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Abstract

This work examines average-reward reinforce-
ment learning with general policy parametrization.
Existing state-of-the-art (SOTA) guarantees for
this problem are either suboptimal or hindered
by several challenges, including poor scalability
with respect to the size of the state-action space,
high iteration complexity, and a significant de-
pendence on knowledge of mixing times and hit-
ting times. To address these limitations, we pro-
pose a Multi-level Monte Carlo-based Natural
Actor-Critic (MLMC-NAC) algorithm. Our work
is the first to achieve a global convergence rate
of Õ(1/

√
T ) for average-reward Markov Deci-

sion Processes (MDPs) (where T is the horizon
length), using an Actor-Critic approach. More-
over, the convergence rate does not scale with
the size of the state space, therefore even being
applicable to infinite state spaces.

1. Introduction
Reinforcement Learning (RL) is a framework where an
agent interacts with a Markovian environment and maxi-
mizes the total reward it receives. The temporal dependence
of the state transitions makes the problem of RL much more
challenging than ordinary stochastic optimization, where
data are selected in an independent and identically dis-
tributed (i.i.d.) manner. RL problems are typically analyzed
via three setups: episodic, discounted reward with an infi-
nite horizon, and average reward with an infinite horizon.
The average reward framework is particularly significant
for real-world applications, including robotics (Gonzalez
et al., 2023), transportation (Al-Abbasi et al., 2019), com-
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munication networks (Agarwal et al., 2022), and healthcare
(Tamboli et al., 2024). Model-based algorithms (Jaksch
et al., 2010; Agrawal & Jia, 2017; Agarwal & Aggarwal,
2023) that learn the state transition kernel from Markovian
trajectories, are well-known approaches for solving RL prob-
lems. However, these methods are typically limited to small
state spaces. Policy Gradient (PG) methods, a cornerstone
of RL, offer a model-free alternative that naturally supports
function approximation (FA), making them well-suited for
large state-action spaces. When the size of the state-action
space, SA, is large or infinite, the framework of FA (also
known as general parameterization) indexes the candidate
policies by a d-dimensional parameter, θ, where d≪ SA.
Recently, some works have established global convergence
guarantees for the average-reward setting with general pol-
icy parametrization, which we discuss below.

There are two main approaches in this context. The first is
the direct PG method, where value functions are estimated
directly from sampled trajectories (Bai et al., 2024; Ganesh
et al., 2025b). The second is the Temporal Difference (TD)-
based policy evaluation approach, commonly known as the
Actor-Critic (AC) method (Patel et al., 2024; Wang et al.,
2024). Currently, the order-optimal Õ(T−1/2) convergence
rate result, where T is the horizon length, exists for direct
PG method (Ganesh et al., 2025b). However, these methods
face key limitations, including poor scalability to large state-
action spaces and a strong reliance on precise knowledge
of mixing and hitting times to decorrelate samples, an as-
sumption that is often impractical. In contrast, existing AC
algorithms circumvent these issues but are generally more
challenging to analyze. More specifically, AC methods em-
ploy a TD-based critic to estimate the value function, which
helps in reducing the variance. However, this reduction
comes at the cost of introducing a bias, in addition to the
inherent bias arising due to Markovian sampling. Direct PG
methods using Markovian sampling leverage knowledge of
mixing time to obtain nearly i.i.d. samples, whereas this
would not suffice for AC methods due to the additional bias
from the critic. As a result, the state-of-the-art bounds for
AC is Õ(1/T 1/4), which is suboptimal. This raises the
following question:
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Algorithm Infinite States Global Model-Free? Policy
and Actions? Convergence Parametrization

UCRL2 (Jaksch et al., 2010) No Õ(1/
√
T ) No Tabular

PSRL (Agrawal & Jia, 2017) No Õ(1/
√
T ) No Tabular

MDP-OOMD (Wei et al., 2020)(1) No Õ(1/
√
T ) Yes Tabular

PPGAE (Bai et al., 2024) No Õ(1/T 1/4) Yes General
PHPG (Ganesh et al., 2025b) No Õ(1/

√
T ) Yes General

NAC-CFA (Wang et al., 2024) Yes Õ(1/T 1/4) Yes General
MAC (Patel et al., 2024) Yes Õ(1/T 1/4) Yes General

MLMC-NAC (Algorithm 1) Yes Õ(1/
√
T ) Yes General

Table 1. Summary of the key results on global convergence guarantees for average reward reinforcement learning. (1)This work also
analyzes another algorithm using the more general weakly-communicating MDP assumption while achieving a higher rate of Õ(1/T 1/3).

Is it possible to achieve a state-action space size indepen-
dent global convergence rate of Õ

(
T−1/2

)
for general

parameterized policies in average reward infinite-horizon
MDPs, using a practical, Actor-Critic approach?

Our Contribution: This work answers this question affir-
matively. In particular, we introduce a Multi-level Monte
Carlo-based Natural Actor-Critic (MLMC-NAC) algorithm
that comprises two major components. The first component,
referred to as the Natural Policy Gradient (NPG) subroutine,
obtains an approximate NPG direction which is used to up-
date the policy parameter. One sub-task of obtaining the
NPG is estimating the advantage function. This is done via
the second component, known as the Critic subroutine that
achieves its desired target via Temporal Difference (TD)
learning. Both NPG and critic subroutines apply MLMC-
based gradient estimators that eliminate the use of the mix-
ing time in the algorithm. We establish that MLMC-NAC
achieves a global convergence rate of Õ(T−1/2) which is
optimal in the order of the horizon length T . The key con-
tributions in this work are summarized as follows:
• While existing AC analyses often use relatively loose

bounds, we refine the analysis to achieve sharper results.
Our first step towards this is to show that the global con-
vergence error is bounded by terms proportional to the
bias and second-order error in NPG estimation (Lemma
1). Since the critic updates underlie the NPG subroutine,
the NPG estimation errors are inherently linked to critic
estimation errors.

• In prior AC works (Wang et al., 2024; Patel et al., 2024),
the global convergence bound includes the critic error,
E ∥ξt − ξ∗∥, where ξt is the critic estimate at time t and
ξ∗ is the true value. Instead, using Lemma 1 and Theorem
3, our analysis refines this term to ∥E[ξt] − ξ∗∥, which
can be significantly smaller than the previous estimate.

• Bounding ∥E[ξt]− ξ∗∥ still remains challenging due to
Markovian noise. The critic update can be interpreted as a
linear recursion with Markovian noise. Under i.i.d. noise,
this term decays exponentially, but with Markovian noise,

it can remain constant (Nagaraj et al., 2020). (Nagaraj
et al., 2020) mitigates this by using one sample every tmix
steps. Instead, we leverage MLMC to reduce the bias.

• In Theorem 2, we establish a convergence rate for a
generic stochastic linear recursion. Given that both the
NPG and critic updates can be viewed as a stochastic
linear update, this forms a basis for Theorems 3 and 4.

• Theorem 1 proves the first Õ(T−1/2) global convergence
result for AC methods.

Related works: We will discuss the relevant works in two
key areas as stated below. Our discussion primarily focuses
on works that employ general parameterized policies. A
summary of relevant works is available in Table 1.

Discussion on Practicality on direct PG methods: In
direct PG methods, value function estimates are nearly un-
biased but suffer from high variance, which scales with the
size of the action space (Wei et al., 2020; Bai et al., 2024;
Ganesh et al., 2025b). Furthermore, the convergence results
depend on the hitting time, which is at least the size of the
state space, making the algorithm inapplicable to large or
infinite state spaces. Finally, the implementation of these
algorithms require precise knowledge of mixing and hitting
times to decorrelate samples, which can be impractical. In
contrast, our algorithm leverages Multi-Level Monte Carlo
(MLMC) to mitigate bias arising from Markovian sampling.

Other recent PG-based works include (Kumar et al., 2025),
which studies the tabular policy parameterization under the
assumption of exact gradient access and establishes a conver-
gence rate of Õ(1/T ). However, this assumption sidesteps
a key challenge in PG-based methods, efficient estimation of
the policy gradient, which remains a significant bottleneck
in more practical settings. Another related work is (Murthy
et al., 2023), which studies robust average-reward Markov
decision processes (MDPs) and establishes convergence
guarantees for dynamic programming approaches.

Average Reward RL with Actor-Critic approaches: The
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authors of (Chen & Zhao, 2023; Panda & Bhatnagar, 2025;
Suttle et al., 2023) provided local convergence guarantees
for the AC based approaches. Recently, the global conver-
gence for the AC methods in average reward setup have
been studied in (Wang et al., 2024; Patel et al., 2024), where
global sample complexity of Õ(T−1/4) is shown1.

We note that (Suttle et al., 2023; Patel et al., 2024) uses
the Multi-Level Monte Carlo (MLMC)-based AC algorithm
combined with AdaGrad (Duchi et al., 2011), inspired by
stochastic gradient descent (SGD) related work in (Dorfman
& Levy, 2022). Unfortunately, none of these studies lead
to an optimal global convergence rate which is the goal
of our work. We also note that the current state-of-the-
art global convergence rate for AC methods in discounted
MDPs is O(T−1/3) (Xu et al., 2020; Gaur et al., 2024), and
the approaches proposed in this work have the potential to
be applied in that setting.

2. Setup
In this paper, we explore an infinite horizon reinforcement
learning problem with an average reward criterion, modeled
by a Markov Decision Process (MDP) represented as a tuple
M = (S,A, r, P, ρ). Here S indicates the state space, A
defines the action space with a size of A, r : S × A →
[0, 1] represents the reward function, P : S × A → ∆(S)
defines the state transition function, where ∆(S) denotes
the probability simplex over S, and ρ ∈ ∆(S) signifies
the initial distribution of states. A (stationary) policy π :
S → ∆(A) determines the distribution of the action to
be taken given the current state. It induces the following
state transition Pπ : S → ∆(S) given as Pπ(s, s′) =∑

a∈A P (s′|s, a)π(a|s), ∀s, s′ ∈ S. Observe that for any
policy π, the sequence of states yielded by the MDP forms
a Markov chain. We assume the following throughout the
paper.

Assumption 1. The Markov chain induced by every policy
π, {st}t≥0, is ergodic.

Before proceeding further, we point out that we consider
a parameterized class of policies Π, which consists of all
policies πθ such that θ ∈ Θ, where Θ ⊂ Rd. It is well-
established that ifM is ergodic, then ∀θ ∈ Θ, there exists
a unique stationary ρ-independent distribution, denoted as
dπθ ∈ ∆(S), defined as follows.

dπθ (s) = limT→∞ Eπθ

[
1
T

∑T
t=0 1(st = s)

∣∣∣∣s0 ∼ ρ

]
(1)

1While (Wang et al., 2024) shows min1≤t≤T (J
∗ − J(θt)) ≤

Õ(T−1/3), we note that the minimum error is strictly smaller than
the average error notion that we consider in our work. Substituting
the bound in Proposition 5 in their work in their average error
decomposition in Step 1 of their Proof Outline yields an average
error of Õ(T−1/4).

where Eπθ
denotes the expectation over the distribution of

all πθ-induced trajectories and 1(·) is an indicator function.
The above distribution also obeys (Pπθ )⊤dπθ = dπθ . With
this notation in place, we define the mixing time of an MDP.

Definition 1. The mixing time of an MDPM with respect
to a policy parameter θ is defined as

tθmix := min

{
t ≥ 1

∣∣∣∣∥(Pπθ )t(s, ·)− dπθ∥TV ≤
1

4
,∀s ∈ S

}
where ∥ ·∥TV denotes the total variation distance. We define
tmix := supθ∈Θ tθmix as the the overall mixing time. This
paper assumes tmix to be finite.

The mixing time of an MDP measures how quickly the
MDP approaches its stationary distribution when the same
policy is executed repeatedly. In the average reward setting,
we aim to find a policy πθ that maximizes the long-term
average reward defined below.

Jπθ := limT→∞ Eπθ

[
1
T

∑T
t=0 r(st, at)

∣∣∣∣s0 ∼ ρ

]
(2)

For simplicity, we denote J(θ) = Jπθ . This paper uses
an actor-critic approach to optimize J . Before proceeding
further, we would like to introduce a few important terms.
The action-value (Q) function corresponding to the policy
πθ is defined as

Qπθ (s, a) = Eπθ

[∑∞
t=0

{
r(st, at)− J(θ)

}∣∣∣∣s0 = s, a0 = a

]
(3)

We can further define the state value function as

V πθ (s) = Ea∼πθ(·|s)[Q
πθ (s, a)] (4)

Bellman’s equation, thus, takes the following form (Puter-
man, 2014)

Qπθ (s, a) = r(s, a)− J(θ) + E[V πθ (s′)], (5)

where the expectation is over s′ ∼ P (·|s, a). We define the
advantage as Aπθ (s, a) ≜ Qπθ (s, a) − V πθ (s). With the
notations in place, we express below the well-known policy
gradient theorem established by (Sutton et al., 1999).

∇θJ(θ)=E(s,a)∼νπθ

[
Aπθ (s, a)∇θ log πθ(a|s)

]
(6)

where νπθ (s, a) = dπθ (s)π(a|s). Policy Gradient (PG) al-
gorithms maximize the average reward by updating θ along
the policy gradient∇θJ(θ). In contrast, Natural Policy Gra-
dient (NPG) methods update θ along the NPG direction ω∗

θ

where

ω∗
θ = F (θ)†∇θJ(θ), (7)
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The symbol † denotes the Moore-Penrose pseudoinverse
and F (θ) is the Fisher matrix as defined as

F (θ) = E(s,a)∼νπθ [∇θ log πθ(a|s)⊗∇θ log πθ(a|s)] (8)

where ⊗ symbolizes the outer product. The precoder F (θ)
takes the change of the parameterized policy with respect
to θ into account, thereby preventing overshooting or slow
updates of θ. Note that ω∗

θ can be written as the minimizer
of the function Lνπθ (·, θ) where

Lνπθ (ω, θ)=
1

2
E(s,a)∼νπθ

[(
Aπθ (s, a)− ω⊤∇θ log πθ(a|s)

)2] (9)

for all ω ∈ Rd. This is essentially a convex optimization that
can be iteratively solved utilizing a gradient-based method.
Invoking (6), one can show that

∇ωLνπθ (ω, θ) = F (θ)ω −∇θJ(θ) (10)

Note that ∇ωLνπθ (ω, θ) is not exactly computable since
the transition function P and hence the stationary dis-
tribution, dπθ , and the advantage function, Aπθ (·, ·) are
typically unknown in most practical cases. Recall that
Aπθ (s, a) = Qπθ (s, a) − V πθ (s). Moreover, Bellman’s
equation (5) states that Qπθ (s, a) is determined by J(θ) and
V πθ . Notice that J(θ) can be written as a solution to the
following optimization problem.

min
η∈R

R(θ, η) :=
1

2

∑
s∈S

∑
a∈A

νπθ (s, a) {η − r(s, a)}2 (11)

The above formulation allows us to compute J(θ) in a
gradient-based iterative manner. In particular,

∇ηR(θ, η) =
∑

s∈S
∑

a∈A νπθ (s, a) {η − r(s, a)} (12)

To facilitate the estimation of the advantage function, we
assume that V πθ (·) can be approximated by a critic function
V̂ (ζθ, ·) = (ζθ)

⊤ϕ(·) where ζθ ∈ Rm denotes a solution
to the following optimization problem, and ϕ(s) ∈ Rm,
∥ϕ(s)∥ ≤ 1 is a feature vector, ∀s ∈ S.

min
ζ∈Rm

E(θ, ζ) :=
1

2

∑
s∈S

dπθ (s)(V πθ (s)− V̂ (ζ, s))2 (13)

The above formulation paves a way to compute ζθ via a
gradient-based iterative procedure. Note the following.

∇ζE(θ, ζ)

=
∑
s∈S

∑
a∈A

νπθ (s, a)
{
ζ⊤ϕ(s)−Qπθ (s, a)

}
ϕ(s) (14)

The iterative updates of θ, η, and ζ, along their associated
gradients provided in (10), (12), and (14) form the basis of
our algorithm stated next.

Algorithm 1 Multi-level Monte Carlo-based Natural Actor-
Critic (MLMC-NAC)

1: Input: Initial parameters θ0, {ωk
H}, and {ξk0}, policy

update stepsize α, parameters for NPG update, γ, pa-
rameters for critic update, β, cβ , initial state s0 ∼ ρ,
outer loop size K, inner loop size H , Tmax

2: Initialization: T ← 0
3: for k = 0, 1, · · · ,K − 1 do
4: for h = 0, 1, · · · , H − 1 do {Average reward and

critic estimation}
5: skh0 ← s0, Qkh ∼ Geom(1/2)
6: Q̄kh ← 2Qkh if 2Qkh ≤ Tmax else Q̄kh ← 0
7: for t = 0, . . . , Q̄kh − 1 do
8: Take action akht ∼ πθk(·|skht )
9: Collect next state skht+1 ∼ P (·|skht , akht )

10: Receive reward r(skht , akht )
11: end for
12: Tkh ← Q̄kh, s0 ← skhTkh

13: Update ξkh using (16) and (25)
14: T ← T + Tkh

15: end for
16: ξk ← ξkH
17: for h = H,H + 1, · · · , 2H − 1 do {Natural Policy

Gradient (NPG) estimation}
18: skh0 ← s0, Qkh ∼ Geom(1/2)
19: Q̄kh ← 2Qkh if 2Qkh ≤ Tmax else Q̄kh ← 0
20: for t = 0, . . . , Q̄kh − 1 do
21: Take action akht ∼ πθk(·|skht )
22: Collect next state skht+1 ∼ P (·|skht , akht )
23: Receive reward r(skht , akht )
24: end for
25: Tkh ← Q̄kh, s0 ← skhTkh

26: Update ωk
h using (17) and (21)

27: T ← T + Tkh

28: end for
29: ωk ← ωk

2H , θk+1 ← θk + αωk {Policy update}
30: end for

3. Proposed Algorithm
We propose a Multi-level Monte Carlo-based Natural Actor-
Critic (MLMC-NAC) algorithm (Algorithm 1) that runs K
number of epochs (also called outer loops). The kth loop
obtains ξk = [ηk, ζk]

⊤ where ηk denotes an estimate of the
average reward J(θk), and ζk is an estimate of the critic
parameter, ζθk . These estimates are then used to compute
the approximate NPG, ωk, which is applied to update the
policy parameter θk.

θk+1 = θk + αωk (15)

where α is a learning parameter. The estimate ξk is obtained
in H inner loop steps. In particular, ∀h ∈ {0, · · · , H − 1},
we apply the following updates starting from arbitrary ξk0 ,
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and finally assign ξkH = ξk.

ξkh+1 = ξkh − βvh(θk, ξ
k
h), where

vh(θk, ξ
k
h) =

[
cβ∇̂ηR(θk, η

k
h), ∇̂ζE(θk, ξ

k
h)
]⊤ (16)

where cβ is a constant, and β is a learning rate. Observe
that ∇̂ζE(θk, ξ

k
h) has dependence on ξkh = [ηkh, ζ

k
h ]

⊤ due
to the presence of Q-function in (14) while ∇̂ηR(θk, η

k
h) is

dependent only on ηkh (details given later).

The approximate NPG ωk is also obtained in H inner loop
steps, starting from arbitrary ωk

H , then recursively apply-
ing the stochastic gradient descent (SGD) method as stated
below ∀h ∈ {H, · · · , 2H − 1}, and assigning ωk = ωk

2H
2.

ωk
h+1 = ωk

h − γ∇̂ωLν
πθk (ω

k
h, θk, ξk) (17)

where γ is a learning parameter, and ∇̂ωLνπθ (ωk
h, θk, ξk)

symbolizes an estimate of ∇ωLν
πθk (ω

k
h, θk). We would

like to clarify that the above gradient estimate depends on
ξk because of the presence of the advantage function in the
expression of the policy gradient whose estimation needs
both ηk, ζk (details given later). A process is stated below
to calculate the gradient estimates used in (17) and (16).

Gradient Estimation via MLMC: Consider a πθk -induced
trajectory Tkh = {(skht , akht , skht+1)}

lkh−1
t=0 whose length is

given as lkh = 2Qkh where Qkh ∼ Geom( 12 ). We can
write the Q estimate as below ∀t ∈ {0, · · · , lkh − 1} using
Bellman’s equation (5).

Q̂πθk (ξk, z
kh
t ) = r(skht , akht )− ηk + ζ⊤k ϕ(skht+1) (18)

where zkht := (skht , akht , skht+1). This leads to the advan-
tage estimate (also called the temporal difference error) as
follows ∀t ∈ {0, · · · , lkh − 1}.

Âπθk (ξk, z
kh
t ) = r(skht , akht )− ηk

+ ζ⊤k
[
ϕ(skht+1)− ϕ(skht )

] (19)

Define the following quantity ∀t ∈ {0, · · · , lkh − 1}.

ukh
t = Âu(θk, z

kh
t )ωk

h − b̂u(θk, ξk, z
kh
t ) where (20)

Âu(θk, z
kh
t ) = ∇θ log πθk(a

kh
t |skht )⊗∇θ log πθk(a

kh
t |skht )

b̂u(θk, ξk, z
kh
t ) = Âπθk (ξk, z

kh
t )∇θ log πθk(a

kh
t |skht )

The term ukh
t can be thought of as a crude estimate of

∇ωLν
πθk (ω

k
h, θk), obtained using a single transition zkht .

One naive way to refine this estimate is to calculate an
empirical average of {ukh

t }
lkh−1
t=0 . In this work, however,

we resort to the MLMC method where the final estimate is
2We initiate from h = H , instead of h = 0 to emphasize that

the iteration (17) starts after H iterations of (16).

given as follows.

∇̂ωLν
πθk (ω

k
h, θk, ξk)

= U0 +

{
2Q
(
UQ − UQ−1

)
, if 2Q ≤ Tmax

0 otherwise

= ÂMLMC
u,k,h (θk)ω

k
h − b̂MLMC

u,k,h (θk, ξk)

(21)

where U j = 1
2j

∑2j

t=1 u
kh
t , j ∈ {Q − 1, Q}, Tmax ≥ 2 is

a parameter, and ÂMLMC
u,k,h (θk), and b̂MLMC

u,k,h (θk, ξk) denote
MLMC-based estimates of samples {Âu(θk, z

kh
t )}lkh−1

t=0

and {b̂u(θk, ξk, zkht )}lkh−1
t=0 respectively.

The advantage of MLMC is that it generates the same or-
der of bias as the empirical average of Tmax samples but
requires only O(log Tmax) samples on an average.

Using a similar method, we will now obtain an estimate
of vh(θk, ξ

k
h). Following our earlier notations, we denote

Tkh = {(skht , akht )}lkh−1
t=0 as a πθk -induced trajectory of

length lkh = 2Qkh , where Qkh ∼ Geom( 12 ). Notice the
terms stated below ∀t ∈ {0, · · · , lkh − 1}.

vkh
t =

 cβ
{
ηkh − r(skht , akht )

}{
(ζkh)

⊤ϕ(skht )− Q̂πθk (ξkh, z
kh
t )

}
ϕ(skht )


= Âv(z

kh
t )ξkh − b̂v(z

kh
t )

(22)

where zkht := (skht , akht , skht+1), Q̂
πθk (ξkh, z

kh
t ) is given by

(18) and Âv(z
kh
t ), b̂v(zkht ) are defined as

Âv(z
kh
t ) =

[
cβ 0

ϕ(skht ) ϕ(skht )
[
ϕ(skht )− ϕ(skht+1)

]⊤], (23)

b̂v(z
kh
t ) =

[
cβr(s

kh
t , akht )

r(skht , akht )ϕ(skht )

]
(24)

Based on (12) and (14), the term vkh
t can be thought of as a

crude approximation of vh(θk, ξ
k
h) obtained using a single

transition, zkht . The final estimate is

vh(θk, ξ
k
h) = V0 +

{
2Q
(
V Q − V Q−1

)
, if 2Q ≤ Tmax

0 otherwise

= ÂMLMC
v,k,h ξkh − b̂MLMC

v,k,h (25)

where V j := 2−j
∑2j

t=1 v
kh
t , j ∈ {Q − 1, Q}. Moreover,

ÂMLMC
v,k,h and b̂MLMC

v,k,h symbolize MLMC-based estimates of
{Âv(z

kh
t )}lkh−1

t=0 and {b̂v(zkht )}lkh−1
t=0 respectively.

A few remarks are in order. Although the MLMC-based
estimates achieve the same order of bias as the empirical
average with a lower average sample requirement, its vari-
ance is larger. Many existing literature reduce the impact
of the increased variance via AdaGrad-based parameter up-
dates. Though such methods typically work well for general
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non-convex optimization problems, it does not exploit any
inherent structure of strongly convex optimization problems,
thereby being sub-optimal for both the NPG-finding sub-
routine and the average reward and critic updates. In this
paper, we resort to a version of the standard SGD to cater
to our following needs. First, by judiciously choosing the
learning parameters, we prove that it is possible to achieve
the optimal rate without invoking AdaGrad-type updates.
Finally, although our gradient estimates suffer from bias due
to the inherent error present in the critic approximation, our
novel analysis suitably handles these issues.

4. Main Results
We first state some relevant assumptions. Let Av(θ) :=

Eθ

[
Âv(z)

]
, and bv(θ) := Eθ

[
b̂v(z)

]
where matrices

Âv(z), b̂v(z) are described in (23), (24) and the expectation
Eθ is computed over the distribution of z = (s, a, s′) where
(s, a) ∼ νπθ , s′ ∼ P (·|s, a). For arbitrary policy parameter
θ, we denote ξ∗θ = [Av(θ)]

†bv(θ) = [η∗θ , ζ
∗
θ ]

⊤. Using these
notations, below we state some assumptions related to the
critic analysis.

Assumption 2. We assume the critic approximation error,
ϵapp (defined below) is finite.

ϵapp = sup
θ

E(θ, ζ∗θ ) (26)

Assumption 3. There exist λ > 0 such that ∀θ

Eθ[ϕ(s)(ϕ(s)− ϕ(s′))⊤] ≽ λI (27)

where ≽ is the positive semidefinite inequality and the ex-
pectation, Eθ is obtained over s ∼ dπθ , s′ ∼ Pπθ (s, ·).

Both Assumptions 2 and 3 are frequently employed in the
analysis of actor-critic methods (Suttle et al., 2023; Patel
et al., 2024; Wu et al., 2020; Panda & Bhatnagar, 2025).
Assumption 2 intuitively relates to the quality of the feature
mapping where ϵapp measures the quality. Well-designed
feature maps may lead to small or even zero ϵapp, whereas
poorly designed features result in higher errors. Assumption
3 is essential for guaranteeing the uniqueness of the solu-
tion to the minimization problem (13). Assumption 3 also
follows when the set of policy parameters, Θ is compact
and e /∈ Wϕ, where e is the vector of all ones and Wϕ is
the space spanned by the feature vectors. To see this, note
that if e /∈ Wϕ, there exists λθ for every policy πθ such
that Eθ[ϕ(s)(ϕ(s)− ϕ(s′))⊤] ≽ λθI (Zhang et al., 2021b).
Since Θ is compact, setting λ = infθ∈Θ λθ > 0 satisfies
Assumption 3.

For large enough cβ , Assumption 3 implies that Av(θ) −
(λ/2)I is positive definite (refer to Lemma 8). It also implies
that Av(θ) is invertible. We will now state some assump-
tions related to the policy parameterization.

Assumption 4. For any θ, the transferred compatible func-
tion approximation error, Lνπ∗ (ω∗

θ ; θ), satisfies the follow-
ing inequality.

Lνπ∗ (ω∗
θ ; θ) ≤ ϵbias

where ω∗
θ denotes the exact NPG direction at θ defined

by (7), π∗ indicates the optimal policy, and the function
Lνπ∗ (·, ·) is given by (9).
Assumption 5. For all θ, θ1, θ2 and (s, a) ∈ S × A, the
following statements hold.

(a) ∥∇θ log πθ(a|s)∥ ≤ G1

(b) ∥∇θ log πθ1(a|s)−∇θ log πθ2(a|s)∥ ≤ G2∥θ1 − θ2∥

Assumption 6 (Fisher non-degenerate policy). There exists
a constant µ > 0 such that F (θ)− µId is positive semidefi-
nite where Id denotes an identity matrix.

Comments on Assumptions 4-6: We would like to high-
light that all these assumptions are commonly found in PG
literature (Liu et al., 2020; Agarwal et al., 2021; Papini et al.,
2018; Xu et al., 2019; Fatkhullin et al., 2023). We elaborate
more on these assumptions below.

The term ϵbias captures the expressivity of the parameterized
policy class. If, for example, the policy class is complete
such as in the case of softmax parametrization, ϵbias = 0
(Agarwal et al., 2021). However, for restricted parametriza-
tion which may not contain all stochastic policies, we have
ϵbias > 0. It is known that ϵbias is insignificant for rich
neural parametrization (Wang et al., 2019). Note that As-
sumption 5 requires that the score function is bounded and
Lipschitz continuous. This assumption is widely used in the
analysis of PG-based methods (Liu et al., 2020; Agarwal
et al., 2021; Papini et al., 2018; Xu et al., 2019; Fatkhullin
et al., 2023). Assumption 6 requires that the eigenvalues
of the Fisher information matrix can be bounded from be-
low and is commonly used in obtaining global complexity
bounds for PG-based procedures (Liu et al., 2020; Zhang
et al., 2021a; Bai et al., 2022; Fatkhullin et al., 2023). As-
sumptions 5-6 were shown to hold for various examples
recently including Gaussian policies with linearly parame-
terized means and certain neural parametrizations (Liu et al.,
2020; Fatkhullin et al., 2023).

With the relevant assumptions in place, we are now ready to
state our main result.
Theorem 1. Consider Algorithm 1 with K = Θ(

√
T ), H =

Θ(
√
T/ log(T )). Let Assumptions 1-6 hold and J be L-

smooth. There exists a choice of parameters such that the
following holds for a sufficiently large T .

J∗ − 1

K

K−1∑
k=0

E[J(θk)] ≤ O
(√

ϵapp +
√
ϵbias

)
+ Õ

(
t3mixT

−1/2
)

(28)
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where J∗ is the optimal value of J(·).

The values of the learning parameters used in the above the-
orem can be found in Appendix H. It is to be mentioned that
the above bound of Õ(1/

√
T ) is a significant improvement

in comparison to the state-of-the-art bounds of Õ(1/T 1/4)
in the average reward general parameterization setting (Bai
et al., 2024; Patel et al., 2024). Also, our bounds do not
depend on the size of the action space and hitting time un-
like that in (Bai et al., 2024). Although (Patel et al., 2024)
provides bounds with O(

√
tmix) dependence, these bounds,

unfortunately, depend on the projection radius of the critic
updates, Rω, which can be large and scale with tmix (Wei
et al., 2020). In contrast, our algorithm does not use such
projection operators and therefore, does not scale with Rω .

Our analysis assumes L-smoothness of the average reward
objective J , a standard assumption in the PG literature. In
the average-reward setting, smoothness is typically assumed,
either explicitly or implicitly via Lipschitz continuity of the
value function or by appealing to discounted-setting bounds
(Chen & Zhao, 2023; Suttle et al., 2023; Patel et al., 2024;
Ganesh et al., 2025a; Wang et al., 2024; Bai et al., 2024;
Panda & Bhatnagar, 2025). A recent result (Ganesh et al.,
2025b, Theorem 3) establishes a smoothness-type result
under ergodicity in the average-reward, infinite-horizon set-
ting, which could be used in our analysis but is omitted here
to streamline the presentation. Algorithm 1 assumes knowl-
edge of L to set the policy learning rate, and the smoothness
upper bound in the cited work depends on tmix. However,
the dependence on tmix in Algorithm 1 is much weaker than
in existing direct policy gradient methods, which require
samples to be spaced Õ(tmix) apart at each iteration.

5. Proof Outline
5.1. Policy update analysis

Lemma 1. Consider any policy update rule of form

θk+1 = θk + αωk. (29)

If Assumptions 4 and 5 hold, then the following inequality
is satisfied for any K.

J∗ − 1

K

K−1∑
k=0

E[J(θk)] ≤
√
ϵbias

+
G1

K

K−1∑
k=0

E ∥(Ek [ωk]− ω∗
k)∥+

αG2

2K

K−1∑
k=0

E ∥ωk∥2

+
1

αK
Es∼dπ∗ [KL(π∗(·|s)∥πθ0(·|s))] (30)

where KL(·∥·) is the Kullback-Leibler divergence, ω∗
k is the

NPG direction F (θk)
−1∇J(θk), π∗ is the optimal policy,

J∗ is the optimal value of the function J(·), and Ek[·] de-
notes conditional expectation given the history up to epoch
k.

Note that the last term in (30) isO(1/K). The term E ∥ωk∥2
can be further decomposed as

E ∥ωk∥2 ≤ 2E ∥ωk − ω∗
k∥2 + 2E ∥ω∗

k∥2

(a)

≤ 2E ∥ωk − ω∗
k∥2 +

2

µ2
E ∥∇θJ(θk)∥2

(31)

where (a) follows from Assumption 6 and the definition
that ω∗

k = F (θk)
−1∇θJ(θk). Further, it can be proven that

for the choice of α used in Theorem 1, we have

1

µ2K

(
K−1∑
k=0

∥∇θJ(θk)∥2
)
≤ 32LG4

1

µ4K

+

(
2G4

1

µ2
+ 1

)(
1

K

K−1∑
k=0

∥ωk − ω∗
k∥2
) (32)

Evidently, one can obtain a global convergence bound by
bounding the terms E ∥ωk −ω∗

k∥2, and E ∥(Ek [ωk]−ω∗
k)∥.

These terms define the second-order error and bias of the
NPG estimator, ωk. In the next subsections, we briefly
describe how to obtain these bounds.

5.2. Analysis of a General Linear Recursion

Observe that the NPG finding subroutine (17) and the update
of the critic parameter and the average reward (16) can be
written in the following form for a given k.

xh+1 = xh − β̄(P̂hxh − q̂h) (33)

where P̂h, q̂h are MLMC based estimates of the matrices
P ∈ Rn×n, q ∈ Rn respectively, and h ∈ {0, · · · , H − 1}.
Assume that the following bounds hold ∀h.

Eh

[∥∥∥P̂h − P
∥∥∥2] ≤ σ2

P ,
∥∥∥Eh

[
P̂h

]
− P

∥∥∥2 ≤ δ2P ,

Eh

[
∥q̂h − q∥2

]
≤ σ2

q , ∥Eh [q̂h]− q∥2 ≤ δ2q ,

and ∥E [q̂h]− q∥2 ≤ δ̄2q

(34)

where Eh denotes conditional expectation given history up
to step h. Since E[q̂h] = E[Eh[q̂h]], we have δ̄2q ≤ δ2q .
Additionally, assume that

0 ≺ λP I ≼ P, ∥P∥ ≤ ΛP and ∥q∥ ≤ Λq (35)

The condition that λP > 0 implies that P is invertible. The
goal of recursion (33) is to approximate the term x∗ =
P−1q. We have the following result.
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Theorem 2. Consider the recursion (33). Assume that the
conditions (34), and (35) hold. Also, let δP ≤ λP /8, and
β̄ = 2 logH

λPH . The following relation holds whenever H is
sufficiently large.

E
[
∥xH − x∗∥2

]
≤

E
[
∥x0 − x∗∥2

]
H2

+ Õ
(
R0

H
+R1

)
where R0 = λ−4

P Λ2
qσ

2
P + λ−2

P σ2
q , R1 = λ−2

P

[
δ2Pλ

−2
P Λ2

q +

δ2q
]
, and Õ(·) hides logarithmic factors of H . Moreover,

∥E[xH ]− x∗∥2 ≤ ∥E[x0]− x∗∥2

H2
+O(R̄1)

+O
(
λ−2
P δ2P

{
E
[
∥x0 − x∗∥2

]
+O (R0 +R1)

})
where R̄1 = λ−2

P

[
δ2Pλ

−2
P Λ2

q + δ̄2q
]
.

We shall now use Theorem 2 to characterize the estimation
errors in the NPG-finding subroutine and average reward
and critic updates.

5.3. Analysis of NPG-Finding Subroutine

In the NPG finding subroutine, the goal is to compute
ω∗
k = [F (θk)]

−1∇θJ(θk). An estimate of F (θk) is given
by ÂMLMC

u,k,h (θk), and that of the policy gradient ∇θJ(θk) is
given by b̂MLMC

u,k,h (θk, ξk) (see (21)). One can establish the
following inequalities invoking the properties of the MLMC
estimates.

Lemma 2. Fix an instant k of the outer loop in Algorithm 1.
Given (θk, ξk), the MLMC estimates defined in (21) satisfy
the following bounds ∀h ∈ {H, · · · , 2H − 1} provided the
assumptions in Theorem 1 hold.

(a)
∥∥∥Ek,h

[
ÂMLMC

u,k,h (θk)
]
− F (θk)

∥∥∥2 ≤ O (G4
1tmixT

−1
max

)
(b) Ek,h

[∥∥∥ÂMLMC
u,k,h (θk)− F (θk)

∥∥∥2]
≤ O

(
G4

1tmix log Tmax

)
(c)

∥∥∥Ek,h

[
b̂MLMC
u,k,h (θk, ξk)

]
−∇θJ(θk)

∥∥∥2
≤ O

(
σ2
u,ktmixT

−1
max + δ2u,k

)
(d) Ek,h

[∥∥∥b̂MLMC
u,k,h (θk, ξk)−∇θJ(θk)

∥∥∥2]
≤ O

(
σ2
u,ktmix log Tmax + δ2u,k

)
where Ek,h defines the conditional expectation given the
history up to the inner loop step h (within the kth outer loop
instant), σ2

u,k = O
(
G2

1 ∥ξk∥
2
)

and

δ2u,k = O
(
G2

1 ∥ξk − ξ∗k∥
2
+G2

1ϵapp

)

where ξ∗k := ξ∗θk = [Av(θk)]
−1bv(θk) and Ek defines the

conditional expectation given the history up to the outer
loop instant k. Moreover, given θk, we also have

(e)
∥∥∥Ek

[
b̂MLMC
u,k,h (θk, ξk)

]
−∇θJ(θk)

∥∥∥2
≤ O

(
σ̄2
u,ktmixT

−1
max + δ̄2u,k

)
where σ̄2

u,k = O(G2
1 Ek ∥ξk∥2), and δ̄2u,k is given as

δ̄2u,k = O
(
G2

1 ∥Ek[ξk]− ξ∗k∥
2
+G2

1ϵapp

)
Combining Lemma 2 and Theorem 2, we arrive at the fol-
lowing results.
Theorem 3. Consider the NPG-finding recursion (17) with
γ = 2 logH

µH and Tmax = H2. If all assumptions in Theorem
1 hold, then for sufficiently large cβ , H

Ek

[
∥ωk − ω∗

k∥2
]
≤ 1

H2
∥ωk

H − ω∗
k∥2 + Õ

(
G6

1t
3
mix

µ4H

)
Õ

(
G2

1c
2
βtmix

µ2λ2H

)
+ µ−2G2

1O
(
Ek ∥ξk − ξ∗k∥2 + ϵapp

)
Additionally, we also have

∥Ek[ωk]− ω∗
k∥2 ≤ Õ

(
G4

1tmix

µ2H2

∥∥ωk
H − ω∗

k

∥∥2)
+ µ−2G2

1O
(
∥Ek[ξk]− ξ∗k∥2 + ϵapp

)
+ Õ

(
G6

1t
2
mix

µ4H2
Ek

[
∥ξk − ξ∗k∥

2
])

+ Õ
(
G4

1tmix

µ2H2

{
µ−4G6

1t
3
mix + µ−2λ−2G2

1c
2
βtmix

})
5.4. Critic and Average Reward Analysis

The goal of the recursion (16) is to compute the term
ξ∗k = [Av(θk)]

−1bv(θk). An estimate of Av(θk) is given
by ÂMLMC

v,k,h while that of bv(θk) is given by b̂MLMC
v,k,h (see

(25)). Similar to Lemma 2, we have the following result.
Lemma 3. Given the parameter θk, the MLMC estimates
defined in (25) obey the following bounds provided the as-
sumptions in Theorem 1 hold.

(a)
∥∥∥Ek,h

[
ÂMLMC

v,k,h

]
−Av(θk)

∥∥∥2 ≤ O (c2βtmixT
−1
max

)
(b) Ek,h

[∥∥∥ÂMLMC
v,k,h −Av(θk)

∥∥∥2] ≤ O (c2βtmix log Tmax

)
(c)
∥∥∥Ek,h

[
b̂MLMC
v,k,h

]
− bv(θk)

∥∥∥2 ≤ O (c2βtmixT
−1
max

)
(d) Ek,h

[∥∥∥b̂MLMC
v,k,h − bv(θk)

∥∥∥2] ≤ O (c2βtmix log Tmax

)
where h ∈ {0, 1, · · · , H − 1} and Ek,h is interpreted in the
same way as in Lemma 2.
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Lemma 3 and Theorem 2 lead to the following.
Theorem 4. Consider the recursion (25). Let Tmax = H2,
β = 4 logH

λH . If all assumptions of Theorem 1 hold, then the
following is true for sufficiently large cβ , H .

Ek

[
∥ξk − ξ∗k∥2

]
≤ 1

H2 ∥ξk0 − ξ∗k∥2 + Õ
(

c4βtmix

λ4H

)
,

∥Ek[ξk]− ξ∗k∥2 ≤ O

(
c2βtmix

λ2H2

∥∥ξk0 − ξ∗k
∥∥2 + c6βt

2
mix

λ6H2

)

Combining Lemma 1, Theorem 3 and 4, we establish Theo-
rem 1. We would like to emphasize the importance of the
term δ̄2q in Theorem 2. A naive analysis would have resulted
in a worse upper bound in Theorem 2 that replaces δ̄2q with
δ2q . Such degradation in Theorem 2 would have resulted
in a convergence rate of Õ(T−1/3) as opposed to our cur-
rent bound of Õ(T−1/2). Finally, it is to be mentioned that
our convergence bound does not depend on |S|, thereby
enabling its application to large state space MDPs as long
as tmix is finite.

6. Conclusions
This work presents the Multi-Level Monte Carlo-based Nat-
ural Actor-Critic (MLMC-NAC) algorithm for addressing
average-reward reinforcement learning challenges. The pro-
posed method achieves an order-optimal global convergence
rate of Õ(1/

√
T ), significantly surpassing the state-of-the-

art results in this domain, particularly for actor-critic ap-
proaches with general policy parametrization.

Building on this line of work, Xu et al. (2025) investigated
the impact of constraints. Our analysis considers a linear
critic, a limitation that has been relaxed to neural critics in
discounted settings (Gaur et al., 2024; Ganesh et al., 2025a).
However, extending this relaxation to the average reward
setting remains an open problem.
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A. Proof of Lemma 1
The proof of the lemma is inspired by the analysis in (Mondal & Aggarwal, 2024). The major distinction is that the bound
derived in (Mondal & Aggarwal, 2024) applies to the discounted reward setting, whereas our derivation pertains to the
average-reward case. We begin by stating a useful lemma.
Lemma 4 (Lemma 4, (Bai et al., 2024)). The difference in the performance for any policies πθ and πθ′ is bounded as
follows

J(θ)− J(θ′) = Es∼dπθ Ea∼πθ(·|s)
[
Aπθ′ (s, a)

]
. (36)

Continuing with the proof, we have:

Es∼dπ∗ [KL(π∗(·|s)∥πθk(·|s))−KL(π∗(·|s)∥πθk+1
(·|s))]

= Es∼dπ∗ Ea∼π∗(·|s)

[
log

πθk+1(a|s)

πθk(a|s)

]
(a)

≥ Es∼dπ∗ Ea∼π∗(·|s)[∇θ log πθk(a|s) · (θk+1 − θk)]−
G2

2
∥θk+1 − θk∥2

= αEs∼dπ∗ Ea∼π∗(·|s)[∇θ log πθk(a|s) · ωk]−
G2α

2

2
∥ωk∥2

= αEs∼dπ∗ Ea∼π∗(·|s)[∇θ log πθk(a|s) · ω∗
k] + αEs∼dπ∗ Ea∼π∗(·|s)[∇θ log πθk(a|s) · (ωk − ω∗

k)]−
G2α

2

2
∥ωk∥2

= α[J∗ − J(θk)] + αEs∼dπ∗ Ea∼π∗(·|s)[∇θ log πθk(a|s) · ω∗
k]− α[J∗ − J(θk)]

+ αEs∼dπ∗ Ea∼π∗(·|s)[∇θ log πθk(a|s) · (ωk − ω∗
k)]−

G2α
2

2
∥ωk∥2

(b)
= α[J∗ − J(θk)] + αEs∼dπ∗ Ea∼π∗(·|s)

[
∇θ log πθk(a|s) · ω∗

k −Aπθk (s, a)

]
+ αEs∼dπ∗ Ea∼π∗(·|s)[∇θ log πθk(a|s) · (ωk − ω∗

k)]−
G2α

2

2
∥ωk∥2

(c)

≥ α[J∗ − J(θk)]− α

√
Es∼dπ∗ Ea∼π∗(·|s)

[(
∇θ log πθk(a|s) · ω∗

k −Aπθk (s, a)

)2]
+ αEs∼dπ∗ Ea∼π∗(·|s)[∇θ log πθk(a|s) · (ωk − ω∗

k)]−
G2α

2

2
∥ωk∥2

(d)

≥ α[J∗ − J(θk)]− α
√
ϵbias + αEs∼dπ∗ Ea∼π∗(·|s)[∇θ log πθk(a|s) · (ωk − ω∗

k)]−
G2α

2

2
∥ωk∥2.

Here (a) and (b) follow from Assumption 5(b) and Lemma 4, respectively. Inequality (c) results from the convexity of the
function f(x) = x2. Lastly, (d) is a consequence of Assumption 4. By taking expectations on both sides, we derive:

E
[
Es∼dπ∗

[
KL(π∗(·|s)∥πθk(·|s))−KL(π∗(·|s)∥πθk+1

(·|s))
]]

≥ α[J∗ − E [J(θk)]]− α
√
ϵbias

+ αE
[
Es∼dπ∗ Ea∼π∗(·|s)[∇θ log πθk(a|s) · (Ek[ωk]− ω∗

k)]
]
− G2α

2

2
E
[
∥ωk∥2

]
≥ α[J∗ − E [J(θk)]]− α

√
ϵbias

− αE
[
Es∼dπ∗ Ea∼π∗(·|s)[∥∇θ log πθk(a|s)∥∥Ek[ωk]− ω∗

k∥]
]
− G2α

2

2
E
[
∥ωk∥2

]
(a)

≥ α[J∗ − E [J(θk)]]− α
√
ϵbias − αG1 E ∥(Ek[ωk]− ω∗

k)∥ −
G2α

2

2
E
[
∥ωk∥2

]
(37)

where (a) follows from Assumption 5(a). Rearranging the terms, we get,

J∗ − E[J(θk)] ≤
√
ϵbias +G1 E ∥(Ek[ωk]− ω∗

k)∥+
G2α

2
E ∥ωk∥2

+
1

α
E
[
Es∼dπ∗ [KL(π∗(·|s)∥πθk(·|s))−KL(π∗(·|s)∥πθk+1

(·|s))]
] (38)

12



A Sharper Global Convergence Analysis for Average Reward Reinforcement Learning via an Actor-Critic Approach

Adding the above inequality from k = 0 to K − 1, using the non-negativity of KL divergence, and dividing the resulting
expression by K, we obtain the final result.

B. Proof of Theorem 2
Let gh = P̂hxh − q̂h. To prove the first statement, observe the following relations.

∥xh+1 − x∗∥2 = ∥xh − β̄gh − x∗∥2

= ∥xh − x∗∥2 − 2β̄⟨xh − x∗, gh⟩+ β̄2∥gh∥2

= ∥xh − x∗∥2 − 2β̄⟨xh − x∗, P (xh − x∗)⟩ − 2β̄⟨xh − x∗, gh − P (xh − x∗)⟩+ β̄2∥gh∥2

(a)

≤ ∥xh − x∗∥2 − 2β̄λP ∥xh − x∗∥2 − 2β̄⟨xh − x∗, gh − P (xh − x∗)⟩
+ 2β̄2∥gh − P (xh − x∗)∥2 + 2β̄2∥P (xh − x∗)∥2

(b)

≤ ∥xh − x∗∥2 − 2β̄λP ∥xh − x∗∥2 − 2β̄⟨xh − x∗, gh − P (xh − x∗)⟩
+ 2β̄2∥gh − P (xh − x∗)∥2 + 2Λ2

P β̄
2∥xh − x∗∥2

where (a) and (b) follow from λP I ≼ P and ∥P∥ ≤ ΛP . Taking conditional expectation Eh on both sides, we obtain

Eh

[
∥xh+1 − x∗∥2

]
≤ (1− 2β̄λP + 2Λ2

P β̄
2)∥xh − x∗∥2 − 2β̄⟨xh − x∗,Eh [gh − P (xh − x∗)]⟩

+ 2β̄2 Eh ∥gh − P (xh − x∗)∥2 (39)

Observe that the third term in (39) can be bounded as follows.

∥gh − P (xh − x∗)∥2 = ∥(P̂h − P )(xh − x∗) + (P̂h − P )x∗ + (q − q̂h)∥2

≤ 3∥P̂h − P∥2∥xh − x∗∥2 + 3∥P̂h − P∥2∥x∗∥2 + 3∥q − q̂h∥2

≤ 3∥P̂h − P∥2∥xh − x∗∥2 + 3λ−2
P Λ2

q∥P̂h − P∥2 + 3∥q − q̂h∥2

where the last inequality follows from ∥x∗∥2 =
∥∥P−1q

∥∥2 ≤ λ−2
P Λ2

q . Taking expectation yields

Eh ∥gh − P (xh − x∗)∥2 ≤ 3Eh ∥P̂h − P∥2∥xh − x∗∥2 + 3λ−2
P Λ2

q Eh ∥P̂h − P∥2 + 3Eh ∥q̂h − q∥2

≤ 3σ2
P ∥xh − x∗∥2 + 3λ−2

P Λ2
qσ

2
P + 3σ2

q (40)

The second term in (39) can be bounded as

−⟨xh − x∗,Eh [gh − P (xh − x∗)]⟩ ≤ λP

4
∥xh − x∗∥2 + 1

λP
∥Eh[gh − P (xh − x∗)]∥2

≤ λP

4
∥xh − x∗∥2 + 1

λP

∥∥∥∥{Eh[P̂h]− P
}
xh +

{
q − Eh [q̂h]

}∥∥∥∥2
≤ λP

4
∥xh − x∗∥2 +

2δ2P ∥xh∥2 + 2δ2q
λP

≤ λP

4
∥xh − x∗∥2 +

4δ2P ∥xh − x∗∥2 + 4δ2Pλ
−2
P Λ2

q + 2δ2q
λP

(41)

where the last inequality follows from ∥x∗∥2 =
∥∥P−1q

∥∥2 ≤ λ−2
P Λ2

q . Substituting the above bounds in (39),

Eh

[
∥xh+1 − x∗∥2

]
≤
(
1− 3β̄λP

2
+

8β̄δ2P
λP

+ 6β̄2σ2
P + 2β̄2Λ2

P

)
∥xh − x∗∥2 + 4β̄

λP

[
2δ2Pλ

−2
P Λ2

q + δ2q
]

+ 6β̄2
[
λ−2
P Λ2

qσ
2
P + σ2

q

]
13
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For δP ≤ λP /8, and β̄ ≤ λP /[4(6σ
2
P + 2Λ2

P )], we can modify the above inequality to the following.

Eh[∥xh+1 − x∗∥2] ≤ (1− βλP ) ∥xh − x∗∥2 + 4β̄

λP

[
2δ2Pλ

−2
P Λ2

q + δ2q
]
+ 6β̄2

[
λ−2
P Λ2

qσ
2
P + σ2

q

]
Taking expectation on both sides and unrolling the recursion yields

E[∥xH − x∗∥2]

≤
(
1− β̄λP

)H E ∥x0 − x∗∥2 +
H−1∑
h=0

(
1− β̄λP

)h{ 4β̄

λP

[
2δ2Pλ

−2
P Λ2

q + δ2q
]
+ 6β̄2

[
λ−2
P Λ2

qσ
2
P + σ2

q

]}
≤ exp

(
−Hβ̄λP

)
E ∥x0 − x∗∥2 + 1

β̄λP

{
4β̄

λP

[
2δ2Pλ

−2
P Λ2

q + δ2q
]
+ 6β̄2

[
λ−2
P Λ2

qσ
2
P + σ2

q

]}
= exp

(
−Hβ̄λP

)
E ∥x0 − x∗∥2 +

{
4λ−2

P

[
2δ2Pλ

−2
P Λ2

q + δ2q
]
+ 6β̄λ−1

P

[
λ−2
P Λ2

qσ
2
P + σ2

q

]}
Set β̄ = 2 logH

λPH to obtain the following result.

E
[
∥xH − x∗∥2

]
≤ 1

H2
E
[
∥x0 − x∗∥2

]
+O

 logH

H

{
λ−4
P Λ2

qσ
2
P + λ−2

P σ2
q

}
︸ ︷︷ ︸

R0

+λ−2
P

[
δ2Pλ

−2
P Λ2

q + δ2q

]
︸ ︷︷ ︸

R1

 (42)

Note that, for consistency, we must have logH/H ≤ λ2
P /[8(6σ

2
P + 2Λ2

P )]. To prove the second statement, observe that we
have the following recursion.

∥E[xh+1]− x∗∥2 = ∥E[xh]− β̄ E[gh]− x∗∥2

= ∥E[xh]− x∗∥2 − 2β̄⟨E[xh]− x∗,E[gh]⟩+ β̄2∥E[gh]∥2

= ∥E[xh]− x∗∥2 − 2β̄⟨E[xh]− x∗, P (E[xh]− x∗)⟩ − 2β̄⟨E[xh]− x∗,E[gh]− P (E[xh]− x∗)⟩+ β̄2∥E[gh]∥2

(a)

≤ ∥E[xh]− x∗∥2 − 2β̄λP ∥E[xh]− x∗∥2 − 2β̄⟨E[xh]− x∗,E[gh]− P (E[xh]− x∗)⟩
+ 2β̄2∥E[gh]− P (E[xh]− x∗)∥2 + 2β̄2∥P (E[xh]− x∗)∥2

(b)

≤ ∥E[xh]− x∗∥2 − 2β̄λP ∥E[xh]− x∗∥2 − 2β̄⟨E[xh]− x∗,E[gh]− P (E[xh]− x∗)⟩
+ 2β̄2∥E[gh]− P (E[xh]− x∗)∥2 + 2Λ2

P β̄
2∥E[xh]− x∗∥2

≤ (1− 2β̄λP + 2Λ2
P β̄

2)∥E[xh]− x∗∥2 − 2β̄⟨E[xh]− x∗,E[gh]− P (E[xh]− x∗)⟩

+ 2β̄2 ∥E[gh]− P (E[xh]− x∗)∥2 (43)

where (a) and (b) follow from λP I ≼ P and ∥P∥ ≤ ΛP . The third term in the last line of (43) can be bounded as follows.

∥E[gh]− P (E[xh]− x∗)∥2 =
∥∥∥E [(P̂h − P )(xh − x∗)

]
+ (E[P̂h]− P )x∗ + (q − E[q̂h])

∥∥∥2
≤ 3E

[
∥Eh[P̂h]− P∥2∥xh − x∗∥2

]
+ 3E

[
∥Eh[P̂h]− P∥2

]
∥x∗∥2 + 3 ∥q − E[q̂h]∥2

≤ 3δ2P E
[
∥xh − x∗∥2

]
+ 3λ−2

P Λ2
qδ

2
P + 3δ̄2q

(a)

≤ 3δ2P

{
E
[
∥x0 − x∗∥2

]
+O (R0 +R1)

}
+ 3λ−2

P Λ2
qδ

2
P + 3δ̄2q

where (a) follows from (42). The second term in the last line of (43) can be bounded as follows.

−⟨E[xh]− x∗,Eh [E[gh]− P (E[xh]− x∗)]⟩

≤ λP

4
∥E[xh]− x∗∥2 + 1

λP
∥E[gh]− P (E[xh]− x∗)∥2

≤ λP

4
∥E[xh]− x∗∥2 + 3

λP

[
δ2P

{
E
[
∥x0 − x∗∥2

]
+O (R0 +R1)

}
+ λ−2

P Λ2
qδ

2
P + δ̄2q

]
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Substituting the above bounds in (43), we obtain the following recursion.

∥E[xh+1]− x∗∥2 ≤
(
1− 3β̄λP

2
+ 2Λ2

P β̄
2

)
∥E[xh]− x∗∥2

+ 6β̄

(
β̄ +

1

λP

)[
δ2P

{
E
[
∥x0 − x∗∥2

]
+O (R0 +R1)

}
+ λ−2

P Λ2
qδ

2
P + δ̄2q

]
If β < λP /(4Λ

2
P ), the above bound implies the following.

∥E[xh+1]− x∗∥2 ≤
(
1− β̄λP

)
∥E[xh]− x∗∥2

+ 6β̄

(
β̄ +

1

λP

)[
δ2P

{
E
[
∥x0 − x∗∥2

]
+O (R0 +R1)

}
+ λ−2

P Λ2
qδ

2
P + δ̄2q

]
Unrolling the above recursion, we obtain

∥E[xH ]− x∗∥2 ≤
(
1− β̄λP

)H ∥E[x0]− x∗∥2

+

H−1∑
h=0

6
(
1− β̄λP

)h
β̄

(
β̄ +

1

λP

)[
δ2P

{
E
[
∥x0 − x∗∥2

]
+O (R0 +R1)

}
+ λ−2

P Λ2
qδ

2
P + δ̄2q

]
≤ exp

(
−Hβ̄λP

)
∥E[x0]− x∗∥2 + 6

λP

(
β̄ +

1

λP

)[
δ2P

{
E
[
∥x0 − x∗∥2

]
+O (R0 +R1)

}
+ λ−2

P Λ2
qδ

2
P + δ̄2q

]
Substituting β̄ = 2 logH/(λPH), we finally arrive at the following result.

∥E[xH ]− x∗∥2 ≤ 1

H2
∥E[x0]− x∗∥2 + 6

(
1 +

2 logH

H

)[
λ−2
P δ2P

{
E
[
∥x0 − x∗∥2

]
+O (R0 +R1)

}
+ R̄1

]
where R̄1 = λ−2

P

[
δ2Pλ

−2
P Λ2

q + δ̄2q
]
. This concludes the result.

C. Properties of the MLMC Estimates
This section provides some guarantees on the error of the MLMC estimator. This is similar to the results available in
(Dorfman & Levy, 2022; Suttle et al., 2023; Beznosikov et al., 2023), although (Dorfman & Levy, 2022; Beznosikov et al.,
2023) consider the case of unbiased estimates while our results deal with biased estimates.
Lemma 5. Consider a time-homogeneous, ergodic Markov chain (Zt)t≥0 with a unique stationary distribution dZ and
a mixing time tmix. Assume that ∇F (x) is an arbitrary gradient and ∇F (x, Z) denotes an estimate of ∇F (x). Let
∥EdZ

[∇F (x, Z)]−∇F (x)∥2 ≤ δ2 and ∥∇F (x, Zt)− EdZ
[∇F (x, Z)] ∥2 ≤ σ2 for all t ≥ 0. If Q ∼ Geom(1/2), then

the following MLMC estimator

gMLMC = g0 +

{
2Q
(
gQ − gQ−1

)
, if 2Q ≤ Tmax

0, otherwise
where gj = 2−j

∑2j

t=1
∇F (x, Zt) (44)

satisfies the inequalities stated below.

(a) E[gMLMC] = E[g⌊log Tmax⌋]

(b) E[∥∇F (x)− gMLMC∥2] ≤ O
(
σ2tmix log2 Tmax + δ2

)
(c) ∥∇F (x)− E[gMLMC]∥2 ≤ O

(
σ2tmixT

−1
max + δ2

)
Before proceeding to the proof, we state a useful lemma.
Lemma 6 (Lemma 1, (Beznosikov et al., 2023)). Consider the same setup as in Lemma 5. The following inequality holds.

E

[∥∥∥∥ 1

N

N∑
i=1

∇F (x, Zi)− EdZ
[∇F (x, Z)]

∥∥∥∥2
]
≤ C1tmix

N
σ2 (45)

where N is a constant, C1 = 16(1 + 1
ln2 4

), and the expectation is over the distribution of {Zi}Ni=1 emanating from any
arbitrary initial distribution.
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Proof of Lemma 5. The statement (a) can be proven as follows.

E[gMLMC] = E[g0] +
⌊log2 Tmax⌋∑

j=1

Pr{Q = j} · 2j E[gj − gj−1]

= E[g0] +
⌊log2 Tmax⌋∑

j=1

E[gj − gj−1] = E[g⌊log2 Tmax⌋]

For the proof of (b), notice that

E
[
∥EdZ

[∇F (x, Z)]− gMLMC∥2
]

≤ 2E
[∥∥EdZ

[∇F (xt)]− g0
∥∥2]+ 2E

[∥∥gMLMC − g0
∥∥2]

= 2E
[∥∥EdZ

[∇F (xt)]− g0
∥∥2]+ 2

∑⌊log2 Tmax⌋

j=1
Pr{Q = j} · 4j E

[∥∥gj − gj−1
∥∥2]

= 2E
[∥∥EdZ

[∇F (xt)]− g0
∥∥2]+ 2

∑⌊log2 Tmax⌋

j=1
2j E

[∥∥gj − gj−1
∥∥2]

≤ 2E
[∥∥EdZ

[∇F (xt)]− g0
∥∥2]

+ 4
∑⌊log2 Tmax⌋

j=1
2j
(
E
[∥∥Edz [∇F (x, Z)]− gj−1

∥∥2]+ E
[∥∥gj − EdZ

[∇F (x, Z)]
∥∥2])

(a)

≤ C1tmixσ
2

[
2 + 4

∑⌊log2 Tmax⌋

j=1
2j
(

1

2j−1
+

1

2j

)]
= O

(
σ2tmix log2 Tmax

)
where (a) follows from Lemma 6. Using this result, we obtain the following.

E
[
∥∇F (x)− gMLMC∥2

]
≤ 2E

[
∥∇F (x)− Edz

[∇F (x, Z)]∥2
]
+ 2E

[
∥Edz

[∇F (x, Z)]− gMLMC∥2
]

≤ O
(
σ2tmix log2 Tmax + δ2

)
This completes the proof of statement (b). For part (c), we have

∥∇F (x)− E [gMLMC]∥2 ≤ 2 ∥∇F (x)− EdZ
[∇F (x, Z)]∥2 + 2 ∥EdZ

[∇F (x, Z)]− E [gMLMC]∥2

≤ 2δ2 + 2
∥∥∥EdZ

[∇F (x, Z)]− E[g⌊log2 Tmax⌋]
∥∥∥2 (a)

≤ 2δ2 +
2C1tmix

Tmax
σ2

(46)

where (a) follows from Lemma 6. This concludes the proof of Lemma 5.

D. Proof of Lemma 2
Fix an outer loop instant k and an inner loop instant h ∈ {H, · · · , 2H − 1}. Recall the definition of Âu(θk, ·) from (20).
The following inequalities hold for any θk and zkht ∈ S ×A× S .

Eθk

[
Âu(θk, z)

]
(a)
= F (θk), and

∥∥∥Âu(θk, z
kh
t )− Eθk

[
Âu(θk, z)

]∥∥∥2 (b)

≤ 2G4
1

where Eθk denotes the expectation over the distribution of z = (s, a, s′) where (s, a) ∼ νπθk , s′ ∼ P (·|s, a). The equality
(a) follows from the definition of the Fisher matrix, and (b) is a consequence of Assumption 5. Statements (a) and (b),
therefore, directly follow from Lemma 5.

To prove the other statements, recall the definition of b̂u(θk, ξk, ·) from (20). Observe the following relations for arbitrary
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θk, ξk.

Eθk

[
b̂u(θk, ξk, z)

]
−∇θJ(θk) = Eθk

[{
r(s, a)− ηk + ⟨ϕ(s′)− ϕ(s), ζk⟩

}
∇θk logπθk

(a|s)
]
−∇θJ(θk)

(a)
= Eθk

[{
η∗k − ηk + ⟨ϕ(s′)− ϕ(s), ζk − ζ∗k⟩

}
∇θk logπθk

(a|s)
]

︸ ︷︷ ︸
T0

+

+ Eθk

[{
V πθk (s)− ⟨ϕ(s), ζ∗k⟩+ ⟨ϕ(s′), ζ∗k⟩ − V πθk (s′)

}
∇θk logπθk

(a|s)
]

︸ ︷︷ ︸
T1

+ Eθk

[{
V πθk (s′)− η∗k + r(s, a)− V πθk (s)

}
∇θk logπθk

(a|s)
]
−∇θJ(θk)︸ ︷︷ ︸

T2

In (a), we have used the notation that ξ∗k = [η∗k, ζ
∗
k ]

⊤. Observe that

∥T0∥2
(a)
= O

(
G2

1 ∥ξk − ξ∗k∥
2
)
, ∥T1∥2

(b)
= O

(
G2

1ϵapp
)
, and T2

(c)
= 0 (47)

where (a) follows from Assumption 5 and the boundedness of the feature map, ϕ while (b) is a consequence of Assumption
5 and 2. Finally, (c) is an application of Bellman’s equation. We get,∥∥∥Eθk

[
b̂u(θk, ξk, z)

]
−∇θJ(θk)

∥∥∥2 ≤ δ2u,k = O
(
G2

1 ∥ξk − ξ∗k∥
2
+G2

1ϵapp

)
(48)

Moreover, observe that, for arbitrary zkht ∈ S ×A× S∥∥∥b̂u(θk, ξk, zkht )− Eθk

[
b̂u(θk, ξk, zt)

]∥∥∥2 (a)

≤ σ2
u,k = O

(
G2

1 ∥ξk∥
2
)

(49)

where (a) follows from Assumption 5 and the boundedness of the feature map, ϕ. We can, therefore, conclude statements
(c) and (d) by applying (48) and (49) in Lemma 5. To prove the statement (e), note that

Eθk

[
Ek

[
b̂u(θk, ξk, z)

]]
−∇θJ(θk) = Eθk

[{
r(s, a)− Ek[ηk] + ⟨ϕ(s′)− ϕ(s),Ek[ζk]⟩

}
∇θk logπθk

(a|s)
]
−∇θJ(θk)

(a)
= Eθk

[{
η∗k − Ek[ηk] + ⟨ϕ(s′)− ϕ(s),Ek[ζk]− ζ∗k⟩

}
∇θk logπθk

(a|s)
]

︸ ︷︷ ︸
T0

+

+ Eθk

[{
V πθk (s)− ⟨ϕ(s), ζ∗k⟩+ ⟨ϕ(s′), ζ∗k⟩ − V πθk (s′)

}
∇θk logπθk

(a|s)
]

︸ ︷︷ ︸
T1

+ Eθk

[{
V πθk (s′)− η∗k + r(s, a)− V πθk (s)

}
∇θk logπθk

(a|s)
]
−∇θJ(θk)︸ ︷︷ ︸

T2

Observe the following bounds.

∥T0∥2
(a)
= O

(
G2

1 ∥Ek[ξk]− ξ∗k∥
2
)
, ∥T1∥2

(b)
= O

(
G2

1ϵapp
)
, and T2

(c)
= 0 (50)

where (a) follows from Assumption 5 and the boundedness of the feature map, ϕ while (b) is a consequence of Assumption
5 and 2. Finally, (c) is an application of Bellman’s equation. We get,∥∥∥Eθk

[
Ek

[
b̂u(θk, ξk, z)

]]
−∇θJ(θk)

∥∥∥2 ≤ δ̄2u,k = O
(
G2

1 ∥Ek[ξk]− ξ∗k∥
2
+G2

1ϵapp

)
(51)
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Using the above bound, we deduce the following.∥∥∥Ek

[
b̂MLMC
u,k,h (θk, ξk)

]
−∇θJ(θk)

∥∥∥2
≤ 2

∥∥∥Ek

[
b̂MLMC
u,k,h (θk, ξk)

]
− Eθk

[
Ek

[
b̂u(θk, ξk, z)

]]∥∥∥2 + 2
∥∥∥Eθk

[
Ek

[
b̂u(θk, ξk, z)

]]
−∇θJ(θk)

∥∥∥2
(a)

≤ 2Ek

∥∥∥Ek,h

[
b̂MLMC
u,k,h (θk, ξk)

]
− Eθk

[
b̂u(θk, ξk, z)

]∥∥∥2 +O (δ̄2u,k) (b)

≤ O
(
tmixT

−1
maxσ̄

2
u,k + δ̄2u,k

)
where (a) follows from (51). Moreover, (b) follows from Lemma 5(a), 6, and the definition of σ̄2

u,k. This concludes the
proof of Lemma 2.

E. Proof of Lemma 3
Recall the definitions of Âv(·) and b̂v(·) given in (23) and (24) respectively. Note that the following equalities hold for any
θk.

Eθk

[
Âv(z)

]
= Av(θk), and Eθk

[
b̂v(z)

]
= bv(θk) (52)

where Eθk denotes the expectation over the distribution of z = (s, a, s′) where (s, a) ∼ νπθk , s′ ∼ P (·|s, a). Also, for any
z = (s, a, s′) ∈ S ×A× S , we have the following.∥∥∥Âv(z)

∥∥∥ ≤ |cβ |+ ∥ϕ(s)∥+ ∥∥ϕ(s)(ϕ(s)− ϕ(s′))⊤
∥∥ (a)

≤ cβ + 3 = O(cβ), (53)∥∥∥b̂v(z)∥∥∥ ≤ |cβr(s, a)|+ ∥r(s, a)ϕ(s)∥ (b)

≤ cβ + 1 = O(cβ) (54)

where (a), (b) hold since |r(s, a)| ≤ 1 and ∥ϕ(s)∥ ≤ 1, ∀(s, a) ∈ S ×A. Hence, for any zkht ∈ S ×A× S, we have∥∥∥Âv(z
kh
t )− Eθk

[
Âv(z)

]∥∥∥2 ≤ O(c2β), and
∥∥∥b̂v(zkht )− Eθk

[
b̂v(z)

]∥∥∥2 ≤ O(c2β)
Combining the above results with Lemma 5 establishes the result.

F. Proof of Theorem 3
We first state an important result regarding ergodic MPDs.
Lemma 7. Lemma 14, (Wei et al., 2020) For any ergodic MDP with mixing time tmix, the following holds for any policy π.

|Aπ(s, a)| = O (tmix) , ∀(s, a)

If follows from Assumptions 5, 6, and Lemma 7 that

µI ≼ F (θ), ∥F (θ)∥ ≤ G2
1, and ∥∇θJ(θ)∥ ≤ O (G1tmix) (55)

where θ is any arbitrary policy parameter. Combining the above results with Lemma 2 and invoking Theorem 2, we arrive at
the following.

Ek

[
∥ωk − ω∗

k∥
2
]
≤ 1

H2

∥∥ωk
H − ω∗

k

∥∥2 + Õ(R0

H
+R1

)
,

∥Ek[ωk]− ω∗
k∥

2 ≤ 1

H2

∥∥ωk
H − ω∗

k

∥∥2 +O(R̄1) +O
(
G4

1tmix

µ2H2

{∥∥ωk
H − ω∗

k

∥∥2 + Õ (R0 +R1)
})

where the terms R0, R1, R̄1 are defined as follows.

R0 = Õ
(
µ−4G6

1t
3
mix + µ−2G2

1tmix Ek

[
∥ξk∥2

]
+ µ−2G2

1 Ek

[
∥ξk − ξ∗k∥

2
]
+ µ−2G2

1ϵapp

)
,

R1 = O
(
H−2µ−4G6

1t
3
mix +H−2µ−2G2

1tmix Ek

[
∥ξk∥2

]
+ µ−2G2

1 Ek

[
∥ξk − ξ∗k∥

2
]
+ µ−2G2

1ϵapp

)
R̄1 = O

(
H−2µ−4G6

1t
3
mix +H−2µ−2G2

1tmix Ek

[
∥ξk∥2

]
+ µ−2G2

1 ∥Ek[ξk]− ξ∗k∥
2
+ µ−2G2

1ϵapp

)
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Moreover, note that

Ek

[
∥ξk∥2

]
≤ 2Ek

[
∥ξk − ξ∗k∥

2
]
+ 2Ek

[
∥ξ∗k∥

2
] (a)

≤ O
(
Ek

[
∥ξk − ξ∗k∥

2
]
+ λ−2c2β

)
where (a) follows from (57) for sufficiently large cβ and the definition that ξ∗k = [Av(θk)]

−1bv(θk). Hence,

Ek

[
∥ωk − ω∗

k∥
2
]
≤ 1

H2

∥∥ωk
H − ω∗

k

∥∥2 + Õ( 1

H

{
µ−4G6

1t
3
mix + µ−2λ−2G2

1c
2
βtmix

})
+ Õ

(
µ−2G2

1 Ek

[
∥ξk − ξ∗k∥

2
]
+ µ−2G2

1ϵapp

)
,

∥Ek[ωk]− ω∗
k∥

2 ≤ O
(
µ−2G2

1 ∥Ek[ξk]− ξ∗k∥
2
+ µ−2G2

1ϵapp

)
+ Õ

(
G4

1tmix

µ2H2

{∥∥ωk
H − ω∗

k

∥∥2 + µ−2G2
1tmix Ek

[
∥ξk − ξ∗k∥

2
]
+ µ−4G6

1t
3
mix + µ−2λ−2G2

1c
2
βtmix

})
This concludes the proof.

G. Proof of Theorem 4
We start with an important result on Av(θ).

Lemma 8. For a large enough cβ , Assumption 3 implies that Av(θ) ⪰ (λ/2)I where I is an identity matrix of appropriate
dimension and θ is an arbitrary policy parameter.

Proof of Lemma 8. Recall that Av(θ) = Eθ[Âv(z)] where Eθ denotes expectation over the distribution of z = (s, a, s′)
where (s, a) ∼ νπθ , s′ ∼ P (·|s, a). Hence, for any ξ = [η, ζ], we have

ξ⊤Av(θ)ξ = cβη
2 + ηζ⊤ Eθ [ϕ(s)] + ζ⊤ Eθ

[
ϕ(s) [ϕ(s)− ϕ(s′)]

⊤
]
ζ

(a)

≥ cβη
2 − |η| ∥ζ∥+ λ ∥ζ∥2

≥ ∥ξ∥2
{

min
u∈[0,1]

cβu−
√
u(1− u) + λ(1− u)

}
(b)

≥ (λ/2) ∥ξ∥2

(56)

where (a) is a consequence of Assumption 3 and the fact that ∥ϕ(s)∥ ≤ 1, ∀s ∈ S. Finally, (b) is satisfied when

cβ ≥ λ+
√

1
λ2 − 1. This concludes the proof of Lemma 8.

Combining Lemma 8 with (52), (53), and (54), we can, therefore, conclude that the following inequalities hold for arbitrary

θk whenever cβ ≥ λ+
√

1
λ2 − 1.

λ

2
≤ ∥Av(θk)∥ ≤ O(cβ), and ∥bv(θk)∥ ≤ O(cβ) (57)

Utilizing the above result with Lemma 3 and invoking Theorem 2, we arrive at the following.

Ek

[
∥ξk − ξ∗k∥

2
]
≤ 1

H2

∥∥ξk0 − ξ∗k
∥∥2 + Õ(R0

H
+R1

)
,

Ek

[
∥Ek[ξk]− ξ∗k∥

2
]
≤ 1

H2

∥∥ξk0 − ξ∗k
∥∥2 +O(R̄1) +O

(
c2βtmix

λ2H2

{∥∥ξk0 − ξ∗k
∥∥2 +O (R0 +R1)

})
where the terms R0, R1, R̄1 are defined as follows.

R0 = Õ
(
λ−4c4βtmix + λ−2c2βtmix

)
= Õ

(
λ−4c4βtmix

)
,

R1 = O
(
H−2λ−4c4βtmix +H−2λ−2c2βtmix

)
= O

(
H−2λ−4c4βtmix

)
R̄1 = O

(
H−2λ−4c4βtmix +H−2λ−2c2βtmix

)
= O

(
H−2λ−4c4βtmix

)
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Hence, we have the following results.

Ek

[
∥ξk − ξ∗k∥

2
]
≤ 1

H2

∥∥ξk0 − ξ∗k
∥∥2 + Õ(c4βtmix

λ4H

)
,

∥Ek[ξk]− ξ∗k∥
2 ≤ O

(
c2βtmix

λ2H2

∥∥ξk0 − ξ∗k
∥∥2)+O

(
c6βt

2
mix

λ6H2

)

This concludes the proof of Theorem 4.

H. Proof of Theorem 1
Recall that the global convergence of any update of form θk+1 = θk + αωk can be bounded as

J∗ − 1

K

K−1∑
k=0

E[J(θk)] ≤
√
ϵbias +

G1

K

K−1∑
k=0

E ∥(Ek [ωk]− ω∗
k)∥+

αG2

K

K−1∑
k=0

E ∥ωk − ω∗
k∥2

+
αµ−2

K

K−1∑
k=0

E ∥∇θJ(θk)∥2 +
1

αK
Es∼dπ∗ [KL(π∗(·|s)∥πθ0(·|s))].

(58)

We shall now derive a bound for 1
K

∑K−1
k=0 ∥∇θJ(θk)∥2. Given that the function J is L-smooth, we obtain:

J(θk+1) ≥ J(θk) + ⟨∇θJ(θk), θk+1 − θk⟩ −
L

2
∥θk+1 − θk∥2

= J(θk) + α ⟨∇θJ(θk), ωk⟩ −
α2L

2
∥ωk∥2

= J(θk) + α ⟨∇θJ(θk), ω
∗
k⟩+ α ⟨∇θJ(θk), ωk − ω∗

k⟩ −
α2L

2
∥ωk − ω∗

k + ω∗
k∥2

(a)

≥ J(θk) + α
〈
∇θJ(θk), F (θk)

−1∇θJ(θk)
〉
+ α ⟨∇θJ(θk), ωk − ω∗

k⟩
− α2L∥ωk − ω∗

k∥2 − α2L∥ω∗
k∥2

(b)

≥ J(θk) +
α

G2
1

∥∇θJ(θk)∥2 + α ⟨∇θJ(θk), ωk − ω∗
k⟩ − α2L∥ωk − ω∗

k∥2 − α2L∥ω∗
k∥2

= J(θk) +
α

2G2
1

∥∇θJ(θk)∥2 +
α

2G2
1

[
∥∇θJ(θk)∥2 + 2G2

1 ⟨∇θJ(θk), ωk − ω∗
k⟩+G4

1∥ωk − ω∗
k∥2
]

−
(
αG2

1

2
+ α2L

)
∥ωk − ω∗

k∥2 − α2L∥ω∗
k∥2

= J(θk) +
α

2G2
1

∥∇θJ(θk)∥2 +
α

2G2
1

∥∇θJ(θk) +G2
1(ωk − ω∗

k)∥2 −
(
αG2

1

2
+ α2L

)
∥ωk − ω∗

k∥2

− α2L∥ω∗
k∥2

≥ J(θk) +
α

2G2
1

∥∇θJ(θk)∥2 −
(
αG2

1

2
+ α2L

)
∥ωk − ω∗

k∥2 − α2L∥F (θk)
−1∇θJ(θk)∥2

(c)

≥ J(θk) +

(
α

2G2
1

− α2L

µ2

)
∥∇θJ(θk)∥2 −

(
αG2

1

2
+ α2L

)
∥ωk − ω∗

k∥2

(59)

where (a) use the Cauchy-Schwarz inequality and the definition that ω∗
k = F (θk)

−1∇θJ(θk). Relations (b), and (c) are
consequences of Assumption 5(a) and 6 respectively. Summing the above inequality over k ∈ {0, · · · ,K − 1}, rearranging
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the terms and substituting α = µ2

4G2
1L

, we obtain

µ2

16G4
1L

(
1

K

K−1∑
k=0

∥∇θJ(θk)∥2
)
≤ J(θK)− J(θ0)

K
+

(
µ2

8L
+

µ4

16G4
1L

)(
1

K

K−1∑
k=0

∥ωk − ω∗
k∥2
)

(a)

≤ 2

K
+

(
µ2

8L
+

µ4

16G4
1L

)(
1

K

K−1∑
k=0

∥ωk − ω∗
k∥2
) (60)

where (a) uses the fact that J(·) is absolutely bounded above by 1. Inequality (60) can be simplified as follows.

µ−2

K

(
K−1∑
k=0

∥∇θJ(θk)∥2
)
≤ 32LG4

1

µ4K
+

(
2G4

1

µ2
+ 1

)(
1

K

K−1∑
k=0

∥ωk − ω∗
k∥2
)

(61)

Now all that is left is to bound E
[
∥ωk − ω∗

k∥2
]

and ∥Ek[ωk]− ω∗
k∥. Assume ξk0 = 0, ∀k. From Theorem 4, we have

Ek

[
∥ξk − ξ∗k∥

2
]
≤ 1

H2
∥ξ∗k∥

2
+ Õ

(
c4βtmix

λ4H

)
(a)
= Õ

(
c4βtmix

λ4H

)
, (62)

∥Ek[ξk]− ξ∗k∥
2 ≤ O

(
c2βtmix

λ2H2
∥ξ∗k∥

2

)
+O

(
c6βt

2
mix

λ6H2

)
(b)
= O

(
c6βt

2
mix

λ6H2

)
(63)

The relations (a), (b) are due to the fact that ∥ξ∗k∥
2
=
∥∥∥[Av(θk)]

−1
bv(θk)

∥∥∥2 ≤ O (λ−2c2β

)
where the last inequality is a

consequence of (57). Assume ωk
H = 0, ∀k. We have the following from Theorem 3.

Ek

[
∥ωk − ω∗

k∥
2
]
≤ 1

H2
∥ω∗

k∥
2
+ Õ

(
1

H

{
µ−4G6

1t
3
mix + µ−2λ−2G2

1c
2
βtmix

})
+ µ−2G2

1Õ
(
Ek

[
∥ξk − ξ∗k∥

2
]
+ ϵapp

)
(a)

≤ O
(
G2

1t
2
mix

µ2H2

)
+ Õ

(
1

H

{
µ−4G6

1t
3
mix + µ−2λ−2G2

1c
2
βtmix

})
+

G2
1

µ2
Õ

(
c4βtmix

λ4H
+ ϵapp

)
(b)

≤ Õ
(

1

H

{
µ−4G6

1t
3
mix + µ−2λ−4G2

1c
4
βtmix

})
+

G2
1

µ2
O (ϵapp) (64)

Inequality (a) utilizes the fact that ∥ω∗
k∥

2
=
∥∥F (θk)

†∇θJ(θk)
∥∥2 ≤ O (µ−2G2

1t
2
mix

)
where the last inequality follows from

Assumption 5, 6, and Lemma 7. We also apply (62) to prove (a) whereas (b) is established by retaining only the dominant
terms. Theorem 3 also states that

∥Ek[ωk]− ω∗
k∥

2 ≤ O
(
µ−2G2

1 ∥Ek[ξk]− ξ∗k∥
2
+ µ−2G2

1ϵapp

)
+O

(
G4

1tmix

µ2H2

{
∥ω∗

k∥
2
+ µ−2G2

1tmix Ek

[
∥ξk − ξ∗k∥

2
]
+ µ−4G6

1t
3
mix + µ−2λ−2G2

1c
2
βtmix

})
(a)

≤ Õ

(
G2

1c
6
βt

2
mix

µ2λ6H2
+

G2
1

µ2
ϵapp

)
+ Õ

(
1

H2

{
µ−4G6

1t
3
mix +

G6
1c

4
βt

3
mix

µ4λ4H
+ µ−6G10

1 t4mix + µ−4λ−2G6
1c

2
βt

2
mix

})
(b)

≤ Õ
(

1

H2

{
µ−6G10

1 t4mix + µ−2λ−6G2
1c

6
βt

2
mix + µ−4λ−2G6

1c
2
βt

2
mix

})
+

G2
1

µ2
O (ϵapp) (65)

where (a) is a consequence of (62), (63), and the upper bound ∥ω∗
k∥

2 ≤ O
(
µ−2G2

1t
2
mix

)
derived earlier. Inequality (b)

retains only the dominant terms. Combining (58), (61), (64), and (65), we arrive at the following.

J∗ − 1

K

K−1∑
k=0

E[J(θk)] ≤
√
ϵbias + Õ

(
1

H

{
µ−3G6

1t
2
mix + µ−1λ−3G2

1c
3
βtmix + µ−2λ−1G4

1cβtmix

})
+

G2
1

µ
O
(√

ϵapp
)

+
1

L

(
G2

1 +
µ2G2

G2
1

)[
Õ
(

1

H

{
µ−4G6

1t
3
mix + µ−2λ−4G2

1c
4
βtmix

})
+

G2
1

µ2
O (ϵapp)

]
+O

(
G2

1L

µ2K

)
(66)
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We get the desired result by substituting the values of H,K as stated in the theorem. We want to emphasize that the G2
1

factor with the√ϵapp term is a standard component in actor-critic results with a linear critic (Suttle et al., 2023; Patel et al.,
2024). However, this factor is often not explicitly mentioned in previous works, whereas we have included it here.
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