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Abstract001

Noise in preference data significantly impedes002
the alignment of large language models (LLMs)003
with human preferences. However, existing004
methods struggle with two key challenges: reli-005
ably identifying noisy preferences and accu-006
rately representing preference intensity. To007
address these challenges, we introduce Meta008
Soft Preference Optimization (MSPO), a novel009
framework. MSPO employs a meta-learner to010
optimize soft preference labels for the align-011
ment task. This meta-learner produces new,012
adaptive soft labels that more accurately re-013
flect true preference strength and mitigate noise.014
To achieve this, it primarily processes perplex-015
ity differences (PPLDiff) between paired re-016
sponses, where PPLDiff itself is calculated017
based on the initial preference indications. The018
meta-learner is optimized using a small, clean019
meta-dataset to enhance downstream LLM020
alignment performance. Extensive experiments021
demonstrate that MSPO effectively mitigates022
the adverse effects of noisy preferences. It023
significantly improves the robustness of LLM024
alignment in various noisy environments and025
outperforms existing baseline methods.026

1 Introduction027

Large Language Models (LLMs) show remark-028

able capabilities across various natural language029

tasks (Brown et al., 2020; Anil et al., 2023; Tou-030

vron et al., 2023). Aligning these models with031

human values to ensure helpful, honest, and harm-032

less outputs is crucial for their deployment (Lee033

et al., 2023; Askell et al., 2021; Amodei et al.,034

2016). Learning from human preferences, particu-035

larly through methods like Direct Preference Opti-036

mization (DPO) (Rafailov et al., 2023), has become037

a prominent approach for this alignment, evolving038

from earlier Reinforcement Learning from Human039

Feedback (RLHF) paradigms (Christiano et al.,040

2017; Ouyang et al., 2022).041

Figure 1: Conceptual illustration of DPO versus MSPO.
DPO utilizes fixed preference targets, while MSPO in-
troduces a meta-learner to generate adaptive soft targets,
enabling more robust LLM alignment.

However, the quality of preference data poses a 042

significant challenge. Collected datasets frequently 043

contain noise from sources such as annotator sub- 044

jectivity and disagreement (Sheng et al., 2008), task 045

misinterpretation, random errors, or imperfections 046

in AI-generated feedback (Bai et al., 2022b; Liang 047

et al., 2024; Ziegler et al., 2019). Such noisy pref- 048

erences can severely undermine the alignment pro- 049

cess, leading to suboptimal model performance and 050

unreliable behavior, failing to capture true human 051

intent. 052

Mitigating the impact of noisy preferences 053

presents two main difficulties. First, accurately 054

identifying specific noisy preference pairs is chal- 055

lenging. Distinguishing subtle preferences from 056

erroneous ones requires nuanced understanding. 057

Second, quantifying the unreliability of a prefer- 058

ence and adjusting its influence during training 059

is difficult, especially when using soft preference 060

labels (Furuta et al., 2024). Soft labels aim to rep- 061

resent preference strength but can be distorted by 062

noise, potentially amplifying misleading signals if 063

not properly calibrated. 064

Previous approaches to address noisy prefer- 065

ences include robust loss functions, such as Conser- 066

vative DPO (cDPO) (Mitchell, 2023) and Robust 067

DPO (rDPO) (Chowdhury et al., 2024). These 068
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methods often adjust the DPO loss based on an esti-069

mated global noise ratio, typically derived from070

a small clean validation set. While beneficial,071

they may not fully adapt to instance-specific noise.072

Other data-centric methods, like Perplexity-aware073

Correction (PerpCorrect) (Kong et al., 2024), use074

signals such as perplexity differences (PPLDiff)075

to correct noisy pairs as a preprocessing step. Al-076

though PPLDiff is a useful signal for noise detec-077

tion, relying on fixed thresholds or heuristic correc-078

tion rules may limit the optimality of the noise mit-079

igation. An adaptive mechanism, such as MSPO’s080

meta-learner, to intelligently leverage such signals081

for refining soft preference labels is needed.082

To address these limitations, we introduce Meta083

Soft Preference Optimization (MSPO), a novel084

meta-learning framework for robust LLM align-085

ment. MSPO learns to generate adaptive soft086

preference labels by interpreting dynamic noise-087

indicative signals derived directly from the main088

language model being aligned.089

Figure 1 illustrates the key difference between090

traditional Direct Preference Optimization (DPO)091

and our MSPO. DPO (left) uses fixed target pref-092

erences to guide model optimization. In contrast,093

MSPO (right) employs a meta-learner (“Meta”)094

to dynamically generate optimized, adaptive soft095

targets. These adaptive targets can modulate pref-096

erence intensity and correct mislabeled preferences097

(suggested by varying bar lengths and potential098

inversions in the figure), guiding LLM alignment099

more robustly, especially with noisy data.100

The core of MSPO is its meta-learner, denoted101

as V (·;ϕ). This meta-learner is trained to process102

a key, evolving indicator of preference consistency103

or potential mislabeling: the perplexity difference104

(PPLDiff) between paired responses. This PPLDiff105

is calculated based on the original preference or-106

dering (i.e., which response was initially labeled as107

preferred) and critically, using the current main108

LLM πθ(t) at each step. The meta-learner V then109

takes this PPLDiff value as input to output an op-110

timized soft preference label p̂ϕ ∈ [0, 1], which111

subsequently modulates a DPO-style objective for112

training the main LLM πθ. The meta-learner’s113

parameters ϕ are optimized via a bilevel process,114

guided by the main LLM’s performance on a small,115

clean meta-dataset. This data-driven strategy en-116

ables V to produce high-quality, adaptive soft la-117

bels that effectively mitigate noise and adapt to the118

main model’s evolving understanding. The main119

contributions of this work are threefold:120

• We pioneer the application of meta-learning to 121

address noisy preference data in LLM align- 122

ment, providing theoretical insights into its 123

robustness and convergence properties. 124

• We propose MSPO, a novel framework instan- 125

tiating this meta-learning paradigm. MSPO 126

utilizes a dedicated meta-learner to adap- 127

tively generate soft preference labels from 128

dynamically-derived PPLDiff, achieving fine- 129

grained and instance-specific noise mitigation. 130

• Through extensive experiments on bench- 131

mark datasets with various noise settings, 132

we demonstrate that MSPO significantly im- 133

proves the robustness of LLM alignment 134

and outperforms existing state-of-the-art tech- 135

niques. 136

2 Related Work 137

LLM Alignment with Human Preferences. 138

Aligning Large Language Models (LLMs) with hu- 139

man values is critical for their responsible deploy- 140

ment (Ouyang et al., 2022; Stiennon et al., 2020). 141

Direct Preference Optimization (DPO) (Rafailov 142

et al., 2023) has become a prominent approach, di- 143

rectly learning from preference pairs. This builds 144

upon a rich history of learning from human feed- 145

back, including explicit reward modeling followed 146

by reinforcement learning (Knox and Stone, 2008; 147

Warnell et al., 2018). To capture the nuanced nature 148

of human preferences beyond binary choices, soft 149

preference labels, representing preference strength 150

or probability, have been explored (Furuta et al., 151

2024). For instance, Geometric-Averaged DPO 152

(GDPO) (Furuta et al., 2024) integrates soft labels 153

to modulate the DPO learning process. However, 154

the effectiveness of using soft labels heavily relies 155

on their quality, which is often compromised by 156

noise in the collected preference data. Our work, 157

MSPO, focuses on improving the quality of these 158

soft labels in noisy settings. 159

Addressing Noisy Preferences in LLM Align- 160

ment. The presence of noisy preferences signif- 161

icantly impairs LLM alignment robustness (Gao 162

et al., 2024; Casper et al., 2023). Existing strate- 163

gies to mitigate noisy preferences broadly fall into 164

two categories. First, robust loss-based methods 165

like Conservative DPO (cDPO) (Mitchell, 2023) 166

and Robust DPO (rDPO) (Chowdhury et al., 2024) 167

adjust the DPO objective based on an estimated 168
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global noise ratio, often requiring a clean vali-169

dation set. These are part of a broader class of170

techniques for learning with noisy labels that mod-171

ify loss functions or sample importances (Patrini172

et al., 2017; Song et al., 2022). While helpful,173

these methods may lack adaptability to instance-174

specific noise characteristics. Second, data-centric175

approaches such as Perplexity-aware Correction176

(PerpCorrect) (Kong et al., 2024) aim to detect and177

correct noisy preferences using signals like perplex-178

ity differences (PPLDiff) as a data pre-processing179

step. These methods, however, often rely on heuris-180

tic rules or fixed thresholds for correction. MSPO181

differs by adaptively learning how to generate or182

refine soft preference labels using these signals183

within a meta-learning framework, rather than ap-184

plying fixed pre-processing rules.185

Meta-learning for Robust Label Correction.186

Meta-learning has proven effective for robust learn-187

ing in noisy settings, particularly for label cor-188

rection and sample re-weighting in classification189

tasks (Ren et al., 2018; Shu et al., 2019; Wu et al.,190

2021; Wang et al., 2020). These methods typically191

train a meta-learner on a small set of clean data to192

learn a strategy (e.g., a weighting function or a la-193

bel correction model) that improves the main task’s194

performance on noisy data. For example, Meta-195

Weight-Net (Shu et al., 2019) learns a function to196

assign weights to training samples based on their197

loss. While these works demonstrate the potential198

of meta-learning for handling label noise, its appli-199

cation to adaptively optimize soft preference labels200

within LLM preference alignment, especially by201

leveraging model-intrinsic signals like PPLDiff dy-202

namically derived from the LLM being aligned,203

has been less explored. MSPO aims to bridge this204

gap by proposing such a meta-learning framework205

tailored for soft preference label optimization in206

LLM alignment.207

3 Methodology208

This section details our proposed meta-learning209

framework, MSPO, for adaptively generating soft210

preference labels to improve the robustness of LLM211

alignment. We begin by outlining the foundational212

concepts of DPO and GDPO. We then introduce213

how Perplexity Difference (PPLDiff), calculated214

using the main language model being trained, can215

serve as a dynamic noise indicator. Finally, we216

present the architecture of MSPO and elaborate on217

its meta-optimization procedure, designed to learn218

an effective soft label generation strategy. 219

3.1 Preliminaries 220

3.1.1 Direct Preference Optimization (DPO) 221

Direct Preference Optimization (DPO) (Rafailov 222

et al., 2023) directly aligns LLMs from preference 223

data D = {(x(i), y(i)w , y
(i)
l )}, avoiding explicit re- 224

ward modeling. It optimizes the policy πθ by mini- 225

mizing the negative log-likelihood of preferences 226

under a Bradley-Terry model. This encourages 227

higher probabilities for preferred responses yw over 228

dispreferred ones yl, relative to a reference policy 229

πref : 230

LDPO(πθ;πref ) = −E(x,yw,yl)∼D

[
log σ

(
β

(
log

πθ(yw | x)
πref (yw | x)

− log
πθ(yl | x)

πref (yl | x)

))]
.

(1) 231

3.1.2 Geometric-averaged DPO (GDPO) with 232

Soft Preference Labels 233

Recognizing that human preferences often possess 234

varying degrees of certainty, Geometric-averaged 235

DPO (GDPO) (Furuta et al., 2024) extended DPO 236

by incorporating soft preference labels p̂. This 237

label p̂ ∈ [0.5, 1.0] quantifies the estimated prob- 238

ability P (y1 ≻ y2|x), where y1 is nominally pre- 239

ferred. GDPO modulates the core DPO log-ratio, 240

hθ(x, y1, y2) = log
πθ(y1|x)πref (y2|x)
πref (y1|x)πθ(y2|x) , by a factor 241

(2p̂− 1): 242

LGDPO(πθ;πref , p̂) = −E(x,y1,y2,p̂)∼D

[log σ (β(2p̂− 1)hθ(x, y1, y2))] .
(2) 243

3.1.3 Dynamic Perplexity Difference 244

(PPLDiff) as a Noise Indicator 245

The perplexity (PPL) of a sequence reflects its like- 246

lihood under a given language model. The differ- 247

ence in log-PPL between two responses y1 and y2 248

to a prompt x, 249

PPLDiff(x, y1, y2;πθ) = log PPL([x; y1];πθ)

− log PPL([x; y2];πθ),
(3)

250

can serve as a potent indicator of preference 251

noise (Kong et al., 2024). Specifically, a negative 252

PPLDiff suggests πθ assigns a higher likelihood to 253

y1 over y2 (implying y1 is preferred by the model), 254

and vice versa for a positive PPLDiff. This quan- 255

tifiable preference signal derived from PPLDiff is 256

thus utilized as a key input signal by meta-learner 257

in MSPO. 258
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Figure 2: Overview of the MSPO framework. A meta-learner V (·;ϕ) processes PPLDiff, calculated using the
current main LLM πθ(t) , to generate optimized soft labels p̂ϕ. These labels guide the training of πθ via a GDPO-style
preference loss. V is optimized using a clean meta-dataset Dmeta to enhance πθ’s alignment performance.

3.2 MSPO: Meta-learning for Soft Preference259

Label Optimization260

Obtaining reliable soft preference labels p̂ is chal-261

lenging in noisy datasets. MSPO addresses this262

by introducing a meta-learning framework. This263

framework trains a meta-learner V (·;ϕ) to generate264

appropriate soft preference labels p̂ϕ directly from265

a dynamic Perplexity Difference (PPLDiff) signal.266

The overall architecture is depicted in Figure 2.267

3.2.1 The Meta-learner Module V (·;ϕ)268

The meta-learner V , parameterized by ϕ, is a neural269

network. Its role is to map an input PPLDiff feature270

to a soft preference label p̂ϕ ∈ [0, 1]. For each train-271

ing sample (x, y1, y2) from the noisy training set272

Dtrain, the PPLDiff is calculated using the current273

main policy πθ(t) :274

PPLDiff(t) = PPLDiff(x, y1, y2;πθ(t)). (4)275

This PPLDiff(t) serves as the input to V (·;ϕ),276

which then outputs the soft label:277

p̂ϕ = V (PPLDiff(t);ϕ). (5)278

This generated label p̂ϕ is subsequently used in a279

GDPO-style loss to train the main LLM πθ.280

3.2.2 Bilevel Optimization Procedure281

The training of MSPO involves optimizing the282

main LLM parameters θ and the meta-learner pa-283

rameters ϕ through a bilevel process. At each itera-284

tion t, this process unfolds in three key steps:285

STEP 1: Compute Virtual LLM Parameter Up- 286

date. This step simulates the effect of the cur- 287

rent meta-learner on the LLM. For a mini-batch 288

Btrain from Dtrain, we first calculate the Perplex- 289

ity Difference PPLDiff(t)(x, y1, y2;πθ(t)) for each 290

sample using the current main LLM parameters 291

θ(t) (Eq. (4)). This PPLDiff(t) serves as input 292

to the current meta-learner V (·;ϕ(t)), which gen- 293

erates soft preference labels p̂ϕ(t) for the batch: 294

p̂ϕ(t) = V (PPLDiff(t);ϕ(t)). The main LLM’s 295

preference loss for this virtual update, denoted as a 296

manner analogous to GDPO loss: 297

Lvirtualmain (θ;ϕ(t), πθ(t)) = −
1

|Btrain|
∑

Btrain

log σ
(
β(2p̂ϕ(t) − 1)hθ(x, y1, y2)

)
.

(6) 298

The virtual LLM parameters, θvirtual(ϕ(t)), are ob- 299

tained by a gradient descent step on this loss, start- 300

ing from θ(t): 301

θvirtual(ϕ
(t)) = θ(t)−

α∇θLvirtualmain (θ;ϕ(t), πθ(t))|θ=θ(t) .
(7) 302

This provides a lookahead into how πθ would adapt 303

under V (·;ϕ(t)). 304

STEP 2: Update Meta-learner Parameters. 305

Next, the meta-learner parameters ϕ are refined. 306

The performance of the virtual LLM πθvirtual(ϕ(t)) 307

(from STEP 1) is evaluated on a mini-batch Bmeta 308

from the clean meta-dataset Dmeta. This yields the 309
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meta-loss Lmeta(ϕ
(t)), calculated using the stan-310

dard DPO loss (Eq. (1)):311

Lmeta(ϕ
(t)) = E(xm,ywm,ylm)∈Bmeta

[LDPO(πθvirtual(ϕ(t));πref )].
(8)312

This meta-loss measures how well the soft labels313

generated by V (·;ϕ(t)) guide the LLM towards314

alignment with clean preferences. The meta-learner315

parameters ϕ are then updated by descending this316

meta-loss:317

ϕ(t+1) = ϕ(t) − ηmeta∇ϕLmeta(ϕ
(t)). (9)318

Efficient computation of ∇ϕLmeta(ϕ
(t)) can fol-319

low Shu et al. (2019). This step improves V ’s320

ability to produce beneficial soft labels.321

STEP 3: Update Main LLM Parameters. Fi-322

nally, the actual main LLM parameters θ(t) are323

updated. This update uses the PPLDiff values324

(PPLDiff(t)) calculated at the start of STEP 1325

(from πθ(t)) and the newly updated meta-learner326

V (·;ϕ(t+1)) from STEP 2. This V (·;ϕ(t+1)) gen-327

erates a fresh set of soft labels, p̂ϕ(t+1) , for the328

training batch Btrain. The preference loss for this329

actual main LLM update, denoted Lmain, is then330

calculated using these new soft labels:331

Lmain(θ;ϕ
(t+1), πθ(t)) = −

1

|Btrain|
∑

Btrain

log σ
(
β(2p̂ϕ(t+1) − 1)hθ(x, y1, y2)

)
.

(10)

332

The main LLM parameters are then updated by a333

gradient step on this loss:334

θ(t+1) = θ(t) − α∇θLmain(θ;ϕ
(t+1), πθ(t))|θ=θ(t) .

(11)335

This completes one iteration t. This cycle of three336

steps is repeated, allowing MSPO to adaptively337

learn to generate effective soft preference labels.338

The complete procedure is detailed in Algorithm 1.339

Theoretically, this bilevel process enables MSPO to340

learn an implicit weighting scheme favoring benefi-341

cial soft labels, and its generalization performance342

is related to the complexity of the meta-learner and343

the size of the meta-dataset (see Appendix B for a344

detailed analysis).345

3.3 Experimental Setup346

This subsection outlines our core experimental347

configurations, including datasets, noise simula-348

tion, model architectures, the methods we compare349

against, and evaluation metrics.350

Datasets and Noise Simulation. Our primary 351

experiments utilize two widely-used human pref- 352

erence datasets: Golden HH (Bai et al., 2022a), a 353

high-quality subset of Anthropic HH-RLHF, and 354

OASST1 (Köpf et al., 2023), a large-scale mul- 355

tilingual dataset. To assess robustness, we inject 356

random label flipping noise into their training splits, 357

with noise ratios r ∈ {10%, 20%, 30%, 40%}. For 358

a selected pair (yw, yl), its preference is inverted to 359

(yl, yw). When methods require initial soft prefer- 360

ence labels p̂0 (i.e., GDPO), these are first assigned 361

to clean pairs (0.9 for yw, 0.1 for yl) and then cor- 362

respondingly inverted for flipped pairs to simulate 363

confident mislabeling. Our MSPO, as designed, 364

generates p̂ϕ primarily from PPLDiff and does not 365

use p̂0 as a direct input to its meta-learner V . The 366

meta-dataset (Dmeta) for training our meta-learner 367

is a small, clean subset of approximately 100-200 368

high-quality preference pairs sampled from the 369

original training data of each main dataset, ensur- 370

ing no overlap with training or test sets. We pri- 371

marily use its original binary preference labels for 372

calculating the meta-loss. 373

Models. We use two open-source LLMs as base 374

architectures: Llama2-7B (Touvron et al., 2023) 375

and Phi-2 (2.7B) (Javaheripi et al., 2023), aligning 376

with Kong et al. (2024). All methods start from a 377

supervised fine-tuned (SFT) version of these mod- 378

els, which also serves as the reference policy πref . 379

For baseline methods that require perplexity cal- 380

culations from a fixed surrogate model, such as 381

Perplexity-aware Correction (PerpCorrect), this sur- 382

rogate model πs is the SFT model, further aligned 383

on Dmeta using DPO for a small number of steps 384

and then kept fixed. In contrast, our MSPO frame- 385

work, as detailed in Section 3, dynamically calcu- 386

lates PPLDiff using the current main LLM πθ(t) 387

being aligned. 388

Comparative Methods. We compare MSPO 389

against several strong methods. These include stan- 390

dard DPO (Rafailov et al., 2023) on noisy binary 391

preferences; GDPO(p̂0) (Furuta et al., 2024) us- 392

ing initial noisy soft labels (as described above); 393

robust DPO variants cDPO (Mitchell, 2023) and 394

rDPO (Liang et al., 2024), with their required 395

noise ratio ϵ′ estimated from Dmeta; and PerpCor- 396

rect+DPO (Kong et al., 2024), which applies Perp- 397

Correct as a data pre-processing step before DPO 398

training. Further detailed hyperparameters and im- 399

plementation specifics for all methods are provided 400

in Appendix C. 401
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Table 1: Win Rates (%) of Llama-2-7B Against SFT on Golden HH and OASST1 Datasets under Random Label
Flipping Noise. Best results are in bold.

Golden HH OASST1

Method Clean (0%) 10% 20% 30% 40% Clean (0%) 10% 20% 30% 40%

Vanilla DPO 97.22 92.53 82.62 68.50 53.15 97.17 96.64 92.71 90.21 86.29
GDPO (p̂ = 0.75) 97.57 97.15 95.53 94.26 91.21 97.52 97.06 94.21 93.08 92.73
cDPO (Oracle ϵ) 97.38 96.04 90.85 83.23 65.60 97.67 96.18 93.63 90.62 88.02
rDPO 97.21 96.65 95.22 93.90 90.45 97.76 95.92 93.73 92.05 90.62
PerpCorrect-DPO 97.87 97.51 96.24 95.53 94.92 98.05 96.38 94.04 93.99 93.17

MSPO (Ours) 98.42 97.94 96.62 96.32 96.11 98.67 97.37 95.35 94.65 94.42

Table 2: Win Rates (%) of Phi-2 Against SFT on Golden HH and OASST1 Datasets under Random Label Flipping
Noise. Best results are in bold.

Golden HH OASST1

Method Clean (0%) 10% 20% 30% 40% Clean (0%) 10% 20% 30% 40%

Vanilla DPO 96.50 93.19 85.57 73.07 54.98 69.12 66.94 62.61 58.44 52.42
GDPO (p̂ = 0.75) 97.07 97.54 96.08 94.52 85.39 68.73 67.93 63.58 59.88 53.05
cDPO (Oracle ϵ) 97.56 97.21 92.63 81.05 66.72 69.30 67.30 61.44 54.87 49.21
rDPO 97.01 96.49 95.73 93.34 84.55 67.16 63.95 59.47 56.45 45.20
PerpCorrect-DPO 98.18 98.17 97.05 96.66 96.39 72.55 71.34 69.04 68.27 68.49

MSPO (Ours) 98.86 98.39 98.04 97.49 97.25 74.83 72.49 71.22 70.63 70.01

Evaluation Metric. The primary evaluation met-402

ric is the win rate against GPT-41 as an automated403

LLM judge, following common practice (Bai et al.,404

2022a; Kong et al., 2024). For a held-out set of405

test prompts, responses from trained models and406

baselines are pairwise compared. Win rates are407

calculated as (wins / (wins + losses)), ignoring ties,408

typically against the SFT model. All reported win409

rates are averaged over 3 independent runs with410

different random seeds.411

3.4 Main Results: Robustness to Noisy412

Preferences413

We evaluate the robustness of MSPO against vary-414

ing levels of random label flipping noise (0% to415

40%). Performance is measured by win rates416

against SFT models, presented in Table 1 for417

Llama-2-7B and Table 2 for Phi-2, across Golden418

HH and OASST1 datasets.419

Overall, both tables demonstrate a clear trend:420

standard DPO and GDPO (with fixed p̂ = 0.75)421

suffer substantial performance degradation as noise422

levels increase. Robust DPO variants (cDPO,423

rDPO) and PerpCorrect+DPO offer notable im-424

provements by mitigating some noise effects. How-425

ever, our proposed MSPO consistently achieves the426

highest win rates across nearly all noise conditions,427

datasets, and base models.428

1Model version gpt-4-0613, accessed via OpenAI API.

For instance, with Llama-2-7B on Golden 429

HH (Table 1), MSPO maintains a win rate of 430

96.11% even at 40% noise, significantly outper- 431

forming DPO (53.15%) and strong baselines like 432

PerpCorrect-DPO (94.92%). Similar superiority is 433

observed on OASST1, where MSPO (94.42% at 434

40% noise) surpasses others. This robust perfor- 435

mance underscores the effectiveness of its adaptive 436

meta-learning mechanism in dynamically generat- 437

ing optimized soft preference labels. 438

The advantages of MSPO are further confirmed 439

with the smaller Phi-2 model (Table 2). On Golden 440

HH, MSPO exhibits exceptional resilience, achiev- 441

ing 97.25% win rate at 40% noise. While absolute 442

win rates are generally lower on OASST1 with Phi- 443

2 for all methods, MSPO again consistently leads, 444

for example, achieving 70.01% at 40% noise com- 445

pared to PerpCorrect-DPO’s 68.49% and DPO’s 446

52.42%. 447

In summary, MSPO demonstrates significant and 448

consistent improvements in alignment robustness 449

across different models, datasets, and high levels 450

of preference noise. Its ability to learn an adaptive 451

strategy for generating soft preference labels, pri- 452

marily guided by PPLDiff, provides a clear advan- 453

tage over methods relying on global noise estimates 454

or heuristic data pre-processing. 455
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Table 3: Ablation study for MSPO on Golden HH
(Llama-2-7B) with 30% random label flipping noise.
Win rates (%) against SFT. Best performance is in bold.

Method Variant Win Rate (%)

MSPO (Full, uses PPLDiff) 96.72

Impact of Meta-learning Mechanism:
w/o Meta-learning (DPO with binary labels) 68.50

Choice of Meta-learner Input Feature:
Meta-learner uses Loss instead of PPLDiff 89.47

Impact of Meta-dataset Size (|Dmeta|):
Dmeta size: 50 samples 94.33
Dmeta size: 100 samples (Default) 96.72
Dmeta size: 150 samples 96.75
Dmeta size: 200 samples 96.82

3.5 Ablation Studies456

To understand the contributions of key components457

and design choices within MSPO, we conduct abla-458

tion studies on the Golden HH dataset with Llama-459

2-7B under 30% random label flipping noise. Re-460

sults are presented in Table 3.461

Effectiveness of Meta-learning. Removing the462

meta-learning component and reverting to standard463

DPO (which does not use adaptive soft labels) re-464

duces the win rate from 96.72% to 68.50% (at 30%465

noise, from Table 1). This highlights the significant466

benefit of our adaptive meta-optimization strategy467

for generating soft labels compared to using fixed468

binary labels in a noisy environment.469

Choice of Input Feature for Meta-learner. Our470

full MSPO model utilizes PPLDiff as the primary471

input feature for the meta-learner. We compare this472

against an alternative where the meta-learner in-473

stead uses the main alignment loss value of the cur-474

rent sample (from Lmain before any soft label ap-475

plication) as its input signal. Using the loss signal476

results in a substantially lower win rate of 89.47%,477

compared to 96.72% with PPLDiff. This finding478

strongly supports our hypothesis that PPLDiff, an479

intrinsic measure of preference consistency under480

a surrogate model, is a more effective and infor-481

mative signal for the meta-learner to generate ap-482

propriate soft labels compared to the training loss483

signal.484

Sensitivity to Meta-dataset Size. We examine485

the impact of varying the size of the clean meta-486

dataset Dmeta. With only 50 meta-samples, the487

performance is 94.33%. Increasing the size to our488

default of 100 samples yields 96.72%. Further489

increases to 150 and 200 samples result in slight490
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Figure 3: Average generated soft preference label (p̂ϕ)
by the MSPO meta-learner as a function of binned
PPLDiff values. The dashed line indicates p̂ϕ = 0.5
(indifference).

improvements to 96.75% and 96.82%, respectively. 491

This indicates that while performance benefits from 492

more meta-data, MSPO can achieve strong results 493

even with a very small meta-dataset, demonstrat- 494

ing its practical applicability. The marginal gains 495

beyond 100-150 samples suggest that a relatively 496

small amount of clean data is sufficient for the meta- 497

learner to learn an effective soft label generation 498

heuristic. 499

3.6 Analysis of Meta-Learner Behavior 500

To gain deeper insights into the mechanism of 501

MSPO, we analyze the behavior of the trained 502

meta-learner V (·;ϕ). Understanding the patterns 503

learned by the meta-learner helps validate its effec- 504

tiveness in generating appropriate soft preference 505

labels from noise-indicative signals. 506

Sensitivity of Generated Labels to PPLDiff. A 507

central tenet of MSPO is that its meta-learner inter- 508

prets Perplexity Difference (PPLDiff) to generate 509

suitable soft preference labels. Figure 3 visualizes 510

this learned mapping, showing the average soft la- 511

bel (p̂ϕ) produced by our trained meta-learner as a 512

function of binned PPLDiff values. The underlying 513

(PPLDiff, p̂ϕ) data was aggregated from the MSPO 514

training of Llama-2-7B on the Golden HH dataset 515

(30% random flip noise). Critically, PPLDiff is dy- 516

namically calculated at each relevant training step 517

using the evolving main LLM πθ(t) , with the meta- 518

learner V (·;ϕ(t)) generating the corresponding p̂ϕ. 519

For plotting, these PPLDiff values were binned and 520

associated p̂ϕ values averaged. 521

The plot exhibits a clear and rational sigmoidal 522

trend. When PPLDiff is substantially negative, in- 523

dicating the nominally preferred y1 is significantly 524

more likely than y2 under the main LLM’s current 525

understanding, the meta-learner assigns a high p̂ϕ 526

7



Figure 4: Comparison of naive initial (p̂0, for reference) and MSPO generated (p̂ϕ) soft label distributions on Clean
and Noisy (Sim. 40% True Flips) subsets.

(approaching 1.0), reflecting strong confidence in527

y1 ≻ y2. Conversely, as PPLDiff becomes substan-528

tially positive, suggesting y1 is less likely and the529

nominal preference potentially incorrect, the gen-530

erated p̂ϕ trends towards 0.0, effectively signaling531

a reversed preference for mislabeled pairs. Near532

PPLDiff = 0, where the main LLM shows simi-533

lar likelihoods, the average p̂ϕ is approximately534

0.5, representing indifference. This adaptive and535

graded response demonstrates that MSPO success-536

fully learns to translate the dynamic PPLDiff signal537

into nuanced, contextually appropriate soft prefer-538

ence labels.539

Distributional Impact of Learned Soft Labels.540

To further elucidate the adaptive mechanism of541

our meta-learner, we analyze the distribution of542

its generated soft preference labels (p̂ϕ). Figure 4543

contrasts these p̂ϕ distributions on representative544

clean and noisy (40% label flips) subsets of the545

Golden HH training data.546

On the Clean Subset (left panel), where true547

preferences are consistently labeled, the MSPO548

p̂ϕ distribution is characterized by a dominant and549

sharply-defined peak concentrated very near 1.0.550

This strong concentration signifies that MSPO con-551

fidently assigns high belief to preferences it deems552

correct, closely mirroring an ideal scenario where553

all labels would be 1.0. The presence of some554

lesser probability mass extending to slightly lower555

values (e.g., within the 0.7-0.95 range) can be at-556

tributed to the inherent stochasticity of PPLDiff557

signals and the nuanced decision boundary learned558

by the meta-learner, reflecting minor, data-driven559

variations in confidence rather than outright uncer-560

tainty for these clean examples. The density then561

rapidly diminishes for p̂ϕ values further below this562

high-confidence region.563

The transformative impact of MSPO’s adaptive564

labeling is most striking on the Noisy Subset (right565

panel). Here, the p̂ϕ distribution becomes dis- 566

tinctly bimodal. A sharp peak near 0.0 corresponds 567

to the 40% of instances where MSPO identifies 568

likely label flips (where PPLDiff contradicts the 569

label), assigning a very low P (ynominal_winner ≻ 570

ynominal_loser). Concurrently, a taller, steep peak 571

near 1.0 represents the 60% of correctly identified 572

non-flipped preferences, for which MSPO main- 573

tains high confidence. The relative peak heights 574

accurately reflect the underlying noise proportion. 575

The significantly lower density in the intermedi- 576

ate region (e.g., 0.2-0.8) highlights MSPO’s ten- 577

dency to make decisive judgments, pushing labels 578

towards extreme confidence rather than default- 579

ing to uncertainty for many noisy samples. This 580

bimodal characteristic compellingly demonstrates 581

MSPO’s learned capacity to differentiate reliable 582

preferences from probable noise by interpreting 583

signals like PPLDiff and adaptively recalibrating 584

preference strength. 585

4 Conclusion 586

In this work, we addressed the critical challenge of 587

noisy preferences in aligning Large Language Mod- 588

els. We proposed MSPO, a novel meta-learning 589

framework that learns to adaptively generate soft 590

preference labels. By training a meta-learner to 591

leverage noise-indicative signals, notably perplex- 592

ity differences (PPLDiff), and optimizing this meta- 593

learner on a small clean meta-dataset, MSPO effec- 594

tively generates appropriate soft labels to guide the 595

main LLM alignment more robustly. Our extensive 596

experiments on benchmark datasets with various 597

LLMs and noise levels demonstrate that MSPO 598

significantly outperforms existing DPO variants 599

and noise-handling techniques, particularly in high- 600

noise scenarios. This leads to more robust and 601

reliable LLM alignment. 602
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Limitations and Future Work. Despite its603

strong performance, MSPO introduces computa-604

tional overhead from its meta-learning process and605

depends on a clean meta-dataset. The PPLDiff606

signal, while effective, may have limitations for607

subtle semantic noise. Future research could fo-608

cus on more efficient meta-optimization, exploring609

diverse noise indicators beyond PPLDiff, and de-610

signing more advanced meta-learners. Reducing611

meta-data dependency and extending the frame-612

work to other preference learning paradigms or613

multi-dimensional soft labels are also promising614

avenues.615
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A Algorithm for MSPO Training 788

The training procedure for MSPO is detailed in Al- 789

gorithm 1. It outlines the iterative, three-step pro- 790

cess for updating the main LLM parameters θ and 791

the meta-learner parameters ϕ, assuming PPLDiff 792

is derived from the current main LLM πθ(t) . 793

B Theoretical Analysis of MSPO 794

B.1 Weighting Scheme in MSPO 795

The meta-learning process in MSPO can be inter- 796

preted as learning an implicit weighting scheme. 797

The meta-learner parameters ϕ are updated to min- 798

imize the meta-loss Lmeta(ϕ
(t)), which is the DPO 799

loss evaluated on a clean meta-dataset Dmeta using 800

a virtual LLM πθvirtual(ϕ(t)). This virtual LLM itself 801

is obtained by a one-step gradient update on the 802

noisy training batch Btrain using the virtual main 803

loss Lvirtual
main , which incorporates soft labels p̂ϕ(t) 804

generated by the current meta-learner V (·;ϕ(t)) . 805

The update rule for ϕ is (Eq. (9)): 806

ϕ(t+1) = ϕ(t) − ηmeta∇ϕLmeta(ϕ
(t)) (12) 807

Using the chain rule for∇ϕLmeta(ϕ
(t)): 808

∇ϕLmeta = EBmeta

[
∇θvirtualLDPO(πθvirtual(ϕ(t));πref)

· d(θvirtual(ϕ
(t)))

dϕ(t)

]
.

(13)
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Algorithm 1 MSPO Training (with PPLDiff from current πθ(t) and explicit steps)

1: Input: Noisy training dataDtrain = {(x, y1, y2)}, clean meta-dataDmeta (approx. 100-200 samples),
batch sizes Ntr, Nm, learning rates α, ηm.

2: Output: Trained LLM parameters θ.
3: Initialize LLM πθ(0) , meta-learner V (·;ϕ(0)), reference πref .
4: for iteration t = 0 to T − 1 do
5: Sample a training mini-batch Btrain ∼ Dtrain.
6: Sample a meta mini-batch Bmeta ∼ Dmeta.
7: // STEP 1: Compute Virtual LLM Parameter Update
8: For each sample i = (x(i), y

(i)
1 , y

(i)
2 ) ∈ Btrain, compute PPLDiff(t)(i;πθ(t)) using Eq. (4).

9: Generate soft labels for Btrain: P̂ϕ(t) = {V (PPLDiff(t)(i;πθ(t));ϕ
(t))}i∈Btrain .

10: Compute virtual LLM parameters θvirtual(ϕ(t)) using Eq. (7) (which uses Lvirtualmain as defined in
Eq. (6)).

11: // STEP 2: Update Meta-learner Parameters
12: Compute meta-loss Lmeta(ϕ

(t)) using θvirtual(ϕ
(t)) on Bmeta via Eq. (8).

13: Update meta-learner parameters: ϕ(t+1) ← ϕ(t) − ηm∇ϕLmeta(ϕ
(t)) using Eq. (9).

14: // STEP 3: Update Main LLM Parameters
15: Generate new soft labels for Btrain using the updated meta-learner: P̂ϕ(t+1) =

{V (PPLDiff(t)(i;πθ(t));ϕ
(t+1))}i∈Btrain .

16: Compute actual main LLM loss Lmain(θ;ϕ
(t+1), πθ(t)) using Eq. (10).

17: Update main LLM parameters: θ(t+1) ← θ(t)−α∇θLmain(θ;ϕ
(t+1), πθ(t))|θ=θ(t) using Eq. (11).

18: end for
19: return θ(T ).

The derivative d(θvirtual(ϕ
(t)))

dϕ(t) in Eq. (13) is given by:810

−α∇ϕ∇θLvirtual
main (θ;ϕ(t), πθ(t))|θ=θ(t) . (14)811

The term∇ϕ∇θLvirtual
main in Eq. (14) involves the gra-812

dient of the meta-learner’s output p̂ϕ(t) with respect813

to its parameters ϕ(t), i.e., ∇ϕV (PPLDiff(t);ϕ(t)).814

This structure implies that the meta-learner pa-815

rameters ϕ are updated in a direction that rewards816

the generation of soft labels p̂ϕ which, when used817

to define Lvirtual
main for training the virtual LLM on818

Btrain, lead to improved performance (lower LDPO)819

on the clean meta-dataset Bmeta. Effectively, train-820

ing instances (via their PPLDiff signals) that are821

transformed by V (·;ϕ) into “beneficial” soft la-822

bels (as judged by downstream performance on823

clean data) exert a stronger influence on the meta-824

learner’s update. This can be viewed as an implicit,825

adaptive re-interpretation or re-weighting of the826

training preferences based on their utility for clean827

alignment.828

B.2 Generalization Bound for MSPO829

We provide a high-level generalization bound for830

MSPO, inspired by meta-learning analyses (Zhao831

et al., 2019). Let Rclean(ϕ) be the true expected per-832

formance (e.g., negative expected LDPO on the true833

clean preference distribution Pclean) of the main 834

LLM πθ when its training is guided by soft labels 835

generated by V (·;ϕ). Let R̂meta(ϕ) = −Lmeta(ϕ) 836

be the empirical performance on the clean meta- 837

dataset Dmeta of size M . We aim to bound the 838

generalization gap. 839

Assumptions: 840

1. Meta-learner parameters ϕ belong to a 841

bounded space Φ ⊂ Rdϕ (where dϕ is the 842

dimensionality of ϕ). 843

2. The DPO loss LDPO is bounded, e.g., in 844

[0, Bloss]. 845

3. The meta-dataset Dmeta consists of M i.i.d. 846

samples from Pclean. 847

Theorem (MSPO Generalization Bound - In- 848

formal): Let ϕ∗ = argmaxϕ∈Φ R̂meta(ϕ) be 849

the parameters learned by MSPO by minimizing 850

Lmeta(ϕ). Then, for any δ > 0, with probability at 851

least 1− δ over the draw of Dmeta: 852

Rclean(ϕ
∗) ≤ R̂meta(ϕ

∗) +O
(√

Comp(FΦ)+log(1/δ)
M

)
(15) 853

where Comp(FΦ) is a measure of the complexity 854

of the function class FΦ = {(xm, ywm, ylm) 7→ 855
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LDPO(πθvirtual(ϕ)(. . . )) | ϕ ∈ Φ} (e.g., Rademacher856

complexity or VC dimension if applicable). For857

parametric models like neural networks for V (·;ϕ),858

Comp(FΦ) is often related to dϕ.859

Proof Sketch: The proof follows standard argu-860

ments:861

1. For a fixed ϕ, R̂meta(ϕ) is an empirical mean.862

Hoeffding’s inequality bounds |Rclean(ϕ) −863

R̂meta(ϕ)|.864

2. To ensure the bound holds uniformly over all865

ϕ ∈ Φ, uniform convergence bounds (e.g.,866

based on Rademacher complexity) are used.867

3. The generalization gap then bounds868

Rclean(ϕ
∗) relative to Rclean(ϕtrue_opt),869

where ϕtrue_opt = argmaxϕ∈ΦRclean(ϕ). A870

common final form is:871

Rclean(ϕ
∗) ≤ Rclean(ϕtrue_opt)

+O

(√
Comp(FΦ) + log(1/δ)

M

)
.

(16)

872

This bound indicates that as M increases, the per-873

formance of the MSPO-learned meta-learner ϕ∗ on874

unseen clean data approaches the performance of875

the best possible meta-learner within the hypothesis876

space Φ. The complexity of the meta-learner (re-877

lated to dϕ) also influences the required size of M .878

This provides theoretical justification for MSPO’s879

adaptive label generation.880

C Implementation Details881

This appendix provides further details on our ex-882

perimental setup, including model configurations,883

training hyperparameters, dataset processing, and884

evaluation specifics, to facilitate reproducibility.885

C.1 Model Configurations886

Base Large Language Models. We utilize two887

publicly available pre-trained language models as888

the foundation for our experiments:889

• Llama-2-7B (Touvron et al., 2023): We use890

the Llama-2-7b-chat-hf model version.891

• Phi-2 (Javaheripi et al., 2023): We use the892

base pre-trained version of this 2.7-billion pa-893

rameter model.894

All alignment methods are initialized from a Su-895

pervised Fine-Tuned (SFT) version of these base896

models. The SFT model also serves as the refer-897

ence policy πref in all DPO-style loss calculations.898

Supervised Fine-Tuning (SFT). The SFT phase 899

is conducted on the clean training split of the re- 900

spective datasets (Golden HH, OASST1) before 901

any noise injection. We fine-tune the base LLMs 902

for 1 epoch using a causal language modeling ob- 903

jective on the chosen responses (yw) from the pref- 904

erence pairs, formatted as instruction-response se- 905

quences. Key SFT hyperparameters include a learn- 906

ing rate of 2e-5, a global batch size of 64, a weight 907

decay of 0.01, and a cosine learning rate scheduler 908

with a warm-up ratio of 0.03 of total training steps. 909

Perplexity Difference (PPLDiff) Calculation. 910

Our MSPO framework, as detailed in Section 3, 911

dynamically calculates PPLDiff using the current 912

main LLM πθ(t) being aligned. For baseline meth- 913

ods that require PPLDiff calculations from a fixed 914

surrogate model, such as Perplexity-aware Correc- 915

tion (PerpCorrect) (Kong et al., 2024), we employ 916

a surrogate model πs. This πs is the SFT version 917

of the respective base LLM, further aligned on a 918

small, clean preference dataset (a subset of Dmeta 919

or a similar clean set) using DPO for a few steps, 920

and then kept fixed to provide stable PPLDiff esti- 921

mations for those baselines. 922

Meta-learner Architecture (V (·;ϕ)). The meta- 923

learner V in MSPO is implemented as a Multi- 924

Layer Perceptron (MLP). It consists of: 925

• An input layer that takes the calculated PPLD- 926

iff value (from the current πθ(t) for MSPO) as 927

input. PPLDiff values are z-score normalized 928

based on statistics computed from an initial 929

portion of the training set or a held-out cali- 930

bration set. 931

• Two hidden layers, each with 128 units and 932

ReLU activation functions. 933

• An output layer with a single neuron and a 934

sigmoid activation to ensure the generated soft 935

label p̂ϕ is within the range [0, 1]. 936

C.2 Training Hyperparameters 937

Training hyperparameters for all DPO-style align- 938

ment methods (DPO, GDPO, cDPO, rDPO, and the 939

main LLM component of MSPO) are kept consis- 940

tent where applicable. All alignment methods are 941

trained for 1 epoch over their respective training 942

datasets using the AdamW optimizer (Loshchilov 943

and Hutter, 2017). Specifics are detailed below and 944

summarized in Table 4. 945
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Table 4: Key Hyperparameters for LLM Alignment and MSPO Meta-learner.

Hyperparameter LLM Alignment (πθ) MSPO Meta-learner (V (·;ϕ))

Optimizer AdamW AdamW
Learning Rate (α, ηm) Llama-2-7B: 1e-6 1e-4

Phi-2: 5e-6
Effective Batch Size (Ntr, Nm) Main Training: 64 pairs Meta-Update: 32 pairs
β in DPO/GDPO loss 0.1 N/A
Warm-up Steps (for LLM α) 100 N/A
Gradient Clipping (Max Norm, for LLM) 1.0 N/A
Training Epochs 1 Concurrent with LLM (1 epoch total)

C.3 Dataset Processing and Noise Injection946

Dataset Splits. Standard public train/test splits947

are used for Golden HH and OASST1. Dmeta is948

sampled from the clean training split (100 sam-949

ples).950

Initial Soft Label p̂0 Generation (for GDPO951

baseline). For methods requiring initial soft la-952

bels p̂0 (specifically GDPO in our comparisons),953

on clean data, we set p̂0(yw ≻ yl) = 0.9 and954

p̂0(yl ≻ yw) = 0.1. MSPO does not use p̂0 as955

input.956

Noise Injection Protocol. Random label flipping957

is applied as described in Section 3.3. If a pair958

(x, yw, yl) is flipped to (x, yl, yw), for GDPO its ini-959

tial soft label would become p̂flip0 (yl ≻ yw) = 0.9.960

MSPO processes the (x, yl, yw) pair and generates961

its soft label from PPLDiff.962

C.4 Evaluation Details963

LLM Judge. We use GPT-4 (model version:964

gpt-4-0613) via the OpenAI API as our LLM965

judge. The prompt template is:966

You are an impartial AI assistant evaluating the967

quality of two anonymous responses (Response A968

and Response B) to a given user prompt. Please969

consider helpfulness, harmlessness, honesty, and970

overall quality. User Prompt: [User Prompt Here]971

Response A: [Response A Here] Response B: [Re-972

sponse B Here] Which response is better? (A)973

Response A is significantly better. (B) Response974

A is slightly better. (C) Response B is signifi-975

cantly better. (D) Response B is slightly better.976

(E) Both responses are of similar quality. (F) Both977

responses are very poor. Please choose only one978

option (A, B, C, D, E, or F) and briefly explain979

your reasoning in one or two sentences. Your980

choice (A-F):981

For win rate calculation, options (A) and (B) con- 982

stitute a win for Response A, while (C) and (D) 983

constitute a win for Response B. Options (E) and 984

(F) are treated as ties and excluded from win/loss 985

counts. Response positions (A or B) are random- 986

ized to mitigate positional bias. 987

Test Set and Sampling. Evaluation is performed 988

on a held-out test set of 1,000 prompts randomly 989

sampled from the original test splits of Golden HH 990

and OASST1. For each prompt, one response is 991

generated from each model using nucleus sampling 992

with p = 0.9 and temperature T = 0.7. 993

Statistical Significance. Reported win rates (Ta- 994

bles 1 and 2) are averaged over 3 independent 995

runs. For key comparisons between MSPO and 996

the strongest baseline under each noise condition, 997

we perform McNemar’s test, with p < 0.05 consid- 998

ered statistically significant. 999

C.5 Computational Resources 1000

Experiments were conducted on a cluster with 1001

NVIDIA A100 (40GB) GPUs. The SFT phase 1002

takes approximately 2-3 hours for Llama-2-7B and 1003

4-5 hours for Phi-2 on their respective full training 1004

sets. Training Llama-2-7B with MSPO (which in- 1005

cludes dynamic PPLDiff calculation) for 1 epoch 1006

on Golden HH (approx. 80k pairs) takes approx- 1007

imately 10-12 hours on 4 A100 GPUs. Similarly, 1008

training Phi-2 with MSPO on an OASST1 subset 1009

(approx. 100k pairs) takes approximately 15-18 1010

hours on 4 A100 GPUs. 1011

For baseline methods requiring pre-computed 1012

PPLDiff from a fixed surrogate model (PerpCor- 1013

rect), the preparation of this surrogate πs (initial 1014

alignment on a small clean dataset) takes approxi- 1015

mately 0.5-1 hour. The subsequent calculation of 1016

PPLDiff values for the entire training set using this 1017

fixed πs takes an additional 1-2 hours. 1018
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