
Under review as a conference paper at ICLR 2023

LATENT HIERARCHICAL IMITATION LEARNING
FOR STOCHASTIC ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many applications of imitation learning require the agent to avoid mode collapse and
mirror the full distribution of observed behaviours. Existing methods that address this
distributional realism typically rely on hierarchical policies conditioned on sampled types
that model agent-internal features like persona, goal, or strategy. However, these methods
are often inappropriate for stochastic environments, where internal and external factors
of influence on the observed agent trajectories have to be disentangled, and only internal
factors should be encoded in the agent type to be robust to changing environment conditions.
We formalize this challenge as distribution shift in the conditional distribution of agent
types under environmental stochasticity, in addition to the familiar covariate shift in state
visitations. We propose Robust Type Conditioning (RTC), which eliminate this shifts with
adversarial training under randomly sampled types. Experiments on two domains, including
the large-scale Waymo Open Motion Dataset, show improved distributional realism while
maintaining or improving task performance compared to state-of-the-art baselines.

1 INTRODUCTION

Learning to imitate behaviour is crucial when reward design is infeasible (Amodei et al., 2016; Hadfield-
Menell et al., 2017; Fu et al., 2018; Everitt et al., 2021), for overcoming hard exploration problems (Rajeswaran
et al., 2017; Zhu et al., 2018), and for realistic modelling of dynamical systems with multiple interacting agents
(Farmer and Foley, 2009). Such systems, including games, driving simulations, and agent-based economic
models, often have known state transition functions, but require accurate agents to be realistic. For example,
for driving simulations, which are crucial for accelerating the development of autonomous vehicles (Suo et al.,
2021; Igl et al., 2022), faithful reactions of all road users are paramount. Furthermore, it is not enough to mimic
a single mode in the data; instead, agents must reproduce the full distribution of behaviours to avoid sim2real
gaps in modelled systems (Grover et al., 2018; Liang et al., 2020), under-explored solutions in complex tasks
(Vinyals et al., 2019) and suboptimal policies in games requiring mixed strategies (Nash Jr, 1950).

Current imitation learning (IL) methods fall short of achieving such distributional realism by matching
all modes in the data. The required stochastic policy cannot be recovered from a fixed reward function
and adversarial methods, while aiming to match the distribution in principle, are known to be prone to
mode collapse in practice (Wang et al., 2017; Lucic et al., 2018; Creswell et al., 2018). Furthermore,
progress on distributional realism is hindered by a lack of suitable IL benchmarks, with most relying on
unimodal data and only evaluating task performance as measured by rewards, but not mode coverage. By
contrast, many applications require distributional realism in addition to good task performance. For example,
accurately evaluating the safety of autonomous vehicles in simulation relies on distributionally realistic agents.
Consequently, our goal is to improve distributional realism while maintaining strong task performance.

To mitigate mode collapse in complex environments, previous work uses hierarchical policies in an auto-
encoder framework (Wang et al., 2017; Suo et al., 2021; Igl et al., 2022). During training, an encoder infers
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latent variables from observed trajectories and the agent, conditioned on those latent variables, strives to
imitate the original trajectory. At test time, a prior distribution proposes distributionally realistic latent values,
without requiring access to privileged future information. We refer to this latent vector as an agent’s inferred
type since it expresses intrinsic characteristics of the agent that yield the multimodal behaviour. Depending
on the environment, the type could, for example, represent the agent’s persona, belief, goal, or strategy.

However, these hierarchical methods rely on either manually designed type representations (Igl et al., 2022)
or the strong assumption that all stochasticity in the environment can be controlled by the agent (Wang
et al., 2017; Suo et al., 2021). Unfortunately, this assumption is violated in most realistic scenarios. For
example, in the case of driving simulations, trajectories depend not only on the agent’s type, expressing
its driving style and intent, but also on external factors such as the behaviour of other road users. Crucially,
despite being inferred from future trajectories during training, agent types must be independent of these
external factors to avoid leaking information about future events outside the agent’s control, which in turn can
impair generalization at test time under changed, and ex-ante unknown, environmental conditions. In other
words, the challenge in learning hierarchical policies using IL in stochastic environments is to disentangle
the internal and external factors of influence on the trajectories and only encode the former into the type.

Consider the example of an expert approaching an intersection at the same time as another car. The expert
passes if the other car brakes and yields to it otherwise. To reconstruct the scene with ease, a naively trained
latent model could not only encode the agent’s intended direction (an internal decision) but also whether to
yield, which depends on the other car (an external factor). This is catastrophic at test time when the latent,
and hence the yielding decision, is sampled independently of the other car’s behaviour. In contrast, if only the
expert’s intent were encoded in the latent, the policy would learn to react appropriately to external factors.

In this paper, we identify these subtle challenges arising under stochastic environments and formulate them
as a new form of distribution shift for hierarchical policies. Unlike the familiar covariate shift in the state
distribution (Ross et al., 2011), this conditional type shift occur in the distribution of the inferred latent type. It
greatly reduces performance by yielding causally confused agents that rely on the latent type for information
about external factors, instead of inferring them from the latest environment observation. We propose Robust
Type Conditioning (RTC) to eliminate this distribution shift and avoid causally confused agents through a
coupled adversarial training objective under randomly sampled types. We do not require access to an expert,
counterfactuals, or manually specified type labels for trajectories.

Experimentally, we show the need for improved distributional realism due to mode collapse in state-of-the-art
imitation learning techniques such as GAIL (Ho and Ermon, 2016). Furthermore, we show that naively trained
hierarchical models with inferred types improve distributional realism, but exhibit poor task performance
in stochastic environments. By contrast, RTC can maintain good task performance in stochastic environments
while improving distributional realism and mode coverage. We evaluate RTC on the illustrative Double Goal
Problem as well as the large scale Waymo Open Motion Dataset (Ettinger et al., 2021) of real driving behaviour.

2 BACKGROUND

We are given a datasetD = {τi}Ni=1 ofN trajectories τi = s
(i)
0 ,a

(i)
0 , . . . s

(i)
T , drawn from p(τ) of one or more

experts interacting with a stochastic environment p(st+1|st,at) where st ∈ S are states and at ∈ A are
actions. Our goal is to learn a policy πθ(at|st) to match p(τ) when replacing the unknown expert and generat-
ing rollouts τ̂ ∼ p(τ̂) = p(s0)

∏T−1
t=0 πθ(ât|ŝt)p(ŝt+1|ŝt, ât) from the inital states s0 ∼ p(s0). We simplify

notation and write τ̂ ∼ πθ(τ̂) and τ ∼ D(τ) to indicate rollouts generated by the policy or drawn from the
data respectively. Expectations Eτ∼D and Eτ̂∼πθ

are taken over all pairs (st,at) ∈ τ and (ŝt, ât) ∈ τ̂ .

Previous work (e.g., Ross et al., 2011; Ho and Ermon, 2016) shows that a core challenge of learning from
demonstration is reducing or eliminating the covariate shift in the state-visitation frequencies p(s) caused by
accumulating errors when using πθ . Unfortunately, Behavioural Cloning (BC), a simple supervised training
objective optimising maxθ Eτ∼D [logπθ(at|st)] is not robust to it. To overcome covariate shift, generative
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adversarial imitation learning (GAIL) (Ho and Ermon, 2016) optimises πθ to fool a learned discriminator
Dφ(ât, ŝt) that is trained to distinguish between trajectories in D and those generated by πθ:

min
θ

max
φ

Eτ̂∼πθ

[
log(Dφ(ât, ŝt))

]
+ Eτ∼D

[
log(1−Dφ(at, st))

]
. (1)

The policy can be optimised using reinforcement learning, by treating the log-discriminator scores as costs,
rt = − logDφ(ât, ŝt). Alternatively, if the policy can be reparameterized (Kingma and Welling, 2013)
and the environment is differentiable, the sum of log discriminator scores can be optimised directly without
relying on high-variance score function estimators by backpropagating through the transition dynamics,
Ladv(τ̂) = Eτ̂∼πθ

[
∑
t− logDφ(ât, ŝt)]. We refer to this as Model-based GAIL (MGAIL), though in

contrast to Baram et al. (2016), we assume a known differentiable environment instead of a learned model.

In this work, we are concerned with multimodal distributions p(τ) and how mode collapse can
be avoided when learning πθ. To this end, we assume the dataset is sampled from p(τ) =

p(s0)
∫
p(g)p(ξ)

∏T
t=0 p(at|st, g)p(st+1|st,at, ξ)dξdg, where g is the agent type, expressing agent char-

acteristics such as persona, goal, or, strategy, and ξ is a random variable capturing the stochasticity in the
environment, i.e. p(st+1|st,at, ξ) is a delta distribution δf(st,at,ξ)(st+1) for some transition function f .
Learned agents matching p(τ), i.e., with p(τ̂) ≈ p(τ), are distributionally realistic, whereas realism describes
single trajectories when τ̂ lies in the support of pτ (τ). As we show in section 6, current non-hierarchical
adversarial methods (Ho and Ermon, 2016) exhibit mode collapse and are not distributionally realistic.

To combat mode collapse, hierarchical methods (e.g., Wang et al., 2017; Lynch et al., 2020; Suo et al.,
2021; Igl et al., 2022) often rely on an encoder to infer latent agent types ĝe from trajectories during
training, ĝe ∼ eθ(ĝe|τ), and optimise the control policy πθ(ât|ŝt, ĝe) to generate trajectories τ̂e similar to τ :
τ̂e ∼ p(τ̂e|ĝe) = p(s0)

∏T−1
t=0 πθ(ât|ŝt, ĝe)p(ŝt+1|ât, ŝt), with ĝe ∼ eθ(ĝe|τ). If ground truth trajectories

are not accessible during testing, a prior pθ(ĝp) can be used to sample distributionally realistic types ĝp. We
indicate by subscript ĝp or ĝe whether the inferred type and trajectory are drawn from the prior distribution
pθ(ĝp) or encoder eθ(ĝe|τ). Subscripts are omitted for states and actions to simplify notation. Inferred
types and predicted trajectories without subscripts indicate that either sampling distribution could be used.
For discussing information theoretic quantities, we will use capital letters S,A, Â, Ĝ and Ξ to denote the
random variables for values s,a, â, ĝ and ξ.

3 CONDITIONAL TYPE SHIFT IN STOCHASTIC ENVIRONMENTS

In this section we outline a challenge that arises for hierarchical policies in stochastic environments. A
shift in the conditional type distribution can arise because latent types are drawn from the encoder eθ(ĝe|τ)
during training but from the prior pθ(ĝp) during testing. While the prior is trained to match the marginal
distribution of the encoder p(ĝe) = Eg,ξ [eθ(ĝe|τ)], this is not the case for the conditional distribution
p(ĝe|ξ) = Eg [eθ(ĝe|τ)]. We show that this conditional type shift can result in policies ignoring environmen-
tal information. In section 6 we experimentally confirm that this translates to reduced task performance.

We use the simplified model in fig. 1 to describe the consequences of the conditional type shift. This model
has two sources of randomness in the data D: the environmental noise ξ and the multimodal type g of the
expert we are mimicking. The crucial difference between g and ξ is that ξ represents external factors that
the agent cannot control but to which it has to react, while g encodes agent-internal decisions that can be
taken independently of ξ. In this simplified model, the state s is a deterministic function of only ξ as we
disregard cross-temporal dependencies. During training, when real trajectories τ = (s,a) are available, the
inferred type ĝe is drawn from the encoder eθ(ĝe|τ). During testing, without access to τ , a prior pθ(ĝp)
is used. Actions â are drawn from the learned control policy πθ(â|s, ĝ) and optimisation is performed to
minimise a reconstruction loss Lrec(a, â). We express the core result of the policy ‘ignoring environmental
information’ using mutual information I(S,A), entropy H(A, Ĝe) and conditional entropy H(A|Ĝe).
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(a) Encoder: ĝe ∼ eθ(ĝe|τ) (b) Prior: ĝp ∼ pθ(ĝp). (c) Example dataset.

Figure 1: Simplified, non-temporal setup with environmental noise ξ and multi-modality induced by the unobserved
agent type g. We denote τ = (s,a). The inferred type ĝ is sampled from eθ(ĝe|τ) during training (left) and pθ(ĝp)
otherwise (middle). The control policy is πθ(â|s, ĝ). Circles are random variables and squares deterministic functions.
The loss L(a, â) penalises differences between a and â. Right: Example data, B denotes Bernoulli distributions.

Theorem 1. We assume the model pθ(â|s,a) =
∫
eθ(ĝe|a, s)πθ(â|s, ĝe)dĝe is achieving optimal re-

construction loss Lrec = 0 on PD(s,a). The test policy is pθ(â|s) =
∫
pθ(ĝp)πθ(â|s, ĝp)dĝp with the

marginal encoder pθ(ĝ) = EPD [eθ(ĝ|a, s)] as prior distribution. We can say for the training distribution
P (s,a, ĝe) = PD(s,a)eθ(ĝe|s,a) and and testing distribution P (s, â, ĝp) = PD(s)pθ(ĝp)πθ(â|s, ĝp):
If H(A|Ĝe) < I(S,A) and H(A, Ĝe) = H(Â, Ĝp), then I(S, Â) < I(S,A).

Corollary 1. If H(A|Ĝe) = 0, the assumption H(A, Ĝe) = H(Â, Ĝp) becomes unnecessary in theorem 1
and we have I(S, Â) = 0 < I(S,A).

Proofs are in appendix A. The core result is that the mutual information between states and actions is lower
for prior policies than in the data, implying that such policies ignore action-relevant information in the
states. This happens if H(A|Ĝe) < I(S,A), i.e. if the type ĝ captures too much information about â
during training. The condition H(A, Ĝe) = H(Â, Ĝp) assures that the entropy in the system and mutual
information between variables remains comparable between training and testing. In the extreme case that
type fully determines the action, i.e. H(A|Ĝe) = 0, the policy ignores the state entirely, i.e. I(S, Â) = 0.

Because the encoder and policy are trained jointly, the failure case H(A|Ĝe) < I(S,A) requires the encoder
to capture too much information about s in ĝe and the policy relying too much on ĝe to predict a, which
constitutes a form of causal confusion. Without the encoder providing excessive information about s, the
policy could not learn to over-rely on ĝe. Conversely, even with excessive information about s in ĝe, the
policy could still ignore it and avoid H(A|Ĝe) < I(S,A).

As an example, for the data given in fig. 1c, this is a solution satisfying I(S,A) > H(Â|Ĝ) = 0:

ĝe(si,aj) =

{
0 if j = 0

1 if j = 1
implies πθ(â|si, ĝ) =

{
a0 if ĝ = 0

a1 if ĝ = 1
and pθ(ĝp) = B(0.5). (2)

with Bernoulli distribution B. The latent type fully determines the action and the policy ignores the state.
This allows perfect reconstruction during training, but fails at test time when pθ(ĝp)πθ(â|s, ĝp) would
randomly sample a0 and a1 with equal probability. In the example of a car approaching an intersection, this
corresponds to entering the intersection independently of whether another car is approaching quickly, leading
to increased collision rates. Also note that the conditional type distribution is not independent of the state, i.e.
p(ĝe|s0) = B(1− ε) 6= p(ĝe|s1) = B(ε), leading to a conditional type shift to pθ(ĝp) = B(0.5) at test time.

Other training solutions exist for which I(S,A) = H(Â|Ĝ) and I(S, Â) = I(S,A). For example:

ĝe(si,aj) =

{
0 if i = j

1 if i 6= j
, πθ(â|si, ĝ) =

{
ai if ĝ = 0

aj if ĝ = 1
for i 6= j, pθ(ĝp) = B(1− ε). (3)
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Figure 2: Robust Type Conditioning (RTC): The control policy πθ(ât|ŝt, ĝ) is trained under inferred types ĝ sampled
from both the encoder eθ(ĝe|τ) and the prior pθ(ĝp). The reconstruction loss Lrec(τ, τ̂e) avoids mode collapse. The
adversarial loss Ladv(τ̂p) under prior types prevents causally confused policies and ensures good task performance. Lprior
optimises the prior to sample distributionally realistic types and the information bottleneck loss Lib reduces covariate shift.

Here the latent type ĝ only captures the agent-internal randomness, the conditional type distribution matches
the prior, i.e. p(ĝe|s1) = p(ĝe|s2) = pθ(ĝp) = B(1− ε), and the test policy correctly reproduces the data.

For temporally extended data, the states st will depend not only on ξ, but also on g or ĝ, complicating
theoretical treatment. Nevertheless, seeing ξ as all future stochasticity in the environment, the same threat of
conditional type shift arises. In the next section, we introduce two training interventions. The first discourages
causally confused policies, the other discourages the encoder from capturing excessive information about ξ.
In section 6 we show that using both interventions jointly allows to use hierarchical policies for improved
distributional realism while avoiding the sub-optimal solution for which I(S,A) > I(S, Â).

4 ROBUST TYPE CONDITIONING

We present Robust Type Conditioning (RTC), a method for improving distributional realism in imitation
learning while maintaining high task performance. RTC follows the auto-encoder framework discussed in
sections 2 and 3 but avoids conditional type shifts and causally confused policies that ignore environmental
information in stochastic environments. This is achieved through two augmentations. First, during training,
latent types are not only sampled from the encoder, but also the prior. Because we do not have ground
truth trajectories for these prior sampled types, an adversarial loss is used in place of the reconstruction loss.
Second, we regularise the mutual information I(S, Ĝ) using a variational information bottleneck (Alemi
et al., 2016) to avoid excessive information in ĝ. RTC combines four losses: the reconstruction loss Lrec, the
information bottleneck loss Lib, the adversarial loss Ladv, and the prior loss Lprior (see fig. 2):

LRTC = ED(τ)eθ(ĝe|τ)πθ(τ̂e|ĝe)
[
Lrec(τ, τ̂e) + βLib+λadvLadv(τ̂e) + Lprior(τ)

]
+ ED(τ)pθ̄(ĝp)πθ(τ̂p|ĝp)

[
λadvLadv(τ̂p) + Lprior(τ)

]
.

(4)

pθ(ĝp) is a learned prior and πθ(τ̂ |ĝ) is shorthand for generating trajectories τ̂ by rolling out the learned
control policy πθ(â|ŝ, ĝ) in the environment. Parameters θ̄ are held fixed and λadv and β are scalar weights.

We now introduce the individual terms. First, Lrec is a reconstruction loss between τ and τ̂e, encouraging
the hierarchical policy to be distributionally realistic and encode useful information about the trajectory in
the inferred type ĝe. The loss Lrec can take different forms. For example, in section 6.1 we use the BC loss
Lrec(τ) = − logπθ(at|st, ĝe) while in section 6.2 we minimise the L2 distance between agent positions in
st and ŝt. Note that state-based losses like the L2 reconstruction loss require access to a training environment
able to resimulate the conditions of the original trajectory τ as we assume that τ is still approximately optimal.
The loss Lprior(τ) = Eĝe∼eθ̄(ĝe|τ) [log pθ(ĝe)] optimises the prior to propose distributionally realistic types
by matching the marginal encoder distribution.
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The key algorithmic contribution of RTC is to also optimise the policy under types sampled from the prior
(second line in eq. (4)), not only the encoder (first line in eq. (4)). For these prior-sampled types, the
reconstruction loss cannot be used as the correct ground truth trajectories are unavailable. Instead, we use the
adversarial loss Ladv(τ̂) =

∑
t− logDφ(ât, ŝt), where Dφ(ât, ŝt) is a learned discriminator (see section 2).

This reduces conditional type shift because the prior distribution is already used during training. It also
reduces causal confusion: Because some types ĝ are now sampled independently of the trajectory τ and hence
ξ, their information about ξ is now less reliable and the policy is incentivised to rely on s as much as possible.

One can view sampling from the prior as a causal intervention do(ĝ) in which ĝ is changed independently of
the environmental factor ξ. De Haan et al. (2019) show that causal confusion can be avoided by applying such
interventions and optimising the policy to correctly predict the counterfactual expert trajectory distribution, in
our case pexpert(τ |ξ, do(ĝ)). Unfortunately, we do not have access to this counterfactual trajectory. Instead,
we rely on the generalisation of πθ to get us ‘close’ to such a counterfactual trajectory for types do(ĝ) and
then refine the policy locally using the adversarial objective.

We experimentally found that optimising the policy under prior types is sufficient to improve task performance
and avoid causal confusion in hierarchical policies. However, it also eliminated improvements in distributional
realism gained through the use of hierarchies, likely because the policy simply learned to ignore the latent
type altogether. As solution, we employ a informational bottleneck on types ĝe ∼ eθ(ĝe|τ). This filters
information about ξ while still encoding information about g in ĝe, thereby making the information in
ĝe more reliable and useful to the policy. We experimentally show that this, when combined with prior-
type sampling during training, achieves improved distributional realism while maintaining excellent task
performance. Without prior-type sampling, task-performance degrades considerably, indicating that the
bottleneck is insufficient for filtering out information about ξ entirely.

The information bottleneck preferentially filters information about ξ, because the control policy πθ also has
direct access to it through the visited states s. By contrast, information about g can only be accessed by the
policy through ĝe and is hence preferably encoded in the bottleneck when information bandwidth costs are
applied. We found that both continuous type representations with Lib = KL[p(ĝe)‖N (ĝe; 0, I)] and discrete
type representations using straight-through gradient estimation work well in practice (see section 6.2).

To accommodate optimisation under inferred types drawn from both the encoder eθ and the prior pθ, we
split each minibatch B = {τ (b)}Nb

b of Nb trajectories sampled from D into two parts. For the fraction f of
trajectories in B the rollouts τ̂e are generated from types sampled from the encoder ĝe ∼ eθ(ĝe|τ) and all
four losses are optimised (first line in eq. (4)). For the remaining fraction (1− f) of trajectories types are
sampled from the prior pθ(ĝp) and only Ladv and Lprior are optimised (second line in eq. (4)).

Optimisation of Ladv and Lrec can either be performed directly, similar to MGAIL (Baram et al., 2016), by
using a differentiable environment and reparameterised policies and encoder (Kingma and Welling, 2013) or
by treating them as rewards and using RL methods such as TRPO (Schulman et al., 2015; Ho and Ermon,
2016) or PPO (Schulman et al., 2017). The losses Lprior and Lib can always be optimised directly.

5 RELATED WORK

Several previous works combine adversarial training with autoencoder architectures in the image domain.
Makhzani et al. (2016) use an adversarial loss on the latent variable in place of the KL-regularization used in
VAEs. However, this eliminates the information bandwidth regularization for continuous latents which we
show to be important for hierarchical imitation learning. Larsen et al. (2016) aim to learn a similarity metric
for visual inputs using latent representations of the discriminator. This is valuable for imitation learning from
raw images (Rahmatizadeh et al., 2018), but is not required for our experimental domains. Lastly, Chrysos
et al. (2018), similar to our work, use an additional autoencoding loss to better capture the data distribution in
the latent space. However, they consider denoising images instead of imitation learning under stochasticity.
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Hierarchical policies have been extensively studied in RL (e.g., Sutton et al., 1999; Bacon et al., 2017;
Vezhnevets et al., 2017; Nachum et al., 2019; Igl et al., 2020) and IL. In RL, they improve exploration, sample
efficiency and fast adaptation. By contrast, in IL, hierarchies are used to capture multimodal distributions,
improve data efficiency (Krishnan et al., 2017; Le et al., 2018), and enable goal conditioning (Shiarlis et al.,
2018). Similar to our work, Wang et al. (2017) and Lynch et al. (2020) learn to encode trajectories into latent
types that influence a control policy. Crucially, both only consider deterministic environments and hence avoid
the distribution shifts and unwanted information leakage we address. They extend prior work in which the type,
or context, is provided in the dataset (Merel et al., 2017), which is also assumed in (Fei et al., 2020). Tamar
et al. (2018) use a sampling method to infer latent types. Khandelwal et al. (2020) and Igl et al. (2022) use
manually designed encoders specific to road users by expressing future goals as sequences of lane segments.
This avoids information leakage but cannot express all characteristics of human drivers, such as persona,
and cannot transfer to other tasks. Futures states in deterministic environments (Ding et al., 2019), language
(Pashevich et al., 2021), and predefined strategy statistics (Vinyals et al., 2019) have also been used as types.

Information theoretic regularization offers an alternative to learning hierarchical policies using the auto-
encoder framework (Li et al., 2017; Hausman et al., 2017). However, these methods are less expressive since
their prior distribution cannot be learned and only aim to cluster modes already captured by the agent but not pe-
nalize dropping modes in the data. This provides a useful inductive bias but often struggles in complex environ-
ments with high diversity, requiring manual feature engineering (Eysenbach et al., 2019; Pathak et al., 2019).

Lastly, TrafficSim (Suo et al., 2021) uses IL to model driving agents and controls all stochasticity in the scene
but uses independent prior distributions for separate agents. Hence, while no conditional distribution shift in
p(ĝ|ξ) can occur (as ξ is constant), distribution shifts in p(ĝ(i)|ĝ(j)), and hence the joint marginal p(ĝ(1:N))

can occur for latent types ĝ(i), ĝ(j) of agents i 6= j with i, j ∈ {1 . . . N} and ĝ(1:N) = [ĝ(1) . . . ĝ(N)]:
when drawn from the encoder, goals ĝ(i) and ĝ(j) are coordinated through conditioning on the joint agent
future, while they are independent when drawn from the prior. They use a biased “common sense” collision
avoidance loss, motivated by covariate shift in visited states. Our work suggests that marginal type shift might
also explain the benefits gained. In contrast, our adversarial objective is unbiased. See appendix B for more
related work on agent modelling in multi-agent settings, behavioural prediction and causal confusion.

6 EXPERIMENTS

We show in two stochastic environments with multimodal expert behaviour that i) existing adversarial
methods suffer from insufficient distributional realism, ii) existing hierarchical methods cannot achieve good
task performance and distributional realism and iii) RTC improves distributional realism while maintaining
excellent task performance. We discuss differences in realism, coverage and distributional realism in fig. 5.

We compare the following models: MGAIL uses a learned discriminator and backpropagates gradients
through the differentiable environment. It also optimises a BC loss as we found this to improve performance.
Symphony (Igl et al., 2022), building on MGAIL, utilises future lane segments as manually specified types
(see appendix D.3). Our implementation of Symphony outperforms the results from (Igl et al., 2022) due
to the additional use of a value function. InfoMGAIL (Li et al., 2017) augments MGAIL to elicit distinct
trajectories for different types. This introduces an inductive bias but does not directly penalise mode collapse.
Our methods, RTC-C and RTC-D, use a continuous or discrete type respectively. We also perform the
ablation Hierarchy-NoPT (No Prior Training) which only uses the first line in eq. (4), i.e. f = 1.
Hierarchy-NoPT is similar to existing hierarchical methods, such as the proprietory TrafficSim (Suo
et al., 2021), in that it learns the prior but does not use it during training, only inference. It thereby does not
account for distribution shifts in the latent types, as discussed in section 3.

6.1 DOUBLE GOAL PROBLEM

In the double goal problem, the expert starts from the origin and creates a multimodal trajectory distribution
by randomly choosing and approaching one of two possible, slowly moving goals located on the 2D plane.
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Figure 3: Top: Visualization of ten randomly sampled goal pairs and associated trajectories. Bottom: Training curves,
exponentially smoothed and averaged over 20 seeds. Shading shows the standard deviation. We show task performance
as ‘Test Return’ and distributional realism as ‘JSD’ between the goal distribution of expert and agent (lower is better).
‘Frequency Lower Goal’ shows the data from which the JSD is computed. The inset shows the distribution at the last
training step. Boxes show quartiles, whiskers extreme values, diamonds outliers, and stars the mean.

Stochasticity is introduced through randomized initial goal locations and movement directions. Nevertheless,
the lower and upper goal {gl, gu} remain identifiable by their location as yl < 0 for gl and yu > 0 for gu (see
fig. 3). While both goals are equally easy to reach, the expert has a preference P (G = gl) = 0.75. Sufficiently
complex expert trajectories prevent BC from achieving optimal performance, requiring more advanced
approaches. The expert follows a curved path and randomly resamples the selected goal for the first ten steps
to avoid a simple decision boundary along the x-axis in which experts in the lower half-plane always target
goal gl. RTC uses the BC loss as reconstruction loss Lrec(τ) = − logπθ(at|st, ĝe) and continuous types. All
policies use a bimodal Gaussian mixture model as action distribution. Performance is measured as the number
of steps for which the agent is within δ = 0.1 distance of one of the goals. We take hs = sign(yT ) of the final
agent position [xT , yT ] to indicate the approached goal and measure distributional realism as the divergence
between the empirical distributions, JSD (pagent(hs)‖pexpert(hs)). Details can be found in appendix D.1.

Figure 3 shows that MGAIL improves task performance compared to BC. Our method, RTC, improves
it further, possibly because given a type, the required action distribution is unimodal. Importantly, RTC
substantially improves distributional realism, achieving lower JSD values. To analyse this result, we show
pagent(hs=−1), the frequency of targeting the lower goal. Not only is RTC’s average value of pRTC(hs=−1)
closer to the true value of 0.75, it is also more stable across seeds, resulting in a lower JSD. The bias
introduced by InfoMGAIL reduces task performance without improving distributional realism. As expected,
the ablation Hierarchy-NoPT achieves excellent distributional realism through the learned hierarchy but
suffers reduced task performance due to unaccounted distribution shifts. Lastly, the rightmost plot of fig. 3
shows that the information bottleneck is necessary.

6.2 WAYMO OPEN MOTION DATASET (WOMD)

To evaluate RTC on a complex environment we use the Waymo Open Motion Dataset (Ettinger et al., 2021)
consisting of 487K segments of real world driving behaviour. Distributionally realistic agents are critical
for driving simulations, for example for estimating safety metrics. Diverse intents and driving styles cause
the data to be highly multimodal. Stochasticity is induced through the unpredictable behaviour of other cars,
cyclists and pedestrians. We use Lrec(τ, τ̂) =

∑T
t LHuber(st, ŝt) where LHuber is the average Huber loss of

the four vehicle bounding box corners. More details can be found in appendix D.2.
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Table 1: Averages and standard deviation over 10 training runs on WOMD.

Collision
rate (%) ↓

Off-road
time (%) ↓

MinADE
(m) ↓

Curvature JSD
(×10−3) ↓

Progress JSD
(×10−3) ↓

Data Distribution 1.16 0.68 - - -
MGAIL 5.39 ± 0.68 0.89 ± 0.12 1.34 ± 0.08 1.32 ± 1.48 3.81 ± 1.29
Symphony 6.39 ± 0.95 0.90 ± 0.06 1.40 ± 0.12 0.97 ± 0.62 6.44 ± 5.25
InfoMGAIL - C 5.21 ± 0.37 0.89 ± 0.14 1.29 ± 0.07 1.24 ± 0.93 4.40 ± 1.47
InfoMGAIL - D 4.82 ± 0.29 0.84 ± 0.10 1.35 ± 0.11 0.77 ± 0.44 4.01 ± 1.45
Hierarchy-NoPT 35.08 ± 0.44 1.83 ± 0.42 1.12 ± 0.01 1.76 ± 2.05 2.54 ± 0.63
RTC - NoIB 3.88 ± 0.35 0.67 ± 0.04 1.45 ± 0.14 1.09 ± 0.62 2.84 ± 0.65
RTC - C 4.23 ± 0.16 0.68 ± 0.04 1.15 ± 0.10 0.43 ± 0.06 2.17 ± 0.65
RTC - D 4.21 ± 0.24 0.74 ± 0.06 1.12 ± 0.10 0.89 ± 0.66 2.56 ± 0.54

We use the percentage of segments with collisions and time spent off-road as proxy metrics for task
performance. Mode coverage is measured by the minimum average displacement error, minADE =

Eτ∼D,{τ̂i}Ki ∼πθ

[
minτ̂i

1
T

∑T
t=1 δ(st, ŝi,t)

]
, where δ is the Euclidean distance between agent positions

and we find the minimum over K = 16 rollouts (hierarchical methods use K independently sampled types).
Lower minADE implies better mode coverage, but does not directly measure the relative frequency of modes,
e.g., low probability modes may be overrepresented. To measure distribution matching in driving intent, we
use the Curvature JSD (Igl et al., 2022): in lane branching regions, such as intersections, it maps trajectories
to the nearest lane and extracts its curvature as feature hcur. To compute JSD (pagent(hcur)‖pexpert(hcur)),
the value of hcur is discretize into 100 equisized bins. To measure the driving style distribution, we extract
the progress feature hstyle = δ(ŝ0, ŝT ) and use the same discretization to compute the JSD.

Results are provided in table 1. Both versions of RTC improve task performance (collisions and off-road
events) and distributional realism metrics (minADE and divergences) compared to the flat MGAIL baseline
and previous hierarchical approaches (Symphony, InfoMGAIL, Hierarchy-NoPT). Both type represen-
tations, RTC-C and RTC-D, perform similarly, showing robustness of RTC to different implementations. The
advantage of RTC in achieving both good task performance and distributional realism becomes clearest by
comparing it to Hierarchy-NoPT and RTC-NoIB. While Hierarchy-NoPT achieves some improve-
ments in distributional realism, is has nearly an order of magnitude more collisions. This is a consequence
of the challenges discussed in section 3, which RTC is able to avoid. On the other hand, RTC-NoIB, also
avoids these challenges and achieves excellent task performance by using prior-sampled types during training.
However, as discussed in section 4, it does not improve on distributional realism compared to flat baselines,
indicating that the learned policy simply ignores the latent type. Combining prior-type sampling and the
information bottleneck achieves better distributional realism and task performance than all baselines.

7 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

This paper identified new challenges in learning hierarchical policies from demonstration to capture multi-
modal trajectory distributions in stochastic environments. We expressed them as conditional type shifts and
causal confusion in the hierarchical policy. We proposed Robust Type Conditioning (RTC) to eliminate these
distribution shifts and showed improved distributional realism while maintaining or improving task perfor-
mance on two stochastic environments, including the Waymo Open Motion Dataset (Ettinger et al., 2021).
Future work will address conditional distributional realism by not only matching the marginal distribution
p(τ), but the conditional distribution p(τ |ξ) under a specific realization of the environment. For example,
drivers might change their intent based on the current traffic situation or players might adapt their strategy as
the game unfolds. Achieving such conditional distributional realism will also require new models and metrics.
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A PROOFS

We restate the theorem and corollary for convenience.

Theorem 1. We assume the model pθ(â|s,a) =
∫
eθ(ĝe|a, s)πθ(â|s, ĝe)dĝe is achieving optimal re-

construction loss Lrec = 0 on PD(s,a). The test policy is pθ(â|s) =
∫
pθ(ĝp)πθ(â|s, ĝp)dĝp with the

marginal encoder pθ(ĝ) = EPD [eθ(ĝ|a, s)] as prior distribution. We can say for the training distribution
P (s,a, ĝe) = PD(s,a)eθ(ĝe|s,a) and and testing distribution P (s, â, ĝp) = PD(s)pθ(ĝp)πθ(â|s, ĝp):
If H(A|Ĝe) < I(S,A) and H(A, Ĝe) = H(Â, Ĝp), then I(S, Â) < I(S,A).

Corollary 1. If H(A|Ĝe) = 0, the assumption H(A, Ĝe) = H(Â, Ĝp) becomes unnecessary in theorem 1
and we have I(S, Â) = 0 < I(S,A).

A.1 PRELIMINARIES

We denote by H(X) the entropy, by H(X|Y ) the conditional entropy, by I(X,Y ) the mutual information
and by I(X,Y |Z) the conditional mutual information between random variables. Furthermore, the proof
is relying on the interaction information I(X,Y, Z), an extension of mutual information to three variables.
Importantly, the interaction information can be positive or negative. A positive interaction information
indicates that one variable explains some of the correlation between the other two while a negative interaction
information indicates that one variable enhances their correlation.

Our model eθ(ĝe|a, s)πθ(â|s, ĝe) is trained on the dataset PD(s,a). To achieve minimal reconstruction
loss, the model is required to predict â = a with certainty, implying H(Â|S, Ĝe) = H(Â|S, Ĝp) = 0.

At test time, latents are drawn from the prior pθ(ĝp) which we assume matches the marginal distribution of
the encoder, i.e. EPD [eθ(ĝe|a, s)], perfectly.

We use the following equalities:

• I(X,Y, Z) = I(X,Y )− I(X,Y |Z) (and permutations as I(X,Y, Z) is symmetric)

• I(X,Y |Z) = H(X|Z)−H(X|Y,Z) (and permutations)

• H(X|Y, Z) ≤ H(X|Y )

• H(X,Y ) = H(X) +H(Y |X) (and permutations)

• I(X,Y ) > 0

A.2 PROOF OF THEOREM

During training on the dataset PD(s,a) the interaction information is positive because H(A|Ĝe) < I(S,A):

I(A, Ĝe,S) = I(S,A)− I(S,A|Ĝe) = I(S,A)−H(A|Ĝe) +H(A|S, Ĝe)︸ ︷︷ ︸
=0

> 0. (5)

On the other hand, during testing, we have I(Ĝp,S) = 0 because now Ĝp is drawn independently of S from
pθ(Ĝp). Consequently, the interaction information becomes negative:

I(Â, Ĝp,S) = I(Ĝp,S)︸ ︷︷ ︸
=0

−I(Ĝp,S|Â) = H(Ĝp|Â,S)−H(Ĝp|Â) ≤ 0 (6)
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We also have, similarly to eq. (5),

I(Â, Ĝp,S) = I(S, Â)−H(Â|Ĝp)

implying
I(S, Â)−H(Â|Ĝp) ≤ 0 < I(S,A)−H(A|Ĝe) (7)

and hence, if H(A|Ĝe) = H(Â|Ĝp), this gives us the desired result

I(S, Â) < I(S,A). (8)

By assumption, we have

H(A, Ĝe) = H(Ĝe) +H(A|Ĝe) = H(Â, |Ĝp) = H(Ĝp) +H(Â|Ĝp). (9)

Furthermore, because the marginals of Ĝe and Ĝp are matched, we have H(Ĝe) = H(Ĝp) and hence the
required H(A|Ĝe) = H(Â|Ĝp) for eq. (8) to hold.

Can we remove H(A, Ĝe) = H(Â, Ĝp) as an assumption? Unfortunately only if H(A|Ĝe) = 0, in which
case it is automatically true (see next subsection). Otherwise this assumption is needed to make sure that the
entropy in the system remains comparable between training and testing.

If H(A, Ĝe) 6= H(Â, Ĝp), the main result I(S, Â) < I(S,A) could still hold, but one could also construct
environments and encoders in which it does not. The reason is that H(A|Ĝ) depends on the distribution
p(s|ĝ) which changes between training, where it is p(s|ĝe), and testing, where it is PD(s) due to the
independent drawing of ĝp. This can be used to construct environments and encoders that change H(A, Ĝ)

and H(A, Ĝ) arbitrarily between training and testing, hence making comparing the mutual information
I(S, Â) and I(S,A) meaningless.

A.3 PROOF OF COROLLARY

We have p(a|ĝ) =
∫
s
p(s|ĝ)πθ(a|s, ĝ)ds. We also know that H(A|S, Ĝe) = H(Â|S, Ĝp) = 0 and

hence πθ(â|s, ĝ) ∈ {0, 1}. Furthermore, if H(A|Ĝe) = 0, the action is fully determined by Ĝe, i.e.
πθ(â|s, ĝ) = πθ(â|ĝ) ∈ {0, 1}. Hence, because

∫
s
p(s|ĝe)ds =

∫
s
PD(s)ds = 1, the switch from p(s|ĝe)

to p(s|ĝp) = PD(s) does not impact p(a|ĝ), so we have H(A|Ĝe) = H(Â|Ĝp) = 0.

The result that I(S, Â) = 0 follows directly from eq. (7) and I(S, Â) > 0.

B ADDITIONAL RELATED WORK

Unlike our work, agent modelling (Grover et al., 2018; Papoudakis and Albrecht, 2020) often assumes
knowledge of agent identities in multi-agent systems and aims at learning a useful representation for each
identity. In contrast, we neither know the true type g of the imitated agent, nor the identity of external
stochastic noise source ξ. Furthermore, applications of opponent modelling in RL settings (e.g., Papoudakis
and Albrecht, 2020; He et al., 2016; Raileanu et al., 2018; Hernandez-Leal et al., 2019; Xie et al., 2020) are
generally unconcerned about distributional realism and do not consider distribution shifts.

Behaviour Prediction (BP) also forecasts future trajectories. Unless future steps are predicted independently
of the evolution of the scene (e.g., not auto-regressively) (Chai et al., 2019; Cui et al., 2019; Phan-Minh et al.,
2020; Liu et al., 2021), these methods also suffer from covariate shift in the state visitations (Bengio et al.,
2015; Lamb et al., 2016). Furthermore, if hierarchical methods are used to capture the multimodality in the
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data (Tang and Salakhutdinov, 2019; Casas et al., 2020; Ivanovic and Pavone, 2019; Salzmann et al., 2020;
Yuan et al., 2021; Hu et al., 2021), they are vulnerable to the same marginal and conditional type shifts we
consider. While none of these works take these challenges into account, they often use small discrete latent
spaces (e.g., Tang and Salakhutdinov, 2019; Ivanovic and Pavone, 2019; Salzmann et al., 2020), mitigating
the severity of the distribution shifts and future information leakage by limiting the information bandwidth of
latent types. Furthermore, prediction quality metrics such as displacement-based metrics or log-likelihood are
less sensitive to yield lower performance due to covariate shift, which primarily impacts interactions with the
environment, such as collisions.

As discussed in section 3, the conditional type shift is exacerbated by causally confused policies relying
on the latent type for information about environmental noise. Unlike in most literature on causal confusion
(De Haan et al., 2019), our nuisance variables are hence not part of the current state, but the learned latent
state. Distribution shift is induced not through earlier actions but through sampling from the prior instead of
the encoder. Prior work on causal confusion typically relies on problem specific regularization (e.g. Wen et al.,
2020; Park et al., 2021) or has access to an expert or task rewards (e.g. De Haan et al., 2019; Ortega et al.,
2021). Instead, our work relies on generalisation over latent types to generate counterfactual trajectories. This
generalisation is enabled by the information bottleneck and results are refined by the adversarial loss.

C LIMITATIONS AND SOCIETAL IMPACT

While RTC notably improves distributional realism (see section 6), it does not achieve it perfectly, especially
in the long tail of the data distribution. This has implications for its use, for example in economic simulations
to evaluate policy proposals or in driving simulations to evaluate autonomous vehicles, where this limitation
has to be taken into account and the simulation results should not be trusted unconditionally.

As RTC is application agnostic, the societal impact depends on where it is used. Here, we focus on agent-based
simulations as we anticipate this to create the highest impact. Examples include better policy decisions
through economic simulations, safer autonomous vehicles through driving simulations, better AI in games
or improved safety precautions for large crowds of people. For other use-cases, e.g., in armed conflicts, the
societal impact will depend on the intention of the simulation. Furthermore, we stress once more, that for
many use-cases, precautions have to be taken to account for remaining errors in the learned agents.

Lastly, depending on the use case, algorithmic bias has to be taken into account if mode-collapse might be
prevented more effectively by RTC for certain strata in the population.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 DETAILS ON DOUBLE GOAL PROBLEM

The agent observation

st = [st, gl,t, gu,t,at−1] ∈ R8 with st = [xt, yt], gi,t = [xi,t, yi,t], i ∈ {u, l} (10)

contains the 2D position of the agent, st, as well as two marked locations gl,t, gu,t of the lower and upper
goal. Because the current agent position cannot uniquely identify the currently selected goal, the observation
also contains the last agent action at−1 with the simple transition function st+1 = st+at. The goal locations
are randomly sampled at the beginning of each episode. The lower (upper) goal is always located in the
lower (upper) half of the x, y plane. Their horizontal and vertical distances from the initial agent position
are uniformly sampled within rectangular bounds x(g)i ∈ [1.8, 2.2] and |y(g)i | ∈ [0.3, 0.7]. Each episode has
a fixed horizon of T = 30 steps over the course of which each goal moves by ‖s(g)i,T − s

(g)
i,0 ‖ = 0.15 in a

random direction.
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Figure 4: Waymo Open Motion Dataset: Performance on the validation set during training. Distributional realism
metrics are not shown as their evaluation is high variance on the small validation set.

For the first 10 timesteps, the agent randomly resamples the target goal with P (G = gl) = 0.75 to avoid a
simple decision boundary along the x-axis in which experts in the lower half-plane always target goal gl. The
expert action is

at = 0.1
√
‖∆t‖

dt
‖dt‖

where dt =

[
0.1 0
0 0.05

]
∆t and ∆t = (gt − st). (11)

The expert approaches the goal faster along the x-axis, hence creating a curved path. To avoid over-shooting,
the step-size reduces by

√
‖∆t‖ as the agent proceeds towards the goal.

All networks use simple MLPs with two latent layers and a latent dimension of 256. To capture their shape,
the discriminator acts on entire trajectories, aggregating across time using max-pooling over a 32 dimensional
per-timestep embedding. All policies are parameterised as Gaussian mixture models with two modes. RTC
uses a continuous bottleneck of size 2 with additional regularization term Lβib(τ) = βKL [eθ(ĝe|τ)‖N (0, I)]
to regulate the information bandwidth of ĝe. We use the BC loss for Lrec(τ, τ̂e) = − logπθ(at|st, ĝe).

Batch size is 1024 for training and 10K for evaluation. Results shown in fig. 3 are evaluated every 100
steps and exponentially smoothed with a decay rate of 0.9. The learning rate is 0.01 for BC (lower learning
rates performed worse) and 0.004 for both MGAIL and RTC, which were tuned independently for values
lr ∈ [0.02, 0.01, 0.004, 0.002, 0.001]. f = 0.5 was used to split between Bencoder and Bprior (no tuning was
performed). Lastly, without further tuning, λadv = 1 was used. Training time is about 7h without hardware
acceleration.

D.2 DETAILS ON WAYMO OPEN MOTION DATASET

The Waymo Open Motion Dataset (Ettinger et al., 2021) (published under Apache License 2.0) consists of
segments of length 9s sampled at 10Hz. The available training and validation splits in the dataset consist of
487K and 49K segments each, which are used for training and testing the agent respectively. Due to memory
constraints, we filter for segments with less than 256 agents and 10K points describing the lane geometry -
resulting in 428K train and 39K test segments. 250 segments from the training split are used for validation
to select the training checkpoint for evaluation. In each segment, we learn to control two agents at a frequency
of 3.33Hz, repeating actions three times. Similar to (Igl et al., 2022), the actions of other agents are replayed
from the logged data. The collision metric measures the number of segments, in percent, for which at least
one pair of bounding boxes overlaps for at least one timestep. The off-road metric similarly detects for how
much time the agent’s bounding box overlaps with off-road areas.
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The state st = [s
(a)
t , s

(SS)
t , s

(DS)
t , s(RU)] contains the agent’s position and heading s(a)t , static features

s
(SS)
t such as lane boundaries, expressed as a set of points, dynamical features s(DS)t such as traffic light

states, and the positions and headings of all other road users s(RU)
t .

Similarly to section 6.1, we use an additive transition model in which the policy predicts the change in the
agents state s(a)t+1 = s

(a)
t + at. Dynamic features and roadgraph users are replayed from the logged data,

similar to (Igl et al., 2022).

All positions and headings are first normalised to be relative to the observing ego-agent. MLPs are used to
encode each object and point individually and per-type max-pooling is used to aggregate over a variable
number of inputs. The resulting three embeddings (one for the ego-agent, one for other road-users and one for
the scene), each of size 64, are concatenated and passed either to the policy, discriminator or value function,
whose encoders are not shared and which consist of MLPs with two latent layers of size 64 for discriminator
and value function and 128 for the policy. The inference encoder eθ for RTC only observes future agent
positions s(a)1:T which are each concatenated with an eight-dimensional learned positional embedding and
individually encoded to dimension 128 and max-pooled along the time dimension. A Gaussian mixture model
with 8 modes was used for all policies, although we find empirically that typically only up to three are used
after training.

We train for 200K gradient steps and select the model checkpoint for evaluation with the lowest sum of
collision rates and off-road time on the validation set. To stabilize training for all methods, we discount
gradients through time with γ = 0.9 and bootstrap from a learned value function every 10 steps. We anneal f
from 1 to fmin = 0.5 over the course of training. Initially, high values of f encourage meaningful information
in ĝe while lower values address covariate and type shifts and improve performance. A learning rate of
0.0001, which was tuned for MGAIL, was used for all evaluated methods. Each batch contained 24 segments
and training was performed on a single V100 (per seed) and required about 4-5 days. We used λadv = 4.0 and
β = 0.01 for Lib(τ) for continuous type representations of size 2. Discrete type representations used three
one-hot vectors of size 16, trained using Straight Through gradient estimation. We found performance to be
marginally better for three vectors, compared to one, without noticeable performance increases for additional
or larger vectors. Smaller vectors with only four values only performed slightly worse. The Huber loss Lrec
uses δ = 30.

D.3 DETAILS ON SYMPHONY BASELINE

Symphony implements the hierarchical policy proposed in Igl et al. (2022) (called ’MGAIL+H’ in their
results). Agent types represent high-level driving intent and are expressed as a sequence of road-segments
to be followed. They are encoded into a latent vector by expressing them as a fixed-length sequence of
points {[xi, yi]}Ns

i=1. Each point is concatenated with a positional embedding, then encoded individually, and
subsequently max-pooled along the time-dimension. The pooled embedding is provided as additional inputs
to both the discriminator and the policy.

During training, lane sequences are extracted from the given data trajectory τ . The prior pθ(ĝ), which is used
during testing when no ground truth trajectories τ are available, predicts a categorical distribution over all
possible sequences of lane-segments which the agent could follow in a scene. To allow for a variable number
of such sequences, the logits are predicted individually per sequence.

D.4 DETAILS ON INFOGAIL BASELINE

Like RTC, InfoMGAIL (Li et al., 2017) is a general method for learning a hierarchical agent from demon-
strations. What makes it a suitable baseline is that, like in RTC, the higher level policy captures a distribution
over alternative trajectories that can be taken. It does so in an unsupervised fashion by introducing an
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(a) (b) (c)

Figure 5: Differences between realism, coverage and distributional realism. The data distribution P (XD) ∈ ∆(X ) is
shown in green, blue denotes a learned distribution Pθ(XL) ∈ ∆(X ). (a) Data from learned distribution is realistic,
i.e. supp(XL) ⊆ supp(XD), but not distributionally realistic. (b) The learned distribution achieves coverage but not
distributional realism: the frequencies of modes are not matched. (c) The learned distribution is distributionally realistic.
In practice, the dimensionality ofX is often too high, requiring us to measure distributional realism only in selected features
h(X). Consequently, distributional realism in h(X) does not necessarily imply good realism, i.e. task performance.

additional reward that incentivizes the policy to produce state-action pairs from which an additionally trained
discriminator (also called ’posterior’) can infer the type on which the policy was conditioned. In other words,
it rewards the policy for producing distinct trajectories for different types, where the type is drawn from a
fixed prior when generating rollouts.

A crucial difference between InfoMGAIL and RTC is that InfoMGAIL’s goal is to disentangle trajectories,
but it does not target distributional realism directly. In particular, because the prior from which the types
are sampled is fixed, it might not even be able to properly capture the true distribution of trajectories. This
is especially true for the uniform discrete prior used in the original InfoMGAIL paper, which assumes a
uniform distribution over trajectory modes. Furthermore, the additional posterior reward introduces bias,
potentially harming task performance. Lastly, because mode collapse is not directly penalized in the additional
loss (only ’non-distinctiveness’ of trajectories), it might not improve distributional realism at all.

In our experiments, we augment InfoMGAIL in several ways:

• We not only try discrete latents, but also continuous ones. For continuous priors we use the same
GMM as posterior as we use as prior in RTC.

• We additionally provide the posterior with the initial state as input. Unlike in the examples used
in the InfoMGAIL paper, we believe that for more complex WOMD data, the current state is
insufficient to determine modes.

• To make it comparable in our setup, we optimise it using Info(M)GAIL, i.e. the posterior score of
the true type is added as differentiable loss term, not as reward for TRPO. The network architecture
of the posterior is the same one as we used for our MGAIL discriminator.

• We greatly increase the number of latent dimensions. In (Li et al., 2017), 2 and 3 dimension were used
for the two experiments. We tried d ∈ [3, 10, 30, 100]. We also tried λ1 ∈ [0.01, 0.03, 0.1, 0.3, 1.0]
as regularization strength for the additional loss term.

• Lastly, we are also adding a BC term to InfoMGAIL as we found this stabilizes training greatly.

• In contrast to the original implementation, we are not using pre-training and do not make use of
additional shaping rewards.
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D.5 COVERAGE AND DISTRIBUTIONAL REALISM METRICS

While coverage is easy to achieve on the Double Goal Problem, we measure it on the Waymo Open Motion
Dataset (section 6.2) using

minADE = Eτ∼D,{τ̂i}Ki ∼πθ

[
min
τ̂i

1

T

T∑
t=1

δ(st, ŝi,t)

]
using a fixed number of K = 16 rollouts per segment. Intuitively, the more modes are covered by a given
agent, the closer one of all K rollouts should be to a given trajectory from the dataset, resulting in a lower
minADE.

We want to measure distributional realism as the divergence between the expert distribution pexpert(τ) and the
predicted distribution pagent(τ̂). However, since the space of possible trajectories is far too large to directly
measure JSD (pagent(τ̂)‖pexpert(τ)), we extract scalar features h from trajectories and measure the divergence
on those features. For the Double Goal Problem, we would like to capture whether the agent is approaching
gl or gu, for which we extract hs = sign(yT ), i.e. whether the agent is in the lower or upper half of the
plane at the last timestep. In the driving domain, we measure progress as the total distance travelled over the
9s segment, i.e., hstyle = δ(ŝ0, ŝT ). Measuring this distance as a straight line avoids measurement noise
through swerving or jittering of the agent. Lastly, to measure high-level intent, i.e. whether the agent prefers
going left, right or straight at branching points such as intersections, we follow Igl et al. (2022) and extract as
feature hcur, i.e., the curvature of the lane segments being followed right after possible branching points in
the road.
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