] . (S5)

This spectral method offers an efficient approach to calculating the pressure field without the need
for labeled data or training.

BC encoding. To ensure that the solution obeys the given periodic boundary conditions and that
the feature map shape remains unchanged after differentiation, we employ periodic BC padding (see
Figure S2) in our architecture. This method of hard encoding padding not only guarantees that the
boundary conditions are periodic, but also improves accuracy.

A.3 RK4 INTEGRATION SCHEME

RK4 is a widely used numerical integration method for solving ordinary differential equations
(ODEs) and PDEs, commonly employed as a time integration solver. It provides a balance be-
tween computational efficiency and accuracy by calculating intermediate slopes at various points
within each time step. The general numerical integration method for time marching from utj to
utj+1

can be written as:

uj+1 = uj +

∫ tj+1

tj

B(uj(x̃, τ))dτ. (S6)

Among them, uj+1 and uj are solutions at time j+1 and j. RK4 is a high-order integration scheme,
which divides the time interval into multiple equally spaced small time steps to approximate the
integral. The final update of the above state change can be written as:

r1 = B (uj , tj) ,

r2 = B
(
uj +

δt

2
× r1, tj +

δt

2

)
,

r3 = B
(
uj +

δt

2
× r2, tj +

δt

2

)
,

r4 = B (uj + δt× r3, tj + δt) ,

uj+1 = uj +
1

6
δt(r1 + 2r2 + 2r3 + r4).

(S7)
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Table S1: Settings for generating datasets.

Parameters / Case KdV Burgers GS NS
DNS Method Spectral FD FD FV
Spatial Domain [0, 64] [ 0, 1]2 [0, 1]2 [0, 2π]2

Calculate Grid 256 1002 1282 20482

Training Grid 64 252 322 642

Simulation dt (s) 1.00× 10−2 1.00× 10−3 2.00× 10−3 2.19× 10−4

Warmup (s) 0 0.1 0 40
Training data group 3 5 3 5
Testing data group 10 10 10 10
Spatial downsample 4× 16× 16× 1024×
Temporal downsample 5× 10× 20× 128×

where δt denotes the step size and r1, r2, r3, r4 represent four intermediate variables (slopes). The
global error is proportional to the step size to the fourth power, i.e., O(δt4).

B DATA DETAILS

KdV. The Korteweg-de Vries (KdV) equation is a well-known nonlinear PDE used to describe the
movement of shallow water waves with small amplitude in a channel. It models the dynamics of
these waves and is particularly noted for its ability to represent solitary waves, or solutons, given by:

∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3
= 0, (S8)

where u = u(x, t) represents the wave amplitude as a function of position x and time t. u∂u
∂x

accounts for the nonlinear effects, while ∂3u
∂x3 captures the dispersive effects in the system. The

equation illustrates how a balance between these two effects leads to the formation of solitary waves,
or solitons, that maintain their shape over long distances.

To generate the dataset, we employ the method of lines (MOL) using pseudospectral methods to
compute the spatial derivatives (Brandstetter et al., 2022a). The dataset is initially generated on a
grid of 256 points and then downsampled to a grid of 64 points for numerical experiments. The
simulation timestep is set to dt = 1 × 10−2 seconds, with the total simulation duration set to 100
seconds. For training, we use 3 sets of data, each comprising 1000 timesteps over ∆t = 5dt, along
with ten additional testing sets with different ICs.

Burgers. This equation models the behavior of a viscous fluid (Kumar, 2023), incorporating both
nonlinear dynamics and diffusion effects. It finds extensive applications across various scientific
disciplines, including fluid mechanics, materials science, applied mathematics and engineering. The
equation is expressed as follows:

∂u

∂t
= ν∇2u− u ·∇u, t ∈ [0, T ] (S9)

where u = {u, v} ∈ R2 represents the fluid velocities, ν is the viscosity coefficient set to 0.002, and
∆ is the Laplacian operator.

As shown in Table S1, we generate the dataset using the finite difference method with a 4th-order
Runge–Kutta time integration (Rao et al., 2023) and periodic boundary conditions over the spatial
domain x ∈ [0, 1]. The data is initially generated on a 1002 grid and subsequently downsampled to a
252 grid for use in numerical experiments. The simulation timestep is set to dt = 1×10−3 seconds,
with a total duration of T = 1.4 seconds. During the training stage, we employ five trajectories with
∆t = 10δt, each consisting of 140 snapshots. In the testing stage, we use ten different trajectories,
each containing 140 snapshots

GS. The Gray-Scott (GS) reaction-diffusion model is a system of PDEs that describes the inter-
action and diffusion of two reacting chemicals. It is known for its ability to produce intricate and
evolving patterns, making it a popular model for studying pattern formation. It is widely used in
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Table S2: Settings for generating the Navier-Stokes (NS) datasets.

Dataset Grid Spatial Domain Re Warmup time ∆t Innerstep

f1 ∼ f4 20482→ 642 [0, 2π]2 1000 40 2.1914×10−4 32
Re = 500 20482→ 642 [0, 2π]2 500 40 2.1914×10−4 32
Re = 800 20482→ 642 [0, 2π]2 800 40 2.1914×10−4 32
Re = 1000 20482→ 642 [0, 2π]2 1000 40 2.1914×10−4 32
Re = 1600 20482→ 642 [0, 2π]2 1600 40 2.1914×10−4 32
Re = 2000 20482→ 642 [0, 2π]2 2000 40 2.1914×10−4 32
Re = 4000 40962→ 642 [0, 2π]2 4000 40 1.0957×10−4 32
Re = 1000 40962→ 642 [0, 4π]2 1000 40 1.0957×10−4 32

fields such as chemistry, biology, and physics to simulate processes like chemical reactions and
biological morphogenesis. The equation is expressed by:

∂u

∂t
= Du∆u− uv2 + α(1− u),

∂v

∂t
= Dv∆v + uv2 − (α+ κ)v,

(S10)

where u and v denote the concentrations of two distinct chemical species, withDu andDv indicating
their respective diffusion coefficients. The first equation models the change in the concentration of
u over time. The term Du∆u represents the diffusion of u, −uv2 describes the reaction between u
and v, and α(1−u) represents the replenishment of u based on the feed rate α. The second equation
models the evolution of v, where Dv∆v accounts for diffusion, uv2 represents the creation of v
from the reaction with u, and −(α+ κ)v describes the decay of v, with κ as the decay rates.

We also utilize the RK4 time integration method for dataset generation. In this case, we assign the
valuesDu = 2.0×10−5,Dv = 5.0×10−6, α = 0.04, and κ = 0.06. The dataset is generated using
the finite difference method on a 1282 grid with periodic boundary conditions, spanning the spatial
domain x ∈ [0, 1]2. To generate different ICs, we first define a grid based on the spatiotemporal
resolution and initialize the concentrations of two chemicals. By setting different random seeds and
adding varied random noise, we create unique ICs. The simulation uses a timestep of dt = 0.5 s
over a total duration of T = 1400 seconds. The data is then downsampled to a 322 grid, and the
timestep is increased to 10 seconds (∆t = 20dt) for ground truth creation. We utilize three training
trajectories, each with 180 snapshots, and ten additional testing sets with varying ICs.

NS. The Navier-Stokes (NS) equations are fundamental to the study of fluid dynamics, govern-
ing the behavior of fluid motion. In this paper, we focus on a two-dimensional, incompressible
Kolmogorov flow with periodic boundary conditions, expressed in velocity-pressure form as:

∂u

∂t
+ (u ·∇)u =

1

Re
∇2u−∇p+ f , t ∈ [0, T ],

∇ · u = 0,
(S11)

where u = {u, v} ∈ R2 denotes the fluid velocity vector, p ∈ R represents the pressure, and Re is
the Reynolds number that characterizes the flow regime. The Reynolds number serves as a scaling
factor in the NS equations, balancing the inertial forces, represented by the advection term (u ·∇)u,
with the viscous forces, captured by the Laplacian term ∆u. When Re is low, the flow remains
predominantly laminar and smooth due to the dominance of the viscous forces. Conversely, at high
Reynolds numbers, the inertial forces take precedence, leading to a more chaotic and turbulent flow
behavior.

To create the dataset, we follow the approach outlined in JAX-CFD (Kochkov et al., 2021). We
simulate data using the Finite Volume Method (FVM) on a fine grid with a time step of dt (e.g., Re
= 1000, 2048 × 2048). This data is then downsampled to a coarse grid with ∆t = 128dt (e.g., Re
= 1000, 64 × 64) to serve as the ground truth. Different ICs are generated by introducing random
noise into each component of the velocity field and subsequently filtering it to obtain a divergence-
free field with the desired properties. For training, we utilize only five groups of labeled data with
4800 snapshots, while testing involves ten sets of trajectories. The model performance tests include
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Table S3: Performance metrics under different noise levels during training.
Training RMSE MAE MNAD HCT (s)
- 20% data 0.1935 0.0958 0.0113 8.1392
+ 0.1% noise 0.2083 0.1014 0.0123 8.0431

normal 0.1379 0.0648 0.0077 8.3566

Table S4: Performance metrics for different NN blocks.
Model RMSE MAE MNAD HCT
Model-a NaN NaN NaN 0.8846
Model-b NaN NaN NaN 5.2930
Model-c 0.2575 0.1507 0.0191 7.2930
Model-d 0.1564 0.0703 0.0083 8.0525
Model-e 0.2479 0.1242 0.0197 7.6346

MultiPDENet 0.1379 0.0648 0.0077 8.3566

trajectories with different Reynolds numbers Re = {500, 800, 1600, 2000, 4000}, different external
forces f1 = cos(2y)ηx −0.1u, f2 = 0 f3 = cos(4y)ηx −0.1u, f4 = sin(4y)ηx −0.4u, and a larger
computational domain x ∈ [0, 4π]2. The detailed dataset parameters are shown in Table S2.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 LESS DATA AND ADD NOISE

To evaluate our model’s robustness against missing data and noise, we conducted experiments on
the NS equation using five sets of trajectories (5×1200×2×64×64). We tested two conditions:
(1) randomly removing 20% of snapshots and (2) adding 0.1% Gaussian noise during training. As
shown in Table S3, the model’s performance was only slightly impacted in Experiment 1, with low
error rates. In Experiment 2, HCT remained above 8 s. These results highlight the model’s strong
generalization ability even under challenging conditions.

C.2 PARAMETRIC EXPERIMENTS ON MINN BLOCK AND MANN BLOCK

To investigate the role of the NN blocks in our model, we conducted additional comparative experi-
ments with the following configurations:

• Model-a: the MiNN block was set to UNet and the MaNN block to FNO;
• Model-b: both the MiNN block and the MaNN block were set to FNO;
• Model-c: both blocks were set to FNO with roll-out training applied at the macro step (with

an unrolled step size of 8);
• Model-d: the MiNN block was set to DenseCNN and the MaNN block to UNet;
• Model-e: the MiNN block was set to FNO while the MaNN block was set to Swin Trans-

former (Liu et al., 2021).

All other experimental settings were kept consistent, and the results are presented in Table S4.
Model-a and Model-b encountered NaN values, which can be attributed to the MaNN Block re-
quiring a model capable of robust predictions at the macro step. Without such a model, multi-step
roll-out training (as in Model-c) becomes necessary to enhance the model’s stability in long-term
predictions. When a strong predictive module is employed at the macro step (e.g., UNet), the MiNN
Block can be replaced with a more parameter-efficient model, such as DenseCNN (Model-d). Set-
ting the MaNN Block to Swin Transformer resulted in a slight decrease in accuracy, which can be
attributed to the relatively small size of our dataset, as the Swin Transformer typically excels on
larger datasets.
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Figure S3: Comparison of PeRCNN and MultiPDENet across various training set sizes on the Burg-
ers equation. The x-axis represents data volume, defined as the product of trajectory timesteps and
the number of trajectories (corresponding to 5, 8, 16, 32, and 64 trajectories, respectively). Dotted
lines denotes the linear interpolation.

C.3 DATA SIZE SCALING LAW BEHAVIOR

As shown in Figure S3, our testing results demonstrate that the model exhibits a scaling law behavior,
with the RMSE gradually decreasing as the amount of training data increases. Our model adheres
to this scaling law as well. Moreover, even in scenarios with limited data regimes (e.g., only five
trajectories), the model achieves a low level of error, highlighting its robustness and ability to learn
from limited data.

D EVALUATION METRICS

We employ several metrics to assess the performance of the tested models, including Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), Mean Normalized Absolute Difference
(MNAD), and High Correction Time (HCT) (Sun et al., 2023). RMSE quantifies the average magni-
tude of the errors between predicted and actual values, providing insight into the model’s accuracy.
MAE assesses the average absolute deviation between predicted and observed values, thereby indi-
cating the scale of the errors. MNAD serves as an important metric for evaluating the consistency
of model outputs over time, calculating the average discrepancy across temporal data points and of-
fering a normalized measure of prediction error relative to the range of actual data. HCT gauges the
model’s capability for making reliable long-term predictions. These metrics are defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

∥Hi − Ȟi∥2, (S12)

MAE =
1

n

n∑
i=1

∣∣Hi − Ȟi

∣∣ , (S13)

MNAD =
1

n

n∑
i=1

∥Hi − Ȟi∥
∥Hi∥max − ∥Hi∥min

, (S14)

HCT =

N∑
i=1

∆t · [PCC(Hi, Ȟi) > 0.8], (S15)

where

PCC(Hi, Ȟi) =
cov(Hi, Ȟi)

σHi
σȞi

. (S16)

Here, n represents the number of trajectories; Hi denotes the ground truth for each trajectory; Ȟi

indicates the spatiotemporal sequence predicted by the model. The term “cov” refers to the covari-
ance function, while “σ” represents the standard deviation of the respective sequence. The Iverson
bracket returns a value of 1 when the condition (PCC(Hi, Ȟi) > 0.8) is satisfied and 0 otherwise.
The variable N signifies the total number of time steps.
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E BASELINE MODELS

Fourier Neural Operator (FNO). The FNO (Li et al., 2021) combines neural networks with
Fourier transforms to effectively capture both global and local features of system dynamics. The
architecture has two key components: First, it applies Fourier transforms to the system state, per-
forming convolution operations in the frequency domain to capture global information. This is
followed by an inverse Fourier transform which maps the data back to the spatial domain. Sec-
ondly, convolutional layers are employed to extract local features directly from the system state.
The outputs from both global and local components are then integrated through the application of
activation functions, which ultimately yield the final prediction.

PhyFNO. PhyFNO shares the same architecture as FNO but incorporates physics-based constraints
by embedding governing equations into the loss function. The loss function can be expressed as:
L(λ) = LEq + LData. The first term of the loss function, LEq , represent an MSE loss computed
using the analytical expressions of the dynamics, as defined in Equation 1. The second term LData

is the data loss, which was previously discussed in Section 4.1.”

PeRCNN. PeRCNN (Rao et al., 2023) integrates physics-based principles directly into the learning
framework by embedding governing equations into the neural network structure. The architecture
features multiple parallel CNNs that model polynomial relationships via feature map multiplica-
tions. This incorporation of physical laws improves the model’s generalization and extrapolation
capabilities, enabling accurate predictions in dynamic systems governed by complex equations.

UNet. The UNet architecture (Ronneberger et al., 2015) adopts a symmetric encoder-decoder struc-
ture originally designed for computer vision tasks. The encoder compresses the input by applying
multiple downsampling layers to capture hierarchical features at various scales. Conversely, the
decoder gradually restores the original spatial resolution using upsampling operations. Skip con-
nections bridge the encoder and decoder, directly transferring feature maps to retain fine-grained
details. This design allows UNet to merge high-resolution spatial information with deeper, abstract
features, achieving accurate reconstructions of both local and global structures.

DeepONet. DeepONet (Lu et al., 2021) is designed to approximate operators and map inputs di-
rectly to outputs by leveraging neural networks. The architecture consists of two main components:
the trunk network, which processes domain-specific information, and the branch network, which
handles the input functions. This dual-structure approach enables the efficient learning of complex
functional relationships and enhances the model’s capability to capture detailed operator mappings
across various applications.

Learned Interpolation (LI). The LI (Kochkov et al., 2021) employs a finite volume approach
enhanced with neural networks as a replacement for conventional polynomial-based interpolation
schemes in computing velocity tensor product. The network adapts to the local flow conditions
by learning a dynamic interpolation mechanism that can adjust to the characteristics of the flow.
This enables LI to provide accurate fluid dynamics predictions even on coarse grids, improving
computational efficiency while maintaining prediction fidelity.

Temporal Stencil Modeling (TSM). TSM (Sun et al., 2023) addresses time-dependent partial dif-
ferential equations (PDEs) in conservation form by integrating time-series modeling with learnable
stencil techniques. It effectively recovers information lost during downsampling, enabling enhanced
predictive accuracy. TSM is particularly advantageous for machine learning models dealing with
coarse-resolution datasets.

F COMPUTATIONAL DETAILS

F.1 TRAINING DETAILS

All experiments (both training and inference) in this study were conducted on a single Nvidia A100
GPU (with 80GB memory) running on a server with an Intel(R) Xeon(R) Platinum 8380 CPU
(2.30GHz, 64 cores). All model training efforts were performed on coarse grids (see Table 1).

MultiPDENet. The MultiPDENet architecture employs the Adam optimizer with a learning rate
of 5 × 10−3. The model is trained over 1000 epochs with a batch size of 90. Detailed settings for
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Table S5: Overview of hyperparameters used in the MiNN Block.

Case Hyperparameters Value

NS

Network FNO (Li et al., 2021)
Layers 6
Modes 30
Width 30
Blocks 1
Padding periodical

σ GELU
Inputs {u, p, ∇̂û, ∇̂2û, ∇̂p, f , Re}

Burgers

Network FNO (Li et al., 2021)
Layers 4
Modes 12
Width 12
Blocks 1
Padding periodical

σ GELU
Inputs {u}

GS

Network FNO (Li et al., 2021)
Layers 6
Modes 12
Width 22
Blocks 1
Padding periodical

σ GELU
Inputs {u}

KdV

Network FNO (Li et al., 2021)
Layers 4
Modes 32
Width 64
Blocks 1
Padding periodical

σ ReLU
Inputs {u}

the rollout timestep can be found in Table 1. Additionally, we use the StepLR scheduler to adjust
the learning rate by a factor of 0.96 every 200 steps. The model hyperparameters are listed in Tables
S5 and S6.

FNO. The architecture of the FNO network closely follows that presented in the original study
(Li et al., 2021), with the main adjustment being the adaptation of its training methodology to an
autoregressive framework. The training utilizes the Adam optimizer with a learning rate of 1×10−3

and a batch size of 20. Training is carried out for 1000 epochs, and the rollout timestep matches
MultiPDENet.

UNet. We implement the modern UNet architecture (Gupta & Brandstetter, 2023) using its default
settings, ensuring that the rollout timestep is consistent with that of the MultiPDENet. The StepLR
scheduler is employed with a step size of 100 and a gamma of 0.96. The optimizer is Adam, with a
learning rate of 1× 10−3 and a batch size of 10. The model is trained for 1000 epochs.

DeepONet. We utilize the default configuration of DeepONet (Lu et al., 2021) along with the
Adam optimizer. The learning rate is established at 5 × 10−4, with a decay factor of 0.9 applied
every 5000 steps. The model is trained using a batch size of 16 over a total of 20000 epochs.

PeRCNN. We maintain the standard architecture of PeRCNN (Rao et al., 2023). The optimization
process is executed with the Adam optimizer and employs a StepLR scheduler that reduces the
learning rate by a factor of 0.96 every 100 steps. The initial learning rate is set to 0.01, and the
training is conducted over 1000 epochs with a batch size of 32.
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Table S6: Overview of hyperparameters used in the MaNN Block.

Case Hyperparameters Value

NS

Network U-Net (Gupta & Brandstetter, 2023)
Hidden size [128, 128, 256, 512]

Blocks 2
Padding periodical
Inputs {u,∆t, dx}
σ GELU

Burgers

Network U-Net (Gupta & Brandstetter, 2023)
Hidden size [64, 64, 128, 256]

Blocks 2
Padding periodical
Inputs {u,∆t, dx}
σ GELU

GS

Network U-Net (Gupta & Brandstetter, 2023)
Hidden size [64, 64, 128, 256]

Blocks 2
Padding periodical
Inputs {u,∆t, dx}
σ GELU

KdV

Network U-Net (Gupta & Brandstetter, 2023)
Hidden size [64, 64, 128, 256]

Blocks 2
Padding periodical
Inputs {u,∆t, dx}
σ ReLU

LI. We adopt the default network architecture and parameter settings for LI (Kochkov et al., 2021).
The optimizer used is Adam with β1 = 0.9 and β2 = 0.99. The batch size is configured to 8, along
with a global gradient norm clipping threshold of 0.01. The learning rate is set to 1 × 10−3, and
weight decay is configured to 1× 10−6.

TSM. We follow the default network architecture and parameter settings for TSM (Sun et al.,
2023). The initial learning rate is set to 1×10−4, with a weight decay of 1×10−4. The gradient
clipping norm is configured to be 1×10−2. We use the Adam optimizer with β2 = 0.98, and the
batch size is set to 8.

F.2 COMPUTATIONAL COST (INFERENCE)

Taking NS as an example, we compared the inference time, RMSE, and HCT of MultiPDENet
with the Direct Numerical Simulation (DNS) method across three cases. The comparison principle
is based on the time required to simulate the same trajectory length (T = 8.4 s) under identical
experimental conditions (a single A100 GPU). The inference time is measured from the moment the
initial conditions (IC) are fed into the model until the trajectory of the same length is predicted.

The DNS settings follow JAX-CFD (Kochkov et al., 2021). According to the CFL condition, the
simulated time step (dt) varies with the resolution of the DNS method, resulting in different numbers
of timesteps required for calculation. DNS 2048, DNS 4096, and DNS 4096 are used as the ground
truth for the three cases, respectively. Detailed comparison results are presented in Table S7.

Nevertheless, we also would like to clarify that the DNS code used above was implemented in JAX,
while our model was programmed in PyTorch. These two platforms have distinct efficiencies even
for the same model. Typically, the codes under JAX environment runs much faster compared with
PyTorch (up to 6×) (Takamoto et al., 2022). We anticipate to achieve much higher speedup of our
model if also implemented and optimized in JAX, which is, however, out of the scope of this study.
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Table S7: Performance comparison of different methods on the NS dataset across various cases.
Case Method Timestep Infer Cost (s) RMSE HCT (s)
Re = 1000 DNS 2048 38400 260 0 8.4
Re = 1000 DNS 1024 19200 135 0.1267 8.4
Re = 1000 DNS 512 9600 52 0.2674 6.5
Re = 1000 DNS 64 1200 18 0.7818 2.7
Re = 1000 MultiPDENet 300 26 0.1379 8.4
Re = 4000 DNS 4096 76800 1400 0 8.4
Re = 4000 DNS 1024 19200 136 0.1463 6.8
Re = 4000 DNS 512 9600 52 0.2860 5.8
Re = 4000 DNS 128 2400 31 0.8658 3.6
Re = 4000 MultiPDENet 300 26 0.1685 6.4
x ∈ [0, 4π]2 DNS 4096 75750 1280 0 8.4
x ∈ [0, 4π]2 DNS 1024 19200 129 0.4638 6.6
x ∈ [0, 4π]2 DNS 512 9600 50 0.6166 5.2
x ∈ [0, 4π]2 DNS 128 2400 30 0.8835 2.3
x ∈ [0, 4π]2 MultiPDENet 300 26 0.4577 6.7
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