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Abstract

Continual Structured Knowledge Reasoning (CSKR) focuses on training models
to handle sequential tasks, where each task involves translating natural language
questions into structured queries grounded in structured knowledge. Existing gen-
eral continual learning approaches face significant challenges when applied to this
task, including poor generalization to heterogeneous structured knowledge and
inefficient reasoning due to parameter growth as tasks increase. To address these
limitations, we propose a novel CSKR framework, K-DECORE, which operates
with a fixed number of tunable parameters. Unlike prior methods, K-DECORE
introduces a knowledge decoupling mechanism that disentangles the reasoning
process into task-specific and task-agnostic stages, effectively bridging the gaps
across diverse tasks. Building on this foundation, K-DECORE integrates a dual-
perspective memory consolidation mechanism for distinct stages and introduces
a structure-guided pseudo-data synthesis strategy to further enhance the model’s
generalization capabilities. Extensive experiments on four benchmark datasets
demonstrate the superiority of K-DECORE over existing continual learning meth-
ods across multiple metrics, leveraging various backbone large language models.

1 Introduction

Structured Knowledge Reasoning (SKR) aims to translate the natural language question into structured
queries over discrete, structured knowledge —such as relational databases, knowledge graphs, and
dialogue states. It is essential for a wide range of real-world applications, including legal judgment
prediction [1], clinical decision support [2, 3], and financial analysis [4]. Recent advances in Large
Language Models (LLMs) have demonstrated impressive capabilities for structured reasoning when
provided with appropriate prompting or fine-tuning [5, 6, 7].

However, most existing methods operate under a static assumption that SKR tasks are singular in
type and remain unchanged throughout both the training and deployment phases. This assumption is
misaligned with real-world scenarios, where models must continuously adapt to new reasoning tasks
across various forms of structured knowledge. For instance, a virtual assistant like Siri or Alexa must
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Figure 1: a) Overview of the continual SKR task. The backbone LLM is frozen and only the PEFT
module if tunable. b) SKR based on knowledge decoupling. Schema filtering refines the scope of a
given schema and impacts various SKR performance. The differences between schema filtering in
these SKR tasks are minimal, making it potential for knowledge transfer.

dynamically adjust its knowledge base to handle a variety of tasks such as managing calendar events,
to-do lists, and smart home controls, each characterized by distinct schemas and query languages.
Therefore, it is essential to empower the model to leverage knowledge transfer across different tasks
during the continual learning process [8].

Recent works to continual SKR have primarily focused on designing the training strategy for a
single type of structured knowledge (e.g., continual text-to-SQL) [9, 10] or employing parameter-
efficient fine-tuning (PEFT) techniques to allocate task-specific parameters [11, 12, 13]. However,
these methods often fail to generalize across heterogeneous structured knowledge and suffer from
parameter growth proportional to the number of tasks, ultimately hindering reasoning efficiency.

We observe that schema filtering, i.e., identifying schema elements relevant to query construction,
(Figure 1(b)) is a shared, reusable component across diverse SKR tasks and significantly influences
overall performance. We hypothesize that decoupling pattern filtering from downstream stages
and unifying its input-output format across tasks can enhance robustness to task-specific variations.
This consistency facilitates knowledge transfer and improves SKR performance without requiring
parameter growth or task-specific reviews. For query construction stages with high task variance,
their contribution to SKR depends on the structural richness of replayed queries. We propose
to automatically synthesize structurally diverse replay samples, enabling more informative replay
memory usage within the same capacity budget.

In this paper, we propose K-DECORE (Knowledge DEcoupling for COntinual REasoning), a novel
continual SKR framework. K-DECORE comprises a backbone LLM and two lightweight PEFT
modules: a schema filter and a query builder, responsible for capturing task-specific and task-agnostic
knowledge, respectively. This decoupled design fosters forward and backward knowledge transfer.
To mitigate the model’s tendency to forget previously learned tasks, K-DECORE incorporates a dual-
perspective memory mechanism (Section 3.2) designed to retain replay samples from both schema
and query structure viewpoints. Specifically, the schema memory captures representative schema
instances, ensuring the filter maintains comprehensive coverage across tasks, while the query memory
emphasizes preserving diverse query structures inherent to SKR tasks. Furthermore, to enhance the
model’s generalization to unseen patterns, we introduce a query synthesis strategy that generates
novel structured queries for replay. We evaluate K-DECORE on task streams comprising four diverse
SKR tasks, where it consistently outperforms strong baselines and achieves state-of-the-art results
across multiple metrics. In summary, the contributions of this paper include:

• We propose a novel continual structured knowledge reasoning framework, leveraging knowl-
edge decoupling to enable effective knowledge transfer across diverse tasks. To the best of our
knowledge, this is the first work to explore continual learning across heterogeneous SKR tasks.

• We propose a dual-perspective memory construction mechanism that specifically synthesizes
pseudo queries for novel structures, with the goal of enhancing the LLM’s generalization capability.

• We curate task streams from four SKR benchmarks and conduct comprehensive experiments. Em-
pirical results demonstrate that K-DECORE consistently surpasses strong baselines across multiple
evaluation metrics, establishing its effectiveness in continual structured knowlegde reasoning.
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Figure 2: The left panel presents the K-DeCore training framework, organized into two key stages for
each SKR task: schema filtering and query building, each supported by specialized PEFT modules.
By unifying the schema, the framework aims to bridge the gap between tasks, effectively enabling
the knowledge transfer. The right panel illustrates the creation process of structure-guided synthetic
pseudo samples, designed to offer a more structurally diverse set of examples.

2 Preliminary

Structured Knowledge Reasoning Given a natural language question Q and accessible structured
knowledge S, such as a database, a dialogue state, or a knowledge graph, the goal of Structured
Knowledge Reasoning is to generate a structured query Y . Formally, this can be represented as:
Y = fθ(Q,S), where fθ denotes a LLM-based reasoner parameterized by θ.

In this paper, we focus on three commonly used types of structured knowledge: a) A database
is represented as (C, T ), where C = c1, . . . , cn denotes the column names and T = {t1, . . . , tm}
denotes the table names. b) A knowledge graph is generally composed of subject-predicate-object
triples, expressed as {⟨s, p, o⟩ |s ∈ E , p ∈ R, o ∈ E ∪ Γ}, where E is the set of entities,R is the set
of relations, and Γ is the set of types. c) A dialogue state is represented as a collection of predefined
intents paired with their corresponding slots, indicated by {⟨I1, s1⟩, . . . , ⟨In, sn⟩}, where each Ii
represents an intention and si denotes the associated slots.

Problem Formulation Let fθ be trained sequentially on K SKR tasks, denoted by
{D1,D2, . . . ,DK}. Each task Di consists of a training set and a test set: Dk = Dk

train ∪ Dk
test =

{(Qi,Si,Yi)}i=1. To encourage fθ to continually acquire reasoning capabilities over diverse types of
structured knowledge, for tasks Dk and Dj (k ̸= j), the corresponding structured knowledge S(Dk)
and S(Dj) are of different types, i.e., Type(S(Dk)) ̸= Type(S(Dj)). Our objective is to ensure that
fθ performs well on each Dk

test after sequentially learning on all Dk
train, for all k ∈ {1, . . . ,K}.

3 K-DECORE

Figure 2 illustrates the overall architecture of the proposed K-DECORE. It is built upon a backbone
LLM f with parameter θ, and incorporates three PEFT modules: Pa, Pb, and Pc. Throughout
training, the backbone parameters θ remain fixed; only the parameters of the PEFT modules are
updated, enabling efficient adaptation to the task while preserving the pretrained knowledge of the
LLM. The entire method can be divided into two parts: continual knowledge decoupling (Section 3.1)
and dual-perspective memory construction (Section 3.2), which are described in detail below.

3.1 Continual Knowledge Decoupling

Unlike traditional continual learning methods [13, 14] in general fields, our proposed K-DECORE
innovatively bifurcates the reasoning process over the structured knowledge into two distinct yet
synergistic phases: schema filtering and query building. The schema filtering phase is designed to
distill the essential schema components S∗ ⊆ S necessary for constructing the final query Y from
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the initial schema S. Subsequently, the query building phase focuses on generating the query Y
using both the original schema S and the refined schema S∗ obtained from schema filtering. This
decoupling strategy offers dual advantages: firstly, within-task pattern filtering has been empirically
demonstrated to enhance the performance of query generation by reducing the search space; secondly,
the relatively stable output format of schema filtering across diverse SKR tasks enables the model to
facilitate more robust knowledge transfer from preceding tasks during the schema filtering phase. In
the following sections, we will delve into a detailed exploration of these two components.

3.1.1 Task-agnostic Continual Schema Filtering

K-DECORE trains an independent PEFT module, denoted as Pa, for the schema filtering stage across
all tasks. This module is integrated with the backbone LLM fθ to predict the relevant schema set
S∗, i.e., S∗ = f(Q,S; θ,Pa). During the training process for task k, the module Pk

a is initialized
with parameters from the checkpoint of the preceding task, represented as Pk−1

a . To ensure that Pa

perceives a consistent style akin to previous tasks while learning new SKR tasks, thereby mitigating
forgetting due to training, the knowledge schema S from various SKR tasks is standardized into a
database-like (DB-like) unified schema representation. This standardization further reduces task-
specific discrepancies and enhances effective knowledge transfer. The DB style is chosen as the
unified format for two primary reasons: (a) it is likely the most prevalent form of S and is familiar
to LLMs, and (b) its straightforward relational structure simplifies the conversion of other schema
types. Concretely, for each (Q,S,Y), S is first converted to Ω = (Φ,Ψ), where Φ = {ϕ1, . . . , ϕ|Φ|}
denotes the set of abstract table names, and Ψ = {ψ1, . . . , ψ|Ψ|} denotes the set of abstract column
names. Then, f(θ,Pa) predicts the useful schema Ω∗ from Ω, i.e., Ω∗ = f(Q,Z; θ,Pa), where Ω̃
denotes the textual representation of Ω:

Ω̃ = ϕ1 : ψ1
1 , . . . , ψ

n
1 | ϕ2 : ψ1

2 , . . . , ψ
n
2 | . . . | ϕm : ψ1

m, . . . , ψ
n
m. (1)

During training, the following loss function is minimized to optimize Pa, while keeping θ frozen:

L(Dk; θ,Pa) = −
|Dk|∑
i=1

|Ω̃∗
i |∑

j=1

logP (ω∗
j | Qi, Ω̃i, ω

∗
<j ; θ,Pa) +

k−1∑
k′=1

L(Mk′

a ; θ,Pa), (2)

where P (z∗j | Qi, Ω̃i, ω
∗
<j ; θ,Pa) denotes the probability of each token z∗j generated by autore-

gression. To further mitigate the model’s forgetting, we incorporate a review loss L(Mk′

a ; θ,Pa)

computed on the memoryMk′

a from task k′, which will be detailed in Section 3.2.

How to convert to DB style? In this paper, various forms of structured knowledge can be easily
transformed into S̄. For a DB (T , C), each table name ti ∈ T is mapped to ϕ, while each column
name ci ∈ C is mapped to ψ. For a KG subgraph {⟨s, p, o⟩ | s ∈ E , p ∈ R, o ∈ E ∪ Γ}, each entity
type γ ∈ Γ and each relation name ti ∈ T are treated as ϕ, while each relation or property r ∈ R
and each column name ci ∈ C are treated as ψ. For a dialogue state {⟨I1, s1⟩, . . . , ⟨In, sn⟩}, each
intention Ii is considered as ϕ, and each slot name si is considered as ψ. See Appendix A for details.

3.1.2 Task-specific Continual Query Building

Similar to schema filtering, K-DECORE trains another separate PEFT module, denoted as Pb,
specifically for the query building phase across all tasks. To avoid error propagation within the
pipeline, we ensure that f(θ,Pb) also considers the complete schema S during reasoning, expressed
as Y = f(Q,S∗,S; θ,Pb). At this stage, the primary focus of the function f(θ,Pb) is to capture the
semantics of the problem and the logical and structural features of queries associated with various
SKR tasks during reasoning. As shown in Figure 1, the query structures for different SKR tasks are
highly task-specific and can vary significantly, which heightens the risk of forgetting at this stage. To
address this risk, we include a small number of query samples from previous tasks during training.
The following loss function is minimized to optimize Pb:

L(Dk; θ,Pb) = −
|Dk|∑
i=1

|Yi|∑
j=1

logP (yj |Qi,S∗i ,Si, y<j ; θ,Pb) +

k−1∑
k′=1

L(Mk′

b ; θ,Pb), (3)

where yj denotes the j-th token of the target query Yi andMk′

b represents the memory dedicated to
storing structural information of queries, which will be elaborated on in Section 3.2. Notably, here
we directly use the raw schema format S to enable f(θ,Pb) to generate the executable queries.
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Algorithm 1 Structure-guided Query Synthesis

Require: The training set of the k-th task, represented as Dk
train = {(Qi,Si,Yi)}N

k

i=1; The set of
all query structures present in Dk

train is denoted byMY = {Y∗
1 , . . . ,Y∗

N1
}, while the set of all

available schema sets is denoted byMS = {S1, . . . ,SN2}.
1: Mk

pseudo ← ∅
2: for |Mk

pseudo| < N do
3: S+ ← RANDOM(MS , 1), Y∗ ← RANDOM(MY , T ) ▷ Sampling schema and structures.
4: Y∗

pseudo ← f(Y∗; θ) ▷ Synthesize a pseudo query structure.
5: Y+ ← FILLSCHEMA(Y∗

pseudo,S+) ▷ Fill the schema into the slots of the structure.
6: if EXECUTE(Y+,S+) = "success" then
7: Q+ ← f(Y+,S+; θ,Pc) ▷ Generate a pseudo natural language question.
8: Mk

pseudo ←Mk
pseudo ∪ {(Q+,S+,Y+)}

9: end if
10: end for
11: returnMk

pseudo

3.2 Dual-perspective Memory Construction

Schema-guided Memory Sampling. The goal of this sampling strategy is to construct memoryMk
a

for each task Dk to relieve f(θ,Pa) from the burden of memorizing schema filtering knowledge.
Since we have unified the representation of structured knowledge and tasks, the primary gap between
different tasks lies in the domain of their schemas. Therefore, it is essential to select samples with
representative schemas. Formally, for each training sample X = (Q,S,Y) ∈ Dk

train, the process
begins with the extraction of the relevant schema set S∗ from Y . Subsequently, all samples in Dk

train
are partitioned intoN clusters. The distance between two samples X1 and X2 is defined by the cosine
similarity d1(X1,X2) = cos

(
g(S∗1 ), g(S∗2 )

)
, where g denotes an encoder-only LLM. Finally, the

sample closest to the center of each cluster is selected, and (Q,S,S∗) is added toMk
a.

Structure-guided Memory Construction. This strategy aims to preserve the sample set Mk
b

with diverse query structure features, which are utilized for the rehearsal process of f(θ,Pb). The
memory Mk

b consists of two parts, denoted as Mk
b = Mk

real ∪Mk
pseudo. First, Mk

real comprises
representative samples selected from Dk

train. This selection process is analogous to the one used
for constructingMk

a, with the main difference being that the sample distance within a cluster is
defined by d2(X1,X2) = cos

(
g(Y∗

1 ), g(Y∗
2 )
)
. Here, Y∗ denotes the structure of the query Y , which

is formed by substituting the schema elements with placeholders. The structure of the s-expression in
Figure 1 is represented as (AND [T1] (JOIN [C1] (JOIN ([C1]) [E1]))), where [T1], [C1],
and [E1] serve as placeholders for an abstract table, an abstract column, and an entity, respectively.

Unlike existing methods [9, 10] which primarily preserve training-time structures (likeMk
real) seen

by fθ, our K-DECORE employsMk
pseudo to boost zero-shot reasoning by introducing novel structures

absent from Dk
train. This is achieved through a structure synthesis process, detailed in Algorithm 1.

The procedure begins by identifying the repertoire of query structures present in Dk
train, denoted

asMY = {Y∗
1 , . . . ,Y∗

N1
}, and the available schema sets,MS = {S∗1 , . . . ,S∗N2

}. Iteratively, our
backbone model fθ is leveraged to generate novel structures: T distinct structures Y∗ ∈ MY are
sampled and synthesized into a new structure Y∗

pseudo guided by carefully curated demonstrations.
Here Y∗

pseudo can be complex SQL queries with nested subqueries or S-expressions featuring multi-
step compositional reasoning; detailed examples and prompts of these synthesized structures can be
found in the Appendix B.3. This query structure Y∗

pseudo is then instantiated into a concrete query
Ypseudo by populating it with a randomly sampled schema S∗ ∈MS . Only generated queries Ypseudo
that execute correctly, thereby ensuring legality and semantic validity, are retained. Finally, a PEFT
module, denoted as Pc, designed to generate the pseudo NLQ Q+ and is trained by optimizing

L(Dk; θ,Pc) = −
|Dk|∑
i=1

|Qi|∑
j=1

logP (qj |Y, q<j ; θ,Pc), (4)
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where qj denotes the j-th token of realQ. Notably, Pk
c is tailored specifically for each task Dk. Once

Mk
b is constructed, Pk

c serves as the initialization for training Pk+1
c . Since Pk

c is constructed only
once per task, it does not introduce the forgetting problem. To constructMk

b , we combined the real
memoryMk

real with the synthetic memoryMk
pseudo in varying proportions. In our experiments, we

systematically investigated different synthetic sample percentage to identify the optimal balance.

4 Experiments

4.1 Experimental Setup

Datasets. We conduct experiments on four widely-used SKR datasets, covering DB, KG, DS
reasoning. Spider [15] is a DB reasoning benchmark where each NLQ is translated into a complex
SQL query. These queries often require multi-table JOIN operations, GROUP BY clauses, and nested
subqueries, demanding sophisticated database reasoning capabilities. ComplexWebQuestions
(CWQ) [16] is a KG reasoning dataset where each NLQ corresponds to an executable SPARQL
query. It involves up to 4-hop reasoning over a knowledge graph with complex constraints such
as comparisons, aggregations, and nested conditions. GrailQA [17] is a KG reasoning benchmark
featuring NLQs that require complex multi-hop reasoning to build s-expressions over the Freebase
knowledge graph. MTOP [18] is designed for multilingual semantic parsing in task-oriented dialogue
systems. Each NLQ is parsed into a TOP representation, modeling nested intents and slots.

As detailed in Section 2, we utilize the aforementioned four datasets to construct three distinct
sequential task streams, where each task Dtrain comprises a single dataset. The input and output
spaces vary across different tasks, as illustrated in Figure 1. Additionally, to emulate scenarios with
limited training data, each individual task Dk

train is constrained to |Dk
train| = 1000 and |Di

test| = 300.

Evaluation Metrics. In line with existing studies [13, 12], we employ three metrics to evaluate
the performance of the methods: a) AAa = 1

K

∑K
k=1 acck,K , which assesses the overall accuracy

across all tasks; b) BWT = 1
K−1

∑K−1
k=1 (acck,K − acck,k), which measures the extent of forgetting

knowledge from previous tasks; c) FWT = 1
K−1

∑K
k=2(acck,k − acck,0), which evaluates the ability

to forward transfer knowledge from past tasks to new ones. Here, acck,j represents the test accuracy
on Dk

test after training on Dj , and acck,0 denotes the test accuracy on Dk
test only training on Dk

train.

Compared Methods. We conduct a comprehensive comparison against the following three types
of baselines: a) FINE-TUNING: Represents the performance of a standard, vanilla model without
any continual learning enhancements. b) Rehearsal-based Methods: Includes methods such as
EMAR [19] and SFNET [9], which require replaying real historical examples or utilizing additional
unlabeled data. c) PEFT-based Methods: Covers techniques like PROGPROMPT[14], O-LORA [11],
C3 [12], and SAPT [13]. Additionally, we establish an upper-bound baseline, Multi-Task, where for
each task Dk, the model fθ is trained jointly on all data of D(0:k)

train .

Backbone LLMs. To thoroughly assess the performance across different backbone models, we
employed three widely used LLMs of varying sizes: 1) T5-LARGE, 2) LLAMA3-8B-INSTRUCT,
and 3) QWEN2.5-7B-INSTRUCT. Most existing methods in the literature are tailored for encoder-
decoder architectures, such as T5, which inherently limits their applicability to the current generation
of LLMs, the majority of which adopt a decoder-only design. Consequently, when employing
LLaMA3 and QWEN2.5 as the backbone, these methods are excluded from consideration due to
architectural incompatibility. This distinction underscores the novelty of our approach, as it represents
the first systematic exploration of leveraging decoder-only LLMs for the continual SKR task.

Implementation Details. Our experiments were conducted using a single NVIDIA RTX 4090
GPU. The hyperparameters were configured as follows (see Appendix C for further details): a) We
employed LoRA [20] as the PEFT module. b) The memory size for each task was set to |Mk

a| = 5
and |Mk

b | = 5. c) The ratio of real to pseudo memory samples, |Mk
real| to |Mk

pseudo|, was maintained
at 4 : 1. d) We used a batch size of 12 and set the learning rate to 5× 10−5. e) The number of training
epochs was fixed at 5. f) T in Algorithm 1 is set to 5. g) The backbone LLM for pseudo samples
synthesis is set to QWEN2.5-7B-INSTRUCT. All of our data and codes are publicly available.2

2https://github.com/SEU-COIN/K-DeCore
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Table 1: Experimental results for comparison with baselines.

Backbone Method
SKR stream1 SKR stream2 SKR stream3

AA BWT FWT AA BWT FWT AA BWT FWT

T5-LARGE

FINE-TUNING 2.9 −31.1 6.3 10.2 −24.0 7.6 6.8 −23.3 4.2

EMAR [19] 12.6 −18.5 4.8 12.5 −19.5 7.2 8.7 −20.6 3.0
O-LORA [11] 1.4 −30.5 −2.3 7.8 −17.9 −5.4 5.4 −27.8 0.3
PROGPROMPT[14] 9.7 −23.5 1.8 7.8 −17.9 4.6 15.9 −19.3 1.9
SFNET [9] 27.3 −14.7 3.6 18.2 −27.5 4.2 24.3 −18.0 3.1
C3 [12] 26.6 - −1.9 30.8 - 4.2 29.8 - 3.2
SAPT [13] 18.5 −15.8 3.7 24.5 −10.2 5.4 25.6 −20.7 3.5

K-DECORE (Ours) 31.8 −9.6 8.6 31.4 −7.5 8.4 30.1 −6.9 7.7

MULTI-TASK 37.4 9.1 8.8 38.4 12.6 10.1 36.6 11.5 6.8

LLAMA3
-8B-INSTRUCT

FINE-TUNING 22.8 −29.4 4.2 26.3 −22.9 1.8 16.4 −29.1 1.6

EMAR [19] 34.0 −13.2 3.3 34.5 −18.4 3.7 29.8 −19.9 0.5
SFNET [9] 36.1 −14.5 3.7 35.8 −17.1 4.2 35.4 −12.3 4.2
C3 [12] 39.7 - 2.3 40.7 - 2.6 36.6 - 2.1

K-DECORE (Ours) 40.5 −16.7 5.9 41.1 −17.1 6.1 37.0 −19.3 4.2

MULTI-TASK 54.5 5.7 10.0 54.7 12.8 5.1 54.3 12.2 4.8

QWEN2.5
-7B-INSTRUCT

FINE-TUNING 19.6 −26.9 5.1 28.8 −15.9 4.6 25.3 −22.8 1.9

EMAR [19] 35.6 −9.2 5.4 35.4 −10.8 5.3 30.7 −14.8 2.0
SFNET [9] 40.3 −10.5 4.5 38.5 −13.2 4.8 34.1 −15.0 5.1
C3 [12] 38.9 - 1.9 38.8 - 1.8 35.9 - 2.6

K-DECORE (Ours) 43.2 −8.2 6.9 40.1 −9.8 5.5 36.8 −16.7 6.9

MULTI-TASK 52.0 9.2 10.4 51.8 9.9 9.7 55.0 15.6 7.3

4.2 Overall Results

Table 1 presents a comprehensive performance analysis of our proposed K-DECORE framework
against several baselines across three continual SKR streams, utilizing various LLM backbones. With
T5 as the backbone, K-DECORE uniformly outperforms all competing methods across all evaluation
metrics. This superior performance is largely maintained when employing Llama3 and QWEN2.5 as
backbones, where K-DECORE establishes new state-of-the-art results in both AA and FWT.

In contrast, while PEFT-based methods such as C3 and SAPT achieve competitive results by ded-
icating independent parameters to each task, their per-task efficacy is hampered by the inherent
convergence limitations of prompt-tuning. K-DECORE, however, attains superior performance
without introducing additional parameters, offering a more efficient and scalable solution through its
novel knowledge decoupling mechanism. Furthermore, our synthetic sample generation strategy, by
creating more diverse query structures, enhances the model’s generalization capabilities, as evidenced
by its strong FWT performance. Notably, since C3 trains and loads a distinct PEFT module for each
task, thereby precluding knowledge transfer to previous tasks, we do not report its BWT.

4.3 Ablation Study

To explore the contributions of each component of our proposed K-DECORE, we compared the
performance of the following settings: a) w/o Decoupling: We omit the knowledge decoupling
process and instead treat SKR as a standalone stage. In this configuration, we use a single model fθ
equipped with one PEFT module P for inference, while maintaining the replay process unchanged.
b) w/o Unification: To evaluate the contribution of the unified schema representation, we only used
the original schema format specific to each SKR task during the schema filtering stage. c) w/o
Replay: We employ continual knowledge decoupling without replaying any samples, which involves
removing the second term in both Equations (2) and (3). d) w/oMk

a: We removed the memoryMk
a

in the continual schema filtering. e) w/oMk
b : We removed the memoryMk

b in the continual query
building. f) w Random Memory: We randomly sample from Dk

a to constructMk
a andMk

b .

Table 2 presents the results of our ablation study, investigating the contribution of key components of
K-DECORE. Removing the entire replay mechanism or specifically the query structure memory (w/o

7



Table 2: Experimental results of ablation studies.

Backbone Method
SKR stream1 SKR stream2 SKR stream3

AA BWT FWT AA BWT FWT AA BWT FWT

LLAMA3
-8B-INSTRUCT

K-DECORE 40.5 −16.7 5.9 41.1 −17.1 6.1 37.0 −19.3 4.2

w/o Decoupling 38.8 −13.8 2.6 37.5 −19.8 2.7 33.6 −19.6 2.1
w/o Unification 37.8 −17.7 3.4 37.1 −15.2 0.7 34.6 −15.7 −0.8
w/o Replay 20.5 −41.2 4.3 28.8 −34.4 6.8 17.9 −43.8 3.5
w/oMk

a 39.4 −17.1 5.1 38.2 −20.9 6.2 35.6 −20.2 3.6
w/oMk

b 20.8 −42.1 5.3 28.6 −32.8 5.3 18.5 −44.5 3.7
w Random Memory 39.9 −17.4 5.6 37.7 −20.6 5.4 36.3 −21.3 3.9

QWEN2.5
-7B-INSTRUCT

K-DECORE 43.2 −8.2 6.9 40.1 −9.8 5.5 36.8 −16.7 6.9

w/o Decoupling 37.9 −8.8 5.4 39.3 −5.5 4.0 36.1 −17.1 4.8
w/o Unification 34.4 −13.3 1.8 37.4 −10.5 2.6 36.1 −11.7 2.4
w/o Replay 16.8 −41.4 5.3 29.7 −23.8 5.5 18.7 −40.3 6.5
w/oMk

a 42.8 −9.7 5.3 39.5 −9.8 4.9 35.9 −17.5 6.6
w/oMk

b 19.1 −39.2 6.0 28.3 −24.4 4.7 16.3 −43.8 6.8
w Random Memory 42.1 −7.7 5.3 39.4 −11.8 6.3 36.2 −17.9 5.7
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Figure 3: AA (%), BWT (%), and FWT (%) till the seen tasks after learning on each task, using
LLAMA3-8B (top row) and QWEN2.5-8B (bottom row). Solid lines represent the mean values
across three distinct task sequences, while shaded regions indicate the standard deviation.

Mk
b ) leads to drastic performance drops in AA and significantly worse BWT, highlighting the critical

role of memory, particularly the storage of diverse query structures, in mitigating forgetting and
maintaining overall performance. Disabling the knowledge decoupling (w/o Decoupling) or removing
the unified schema representation (w/o Unification) also results in lower AA and reduced FWT,
demonstrating that separating reasoning into distinct stages and standardizing schema representation
are vital for effective knowledge transfer and handling heterogeneous tasks. While removing the
schema memory (w/o Mk

a) or using random memory sampling shows less severe degradation
compared to removing query memory, performance still drops relative to the full model, confirming
the benefits of dedicated schema memory and our proposed memory construction strategy.

4.4 Performance Till the Seen Tasks
Figure 3 presents the performance trajectory of the evaluated methods on previously seen tasks across
different LLM backbones. Our proposed K-DECORE framework consistently demonstrates superior
overall performance, with its advantage becoming more pronounced as the number of sequential
tasks increases. The model’s robust forward transfer capabilities, a key contributor to this success,
can be attributed to our strategies for pseudo-sample synthesis and continuous query construction,
which collectively enhance its adaptability to new and unseen scenarios. An interesting trade-off
is revealed in our ablation study. While omitting the knowledge decoupling component results in
a higher BWT, this apparent benefit comes at the cost of increased inter-task interference. This
interference ultimately diminishes the model’s adaptability, leading to poorer performance in FWT
and overall AA, thereby underscoring the critical role of our decoupling strategy.
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Figure 4: Peformance of K-DECORE with varing memory sizes and synthetic sample percentages.

Table 3: Experimental results on imbalanced task streams.

Backbone Method
SKR stream1 SKR stream2 SKR stream3

AA BWT FWT AA BWT FWT AA BWT FWT

QWEN2.5
-7B-INSTRUCT

FINE-TUNING 18.5 −15.2 4.1 22.2 −11.8 4.8 26.3 −5.1 3.4
EMAR [19] 28.2 −3.1 5.4 30.7 −1.1 5.1 28.3 −1.6 3.2

K-DECORE (Ours) 31.8 −10.9 8.5 33.5 −8.5 7.3 30.1 −6.5 6.2

4.5 Effects of Varying Memory Sizes and Synthetic Sample Percentages

Figure 4 shows the AA, BWT, and FWT of various methods across seen tasks using different backbone
LLMs. When the proportion of pseudo samples is relatively low, increasing the memory size tends to
enhance AA and BWT. Conversely, with a fixed memory size, incorporating pseudo samples at a
proportion of 20% frequently yields optimal results in terms of AA, BWT, and FWT, outperforming
scenarios with either no pseudo samples or a higher proportion of them. Interestingly, for FWT, a
larger memory capacity does not inherently translate to improved generalization capabilities.

4.6 Performance on Imbalanced Task Streams

To further assess our model’s robustness in more realistic scenarios, we conducted an additional
experiment simulating an imbalanced data stream, a common challenge where tasks have a non-
uniform number of training samples. Specifically, we configured the training set with the following
sample distribution: Spider (500), GrailQA (800), CombWebQ (300), and MTOP (600). Here we use
QWEN2.5-7B-INSTRUCT as the backbone model. As shown in Table 3, our method, KE-DECORE,
demonstrates clear superiority in the imbalanced data stream experiment. It achieves the highest AA
on all the streams, significantly outperforming the EMAR baseline.

4.7 Training Efficiency
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Figure 5: Training and testing time of various methods.

Figure 5 illustrates the average
training duration for each ap-
proach across various tasks. No-
tably, C3 exhibited a consider-
ably longer training time com-
pared to other methods, primarily
due to its prompt tuning neces-
sitating an extensive number of
epochs. The primary source of
time overhead for SAPT and O-LoRA lies in the merging process of multiple LoRA modules. This
bottleneck becomes increasingly pronounced as the number of tasks scales up. In contrast, our
K-DECORE demonstrated a favorable balance between efficiency and performance, with its training
time only marginally exceeding that of the rehearsal-based EMAR.
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5 Related Work

5.1 Structured Knowledege Reasoning.

Structured Knowledge-intensive Retrieval (SKR) tasks, which include text-to-SQL [21], Knowledge
Graph Question Answering (KGQA), and dialogue parsing, are centered on converting natural
language questions (NLQs) into structured, executable queries. In the database domain (DB SKR),
the process of translating NLQs into SQL queries has advanced significantly. Initial methods relied
on specialized model architectures [22] and the use of intermediate representations [23]. More
recently, the field has shifted towards leveraging Large Language Models (LLMs) enhanced with
sophisticated techniques such as task decomposition, chain-of-thought prompting [24, 25], and self-
consistency [26]. This modern approach has led to substantial performance gains, as demonstrated in
several recent studies [27, 28, 29, 30]. Similarly, SKR over knowledge graphs (KG SKR), or KGQA,
has evolved from traditional semantic parsing [31, 32] and embedding-based methods [33]. Recent
advancements, such as DecAF [34] and KB-BINDER [35], now integrate the generation of logical
forms with direct answer retrieval, markedly improving performance. In the domain of dialogue
parsing, tasks like TOP [36] and MTOP [18] involve deciphering complex, multi-turn interactions.
These have also been advanced by LLMs, which provide a more nuanced understanding of the
required structured representations.

While APEX [10] and LECSP [37] also constitute related work, they were excluded from our compar-
ative analysis. These methods are specifically tailored for the text-to-SQL task and do not generalize
to the other SKR domains we address. Furthermore, their computational overhead when implemented
with LLM backbones exceeds the practical limits of our experimental setup.

5.2 LLM Continual Learning.

In the context of continual learning for LLMs [38], Parameter-Efficient Fine-Tuning (PEFT) methods,
including prompt tuning [39], adapters [40], and LoRA [20], have become instrumental. These
techniques are particularly effective for adapting models to new tasks with limited data [41, 10]
by introducing a small number of trainable parameters while keeping the base model frozen. This
parameter-efficient approach allows for the sequential integration of new knowledge, mitigating
catastrophic forgetting and adapting to distribution shifts without the need for replaying historical
data [12, 13]. A common strategy in continual learning is to train a separate PEFT module for
each new task. This compartmentalizes task-specific knowledge, effectively preventing interference
between tasks [42, 13, 43].

However, this one-to-one mapping of modules to tasks presents a significant drawback: it inherently
struggles with generalization to novel samples that do not neatly fit into the learned task distributions,
thereby limiting its practical utility in dynamic, real-world scenarios. In stark contrast, our proposed
K-DECORE framework utilizes a fixed set of PEFT modules throughout the entire learning process.
This design offers a more efficient and scalable solution for both training and inference in evolving,
iterative environments.

6 Conclusion

In this paper, we introduced K-DECORE, a novel framework for Continual Structured Knowledge
Reasoning (CSKR) that effectively addresses the challenges of catastrophic forgetting and parameter
growth in heterogeneous structured knowledge environments. By leveraging knowledge decoupling,
K-DECORE decouples schema filtering from query construction, enabling efficient knowledge transfer
across diverse tasks without increasing model parameters. Our dual-perspective memory mechanism
further enhances knowledge retention by maintaining replay samples from both schema and query
structure perspectives, while our query synthesis strategy enriches memory content with complex
structured queries. Through extensive evaluations on task streams from four SKR benchmarks,
K-DECORE consistently demonstrated superior performance over strong baselines across multiple
metrics. However, due to time and cost constraints, we did not employ reasoning-based LLMs (like
QWEN3) as the backbone for our framework. This remains a limitation of our current work. Future
research will explore the integration of such models to potentially enhance the applicability and
robustness of K-DECORE in real-world scenarios.
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Justification: We propose a novel CSKR framework, K-DECORE, which facilitates the
knowledge transfer using knowledge decoupling.
Guidelines:
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made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed this in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: There is no theoretical analysis in our paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation details of all experiments are detailed in Section 4.1 and
the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide open access to data and code and provide adequate explanations.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The implementation details of all experiments are detailed in Section 4.1 and
the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the mean and standard deviation of the experimental results for
different orders in Section 4.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources required to reproduce the experiments are provided in
Section 4.1 and Section 4.6 (Efficiency).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work has no social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The method in this article is a training mechanism, not a specific language
model, so it does not involve this risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All existing datasets and evaluation metrics we use are clearly referenced.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The datasets used and processed in our experiments and the corresponding
documentation will be publicly released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not have crowdsourced experiments and research on humans.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We don’t have this risk.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our use of LLM does not compromise the core methodology, scientific rigor
or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A DB-style Input and Output Format

We emphasize that our DB-style unification is designed to fully preserve all critical information,
ensuring that the flattened representation remains faithful to the original structures. Below, we explain
how our design achieves this preservation while enabling effective covering across tasks.

For relation direction, our mapping explicitly preserves the subject-object orientation inherent in
triples (subject-predicate-object). Specifically, we designate the content in the primary key of the
transformed table as the subject, while the contents in other columns represent the corresponding
objects. This structured encoding ensures that directional information is retained and can be reli-
ably interpreted during query generation, preventing ambiguities that might arise from undirected
representations.

Regarding edge types, we incorporate them directly into the schema by prefixing each relation (or
edge) with its type and treating it as a dedicated column in the flattened table. This simple yet
effective augmentation embeds the type information within the schema itself, allowing the model to
access and utilize it without requiring additional modifications to the backbone architecture.

For multi-level structures, such as hierarchical slots or nested tables, we adopt flattening techniques.
This involves recursively expanding multi-level columns into single-level ones, ensuring that hierarchi-
cal relationships are linearized but not discarded. Our framework is flexible enough to accommodate
this, as the flattening occurs preprocessing and does not alter the core continual learning mechanism.

More crucially, our DB-style unification is applied only during the schema filtering stage, where the
primary objective is akin to entity linking—namely, identifying the relevant tables (entity types) and
columns (relations) for the given query. In this context, not all granular details (e.g., full hierarchical
depth) are necessary, as the filter’s role is to select pertinent schema elements rather than reconstruct
the entire original structure. The subsequent query builder module, operating on the filtered schema,
can then draw on the preserved essential information.

A.1 GrailQA

Schema Filtering Stage:

INPUT:
Identify the exact schema component from the given schema that would correctly answer the

following question.↪→

schema:

book.series_editor : book_edition_series_edited | book.book_edition : book_edition_series,
place_of_publication | book.book_edition_series : editions_in_this_series, series_editor↪→

question:

a people's history of christianity was edited by what series editor?

OUTPUT:
book.series_editor : book_edition_series_edited

Query Building Stage:
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INPUT:
Generate an s-expression that can be used to find the answer to the following question using the

knowledge graph schema items provided.↪→

schema:

a people's history of christianity: m.012bphrj | book.series_editor : book_edition_series_edited |
book.book_edition : book_edition_series, place_of_publication | book.book_edition_series :
editions_in_this_series, series_editor

↪→
↪→

question:

a people's history of christianity was edited by what series editor?

OUTPUT:
(AND book.series_editor (JOIN book.series_editor.book_edition_series_edited m.012bphrj))

A.2 Spider

Schema Filtering Stage:

INPUT:
Identify the exact schema component from the given schema that would correctly answer the

following question.↪→

schema:

department : department_id , name , creation , ranking , budget_in_billions , num_employees | head
: head_id , name , born_state , age | management : department_id , head_id , temporary_acting↪→

question:

How many heads of the departments are older than 56 ?

OUTPUT:
head : age

Query Building Stage:

INPUT:
Your task is to convert the following question to an SQL query using the following database

schema.↪→

schema:
department : department_id , name , creation , ranking , budget_in_billions , num_employees | head

: head_id , name , born_state , age | management : department_id , head_id , temporary_acting↪→

question:
How many heads of the departments are older than 56 ?

OUTPUT:
select count(*) from head where age > 56

A.3 CWQ

Schema Filtering Stage:
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INPUT:
Identify the exact schema component from the given schema that would correctly answer the

following question.↪→

schema:

type.object : type | location.location : time_zones, containedby, contains, people_born_here |
common.topic : notable_types | geography.river : mouth | travel.tourist_attraction :
near_travel_destination | kg.object_profile : prominent_type |
education.educational_institution : colors | location.country : languages_spoken,
administrative_divisions

↪→
↪→
↪→
↪→

question:What language is spoken in the country that has Southern Peninsular?

OUTPUT:
location.country : languages_spoken, administrative_divisions

Query Building Stage:

INPUT:
Given the list of schema items, write an SPARQL query that can be used to find the answer to the

following question.↪→

schema:
Southern Peninsula: m.08kmfj | type.object : type | location.location : time_zones, containedby,

contains, people_born_here | common.topic : notable_types | geography.river : mouth |
travel.tourist_attraction : near_travel_destination | kg.object_profile : prominent_type |
education.educational_institution : colors | location.country : languages_spoken,
administrative_divisions

↪→
↪→
↪→
↪→

question:
What language is spoken in the country that has Southern Peninsular?

OUTPUT:
PREFIX ns: <http://rdf.freebase.com/ns/>SELECT DISTINCT ?xWHERE {?c

ns:location.country.administrative_divisions ns:m.08kmfj .?c
ns:location.country.languages_spoken ?x .}

↪→
↪→

A.4 MTOP

Schema Filtering Stage:
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INPUT:

Identify the exact schema component from the given schema that would correctly answer the
following question.↪→

schema:
in:get : message, weather, alarm, info_recipes, stories_news, reminder, recipes, event, call_time,

life_event, info_contact, contact, timer, reminder_date_time, age, sunrise, employer,
education_time, job, availability, category_event, call, employment_time, call_contact,
location, track_info_music, sunset, mutual_friends, undergrad, reminder_location,
attendee_event, message_contact, reminder_amount, date_time_event, details_news,
education_degree, major, contact_method, life_event_time, lyrics_music, airquality, language,
gender, group | in:send_message | in:set : unavailable, rsvp_yes, available,
default_provider_music, rsvp_interested, default_provider_calling, rsvp_no | in:delete :
reminder, alarm, timer, playlist_music | in:create : alarm, reminder, call, playlist_music,
timer | in:question : news, music | in:play : music, media | in:end_call | in:ignore_call |
in:update_call | in:update_reminder_date_time | in:pause : music, timer | in:answer_call |
in:snooze_alarm | in:update_reminder_todo | in:is_true_recipes | in:remove_from_playlist_music
| in:add : time_timer, to_playlist_music | in:share_event | in:prefer | in:start_shuffle_music
| in:silence_alarm | in:switch_call | in:subtract_time_timer | in:update_timer |
in:previous_track_music | in:hold_call | in:skip_track_music | in:update_method_call |
in:update_alarm | in:like_music | in:restart_timer | in:resume : timer, call, music |
in:merge_call | in:replay_music | in:loop_music | in:stop : music, shuffle_music |
in:unloop_music | in:update_reminder_location | in:cancel : message, call | in:update_reminder
| in:rewind_music | in:repeat : all_music, all_off_music | in:fast_forward_music |
in:dislike_music | in:disprefer | in:help_reminder | in:follow_music

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

question:
Has Angelika Kratzer video messaged me ?

OUTPUT:

IN:GET : MESSAGE

Query Building Stage:

INPUT:
Convert the following natural language query to an API call in Task Oriented Parsing (TOP)

representation using the following API specification.↪→

API specification:
IN:GET : MESSAGE, WEATHER, ALARM, INFO_RECIPES, STORIES_NEWS, REMINDER, RECIPES, EVENT, CALL_TIME,

LIFE_EVENT, INFO_CONTACT, CONTACT, TIMER, REMINDER_DATE_TIME, AGE, SUNRISE, EMPLOYER,
EDUCATION_TIME, JOB, AVAILABILITY, CATEGORY_EVENT, CALL, EMPLOYMENT_TIME, CALL_CONTACT,
LOCATION, TRACK_INFO_MUSIC, SUNSET, MUTUAL_FRIENDS, UNDERGRAD, REMINDER_LOCATION,
ATTENDEE_EVENT, MESSAGE_CONTACT, REMINDER_AMOUNT, DATE_TIME_EVENT, DETAILS_NEWS,
EDUCATION_DEGREE, MAJOR, CONTACT_METHOD, LIFE_EVENT_TIME, LYRICS_MUSIC, AIRQUALITY, LANGUAGE,
GENDER, GROUP | IN:SEND_MESSAGE | IN:SET : UNAVAILABLE, RSVP_YES, AVAILABLE,
DEFAULT_PROVIDER_MUSIC, RSVP_INTERESTED, DEFAULT_PROVIDER_CALLING, RSVP_NO | IN:DELETE :
REMINDER, ALARM, TIMER, PLAYLIST_MUSIC | IN:CREATE : ALARM, REMINDER, CALL, PLAYLIST_MUSIC,
TIMER | IN:QUESTION : NEWS, MUSIC | IN:PLAY : MUSIC, MEDIA | IN:END_CALL | IN:IGNORE_CALL |
IN:UPDATE_CALL | IN:UPDATE_REMINDER_DATE_TIME | IN:PAUSE : MUSIC, TIMER | IN:ANSWER_CALL |
IN:SNOOZE_ALARM | IN:UPDATE_REMINDER_TODO | IN:IS_TRUE_RECIPES | IN:REMOVE_FROM_PLAYLIST_MUSIC
| IN:ADD : TIME_TIMER, TO_PLAYLIST_MUSIC | IN:SHARE_EVENT | IN:PREFER | IN:START_SHUFFLE_MUSIC
| IN:SILENCE_ALARM | IN:SWITCH_CALL | IN:SUBTRACT_TIME_TIMER | IN:UPDATE_TIMER |
IN:PREVIOUS_TRACK_MUSIC | IN:HOLD_CALL | IN:SKIP_TRACK_MUSIC | IN:UPDATE_METHOD_CALL |
IN:UPDATE_ALARM | IN:LIKE_MUSIC | IN:RESTART_TIMER | IN:RESUME : TIMER, CALL, MUSIC |
IN:MERGE_CALL | IN:REPLAY_MUSIC | IN:LOOP_MUSIC | IN:STOP : MUSIC, SHUFFLE_MUSIC |
IN:UNLOOP_MUSIC | IN:UPDATE_REMINDER_LOCATION | IN:CANCEL : MESSAGE, CALL | IN:UPDATE_REMINDER
| IN:REWIND_MUSIC | IN:REPEAT : ALL_MUSIC, ALL_OFF_MUSIC | IN:FAST_FORWARD_MUSIC |
IN:DISLIKE_MUSIC | IN:DISPREFER | IN:HELP_REMINDER | IN:FOLLOW_MUSIC

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

question:
Has Angelika Kratzer video messaged me ?

OUTPUT:

[IN:GET_MESSAGE [SL:CONTACT Angelika Kratzer ] [SL:TYPE_CONTENT video ] [SL:RECIPIENT me ] ]
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B Prompts for Synthesizing Query Structures

B.1 Prompt for Pseudo Structure Synthesis

You are an expert in logical query expression synthesis. Your task is to merge two simple query
skeletons into a single, more complex skeleton that logically integrates their structure and
meaning. The result should preserve the semantics of both inputs and follow the same
structural style and syntax. Output only the composed skeleton. Do not include any explanation
or additional text.

↪→
↪→
↪→
↪→

Simple skeleton 1:\{example1\}

Simple skeleton 2:\{example2\}

Composed skeleton:

B.2 Prompt for Pseudo Question Generation

You are an AI assistant that specializes in transforming structured query statements into fluent,
contextually accurate natural language questions. Your task is to read a given formal query
and its associated schema context, and then write a corresponding question in clear, natural
language that would retrieve the correct answer if the formal query were executed on a
database.

↪→
↪→
↪→
↪→

question:
{query}

schema:
{schema}

Follow these steps carefully:

1. Understand the Query Semantics:
Analyze the query logic, including the target variables, the filtering conditions, the joins, and

the structure of the query. Infer what specific information the query is intended to retrieve.↪→

2. Incorporate Schema Semantics:
Use the provided schema elements (such as table names, entity types, or relation labels) to guide

the terminology and phrasing in the question. Map schema components to human-interpretable
phrases as necessary.

↪→
↪→

3. Avoid Direct Translation:
Do not simply convert the query structure into a rigid, mechanical form. Instead, aim for a fluent,

natural-sounding question that a human might ask when seeking the same information.↪→

4. Preserve Answer Equivalence:
Ensure that the generated question is logically equivalent to the formal query in terms of the

expected answer. The question should not broaden, narrow, or alter the scope of the query.↪→

5. Maintain Clarity and Brevity:
The question should be unambiguous and concise, while preserving all the critical information

needed to align with the query.↪→

6. Output Format Constraint:
Only output the final question, without any explanatory text, metadata, or formatting symbols. The

output should consist solely of a single fluent question in English.↪→

B.3 Examples of Structure Synthesis

Structure 1:
(ARGMAX [T1] [C1])

Structure 2:
(AND [T1] (JOIN [C1] [E1]))

Synthetic Structure:
(ARGMAX (AND [T1] (JOIN [C1] [E1])) [C2])
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Structure 1:
SELECT [C1] FROM [T1] WHERE [C2] = [V1];

Structure 2:
SELECT [C1] FROM [T] WHERE [C3] IN [V1];

Synthetic Structure:
SELECT * FROM [T1] WHERE [C1] IN (SELECT [C2] FROM [T2] WHERE [C3] = [V1]);

C Hyperparameter settings

Our hyperparameter settings are as follows:

Table 4: Hyperparameter Configuration for Experiments

Hyperparameter Value
GPU NVIDIA RTX 4090
PEFT Module LoRA [20]
LoRA Target gate_proj, down_proj, up_proj, q_proj, v_proj, k_proj, o_proj
LoRA Rank 8
LoRA α 16
Memory Size per Task |Mk

a| = 5, |Mk
b | = 5

Real to Pseudo Memory Ratio 4 : 1
Batch Size 12
Global Batch Size 32
Learning Rate 5× 10−5

Optimizer Adam
Training Epochs 5
Maximum Input Length 1024
Maximum Output Length 256
Parameter T in Algorithm 1 5
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