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Abstract

Seeking good designs is a central goal of many important domains, such as robotics,1

integrated circuits (IC), medicine, and materials science. These design problems2

are expensive, time-consuming, and traditionally performed by human experts.3

Moreover, the barriers to domain knowledge make it challenging to propose a4

universal solution that generalizes to different design problems. In this paper, we5

propose a new method called Efficient Design and Stable Control (EDiSon) for6

automatic design and control in different design problems. The key ideas of our7

method are (1) interactive sequential modeling of the design and control process8

and (2) adaptive exploration and design replay. To decompose the difficulty of9

learning design and control as a whole, we leverage sequential modeling for both10

the design process and control process, with a design policy to generate step-by-11

step design proposals and a control policy to optimize the objective by operating12

the design. With deep reinforcement learning (RL), the policies learn to find13

good designs by maximizing a reward signal that evaluates the quality of designs.14

Furthermore, we propose an adaptive exploration and replay mechanism based on a15

design memory that maintains high-quality designs generated so far. By regulating16

between constructing a design from scratch or replaying a design from memory to17

refine it, EDiSon balances the trade-off between exploration and exploitation in the18

design space and stabilizes the learning of the control policy. In the experiments,19

we evaluate our method in robotic morphology design and Tetris-based design20

tasks. Our framework has the potential to significantly accelerate the discovery of21

optimized designs across diverse domains, including automated materials discovery,22

by improving the exploration in design space while ensuring efficiency.23

1 Introduction24

Design optimization presents a key challenge across various domains such as robotics [Gupta et al.,25

2021], integrated circuits (IC) [Mirhoseini et al., 2021], medicine [Coley et al., 2017], and materials26

science [Ghugare et al., 2023, Govindarajan et al., 2024]. Traditionally, design problems are tackled27

by human experts through iterative manual experimentation, incurring significant costs in both time28

and resources. Moreover, the required specialized domain knowledge further complicates the design29

process and increases the need for domain expertise, hindering the generalizability of traditional30

approaches. Therefore, developing an efficient and general framework for different design problems31

with little human intervention and specialized domain knowledge is essential.32

Recent advancements in reinforcement learning (RL) have made design automation a promising33

application [Jeong and Jo, 2021, Budak et al., 2022, Dworschak et al., 2022, Govindarajan et al.,34

2024]. RL can rapidly discover and test potential solutions through interacting with design simulators35

[Sternke and Karpiak, 2023], enabling faster exploration than humans. However, the combinatorial36
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complexity of design space often results in very few valuable designs as well as exponentially many37

paths to find them [Mouret and Clune, 2015, Colas et al., 2020]. In addition to the difficulty of38

exploring valuable designs in a large and complex space, the challenge is further exacerbated when39

constructing the design, which is only part of the problem. This occurs when a given design also40

requires a control policy to achieve its task and evaluate the quality of each design [Gupta et al., 2021].41

For instance, constructing a robot optimized for locomotion requires both a suitable morphology42

design and a control policy that maximizes the robot’s locomotion capabilities, inducing a multi-level43

optimization problem.44

In the multi-level optimization problem, we have to address two distinct challenges: (1) Constructing45

the design as a Markov Decision Process (MDP) with unique transition dynamics and (2) Learning46

a control policy for that MDP. These problems, while both tractable with reinforcement learning47

(RL), have different priorities. The first problem focuses on exploring the search space for optimal48

designs, while the second often suffers from sample inefficiency as each new design may need a49

newly trained control policy. The interaction between these creates a non-stationary optimization50

problem requiring additional regularization for better convergence. What’s worse, previous methods,51

such as Transform2Act [Yuan et al., 2022], often overlook exploiting past successful designs and fail52

to balance exploration and exploitation, leading to inefficiencies.53

To address these challenges, we formulate design optimization as a multi-step MDP and propose a54

general framework in Figure 1 with three key components: the design MDP for design optimization,55

the control MDP for control optimization, and the design buffer. The design buffer maintains a56

prioritized queue of high-performing designs, reducing non-stationarity and encouraging exploration-57

exploitation balance. We employ a bandit-based meta-controller to adjust the exploration probability58

dynamically, ensuring efficient and adaptive learning. This approach effectively integrates design and59

control optimization, leveraging past successes while continually seeking new possibilities.60

Based on our general framework, we present a practical method for efficient design-and-control61

automation called Efficient Design and Stable Control (EDiSon). Our method employs Proximal62

Policy Optimization (PPO) [Schulman et al., 2017] for policy learning in both design and control.63

The design policy iteratively generates designs, maximizing the reward signal from the control policy,64

thereby guiding optimization toward promising designs. We implement design memory through a65

buffer that collects high-performing and diverse designs. Our adaptive exploration and replay strategy66

dynamically balances between creating new designs and refining existing ones, encouraging the67

emergence of diverse, high-quality designs by effectively leveraging past successes while continually68

seeking new possibilities. The main contributions of our work are summarized as follows:69

• A General and Efficient RL Framework for Design Optimization: We introduce an70

efficient and general framework that integrates design and control optimization into a multi-71

step MDP in Sec. 4. This framework effectively addresses the dual challenges of optimizing72

both design and control policies, offering a more efficient and comprehensive approach to73

design automation.74

• Adaptive Exploration-Exploitation Trade-off in Design Optimization: We introduce a75

practical method, EDiSon, based on adaptive exploration and design replay. Our method76

leverages a bandit-based meta-controller to dynamically balance exploration and exploitation,77

enhancing the efficiency of design-and-control automation. By reusing successful designs78

from a design buffer, EDiSon ensures continuous improvement and optimal performance.79

• The State-of-the-art Efficiency and Performance across Various Design Tasks: Through80

extensive experiments, we demonstrate that EDiSon significantly outperforms existing81

methods (See Sec. 6.2), by adaptively adjusting learning strategies and efficiently exploring82

the design space. EDiSon achieves superior results in robotic morphology design and83

Tetris-based design tasks, showcasing its effectiveness and efficiency.84

2 Related Work85

Machine Learning for Design Autonomous design research in robotics has advanced through86

various approaches that have broadly focused on optimizing morphology and control. Early works87

proposed evolutionary algorithms to adapt the morphology of rigid body and soft body robots to solve88

pushing or locomotion tasks [Lipson and Pollack, 2000, Hiller and Lipson, 2012]. Subsequent work89
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Figure 1: A General Architecture of our Method.

extended these ideas to learning neural controllers in parallel to the morphology [Bongard and Pfeifer,90

2003]. Compositional Pattern-producing networks have been shown to be good for discovering91

new morphologies as they could adapt to the changing number of joints in a robot [Auerbach and92

Bongard, 2012, Jelisavcic et al., 2019]. These works illustrate the progression and integration of93

morphology and control in autonomous design. In addition to robotics, machine learning (ML) has94

also been applied to many other design problems, including building design [Sun et al., 2021], as well95

as materials, molecular and protein design [Govindarajan et al., 2024, Ghugare et al., 2023, Watson96

et al., 2023] and algorithm design [Co-Reyes et al., 2021].97

Design Optimization with RL RL has been increasingly applied to design optimization, offering98

efficient methods for exploring complex design spaces. Sims [1994] pioneered the use of evolutionary99

algorithms with RL principles to design virtual creatures with adaptable behaviors. Gupta et al. [2021]100

demonstrated the significant impact of optimized morphologies on learning efficiency for targeted101

tasks. Yuan et al. [2022] introduced an RL framework integrating transformation and control policies102

to streamline robot design and operation. Ha [2019] jointly optimized agent embodiment using a103

population-based REINFORCE algorithm. Schaff et al. [2019] applied RL to update distributions104

over design parameters. These advancements highlight RL’s potential to automate and enhance design105

optimization. RL has also been applied to many other design problems, including concrete structure106

[Jeong and Jo, 2021], and electronic placement on microchip [Budak et al., 2022]. However, none of107

them address the exploration-exploitation trade-off in design optimization.108

3 Background109

In this section, we briefly review the fundamental background used in our work and describe important110

aspects of settings with joint design problems and control problems.111

Design-and-Control Problem In this paper, we aim to solve design problems, where we need to112

find a high-quality design and control it to optimize the design objective. Consider such a design113

problem with a design space D, the purpose of this problem is to find an optimal design d⋆ ∈ D that114

maximizes an evaluation function F : D → R, i.e., d⋆ = argmax d F (d). The evaluation function115

F is not given a priori and is determined by a control process of design. For a design d, a control116

policy π operates with the design that leads to a control score fπ(d), while the evaluation function117

F (d) is defined to be the best control score that can be achieved within a control policy space Π, i.e.,118

F (d) = Gd = maxπ∈Π fπ(d). In real-world applications, one usually aims to find a set of designs119

that have good evaluation scores and are diverse at the same time.120

Markov Decision Processes (MDP) Reinforcement Learning (RL) is typically formulated with the121

modeling of MDP, where at every time step t, the world (including the agent) exists in a state st ∈ S ,122

where the agent is able to perform actions at ∈ A. The action to take is determined according to a123

policy π(at|st) which results in a new state st+1 ∈ S and reward rt = R(st,at) according to the124

transition probability function P (st+1|st, st). The goal of an RL agent is to optimize its policy π125

to maximize the future discounted reward J(π) = Er0,...,rT

[∑T
t=0 γ

trt

]
, where T is the max time126

horizon, and γ is the discount factor.127
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Figure 2: The illustration of our general framework for learning design and control. The framework
consists of three components: the design policy, the control policy, and the design memory, which
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4 A General Framework for Learning Design and Control128

The design problems we address involve two interconnected challenges: discovering an optimal129

design (the design problem) and controlling that design to optimize a specific objective (the control130

problem). This dual challenge is prevalent in scenarios like designing a robotic morphology with131

a corresponding locomotion policy or creating building blocks for a geometric task. Solving these132

problems is complex due to the vast combinatorial design space and the intricate landscape of the133

design objective function. Additionally, control learning must generalize across various designs,134

further complicating the process. The interplay between design and control exacerbates the difficulty,135

as design evaluation signals are often noisy and dependent on the ongoing control learning process,136

while the control problem must handle a non-stationary distribution of designs generated in real time.137

To handle these challenges, in this section, we propose a general framework for learning design and138

control. As illustrated in Figure 2, the framework consists of three components as introduced below.139

Design As A Multi-Step MDP In this paper, we assume that the Markov assumption holds (see140

Apendix D Assumption 1) allowing us to formulate the design as a multi-step MDP. The design141

policy explores the design space and optimizes the design d ∈ D regarding the design evaluation142

signal F (d). We use sequential modeling for the design process, i.e., the design policy starts from an143

initial base design d0 and constructs it with step-by-step modifications to a final design dT . We define144

a Design Markov Decision Process (Design MDP) M = (U,X, P,R, γ, ρ, E,D, g), where µ ∈ U is145

a state of the design process, x ∈ X is a design action, e ∈ E is an optional external information,146

and g : D ×X → D describes the deterministic change of design affected by design action:147

µt ≜ (dt, et) πD (xt | µt) ≜ p (xt | dt, et) P (µt+1 | µt, xt) ≜ δdt+1 p(et+1|dt, et, xt)

ρ (µ0) ≜ p(d0, e0) dt+1 ≜ g(dt, xt) R (µt, xt) ≜

{
F (dT ) if t = T

0 otherwise
(1)

where δy denotes the Dirac delta distribution with a nonzero density only at y.148

One key feature of the design-and-control problem is that each design d corresponds to a control task149

to solve, and the design process corresponds to a process of constructing an observation spaceOd and150

an action space Ad for the control task. From a finer-grained perspective, the spaces Od,Ad consist151

of the subspace sets {Oi}, {Ai}, each design action xt corresponds to adding or removing a tuple152

of subspaces (Oi, Ai), and the design change function g updates of the subspace sets and generates153

Od,Ad based on the cartesian product of the subspaces chosen so far. Next, we move on to detail the154

control task associated with the design d and the observation and action spaces Od,Ad constructed.155

Control As A Multi-Step MDP The control policy manipulates a design with the purpose of best156

performing the control task. Essentially, given a design d, this is equivalent to learning the optimal157

policy in a Control Markov Decision Process (Control MDP) Md = (Sd,Ad,Od,O, Pd, Rd, γ, ρd, d),158

where o ∈ O is an observation of the environment and od ∈ Od is an observation of the design state159

(e.g., the proprioceptive state of a robot), and Sd = O × Od. Formally, the Control MDP Md is160
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defined as:161

st ≜
(
ot, o

d
t

)
Pd (st+1 | st, at) ≜ p(ot+1, o

d
t+1|ot, odt , at, d)

ρd (s0) ≜ p(o0, o
d
0) πC (at | st, d) ≜ p (at | ot, odt , d ) Rd (st, at) ≜ r(ot, o

d
t , at, d)

Ideally, the control policy maximizes the performance as πC = argmax π J(π,Md), which then162

serves as the design evaluation signal, i.e., F (d) = J(πC,Md).163

Design Memory The design memory maintains a design buffer B = {di}. The designs generated164

by the design policy are kept in B selectively according to their evaluation (i.e., the maintenance165

module), e.g., with a probability p(d) ∝ F (d). Meanwhile, it provides designs for the learning of the166

design policy and the control policy (i.e., the replay module)167

Our framework presents a unified mathematical model for design-and-control problems. Because the168

co-optimization of an MDP choice and a solution to the chosen MDP is intricate and challenging, our169

framework relies on the principle of using design memory. Specifically, the design memory keeps170

useful knowledge of diverse sets of best-performing designs to accelerate the learning process. In the171

learning of the design policy, the design memory enables the realization of an exploitation-exploration172

balance in the design space that helps find good designs efficiently. In the learning of the control173

policy, the design memory stabilizes the distribution change of design MDPs and reduces the difficulty174

of learning over multiple designs, thus leading to better design evaluation.175

Besides, our framework provides a general approach to coupled design-control problems as it does176

not depend on a specific approach to learn the design policy and the control policy. Moreover, we177

do not impose any limitations on how to implement the design memory. We describe a practical178

realization of this framework in the next section.179

5 Efficient Design and Stable Control (EDiSon)180

In this section, we describe our approach to improving design optimization with RL by actively181

reusing designs and adaptively balancing the exploration-exploitation trade-off.182

5.1 Joint Optimization of Design and Control using Reinforcement Learning183

Most current methods leveraging reinforcement learning for design optimization divide the task into184

two distinct stages [Yuan et al., 2022]. The first stage, the design stage, identifies the optimal design185

for the control task. The second stage, the control stage, utilizes the generated design to complete the186

task, with RL agents evaluating each design based on reward feedback from the environment.187

In some tasks, such as protein design [Sternke and Karpiak, 2023], the design from the first stage188

can be directly assessed without a control stage. However, to maintain generality, we continue to189

bifurcate design tasks into these two stages because many design problems also involve a control190

evaluation part of each design. The optimization objective for the design stage can be formulated as:191

d∗ = argmax
d∈D

F (d) (2)

Where F is the evaluation function for each design d. In our method, designs are evaluated during192

the control stage using a control policy π, making F dependent on π: F = J(π, d) = Gd,π =193

Eπ,d

[∑H
t=0 γ

trt

]
. Thus, the joint design and control optimization can be formulated as:194

Design Stage: d∗ = argmax
d

J (π, d)

Control Stage: π∗ = argmax
π

J(π, d)
(3)

As mentioned in Sec. 4, the agents typically learn two sub-policies, πD and πC , to address this195

joint optimization. The design policy πD generates each design dt from an initial design d0, and the196

control policy πC rolls out the control trajectory to evaluate each design.197

While methods like Transform2Act [Yuan et al., 2022] have been successful, they often ignore the198

exploitation and reuse of previously discovered designs, starting from scratch with a less informative199

d0, leading to inefficiency. In this paper, we propose a new design-and-control paradigm that actively200

exploits learned designs, enhancing efficiency and performance.201
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5.2 Exploration and Exploitation in Design Space202

In this paper, we propose two general design methods. The first method involves designing from203

scratch, allowing for greater freedom to explore the entire design space. However, solely exploring204

the design space without exploiting current designs is often less effective. Therefore, the second205

method involves designing from good examples dgood , enabling the agent to leverage useful and206

informative designs. This approach closely mirrors human design processes, where we often base207

our designs on prior work and masterpieces with exemplary performance. In practice, these good208

examples can be sourced from a design history or provided by humans prior to training.209

For fairness, we propose not to rely on artificially given good examples. Instead, we let the agents210

exploit good examples they found throughout the entire learning process. To facilitate this, we211

implement a design buffer B to store good designs encountered during training. Whenever the agent212

needs to design based on an example, it samples a good design dgood ∼ PB from this buffer, wherein213

PB = softmax(Gd). More implementation details of our design buffer can be found in App. H.214

However, solely relying on existing good examples can lead to sub-optimal solutions by failing to215

explore the design space adequately. Ideally, the agent should first explore the entire design space216

and, once good designs have been identified, actively exploit these examples to inform further design217

efforts. To balance exploration and exploitation, we propose a hybrid approach combining two218

methods: (1) Exploration: designing from scratch and (2) Exploitation: designing from good219

examples. During each design stage in training, the agent decides to design from scratch with220

probability p and to design from good examples with probability 1− p. We call this probability p the221

design exploration rate which allows us to control exploration throughout the training process:222 {
Exploration: Design from Scratch, p

Exploitation: Design from Good Examples (Design Reuse), 1− p
(4)

By adjusting the probability p, we can achieve an optimal trade-off between exploration and exploita-223

tion in the design optimization problem. Even with a fixed probability p, this method outperforms224

the original Transform2Act which is equivalent to the special case where p = 1 and the agent con-225

stantly explores the design space from scratch. Our method offers better performance and efficiency,226

demonstrating the benefits of integrating both exploration and exploitation in the design process.227

5.3 Adaptive Exploration in Design Optimization228

A fixed probability p helps balance exploration and exploitation but fails to let agents adaptively229

choose the best design method during different learning stages. Early in training, agents should230

explore widely using a higher p, while later stages should exploit good designs with a lower p.231

To address this, we propose a meta-controller that dynamically adjusts the design exploration rate p,232

balancing exploration and exploitation. We use a multi-armed bandit (MAB) approach, where each233

bandit has two arms: arm = 0 for design from scratch and arm = 1 for design from good examples.234

At the start of each trajectory, the actor samples an arm k ∈ K = {0, 1} using the probability235

distribution PK = eScorek∑
j eScorej

. The design exploration rate p is given by p = Parm=0.236

We use the Upper-Confidence Bound (UCB) score to manage the trade-off:237

Scorek = Vk + c ·

√√√√ log
(
1 +

∑K
j ̸=k Nj

)
1 +Nk

(5)

where Nk is the number of visits to arm k, Vk is the expected value of the returns, and the UCB238

term (i.e., the second term) ensures the agent doesn’t repeatedly select the same arm, avoiding quick239

convergence to suboptimal solutions.240

After sampling an arm, the agent decides whether to reuse a base design from the buffer B or design241

from scratch. The design policy πD and control policy πC are applied to obtain a trajectory τi and242

the return Gi, which updates the reward model Vk for the selected arm. To handle non-stationarity,243

we ensemble several MABs with different hyperparameters, allowing the agent to adapt to changing244

environments and maintain robust performance. More details are in the App. G.245
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Figure 3: Baseline Comparison in Robotic Morphology Design Tasks. For each robot task, we
plot the mean and standard deviation of total rewards against the number of simulation steps for all
methods. Each curve shows a smoothed moving average over five points. The fixed p is 0.8, 0.7, 0.5,
0.3 (best p found manually in each task).

6 Experimental Results246

Our experiments aim to evaluate the effectiveness of the proposed RL framework for a range of247

design optimization tasks, from robotic morphology design to some toy examples of Tetris-based248

design problems that manipulate a set of basic building blocks. We design our experiments to focus249

on the following questions:250

• How does EDiSon perform compared to prior work in various design tasks (See Figure 3)?251

How are the designs discovered by our method different from prior methods (See Figure 5)?252

• How much does adaptively balancing the exploration and exploitation in design optimization253

assist in finding higher-value solutions (See Figure 6)? Why not just use a fixed design254

exploration rate p (See Figure 6)?255

• How much do core components of our framework, such as design reuse and adaptive256

exploration-exploitation trade-off, contribute to the results (See Figure 7)?257

6.1 Experimental Setup258

We conduct experiments across several design-based tasks, including robotic morphology design and259

Tetris-based design problems. To ensure a fair comparison, we follow the same settings and network260

structure for the robotic morphology design tasks as Transform2Act [Yuan et al., 2022] and adopt a261

3-layer MLP for all policies and critics in the Tetris-related task. We use PPO [Schulman et al., 2017]262

to learn both our design policy, control policy, and critics. We utilize a separate evaluation process to263

continuously record scores, measuring the undiscounted episodic returns averaged over five seeds. To264

provide comprehensive insights, we present full learning curves for each task, addressing any issues265

associated with aggregated metrics. In addition to the average score, we highlight the best designs266

discovered by our agent during the learning process, showcasing our method’s superiority in design267

exploration. More implementation details can be found in App. J.268

Environments. We evaluate our algorithm on the following tasks: 1) Swimmer: A 2D agent269

operating in water with 0.1 viscosity, confined to the xy-plane, aiming to maximize forward speed270

along the x-axis. 2) 2D Locomotion: A 2D agent in the xz-plane that moves forward as quickly as271

possible, with rewards based on forward velocity. 3) 3D Locomotion: A 3D agent navigating along272

the x-axis, striving for maximum forward speed, rewarded based on velocity. 4) Gap Crosser: A273

2D agent navigating across periodic gaps on the xz-plane, with rewards linked to forward speed.274

Additionally, we provide extra results for other design tasks, such as Tetris rewarded by playtime (i.e.,275

design blocks to play Tetris longer) and Pattern Matching rewarded by matching rate (i.e., design276

blocks to match target pattern better) to further demonstrate our method’s capabilities beyond robot277

design tasks (see App. M). More details about these tasks can be found in App. E.278

6.2 Summary of Results279

Our experimental results in Figure 3 clearly demonstrate the superiority of our proposed methods over280

the baseline Transform2Act. The Bandit approach consistently achieves higher returns across all tasks,281

illustrating its effectiveness in dynamically balancing exploration and exploitation. This adaptability is282

crucial for optimizing performance in varied and complex environments. The fixed design exploration283
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Figure 4: Baseline Comparison and Best Design Discovered in Tetris-Based Tasks. (a) and (b)
show the learning curve in Tetris-like Tasks. (c) and (d) show the best design in Tetris Tasks, where
agents have to find 4 blocks, each represented as a 3 × 3 grid with 4 squares filled (the white one).

(a) Ours (b) Transform2Act (c) Ours (d) Transform2Act
Figure 5: Best Design Discovered in Robotic Morphology Design Tasks. (a) and (b) show the best
designs found in the Gap Crosser task by our method (reward: 11572) and Transform2Act (reward:
4579). (c) and (d) illustrate the best designs found in the 2D Locomotion task by our method (reward:
15459) and Transform2Act (reward: 11416). More discovered designs can be found in App. F.

p also shows improvements but is inferior to the bandit method, underscoring the importance of an284

adaptive balance in design optimization. The success of our methods can be attributed to several key285

factors: 1) Design Reuse: By leveraging good designs found during the training process, our methods286

avoid the inefficiencies associated with always starting from scratch. This reuse of successful designs287

enhances learning efficiency and accelerates performance improvements. 2) Adaptive Trade-off:288

The Bandit method allows the agent to adjust its exploration-exploitation balance dynamically during289

design optimization, leading to more efficient learning and higher performance. This adaptability290

ensures that the agent explores new designs early in training and exploits successful designs as they291

are discovered. We also include the learning curve with top-k scores in App. L.1. Similar results can292

be found in Tetris-Related design tasks in Figure 4, wherein our method can also stabilize learning293

curves, which is also detailed in App. M.294

Further investigation into the best designs found by our methods can also help us to understand295

the results, which has been illustrated in Figure 5. In the Gap Crosser Task, our bipedal design296

(Figure 5a) offers enhanced stability and efficiency with its upright posture and elongated limbs,297

enabling better gap navigation than the sprawled configuration of Transform2Act’s design (Figure298

5b). For the 2D Locomotion Task, our design (Figure 5c) optimizes limb placement by reducing an299

unnecessary joint on the tail foot and adding one to the forelimb, resulting in improved speed and300

agility. Conversely, Transform2Act’s design (Figure 5d) retains an additional hind limb, which seems301

less efficient. Overall, our designs are more structurally optimized for their respective tasks. For the302

Tetris task, our method outperforms Transform2Act by discovering four identical symmetric block303

structures. Our blocks simplify the learning of the control policy, facilitate continuous gameplay, and304

enable efficient line clearing. A more detailed analysis can be found in App. F.3.305

6.3 Case Study: Exploration-Exploitation Trade-off306

We divided the design exploration rate p into ten equal intervals from 0 to 1, creating methods with307

different exploration preferences. These methods ranged from extreme exploitation (p = 0) to308

extreme exploration ( p = 1, corresponding to Transform2Act). The results in Figures 6a and 6b309

show that different tasks have distinct optimal design exploration rates. This variability underscores310

that achieving a balance between exploration and exploitation is non-trivial and crucial for success.311

Additionally, we analyzed the design exploration rate control curve of our Bandit-based method312

(Figure 6c). The results demonstrate that our Bandit-based meta-controller effectively adjusts the313
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Figure 6: Case Study Results. (a) and (b) show the performance of different design exploration rates
p; while (c) demonstrates the adaptive control curve of p in our method.
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Figure 7: Ablation Study Results. The results show the contribution of exploration and exploitation,
as well as the effectiveness of our bandit-based adaptive mechanism.

exploration-exploitation trade-off dynamically. Our method promotes extensive exploration during314

early training stages, which helps discover diverse and potentially optimal designs. As training315

progresses, the meta-controller gradually shifts towards exploitation, utilizing the accumulated design316

knowledge to optimize performance. This adaptability ensures that the agent efficiently explores the317

design space and exploits successful designs, leading to superior performance across tasks.318

6.4 Ablation Studies319

In our ablation studies, we examine two critical components: the adaptive exploration-exploitation320

trade-off and design reuse via the design buffer. We evaluate several variants to highlight their321

impact: 1) Ours w/o Bandit: Removes the adaptive mechanism. 2) Ours w/o Exploitation: Eliminates322

the design buffer, requiring designs from scratch. 3) Ours w/o Exploration: Sets p to 0, disabling323

exploration. 4) Our Main Method: Incorporates both components.324

Figure 7 shows that both design reuse and adaptive exploration-exploitation are crucial. The design325

buffer leverages successful designs, and the adaptive mechanism balances exploration and exploitation,326

enhancing performance. Neither extreme exploration nor exploitation is optimal; a balanced approach,327

as in our main method, yields the best results, highlighting the importance of balancing these factors328

in design optimization tasks.329

7 Conclusion and Discussion330

In this paper, we introduced EDiSon, a new reinforcement learning framework for design optimization.331

We demonstrated its applicability in various tasks, such as robotic morphology design and Tetris-based332

challenges. EDiSon employs a Bandit-based meta-controller to dynamically balance exploration and333

exploitation, surpassing previous methods like Transform2Act. Our experimental results illustrate334

the importance of adaptive strategies and design reuse, particularly in complex optimization tasks335

where a fixed exploration rate may hinder performance. Our key contributions include (1) an adaptive336

exploration-exploitation mechanism, (2) efficient design reuse through a design buffer, and (3)337

robust evaluations via comprehensive case studies. While EDiSon requires substantial computational338

resources, its ability to accelerate design optimization has broad applications, particularly in AI-339

guided materials discovery, where automated processes are critical for speeding up material design,340

synthesis, and characterization.341
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A Broader Impacts435

The potential broader impacts of our work extend across various dimensions of artificial intelligence436

and its applications. Our method’s ability to dynamically balance exploration and exploitation in437

design optimization presents significant advancements in automated design and control tasks. This438

capability can lead to more efficient and innovative solutions in fields such as robotics, autonomous439

systems, and industrial design, where optimal design and control strategies are critical for performance440

and reliability.441

On the positive side, our approach can significantly enhance the development of intelligent systems442

that adaptively learn and improve over time. This can result in more autonomous systems that require443

less human intervention, potentially reducing the cost and time associated with manual design and444

optimization processes. Additionally, the ability to leverage past successful designs can accelerate445

the innovation cycle, leading to faster development of advanced technologies.446

However, there are potential negative societal impacts that must be considered. The increased447

autonomy in design and control processes could lead to job displacement in industries where manual448

design is currently prevalent. It is crucial to consider strategies for retraining and upskilling workers to449

adapt to new roles in an increasingly automated environment. Furthermore, the deployment of highly450

autonomous systems raises concerns about safety, ethical considerations, and accountability. Ensuring451

that these systems are designed with robust safety measures and ethical guidelines is paramount to452

prevent misuse and unintended consequences.453
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B Advantage of Efficient Design and Stable Control (EDiSon) over454

Transform2Act455

There are three main advantages of our method (EDiSon) over Transform2Act [Yuan et al., 2022]:456

1. Adaptive Exploration-Exploitation Balance: Transform2Act uses a fixed exploration rate,457

which is suboptimal for complex design problems. Our method introduces a Bandit-based458

meta-controller that dynamically adjusts the exploration-exploitation trade-off. This adaptive459

strategy allows for extensive exploration in the early stages and efficient exploitation of460

successful designs in later stages, leading to superior performance across various tasks, as461

demonstrated in our experimental results (see Figures 3 and 14).462

2. Design Reuse with a Design Buffer: Unlike Transform2Act, which always starts from463

scratch, our method leverages a design buffer to store and reuse successful designs. This464

approach enhances learning efficiency by building upon previously discovered high-quality465

designs. The use of a design buffer facilitates better generalization and reduces the time466

required to achieve optimal performance, as evidenced by our experimental results.467

3. Increased Exploration Capability: Our method allows for more extensive exploration468

of design possibilities in each episode. By dynamically adjusting the exploration rate and469

leveraging the design buffer, our approach can try a wider variety of designs within a shorter470

period. This increased exploration capability enables our method to discover innovative and471

high-performing designs more effectively than Transform2Act, leading to enhanced overall472

performance and efficiency in design optimization tasks (see Figure 14).473
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C Limitations474

While our method demonstrates significant improvements in design and control automation, it is475

not without limitations. One notable limitation is the computational complexity associated with476

our bandit-based meta-controller. The dynamic balancing of exploration and exploitation requires477

substantial computational resources, which may not be readily available in all settings. This could478

limit the scalability and applicability of our approach to resource-constrained environments.479

Another limitation lies in the assumptions made by our method. Our approach assumes that the480

design and control tasks can be adequately represented within the framework of a multi-armed481

bandit problem. This assumption may not hold in all scenarios, particularly in highly complex and482

dynamic environments where the relationships between design choices and performance outcomes are483

non-linear and unpredictable. As a result, the effectiveness of our method may vary across different484

tasks and domains.485

Additionally, our method relies heavily on the quality and diversity of the design buffer. If the initial486

set of designs is not sufficiently diverse or representative of the optimal design space, the performance487

of our method could be adversely affected. Ensuring the robustness of the design buffer through488

careful selection and continuous updating is essential to maintain the efficacy of our approach.489

In general, our experimental evaluation is limited to specific tasks and environments, and while our490

results are promising, further validation is needed across a broader range of applications. Future work491

should explore the generalizability of our method to other design and control problems, as well as492

investigate potential enhancements to address the identified limitations. By doing so, we aim to refine493

our approach and extend its applicability to a wider array of real-world challenges.494
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D Design Optimization as Multi-Step MDP495

In this section, we describe the Markov Decision Processes (MDP) used to formalize the design496

and control stages of our framework. Using the robotic morphology design with the Transform2Act497

approach [Yuan et al., 2022] as an example, we demonstrate how our formalizations can be applied498

to analyze an existing design problem and an RL method for design optimization.499

Assumption 1 (Markov Assumption of Design Optimization). We assume that the design optimization500

problems we study are all Markovian, meaning that the future state depends only on the current state501

and action and not on the sequence of events that preceded it. Formally, this is expressed as:502

P (st+1 | st, at) = P (st+1 | st, at, st−1, at−1, . . . , s0, a0) . (6)

D.1 Design As Markov Decision Process503

We model the design optimization process as a multi-step Markov Decision Process (MDP), enabling504

a structured approach to the design stage within our reinforcement learning framework. The elements505

of this MDP are defined as follows:506

State st : The state at time t is represented by st ≜ (dt, ot), where dt denotes the design at the507

time step t, and ot represents the state information of the task/environment. It’s worth noting that,508

when the design is fully represented by dt and no more other observation can be obtained from the509

environment, ot can be ignored.510

Action at : The action at time t is given by at ≜ xt+1, where xt+1 indicates the next/target design511

parameters. This allows the agent to modify the design iteratively.512

Policy π (at | st) : The design policy maps the state to actions, which can be defined as π (at | st) ≜513

pθ (xt+1 | dt, ot), where pθ is the probability distribution over the actions conditioned on the current514

state and design.515

State Transition P (st+1 | st, at) : The transition probability is given by P (st+1 | st, at) ≜516 (
δdt

, δot , δxt+1

)
, where δ denotes the Dirac delta function, ensuring deterministic transitions between517

states based on the selected actions.518

Initial State Distribution ρ0 (s0) : The initial state distribution is defined as ρ0 (s0) ≜519

(p(d0), p(o0)), where p(d0) is the initial design distribution (which can be controlled by the design520

exploration rate p), and p(o0) represents the initial distribution of the initial state information from521

the environment/task.522

Reward Function R (st, at) : The reward function is defined as:523

R (st, at) ≜

{
r (dT ) if t = T

0 otherwise
(7)

Here, r (dT ) evaluates the quality of the final design dT . The design reward signal is sparse, because524

the agent does not know how well it performs until the control stage has been conducted.525

Definition D.1 (Design Optimization as a MDP). Based on the above, we formulate the design526

optimization procedure to the following:527

st ≜ (dt, ot) π (at | st) ≜ pθ (xt+1 | ot, dt) P (st+1 | st, at) ≜
(
δdt , δot , δxt+1

)
at ≜ xt+1 ρ0 (s0) ≜ (p(d0), p(o0)) R (st, at) ≜

{
r (dT ) if t = T

0 otherwise
(8)

in which δy is the Dirac delta distribution with nonzero density only at y. In this MDP, trajectories528

consist of T time steps, leading to a termination state/design. The cumulative reward of each529

trajectory equals r (dT ), making the maximization of the design reward Jdesign (θ) equivalent to530

optimizing the reinforcement learning objective JRL(π) in this MDP context.531
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In the following, we provide the our multi-step MDP framework for design optimization to interpret532

the design stage of Transform2Act. It is important to note that, for fairness, our main method in robot-533

related tasks maintains similar Skeleton Transform and Attribute Transform stages as Transform2Act,534

except for incorporating design reuse with a design buffer and a bandit-based meta-controller.535

In other words, our approach, which includes design reuse and the bandit-based meta-controller, can536

be applied to any existing design optimization method using RL.537

Robotic Morphology Design in Transform2Act Transform2Act divides the design stage into538

two parts, the Skeleton Transform: construct the joint structure graph of the robot, and the Attribute539

Transform: fine-tune relevant parameters such as the length of each joint structure.540

In the Skeleton Transform stage, the agent follows the policy πS
θ

(
aSt | dt,Φt

)
to modify the skeletal541

structure. Here, dt = (Vt, Et, At) includes the skeletal graph (Vt, Et) and joint attributes At. Φt is a542

flag used to indicate the current stage (e.g., Skeleton Transform, Attribute Transform, Control) and543

can be regarded as part of the environment state ot.The skeleton transform action aSt =
{
aSu,t

}
u∈Vt

544

changes the skeletal graph by adding or deleting joints.545

The agent follows the skeleton transform sub-policy πS
θ for Ns timesteps, resulting in an updated546

design dt+1 = (Vt+1, Et+1, At+1), and the policy πS
θ can be write as:547

πS
θ

(
aSu,t | dt,Φt

)
=

∏
u∈Vt

πS
θ

(
aSu,t | dt,Φt

)
(9)

Since Transform2Act always design from scratch, the initial design distribution p(d0) deterministic548

distribution:549

d0 ∼ p(d0) ≜ dNull (10)
And the total steps of attribute transform stage is TS .550

In the Attribute Transform stage, the agent modifies joint attributes using the policy πA
θ

(
aAt | dt,Φt

)
.551

The attribute transform action aAt =
{
aAu,t

}
u∈Vt

adjusts continuous attributes like bone length, size,552

and motor strength. The attribute transform sub-policy πA
θ

(
aAu,t | dt,Φt

)
adopts the same GNN-553

based network as the skeleton transform sub-policy πS
θ . The policy distribution for the attribute554

transform action is defined as:555

πA
θ

(
aAu,t | dt,Φt

)
= N

(
aAu,t;µ

A
u,t,Σ

A
)

(11)

Here, µA
u,t and ΣA are shared by all joints. The new design becomes dt+1 = (Vt, Et, At+1) where556

the skeleton (Vt, Et) remains unchanged. And the total steps of attribute transform stage is TA.557

The reward signal is sparse for each design step, where only the final reward rT the final design dT558

to achieve the robot control task with control policy πc is given as the learning signal.559

D.2 Control As Markov Decision Process560

In this part, we describe the control optimization process as a multi-step Markov Decision Process561

(MDP), providing a structured approach to the control stage within our reinforcement learning562

framework. The design evluation is achieved in the control stage, where the agents will interact563

with the task using the final design and control policy πc. The elements of this MDP are defined as564

follows:565

State st : The state at time t is represented by st ≜ (dT , ot), where dT denotes the final design of566

design stage, ot is the current environment observation.567

Action at : The action at time t is given by at ≜ ct+1, where ct+1 indicates the next control568

parameters. This allows the agent to iteratively modify the control strategy.569

Policy π (at | st) : The policy maps the state to actions, defined as π (at | st) ≜ pθ (ct+1 |570

dT , ot, ct), where pθ is the probability distribution over the actions conditioned on the current571

state and design.572
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State Transition P (st+1 | st, at) : The transition probability is given by P (st+1 | st, at) =573

p(ot+1|ot, dT , ct+1) is given by the environment (task-wise).574

Initial State Distribution ρ0 (s0) : The initial state distribution is defined as ρ0 (s0) ≜575

(dT , p(o0), p(c0)), where dT is the final design, p(o0) is the initial observation from the environment576

(task-wise), and p(c0) represents the initial control parameters.577

Reward Function R (st, at) : The reward function is defined as:578

R (st, at) ≜ r(ct+1, dT , ot) (12)

Here, r(ct+1, dT , ot) is given by the environemnt, just the well-known environment reward in also579

conditioned on our final design dT .580

Definition D.2 (Control Optimization as a MDP). Based on the above, we formulate the design581

optimization procedure to the following:582

st ≜ (dT , ot, ct) π (at | st) ≜ pθ (ct+1 | ct, dT ) P (st+1 | st, at) = p(ot+1|ot, dT , ct+1)
at ≜ ct+1 ρ0 (s0) ≜ (dT , p(o0), p(c0)) R (st, at) ≜ r(ct+1, dT , ot)

(13)
In this MDP, trajectories consist of Tc time steps, leading to a termination control state. The583

cumulative reward of each trajectory equals R(τ) =
∑Tc

t=0[rt], making the maximization of the584

control reward Jcontrol (θ) equivalent to optimizing the reinforcement learning objective JRL(π) in585

this MDP context.586

Robot Control of Transform2Act After the agent performs TS skeleton transform and TA attribute587

transform actions, it enters the control stage where the agent assumes the transformed design and588

interacts with the environment. A GNN-based execution policy πe
θ (a

e
t | set , dt,Φt) is used in this589

stage to output motor control actions aet for each joint.590

Since the agent now interacts with the environment, the policy πe
θ is conditioned on the environment591

state set as well as the transformed design dt, which affects the dynamics of the environment. The592

control actions are continuous. The execution policy distribution is defined as:593

πe
θ

(
aeu,t | set , dt,Φt

)
= N

(
aeu,t;µ

e
u,t,Σ

e
)

(14)

where the environment state set =
{
seu,t | u ∈ Vt

}
includes the state of each node u (e.g., joint angle594

and velocity). The GNN uses the environment state set and joint attributes At as input node features to595

output the mean µe
u,t of each joint’s Gaussian action distribution. Σe is a state-independent learnable596

diagonal covariance matrix shared by all joints. The agent applies the motor control actions aet to all597

joints and the environment transitions the agent to the next environment state set+1 according to the598

environment’s transition dynamics T e
(
set+1 | set , aet

)
. The design dt = dTS+TA

remains unchanged599

throughout the control stage.600

17



(a) 3D Locomotion (b) Swimmer (c) 2D Locomotion (d) Gap Crosser
Figure 8: A random agent in each of four different taks.

E Environment Details601

E.1 Robot-Related Task602

In this part, we provide a comprehensive overview of the four robot-related environments used in our603

experiments.604

E.1.1 2D Locomotion605

The agent in this environment operates within an xz-plane with flat ground at z = 0. Each joint of606

the agent can have up to three child joints. For the root joint, additional features such as height and607

2D world velocity are included in the state representation. The reward function is defined as:608

rt =
|xt+1 − xt|

∆t
+ 1, (15)

where xt represents the x-position of the agent and ∆t = 0.008 is the time step. An alive bonus of 1609

is also incorporated into the reward. The episode terminates when the root height drops below 0.7 .610

E.1.2 3D Locomotion611

In this environment, the agent operates in a 3D space with flat ground at z = 0. Similar to the 2D612

Locomotion, each joint can have up to three child joints, with the root joint including height and 3D613

world velocity in its state representation. The reward function is given by:614

rt =
|xt+1 − xt|

∆t
− α · 1

N

N∑
i=1

∥ai,t∥2 (16)

where α = 0.0001 is a weighting factor for the control penalty term, N is the total number of joints,615

and ∆t = 0.04616

E.1.3 Swimmer617

The agent in the Swimmer environment moves in water with a viscosity of 0.1 , confined within an618

xy-plane. Each joint can have up to three child joints. The root joint state includes height and 2D619

world velocity. The reward function is the same as that used in 3D Locomotion.620

E.1.4 Gap Crosser621

This environment presents a unique challenge where the agent must navigate across periodic gaps on622

an xz-plane. The gaps have a width of 0.96 , with a period of 3.2 . The terrain height is 0.5 . Similar623

to the other environments, each joint can have up to three child joints, and the root joint state includes624

height, 2D world velocity, and a phase variable encoding the agent’s x-position. The reward function625

is defined as:626

rt =
|xt+1 − xt|

∆t
+ 0.1 (17)

with ∆t = 0.008. An alive bonus of 0.1 is also incorporated. The episode terminates when the root627

height is below 1.0.628
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(a) Tetris (Start) (b) Tetris (End)

(c) Pattern Matching (Start) (d) Pattern Matching (End)
Figure 9: Our agent in each of Tetris-like tasks. In the pattern matching task (i.e., (c) and (d)). The
left is the target pattern and the right is the one constructed by the agent using designed blocks.

E.1.5 Other Information629

Similar to Transform2Act [Yuan et al., 2022], to ensure consistency across different design configura-630

tions, each agent is specified using XML strings during the transform stage. The design is represented631

as an XML string, which is modified based on the transform actions. At the start of the execution632

stage, the modified XML string is used to reset the MuJoCo simulator and load the newly-designed633

agent. This approach allows for seamless integration and evaluation of various design modifications634

within the MuJoCo environment.635

E.2 Tetris-Related Task636

In this part, we provide a comprehensive overview of the two Tetris-related environments used in our637

experiments.638

E.2.1 Tetris639

In the Tetris environment, the agent manipulates falling blocks to complete horizontal lines without640

gaps. Each step increments the reward by 1, promoting continuous gameplay, while termination due641

to a stack reaching the top incurs a penalty of -100. During the design stage, the agent designs four642

distinct blocks, providing diverse shapes to enhance gameplay. The objective is to optimize these643

designs to improve performance in Tetris. Mathematically, the reward function is expressed as:644

rt =

{
1 if the game continues,
−100 if the game terminates.

(18)

In practice, the maximum number of steps for each Tetris game round is set to 128, meaning the645

optimal score for each round is 128. Our method successfully identifies blocks enabling indefinite646

gameplay in Tetris.647

We model the design optimization of Tetris as a multi-step MDP, which can be directly handled by648

RL methods:649

Design Stage In this stage, the agent designs k = 4 Tetris blocks, each represented as a 3× 3 grid650

with 4 squares filled. The state at time t is denoted by st ≜ (dt, ot), where dt is the current design, t651
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is the time step, and ot is the task/environment state. The action at involves selecting and placing the652

squares in the 3× 3 grid to form a valid Tetris block.653

The policy π(at | st) maps the state to actions, defined as:654

π(at | st) ≜ pθ(xt+1 | dt, ot) (19)

where pθ is the probability distribution over the actions conditioned on the current state and design.655

The transition probability P (st+1 | st, at) is given by:656

P (st+1 | st, at) ≜ (δdt
, δxt+1

, δot) (20)

where δ denotes the Dirac delta function, ensuring deterministic transitions between states based on657

the selected actions.658

The initial state distribution ρ0(s0) is defined as:659

ρ0(s0) ≜ (p(d0), p(o0)) (21)

where p(d0) is the initial design distribution and p(o0) represents the initial environment660

state/observation distribution.661

Control Stage After designing the Tetris blocks, the agent enters the control stage, where the662

objective is to play the Tetris game using the designed blocks. The control stage is modeled similarly663

to the execution stage in a standard MDP framework.664

In the control stage, the state st includes the current game board configuration and the current Tetris665

block being placed. The action at involves moving and rotating the Tetris block to place it on the666

board.667

The policy πc(at | st) maps the state to control actions, defined as:668

πc(at | st) ≜ pcθ(at | st, dt) (22)

where dt is the design of the Tetris block and pcθ is the probability distribution over the control actions.669

The transition probability P (st+1 | st, at) is determined by the game dynamics:670

P (st+1 | st, at) = T c(st+1 | st, at) (23)

where T c represents the transition function of the Tetris game.671

The initial state distribution ρc0(s0) is defined by the initial game board configuration and the first672

Tetris block to be placed.673

The reward function Rc(st, at) in the control stage is given by the game score obtained by clearing674

lines:675

Rc(st, at) ≜ rc(st+1) (24)

where rc is the reward function of the Tetris game.676

The overall objective in the control stage is to maximize the cumulative reward, which corresponds to677

achieving the highest possible score in the Tetris game using the designed blocks.678

E.2.2 Pattern Matching679

The Pattern Matching environment challenges the agent to arrange blocks to match a target pattern680

within a grid. The reward is based on the success of the matching process, with a matching rate of681

1 for a perfect match. During the design stage, the agent designs four different blocks to achieve682
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various target patterns. The objective is to optimize these designs to improve the agent’s ability to683

accurately and efficiently match the given patterns. The reward function is defined as:684

rt = matching_rate(st, g) (25)

where st represents the state of the grid at time t, and g is the target pattern. The matching rate685

measures how well the current grid state matches the target pattern, with a maximum value of 1 for a686

perfect match. In our experiments, our method achieves a matching rate of approximately 97%.687

Design Stage of Pattern Matching In the design stage, the agent designs k = 4 different pattern688

blocks. Each block is a 3× 3 grid where the agent places squares to form specific patterns.689

The state at time t is represented by st ≜ (dt, ot), where dt denotes the current design, and ot690

represents the state of the task/environment. The action at at time t involves selecting and placing the691

squares in the 3× 3 grid to form a valid pattern block.692

The policy π(at | st) maps the state to actions, defined as:693

π(at | st) ≜ pθ(xt+1 | dt, ot) (26)

where pθ is the probability distribution over the actions conditioned on the current state and design.694

The transition probability P (st+1 | st, at) is given by:695

P (st+1 | st, at) ≜ (δdt , δxt+1 , δot) (27)

where δ denotes the Dirac delta function, ensuring deterministic transitions between states based on696

the selected actions.697

The initial state distribution ρ0(s0) is defined as:698

ρ0(s0) ≜ (p(d0), p(o0)) (28)

where p(d0) is the initial design distribution, and p(o0) represents the initial environment699

state/observation distribution.700

The reward function R(st, at) in the design stage is defined as:701

R(st, at) ≜

{
r(dT ) = matching_rate(dT , g) if t = T,

0 otherwise
(29)

where r(dT ) evaluates the quality of the final design dT .702

We model the design optimization of Pattern Matching as a multi-step MDP, which can be directly703

handled by RL methods:704

Control Stage of Pattern Matching Task After designing the pattern blocks, the agent enters the705

control stage, where the objective is to match the designed patterns with a target pattern. This stage is706

modeled similarly to the execution stage in a standard MDP framework.707

In the control stage, the state st includes the current target pattern configuration and the current708

pattern block being placed. The action at involves selecting and placing the designed pattern block709

onto the target grid.710

The policy πc(at | st) maps the state to control actions, defined as:711

πc(at | st) ≜ pcθ(at | st, dt) (30)

where dt is the design of the pattern block, and pcθ is the probability distribution over the control712

actions.713
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The transition probability P (st+1 | st, at) is determined by the pattern matching dynamics:714

P (st+1 | st, at) = T c(st+1 | st, at) (31)

where T c represents the transition function of the pattern matching task.715

The initial state distribution ρc0(s0) is defined by the initial target pattern configuration and the first716

pattern block to be placed. The overall goal in the control stage is to maximize the matching rate by717

optimally placing the designed blocks on the grid.718
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(a) Ours (b) Transform2Act
Figure 10: Best Design Found in Gap Crosser Task.

F Best Design Found By Our Method719

In this section, we would like to share, analyze and interpretate some good design our method found720

in different tasks.721

F.1 Gap Crosser722

In Figure 10, the two designs for the Gap Crosser task exhibit significant differences in morphology,723

which impact their performance in navigating the environment’s periodic gaps. Our design (See724

Figure 10a), which features a bipedal form, offers several advantages over the design discovered by725

Transform2Act (See Figure 10b). Let’s analyze these differences and their implications in detail.726

Reach and Stride Length The elongated limbs in our design significantly enhance the robot’s727

reach, allowing it to span wider gaps with each step. The increased stride length means the robot728

can cover more ground with fewer steps, which is a critical advantage in a task where efficiency and729

speed are paramount. The extended reach also reduces the number of transitions the robot needs to730

make, minimizing the risk of falling.731

The Transform2Act design, with its shorter limbs, has a limited stride length. This limitation forces732

the robot to take more steps to cross the same distance, increasing the number of times it must733

navigate the gap edges. The shorter reach means that the robot has to exert more effort to span the734

gaps, which can slow down its progress and increase the likelihood of falling.735

Joint Flexibility and Movement Efficiency Our design incorporates strategically placed joints736

that enhance flexibility and movement efficiency. The joints are positioned to allow smooth, natural737

movements that mimic a walking gait, which is highly efficient for crossing gaps. This flexibility738

helps the robot adjust its stride dynamically based on the size and distance of the gaps, providing739

adaptability that is crucial for success in this task.740

The Transform2Act design’s joint configuration does not optimize movement efficiency to the same741

extent. The joint angles and placements may restrict fluid motion, making it harder for the robot to742

adjust its stride effectively. This rigidity can lead to jerky movements and less efficient navigation,743

reducing the overall performance in the Gap Crosser task.744

Energy Efficiency The bipedal form of our design promotes energy-efficient movement. The745

upright posture and long limbs mean the robot can use momentum effectively, reducing the energy746

required for each step. This efficiency allows the robot to maintain higher speeds and cover more747

distance without exhausting its energy reserves quickly.748

In contrast, the Transform2Act design’s lower, more compact form likely requires more energy to lift749

and move each limb, especially when navigating gaps. The increased energy expenditure can slow750

down the robot over time, making it less effective in completing the task within a given time frame.751

Adaptability to Terrain Our design’s adaptability to different terrain conditions is another critical752

advantage. The bipedal structure can easily adjust to varying gap sizes and irregularities in the753

terrain, providing robust performance across different scenarios. This adaptability ensures consistent754

performance regardless of changes in the environment.755
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(a) Ours (b) Transform2Act
Figure 11: Best Design Found in 2D Locomotion Task.

The Transform2Act design may struggle with adaptability due to its less versatile morphology. The756

limited reach and less flexible joints make it harder for the robot to adjust to unexpected changes in757

gap size or terrain irregularities, reducing its overall effectiveness in dynamic environments.758

In general, our bipedal design offers superior stability, reach, movement efficiency, energy efficiency,759

and adaptability compared to the design found by Transform2Act. These advantages make our design760

more suitable for the Gap Crosser task, as it can navigate the gaps more effectively, maintain higher761

speeds, and adapt to varying terrain conditions. The strategic placement of joints and the elongated762

limbs contribute significantly to these improvements, showcasing the efficacy of our multi-step MDP763

approach in optimizing robotic morphology for specific tasks.764

F.2 2D Locomotion765

In the 2D Locomotion Task, our design (Figure 11a) outperforms the design discovered by Trans-766

form2Act (Figure 11b) due to several key factors. Our design features a more streamlined morphology767

with one fewer joint on the tail foot and an additional joint on the forelimb, resulting in a more768

efficient structure for the given task.769

Firstly, reducing the number of joints on the tail foot from two to one eliminates unnecessary weight770

and complexity. This simplification allows the robot to achieve a more stable and balanced gait,771

crucial for efficient locomotion. The tail foot in our design acts more like a stabilizer, providing772

necessary support without contributing excess weight that could hinder movement. This contrasts773

with the design by Transform2Act, which includes an extra hind limb that adds weight and complexity774

without significant benefits to the locomotion task.775

Secondly, the addition of a joint to the forelimb in our design, increasing it from two to three joints,776

enhances the robot’s ability to maneuver and adapt to various terrains. This increased flexibility in777

the forelimb joints allows for more refined control of movement, improving the robot’s ability to778

propel itself forward efficiently. The added joint provides greater range of motion and better shock779

absorption, which is particularly beneficial in maintaining high-speed locomotion while minimizing780

energy expenditure.781

Additionally, the overall morphology of our design promotes a more effective distribution of force782

and balance during movement. The simplified tail structure reduces drag and the potential for783

destabilizing forces, while the enhanced forelimbs improve traction and propulsion. This combination784

ensures that the robot can maintain a steady and efficient forward motion, optimizing its velocity and785

stability. In comparison, the design by Transform2Act suffers from having an additional hind limb786

that does not significantly contribute to forward propulsion. This extra limb increases the complexity787

of movement and can lead to inefficient energy usage. Furthermore, the lack of an additional joint in788

the forelimb limits the range of motion and adaptability of the robot, making it less suited to handle789

diverse locomotion challenges. In general, our design excels in the 2D Locomotion Task due to its790

streamlined structure, enhanced forelimb flexibility, and overall balanced morphology. These features791

collectively contribute to a more efficient and stable movement, allowing the robot to perform the792

task more effectively than the design discovered by Transform2Act.793
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(a) Block1 (b) Block2 (c) Block3 (d) Block4
Figure 12: Best Design Found in Tetris by Our method.

(a) Block1 (b) Block2 (c) Block3 (d) Block4
Figure 13: Best Design Found in Tetris by Transform2Act [Yuan et al., 2022].

F.3 Tetris794

In the Tetris environment, the agent is tasked with manipulating falling blocks to complete horizontal795

lines without gaps. The primary goal is to maximize the number of completed lines while avoiding796

the stack reaching the top of the playing field, which would end the game. The design stage involves797

creating four distinct blocks, each intended to optimize the agent’s performance in achieving this798

goal.799

In the comparison between the optimal designs found by our method (Figure 12) and those found by800

Transform2Act (Figure 13), several key differences highlight why our designs are superior for the801

Tetris task.802

Uniformity and Symmetry Our method produced four identical blocks, each with a symmetrical803

triangular convex shape. This uniformity is a significant advantage because it simplifies the control804

strategy for the agent. With identical blocks, the agent can develop a single, effective placement805

strategy, reducing the complexity of decision-making. In contrast, the designs generated by Trans-806

form2Act vary significantly in shape and configuration. This diversity necessitates a more complex807

control policy, as the agent must account for different shapes and their corresponding placements.808

Efficient Line Completion The symmetrical triangular convex shape of our blocks allows for809

seamless interlocking, facilitating the easy formation of complete horizontal lines. This shape810

minimizes gaps between blocks, which is crucial for preventing the stack from reaching the top of the811

playing field and terminating the game. The shapes designed by Transform2Act, on the other hand,812

are less conducive to forming complete lines. The varied and less symmetrical shapes are more likely813

to create gaps, making it harder to consistently clear lines and maintain continuous gameplay.814

Flexibility and Adaptability Our uniform blocks provide greater flexibility in placement, ac-815

commodating various configurations on the playing field. The symmetrical nature means they can816

be rotated and placed in multiple orientations, enhancing their utility in maintaining an optimal817

configuration on the board. This flexibility ensures that the agent can adapt to different scenarios,818

maintaining continuous gameplay even as the stack of blocks grows. Transform2Act’s designs, with819

their irregular shapes, offer less flexibility and adaptability, making it harder for the agent to handle820

diverse gameplay situations effectively.821
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Continuous Gameplay The combination of uniformity, efficient line completion, and flexibility822

means that our blocks enable the agent to play indefinitely, achieving a perfect score. The optimal823

control strategy derived from these designs allows the agent to exploit the advantages of the block824

shapes fully, leading to consistent high performance and maximized rewards. In contrast, the varied825

shapes from Transform2Act do not support continuous gameplay as effectively. The likelihood of826

creating gaps and the need for a more complex control strategy reduce the agent’s ability to maintain827

an optimal configuration on the board, leading to more frequent game terminations.828

Simplification of Control Policy By using identical blocks, our method reduces the control policy’s829

complexity, as the agent does not need to switch strategies for different shapes. This simplification830

allows the agent to focus on optimizing the placement of the blocks to maximize line completions,831

further enhancing performance. Transform2Act’s varied block designs require the agent to constantly832

adapt its control strategy, increasing the likelihood of suboptimal placements and game terminations.833

In general, the optimal designs found by our method are superior to those generated by Transform2Act834

due to their uniformity, symmetry, efficiency in line completion, flexibility, and simplification of the835

control policy. These attributes collectively enable the agent to maintain continuous gameplay and836

achieve the highest possible scores in the Tetris task.837
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G Detailed Implementation of Adaptive Control Mechanism838

A fixed probability p can help agents balance the trade-off between exploration and exploitation.839

However, it does not allow the agent to adaptively select the most appropriate design method according840

to different learning stages. For instance, during the early stages of training, agents should actively841

explore the entire design space by selecting a large exploration rate p, rather than spending time842

exploiting suboptimal designs. Conversely, in the latter stages of training, when sufficient good843

designs have been discovered and the design space has been thoroughly explored, agents should focus844

on exploiting these good designs by using a smaller exploration rate p.845

To address this limitation, we propose a meta-controller that dynamically adjusts the design explo-846

ration rate p, balancing exploration and exploitation throughout the design optimization process.847

Specifically, we employ a multi-armed bandit (MAB) approach to help the agent decide whether to848

design from scratch or use good examples. Each bandit has two arms: arm 0 represents designing849

from scratch, and arm 1 represents designing from good examples.850

In this section, we introduce the adaptive exploration mechanism used in our method, leveraging851

MAB to dynamically adjust the exploration-exploitation trade-off during the design optimization852

process.853

G.1 Bandit-Based Exploration-Exploitation Adjustment854

Our method leverages a two-armed bandit to dynamically adjust the exploration-exploitation trade-off:855

G.1.1 Exploration-Exploitation Choices856

In our approach, we simplify the problem by having only two discrete choices for the exploration rate857

p. This results in a two-armed bandit problem, where:858

• Arm k = 0 corresponds to designing from scratch.859

• Arm k = 1 corresponds to starting from a good design example sampled from the design860

buffer.861

G.1.2 Sampling and Updating862

We employ Thompson Sampling [Garivier and Moulines, 2011] for the MAB implementation. The863

set of arms K = {0, 1} represents the two choices for the design process.864

At each round, the actor samples the arm with the highest mean reward. Initially, each actor produces865

a sample mean from its mean reward model for each arm, selecting the arm with the largest mean.866

Upon observing the selected arm’s reward, the mean reward model is updated.867

In general, at each time step t, the MAB method chooses an arm kt from the set of arms K = {0, 1}868

according to a sampling distribution PK , conditioned on the sequence of previous decisions and869

returns. The probability distribution for choosing an arm is given by:870

PK =
eScorek∑
j e

Scorej
(32)

Here, the score for each arm is given by the Upper Confidence Bound (UCB) formula [Garivier and871

Moulines, 2011]:872

Score k = Vk + c ·

√√√√ log
(
1 +

∑
j ̸=k Nj

)
1 +Nk

(33)

where Vk is the expected value of the returns, and Nk is the number of times arm k has been selected.873

This ensures that the agent avoids repeatedly selecting the same arm, thus preventing premature874

convergence to suboptimal solutions and handling non-stationarity.875

Remark (Z-Score Normalization). In practice, Z-score normalization is used to normalize VT (x) :876

Scorex =
VT (x)− E [VT (x)]

D [VT (x)]
+ c ·

√√√√ log
(
1 +

∑
j NT (j)

)
1 +NT (x)

(34)
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Remark (Design Exploration Rate). It’s worth noting that the design exploration rate, denoted by p,877

is derived from the probability distribution of selecting the Oth arm in our bandit-based approach.878

This probability distribution is calculated as follows:879

p = P(arm=0) = softmax (Scorearm =0) =
eScorek=0∑
j e

Scorej
(35)

G.1.3 Dynamic Adjustment880

The agent dynamically chooses between exploration and exploitation by sampling an arm at each881

decision point. This choice adjusts the design strategy based on the accumulated rewards and the882

frequency of each arm’s selection. If the agent selects arm k = 0, it designs from scratch. If the agent883

selects arm k = 1, it uses a good example from the design buffer.884

G.2 Population-Based Bandit885

To address non-stationarity, we employ a population-based MAB approach. We initialize a population886

{Bh1
, . . . , BhN

}, where each bandit is indexed by a hyper-parameter ci. The hyper-parameter ci is887

uniformly sampled for each bandit.888

G.2.1 Population-Based Sample889

During sampling, each bandit Bci samples D arms ki ∈ K with the top-D UCB scores. We then890

summarize the selection frequency of each arm and choose the arm xj selected most frequently. This891

ensures robust sampling from the most promising regions.892

G.2.2 Population-Based Update893

Using xj,t, the agent decides whether to reuse a base design dgood sampled from the design buffer B894

or to design from scratch. The agent then applies the design policy πD and the control policy πC to895

obtain a trajectory τi and the undiscounted episodic return Gi =
∑T

t=0 rt. This return Gi is used to896

update the reward model Vk corresponding to arm k.897

Algorithm 1 Population-Based Multi-Arm Bandits (Actor-Wise)

1: for Each Actor j do
2: // Initialize Bandits Population
3: Initialize each bandit Bci in the population with different hyper-parameters c.
4: Incorporate each bandit together to form a population of bandits.
5: for each episode j do
6: for each Bci in bandit population do
7: Sample top-D UCB Score arms via equation (34).
8: end for
9: Summarize the selected arms and count the frequency of each arm.

10: Uniformly sample an arm xj among the most frequently selected arms.
11: Decide whether to design from scratch (xj = 1) or use a good example (xj = 0).
12: Execute the chosen design strategy and obtain the return Gj .
13: for each Bci in Bandit Population do
14: Update Bci .
15: end for
16: end for
17: end for
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H Detailed Implementation of the Design Buffer898

The Design Buffer is a crucial component of our framework, enhancing the efficiency and effectiveness899

of the design optimization process. This section provides a detailed description of the Design Buffer900

algorithm, along with its pseudocode.901

H.1 Design Buffer Implementation902

The Design Buffer is initialized with a predefined capacity N and begins as an empty set. As training903

progresses, it is populated with high-performing designs. Each design di is evaluated based on its904

performance score F (di). Designs that meet or exceed a quality threshold are stored in the buffer to905

ensure only the most effective designs are retained.906

During the design stage, the agent decides whether to generate a new design dnew from scratch or to907

sample an existing design dsampled from the buffer. This decision is governed by the meta-controller,908

which dynamically adjusts the exploration probability p. The buffer is continuously updated: when909

a new high-quality design is identified, it is added to the buffer. If the buffer is at full capacity, the910

design with the lowest performance score is replaced by the new design, provided F (dnew) > F (dmin),911

where dmin is the design with the lowest score in the buffer.912

The designs stored in the buffer are periodically refined and re-evaluated, allowing the agent to913

iteratively improve upon successful designs.914

H.2 Pseudocode for Design Buffer Algorithm915

The following pseudocode outlines the operations of the Design Buffer within our framework:916

Algorithm 2 Design Buffer Algorithm

Initialize: Design Buffer B with capacity N
B ← ∅
for each training iteration i do

if random() < p then
dnew ← generate_design_from_scratch()

else
dsampled ← sample_from_buffer(B)

end if
F (di)← evaluate_design(di)
if |B| < N then
B ← B ∪ {(di, F (di))}

else
(dmin, F (dmin))← argmin(dj ,F (dj))∈B F (dj)
if F (di) > F (dmin) then
B ← (B \ {(dmin, F (dmin))}) ∪ {(di, F (di))}

end if
end if
p← update_exploration_rate(meta_controller)

end for

Below are the detailed descriptions of the functions used in the pseudocode:917

• generate_design_from_scratch(): This function generates a new design from scratch,918

represented as dnew.919

• sample_from_buffer(B): This function samples a design dsampled from the Design Buffer B920

using a softmax probability based on their performance scores.921

• evaluate_design(di): This function evaluates a design di and returns its performance score922

F (di).923

• update_exploration_rate(meta_controller): This function updates the exploration rate p924

using the meta-controller to balance exploration and exploitation.925
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Initially, the Design Buffer is empty. The agent either generates a new design dnew or samples an926

existing design dsampled from the buffer based on the exploration probability p. Each design di is927

evaluated, and its performance score F (di) is obtained. If the buffer has not reached its capacity,928

the new design is added. If the buffer is full, the design with the lowest score F (dmin) is replaced929

by the new design if F (di) > F (dmin). The exploration rate p is dynamically adjusted using the930

meta-controller to maintain an effective balance between exploration and exploitation.931

This detailed implementation ensures efficient reuse of successful designs while continuing to explore932

new design possibilities, significantly enhancing the design optimization process.933
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I Pseudocode934

Algorithm 3 EDiSon

Require: number of training iterations N , simple initial design dnull, initial design d0, design buffer
B, bandit MAB, design policy πD, control policy πC , length of design stage T

1: Initialize design policy πD and control policy πC

2: Initialize design buffer B ← (design = dnull, value = 0)
3: Initialize training data replay bufferM← ∅
4: for iteration i = 1 to N do
5: while not reaching batch size do
6: for jth trajectory τj do
7: // Design Stage
8: Sample arm kj from the bandit MAB;
9: if kj = 0 then

10: d0 ← dnull ▷ Design from scratch;
11: else
12: d0 ← Sample from Buffer(B) ▷ Design Reuse
13: end if
14: for iteration t = 1 to T do
15: Sample design actions adt using πD

16: Update design dt with sampled actions adt
17: end for
18: // Control Stage
19: Use πC to rollout control trajectory with design dT , obtain trajectory return Gj

20: Store trajectory j in data replay bufferM← τj
21: Update design buffer B ← (design = dT , value = Gj)
22: Update bandit with (kj , Gj)
23: end for
24: end while
25: Update πC and πD using PPO with samples fromM
26: end for
27: return Optimal design d∗, control policy πC , design policy πD

I.1 Code Release935

Our implementation is built upon the Transform2Act source code [Yuan et al., 2022], which is936

available at Transform2Act GitHub. We implement our method on this base code by integrating our937

multi-armed bandit, design buffer and design re-use ideas. The detailed implementation, including938

the corresponding hyperparameter settings, is provided in the algorithm section of our paper. Notably,939

due to the presence of the bandit, extensive hyperparameter tuning is unnecessary. Consequently,940

reproducing our method using the open-source Transform2Act code is straightforward. We will also941

publish the relevant code and data upon the paper’s officially published.942
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J Experimental Details943

J.1 Implementation Details944

We employ the Proximal Policy Optimization (PPO) algorithm [Schulman et al., 2017] to learn both945

the design policy πD and the control policy πC. For the robotic morphology design tasks, we use946

the same network architecture as Transform2Act [Yuan et al., 2022] to ensure a fair comparison.947

Specifically, we utilize the same Graph Neural Networks (GNNs) to represent both policies, which948

facilitates generalization across different designs. In the Tetris-related tasks, we adopt a 3-layer949

Multilayer Perceptron (MLP) to represent all policies and critics.950

Our algorithm’s code and its detailed pseudocode are provided in App. I. The multi-armed bandit951

implementation is elaborated in App. G, and the design buffer details are covered in App. H.952

Comprehensive hyperparameters used in our experiments can be found in App. K.953

J.2 Experimental Setup954

In the robotic morphology design tasks, we follow a setup similar to Transform2Act [Yuan et al.,955

2022]. We capture the undiscounted episode returns averaged over 5 seeds, using a windowed mean956

across 50,000 environment steps. This setup, along with the default parameters, ensures consistency957

and comparability of results.958

J.3 Resources Used959

All experiments were conducted on a system with one worker equipped with an 8-core CPU and, an960

NVIDIA V100 GPU, and memory of 32 GB. This setup provided sufficient computational power to961

train and evaluate our models efficiently. We train our models for three days for the robot morphology962

design tasks and 4 hours for Tetris-Related Tasks.963
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K Hyperparameters964

In this section, we outline the hyperparameters we used for Efficient Design and Stable Control965

(EDiSon) and the baseline model, Transform2Act [Yuan et al., 2022]. Similar to Transform2Act, our966

implementation is based on PyTorch and utilizes the PyTorch Geometric package for handling Graph967

Neural Networks (GNNs). Specifically, we also employ GraphConv layers. To train our policies, we968

use PPO with Generalized Advantage Estimation (GAE) [Schulman et al., 2017].969

K.1 Hyperparameters for Our Method970

For Efficient Design and Stable Control (EDiSon), we conducted a thorough hyperparameter search971

to ensure optimal performance. We trained our policy using a batch size of 50,000 over 1,000 epochs,972

resulting in a total of 50 million simulation steps. The detailed hyperparameters are summarized in973

Table 1.974

To ensure a fair comparison, we adopt the same GNN architecture and hyperparameters as Trans-975

form2Act, which has been detailed in Table. 2. So we won’t go into details about this part of976

hyperparamters, which has been detailed in Transform2Act [Yuan et al., 2022]. We adhered to the977

same total number of simulation steps. Transform2Act was trained with a population of 20 agents,978

each using a batch size of 20,000 for 125 generations, also amounting to 50 million simulation steps.979

Our rigorous approach to hyperparameter selection and training ensures a level playing field in evalu-980

ating the performance of Efficient Design and Stable Control (EDiSon) against Transform2Act. By981

maintaining consistent training parameters, we provide a robust and reliable comparison, highlighting982

the strengths and capabilities of our method in various design optimization tasks.983

Table 1: Hyper-Parameters for Robotic Morphology Design Experiments.
Parameter Value
GAE λ 0.95
Discount factor γ 0.995
Num. of PPO Iterations Per Batch 10
Total Training Epochs 1000
Design Buffer Size 500
Num. of Bandit 7
PPO clip ϵ 0.2
PPO batch size 50000
PPO minibatch size 2048
Num. Bandit 7
Buffer Size 500
c of Bandits Uniform(0,2.0)

K.2 Hyperparameters for Baseline984

In this section concluded the hyperparameters used for baseline (Transform2Act) in Table. 2 [Yuan985

et al., 2022].986
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Table 2: Hyperparameters used by the baseline method Transform2Act. For Gap Crosser, we also use
0.999 for the discount factor γ.

Hyperparameter Selected

Num. of Skeleton Transforms Ns 5
Num. of Attribute Transforms Nz 5
Policy GNN Layer Type GraphConv
JSMLP Activation Function Tanh
GNN Size (Skeleton Transform) (64, 64, 64)
JSMLP Size (Skeleton Transform) (128, 128),
GNN Size (Attribute Transform) (64, 64, 64)
JSMLP Size (Attribute Transform) (128, 128)
GNN Size (Execution) (32, 32, 32), (64, 64, 64)
JSMLP Size (Execution) (128, 128)
Diagonal Values of Σz 0.01
Diagonal Values of Σe 1.0
Policy Learning Rate 5e-5
Value GNN Layer Type GraphConv
Value Activation Function Tanh
Value GNN Size (64, 64, 64)
Value MLP Size (128, 128)
Value Learning Rate 3e-4
PPO clip ϵ 0.2
PPO Batch Size 50000
PPO Minibatch Size 512, 2048
Num. of PPO Iterations Per Batch 10
Num. of Training Epochs 1000
Discount factor γ 0.995
GAE λ 0.95

34



0 10 20 30 40
Simulation Step (Million)

0

1000

2000

3000

4000

5000

6000

To
p 

1 
Sc

or
e

Transform2Act
Our Method (Bandit)
Our Method (Fixed p)

(a) 3D Locomotion

0 10 20 30 40
Simulation Step (Million)

0

200

400

600

800

To
p 

1 
Sc

or
e

Transform2Act
Our Method (Bandit)
Our Method (Fixed p)

(b) Swimmer

0 10 20 30 40
Simulation Step (Million)

0
2000
4000
6000
8000

10000
12000
14000

To
p 

1 
Sc

or
e

Transform2Act
Our Method (Bandit)
Our Method (Fixed p)

(c) 2D Locomotion

0 10 20 30 40
Simulation Step (Million)

0
1000
2000
3000
4000
5000
6000
7000

To
p 

1 
Sc

or
e

Transform2Act
Our Method (Bandit)
Our Method (Fixed p)

(d) Gap Crosser
Figure 14: Baseline Comparison (Top-1 Score). For each robot tasks, we plot the mean and standard
deviation of total rewards against the number of simulation steps for all methods. Each curve is
smoothed with a moving average over 5 points.

L Experiment Results of Robot-Related Task987

L.1 Top-1 Score988

Apart from the average score, we also record the top-k designs scores across the training in Figure989

14, where our method with a bandit can find far more better good designs than Transform2Act. For990

example, In the 3D Locomotion task (Figure 3a), our Bandit method demonstrates a significant991

advantage over both Transform2Act and our fixed probability p method. The top-1 score for the992

Bandit approach quickly surpasses that of the other methods, indicating its superior ability to identify993

and optimize the best designs. The same results show in 2D Locomotion, Gap Crosser and 3D994

Locomotion in the Water (Swimmer).995
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Figure 15: Baseline Comparison (Average Return). For each robot tasks, we plot the mean and
standard deviation of total rewards against the number of simulation steps for all methods. Each curve
is smoothed with a moving average over 5 points. The pure exploration is a version of Transform2act
implementation in Tetris and Pattern Matching Task, i.e., keep others the same as ours and just keep
the design exploration rate p ≜ 1, and thus will not reuse learned designs.

M Experiment Results of Tetris-Related Task996

Our experimental results demonstrate the superior performance of our method compared to the997

Transform2Act approach across the Tetris and pattern matching tasks. These results are illustrated in998

Figure 15, where the mean and standard deviation of total rewards are plotted against the number of999

simulation steps for both tasks.1000

For the Tetris task (Figure 15a), the curve representing our method shows a rapid increase in average1001

return after approximately 70K simulation steps, eventually reaching a stable and high performance1002

close to the optimal score of 128. This indicates that our method is capable of identifying blocks that1003

enable the agent to play the Tetris game indefinitely, achieving scores that Transform2Act fails to1004

reach. In contrast, Transform2Act maintains a relatively flat curve with modest gains, demonstrating1005

its inability to adapt and optimize as effectively as our approach.1006

In the pattern matching task (Figure 15b), our method consistently outperforms Transform2Act, as1007

evidenced by the higher average return throughout the entire simulation process. The curve for our1008

method shows a steady increase, approaching the optimal matching rate of 1.0, while Transform2Act1009

plateaus at a lower performance level. This highlights the effectiveness of our bandit-based meta-1010

controller in dynamically balancing exploration and exploitation, which is crucial for achieving high1011

matching accuracy.1012

The success of our method can be attributed to several key factors. Firstly, our adaptive exploration-1013

exploitation trade-off mechanism allows the agent to efficiently explore new designs and exploit1014

known good designs. This dynamic adjustment is particularly beneficial in complex design tasks,1015

where a static approach like Transform2Act falls short. Secondly, the design buffer in our method1016

facilitates design reuse, enabling the agent to leverage previously successful designs and build upon1017

them. This not only enhances performance but also accelerates the learning process.1018

Furthermore, our bandit-based meta-controller’s ability to adapt to different stages of learning is a1019

significant advantage. Early in the training, the meta-controller promotes exploration to discover a1020

diverse set of designs. As the training progresses and the agent identifies high-quality designs, the1021

meta-controller shifts towards exploitation, refining and optimizing these designs to achieve peak1022

performance.1023

In general, our experimental results on the Tetris and pattern matching tasks showcase the superiority1024

of our method over Transform2Act. The dynamic and adaptive nature of our approach, combined with1025

the efficient design reuse facilitated by the design buffer, leads to significantly better performance1026

and faster learning. These findings underscore the necessity of an adaptive exploration-exploitation1027

strategy in design optimization tasks and highlight the advantages of our bandit-based meta-controller1028

in achieving superior outcomes.1029
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Figure 16: Case Study (Design Exploration Rate Preference).

N Case Study: Design Exploration Rate Preference1030

In this section, we present a detailed case study to explore the influence of the design exploration rate1031

on the performance of our proposed method across different tasks. The results, as illustrated in Figure1032

16, demonstrate that the optimal design exploration rate varies significantly depending on the specific1033

task. This finding underscores the necessity of dynamically adjusting the exploration-exploitation1034

balance to achieve optimal performance.1035

Gap Crosser For the Gap Crosser task (Figure 16a), the agent shows a clear preference for a1036

design exploration rate around 0.3 to 0.4. At these rates, the agent achieves the highest average1037

return, indicating that a moderate level of exploration allows the agent to discover effective designs1038

while also leveraging previously learned successful strategies. Extremely low or high exploration1039

rates result in suboptimal performance, highlighting the importance of balancing exploration and1040

exploitation. A low exploration rate (e.g., 0.0 to 0.2) limits the agent’s ability to discover new and1041

potentially better designs, while a high exploration rate (e.g., 0.8 to 1.0) prevents the agent from fully1042

exploiting known good designs.1043

Swimmer In the Swimmer task (Figure 16b), the agent’s performance peaks at an exploration1044

rate of approximately 0.3 to 0.5. This suggests that, similar to the Gap Crosser task, a moderate1045

exploration rate is most effective. The agent needs to explore sufficiently to find hydrodynamically1046

efficient morphologies while also exploiting designs that have been previously validated as effective.1047

Lower exploration rates fail to provide the diversity of designs necessary for optimal swimming1048

performance, whereas higher rates again hinder the ability to refine and exploit known good designs.1049

Our findings from these case studies highlight a key advantage of our approach over the Trans-1050

form2Act method: the ability to dynamically adapt the design exploration rate based on the task at1051

hand. Transform2Act employs a fixed exploration strategy, which may not be optimal for all tasks.1052

The variability in optimal exploration rates across tasks, as evidenced by our experiments, showcases1053

the necessity for an adaptive strategy.1054

By employing a meta-controller to adjust the exploration rate, our method achieves superior per-1055

formance across varied tasks. This adaptive strategy allows the agent to explore extensively during1056

the initial phases of learning, ensuring a broad search of the design space, and to shift focus to1057

exploitation in later stages, maximizing the benefits of previously discovered good designs. This1058

balance is crucial in design optimization, where both the discovery of new designs and the refinement1059

of known good designs are necessary for achieving optimal performance.1060

The case study results clearly demonstrate the task-specific nature of optimal design exploration rates1061

and validate the effectiveness of our adaptive exploration strategy. By allowing the exploration rate1062

to be dynamically adjusted, our method significantly outperforms the fixed strategy employed by1063

Transform2Act [Yuan et al., 2022]. This flexibility not only improves the agent’s performance in1064

specific tasks but also generalizes well across different types of design optimization problems. The1065

success of our approach in these diverse tasks underscores the importance of adaptive strategies in1066
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reinforcement learning for design optimization, paving the way for more intelligent and efficient1067

design automation in future research.1068
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Figure 17: Case Study (Adatively Exploration-Exploitation Trade-off with Bandit). For each
robot tasks, we plot the mean and standard deviation of design exploration rate against the number of
simulation steps for all methods.

O Case Study: Exploration-Exploitation Trade-off1069

In this section, we present a comprehensive case study to demonstrate that our method can adaptively1070

select the appropriate design exploration rate throughout the learning process. The design exploration1071

rate, denoted by p, is derived from the probability distribution of selecting the arm=0 in our bandit-1072

based approach. This probability distribution is calculated as follows:1073

p = P(arm=0) = softmax (Scorearm =0) =
eScorek=0∑
j e

Scorej
(36)

Our case study results, illustrated in Figure 17, demonstrate the effectiveness of our banditbased1074

meta-controller in dynamically balancing the exploration-exploitation trade-off in design optimization1075

problems. The plots show the mean and standard deviation of the design exploration rate across1076

different tasks over the number of simulation steps. This analysis provides insights into how our1077

method adapts to different stages of learning, significantly outperforming the existing Transform2Act1078

method [Yuan et al., 2022] .1079

2D Locomotion In the 2D Locomotion task (Figure 17a), our method initially emphasizes explo-1080

ration, with the design exploration rate peaking around 0.7 during the early stages of training. This1081

high exploration rate is crucial for discovering diverse and potentially high-performing designs. As1082

training progresses, the exploration rate gradually decreases, stabilizing around 0.2. This shift signi-1083

fies a transition towards exploitation, where the algorithm focuses on refining and utilizing the most1084

promising designs discovered during the exploration phase. The adaptive nature of our bandit-based1085

controller allows it to seamlessly navigate between exploration and exploitation, ensuring a balanced1086

approach that maximizes performance.1087

Swimmer Similarly, in the Swimmer task (Figure 17b), our method starts with a high exploration1088

rate of around 0.6. The exploration rate fluctuates initially, indicating the algorithm’s efforts to1089

balance between exploring new designs and exploiting known good designs. As training progresses,1090

the exploration rate stabilizes around 0.2, reflecting a shift towards exploitation. The ability of our1091

method to adjust the exploration rate dynamically is evident in these fluctuations, showcasing its1092

capability to adapt to the changing needs of the task as learning progresses.1093

Further Analysis The necessity of automatically finding the best design exploration rate for each1094

task is underscored by the variability in optimal exploration rates observed across different tasks.1095

Our bandit-based meta-controller excels in this regard, as it can dynamically adjust the exploration-1096

exploitation balance based on the specific requirements of each task. This adaptability is a significant1097

advantage over fixed-rate methods like Transform2Act, which cannot tailor the exploration rate to the1098

evolving demands of the task.1099
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Compared to Transform2Act, our method demonstrates superior performance in balancing exploration1100

and exploitation. Transform2Act employs a fixed exploration rate, which can lead to suboptimal1101

performance as it cannot adapt to the changing dynamics of the learning process. In contrast, our1102

method leverages a bandit-based meta-controller to dynamically adjust the exploration rate, ensuring1103

that the algorithm can explore extensively during the early stages and exploit effectively in the later1104

stages.1105

The success of our method can be attributed to its ability to maintain a dynamic balance between1106

exploration and exploitation. By using a meta-controller that adapts the exploration rate based on1107

the observed rewards, our method can efficiently navigate the design space, uncovering high-quality1108

designs and refining them over time. This dynamic adjustment is crucial for optimizing performance1109

across different tasks, as evidenced by the superior results shown in our case study.1110

Our bandit-based meta-controller effectively manages the exploration-exploitation trade-off, leading1111

to significant improvements in design optimization tasks. The ability to adapt the exploration rate1112

dynamically allows our method to outperform fixed-rate approaches like Transform2Act, highlighting1113

the importance of adaptive strategies in complex design optimization problems.1114
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Figure 18: Ablation Study Results (Average Return).

P Abaltion Studies1115

In this section, we will provide more details of our abaltion studies.1116

In our ablation studies, we investigate the importance of two critical components in our approach: the1117

adaptive exploration-exploitation trade-off and the design reuse facilitated by the design buffer. To1118

thoroughly evaluate the impact of these components, we designed several variants of our method:1119

• Ours w/o Bandit: This variant removes the adaptive exploration-exploitation mechanism.1120

The agent is forced to use a fixed exploration rate throughout the training process.1121

• Ours w/o Exploitation: This variant eliminates the design buffer, requiring the agent to1122

always design from scratch. Consequently, it cannot leverage previously successful designs.1123

• Ours w/o Exploration: This variant sets the exploration rate p to 0 throughout the training,1124

effectively disabling exploration and relying solely on exploitation.1125

• Our Main Method (with Bandit): This is our complete approach, incorporating both the1126

adaptive exploration-exploitation trade-off and the design buffer. The meta-controller1127

dynamically adjusts the exploration rate, balancing between creating designs from scratch1128

and reusing good designs.1129

The results of these ablation studies are presented in Figure 18. The findings clearly demonstrate1130

the importance of both design reuse and the adaptive exploration-exploitation trade-off. Specifically,1131

the design buffer significantly enhances performance by allowing the agent to leverage previously1132

successful designs, while the adaptive mechanism ensures an effective balance between exploring1133

new designs and exploiting known good ones. Below we will conduct a detailed analysis of the1134

results1135

Detailed Analysis The impact of removing the adaptive exploration-exploitation mechanism (Ours1136

w/o Bandit) was significant across all tasks. This variant showed a notable performance drop,1137

highlighting the necessity of dynamically adjusting the exploration rate. A fixed exploration rate1138

failed to adapt to different stages of learning, leading to suboptimal performance. For instance, in1139

the 2D Locomotion task, the average return was considerably lower compared to our main method,1140

which demonstrates the critical role of the adaptive strategy in efficiently navigating the design space.1141

Eliminating the design buffer (Ours w/o Exploitation) also resulted in decreased performance. This1142

variant required the agent to design from scratch continuously, preventing it from leveraging previ-1143

ously successful designs. The performance drop observed in tasks such as the Swimmer emphasizes1144

the value of design reuse. Without the ability to reuse effective designs, the agent struggled to1145

maintain high performance, showcasing the necessity of the design buffer in achieving efficient1146

design optimization.1147

Disabling exploration (Ours w/o Exploration) led to particularly poor performance, especially during1148

the early stages of training. This variant set the exploration rate p to 0, relying solely on exploitation.1149

The results were most evident in the Gap Crosser task, where the average return was significantly1150

lower. The lack of exploration prevented the agent from adequately exploring the design space,1151

limiting its ability to discover high-quality designs. This finding underscores the importance of a1152

balanced approach that includes both exploration and exploitation.1153
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Our main method (with Bandit) consistently outperformed all ablation variants, demonstrating the1154

superiority of integrating both the adaptive exploration-exploitation trade-off and the design buffer.1155

The meta-controller effectively balanced exploration and exploitation, resulting in diverse and high-1156

quality designs across tasks. For example, in the 2D Locomotion task, our main method achieved the1157

highest average return, illustrating its ability to dynamically adjust the exploration rate according to1158

the learning stage. Similarly, in the Swimmer task, the performance was significantly enhanced by1159

the adaptive mechanism, which facilitated the discovery and reuse of optimal designs.1160

The results of our ablation studies underscore the critical role of adaptive strategies and design reuse1161

in design optimization tasks. The adaptive exploration-exploitation mechanism ensured an effective1162

balance between exploring new designs and exploiting known good ones, while the design buffer1163

allowed the agent to leverage previously successful designs. These components, when combined1164

in our main method, significantly enhanced performance and efficiency. This comprehensive anal-1165

ysis showcases the necessity of an adaptive, task-specific approach to design optimization, further1166

highlighting the superiority of our method over existing approaches such as Transform2Act.1167
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Figure 20: Learning curve of different design exploration rate. (five random seeds)

Q Supplementary Experimental Results1168
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NeurIPS Paper Checklist1169

1. Claims1170

Question: Do the main claims made in the abstract and introduction accurately reflect the1171

paper’s contributions and scope?1172

Answer: [Yes]1173

Justification: Our abstract and introduction clearly state the main claims and contributions of1174

the paper, including the development of a novel method called Efficient Design and Stable1175

Control (EDiSon), which combines sequential modeling of design and control processes1176

with adaptive exploration and design replay strategies. Our claims match the theoretical1177

(See Sec. 4 and 5) and experimental (See Sec. 6) results presented in the paper.1178

Guidelines:1179

• The answer NA means that the abstract and introduction do not include the claims1180

made in the paper.1181

• The abstract and/or introduction should clearly state the claims made, including the1182

contributions made in the paper and important assumptions and limitations. A No or1183

NA answer to this question will not be perceived well by the reviewers.1184

• The claims made should match theoretical and experimental results, and reflect how1185

much the results can be expected to generalize to other settings.1186

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1187

are not attained by the paper.1188

2. Limitations1189

Question: Does the paper discuss the limitations of the work performed by the authors?1190

Answer: [Yes]1191
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whether the code and data are provided or not.1254
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Justification: All relevant details, including hyperparameters, and base method, are specified1316

in the experimental setup section and experimental detail in appendix. This thorough1317

documentation allows for a clear understanding of the results. (See Sec. 6.1, App. J and1318

App. E)1319

Guidelines:1320

• The answer NA means that the paper does not include experiments.1321

• The experimental setting should be presented in the core of the paper to a level of detail1322

that is necessary to appreciate the results and make sense of them.1323

• The full details can be provided either with the code, in appendix, or as supplemental1324

material.1325

7. Experiment Statistical Significance1326

Question: Does the paper report error bars suitably and correctly defined or other appropriate1327
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Answer: [Yes]1329
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1380
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