MSPO: Meta Soft Preference Optimization for Robust LLM Alignment

Anonymous ACL submission

Abstract

Noise in preference data significantly impedes
the alignment of large language models (LLMs)
with human preferences. However, existing
methods struggle with two key challenges: reli-
ably identifying noisy preferences and accu-
rately representing preference intensity. To
address these challenges, we introduce Meta
Soft Preference Optimization (MSPO), a novel
framework. MSPO employs a meta-learner to
optimize soft preference labels for the align-
ment task. This meta-learner produces new,
adaptive soft labels that more accurately re-
flect true preference strength and mitigate noise.
To achieve this, it primarily processes perplex-
ity differences (PPLDiff) between paired re-
sponses, where PPLDiff itself is calculated
based on the initial preference indications. The
meta-learner is optimized using a small, clean
meta-dataset to enhance downstream LLM
alignment performance. Extensive experiments
demonstrate that MSPO effectively mitigates
the adverse effects of noisy preferences. It
significantly improves the robustness of LLM
alignment in various noisy environments and
outperforms existing baseline methods.

1 Introduction

Large Language Models (LLMs) show remark-
able capabilities across various natural language
tasks (Brown et al., 2020; Anil et al., 2023; Tou-
vron et al., 2023). Aligning these models with
human values to ensure helpful, honest, and harm-
less outputs is crucial for their deployment (Lee
et al., 2023; Askell et al., 2021; Amodei et al.,
2016). Learning from human preferences, particu-
larly through methods like Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023), has become
a prominent approach for this alignment, evolving
from earlier Reinforcement Learning from Human
Feedback (RLHF) paradigms (Christiano et al.,
2017; Ouyang et al., 2022).
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Figure 1: Conceptual illustration of DPO versus MSPO.
DPO utilizes fixed preference targets, while MSPO in-
troduces a meta-learner to generate adaptive soft targets,
enabling more robust LLM alignment.

However, the quality of preference data poses a
significant challenge. Collected datasets frequently
contain noise from sources such as annotator sub-
jectivity and disagreement (Sheng et al., 2008), task
misinterpretation, random errors, or imperfections
in Al-generated feedback (Bai et al., 2022b; Liang
et al., 2024; Ziegler et al., 2019). Such noisy pref-
erences can severely undermine the alignment pro-
cess, leading to suboptimal model performance and
unreliable behavior, failing to capture true human
intent.

Mitigating the impact of noisy preferences
presents two main difficulties. First, accurately
identifying specific noisy preference pairs is chal-
lenging. Distinguishing subtle preferences from
erroneous ones requires nuanced understanding.
Second, quantifying the unreliability of a prefer-
ence and adjusting its influence during training
is difficult, especially when using soft preference
labels (Furuta et al., 2024). Soft labels aim to rep-
resent preference strength but can be distorted by
noise, potentially amplifying misleading signals if
not properly calibrated.

Previous approaches to address noisy prefer-
ences include robust loss functions, such as Conser-
vative DPO (cDPO) (Mitchell, 2023) and Robust
DPO (rDPO) (Chowdhury et al., 2024). These



methods often adjust the DPO loss based on an esti-
mated global noise ratio, typically derived from
a small clean validation set. While beneficial,
they may not fully adapt to instance-specific noise.
Other data-centric methods, like Perplexity-aware
Correction (PerpCorrect) (Kong et al., 2024), use
signals such as perplexity differences (PPLDiff)
to correct noisy pairs as a preprocessing step. Al-
though PPLDiff is a useful signal for noise detec-
tion, relying on fixed thresholds or heuristic correc-
tion rules may limit the optimality of the noise mit-
igation. An adaptive mechanism, such as MSPO’s
meta-learner, to intelligently leverage such signals
for refining soft preference labels is needed.

To address these limitations, we introduce Meta
Soft Preference Optimization (MSPO), a novel
meta-learning framework for robust LLM align-
ment. MSPO learns to generate adaptive soft
preference labels by interpreting dynamic noise-
indicative signals derived directly from the main
language model being aligned.

Figure 1 illustrates the key difference between
traditional Direct Preference Optimization (DPO)
and our MSPO. DPO (left) uses fixed target pref-
erences to guide model optimization. In contrast,
MSPO (right) employs a meta-learner (“Meta”)
to dynamically generate optimized, adaptive soft
targets. These adaptive targets can modulate pref-
erence intensity and correct mislabeled preferences
(suggested by varying bar lengths and potential
inversions in the figure), guiding LL.M alignment
more robustly, especially with noisy data.

The core of MSPO is its meta-learner, denoted
as V(+; ¢). This meta-learner is trained to process
a key, evolving indicator of preference consistency
or potential mislabeling: the perplexity difference
(PPLDiff) between paired responses. This PPLDiff
is calculated based on the original preference or-
dering (i.e., which response was initially labeled as
preferred) and critically, using the current main
LLM 7 at each step. The meta-learner V' then
takes this PPLDiff value as input to output an op-
timized soft preference label py € [0,1], which
subsequently modulates a DPO-style objective for
training the main LLM 7g. The meta-learner’s
parameters ¢ are optimized via a bilevel process,
guided by the main LLM’s performance on a small,
clean meta-dataset. This data-driven strategy en-
ables V' to produce high-quality, adaptive soft la-
bels that effectively mitigate noise and adapt to the
main model’s evolving understanding. The main
contributions of this work are threefold:

* We pioneer the application of meta-learning to
address noisy preference data in LLM align-
ment, providing theoretical insights into its
robustness and convergence properties.

* We propose MSPO, a novel framework instan-
tiating this meta-learning paradigm. MSPO
utilizes a dedicated meta-learner to adap-
tively generate soft preference labels from
dynamically-derived PPLDiff, achieving fine-
grained and instance-specific noise mitigation.

* Through extensive experiments on bench-
mark datasets with various noise settings,
we demonstrate that MSPO significantly im-
proves the robustness of LLM alignment
and outperforms existing state-of-the-art tech-
niques.

2 Related Work

LLM Alignment with Human Preferences.
Aligning Large Language Models (LLMs) with hu-
man values is critical for their responsible deploy-
ment (Ouyang et al., 2022; Stiennon et al., 2020).
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) has become a prominent approach, di-
rectly learning from preference pairs. This builds
upon a rich history of learning from human feed-
back, including explicit reward modeling followed
by reinforcement learning (Knox and Stone, 2008;
Warnell et al., 2018). To capture the nuanced nature
of human preferences beyond binary choices, soft
preference labels, representing preference strength
or probability, have been explored (Furuta et al.,
2024). For instance, Geometric-Averaged DPO
(GDPO) (Furuta et al., 2024) integrates soft labels
to modulate the DPO learning process. However,
the effectiveness of using soft labels heavily relies
on their quality, which is often compromised by
noise in the collected preference data. Our work,
MSPO, focuses on improving the quality of these
soft labels in noisy settings.

Addressing Noisy Preferences in LLM Align-
ment. The presence of noisy preferences signif-
icantly impairs LLM alignment robustness (Gao
et al., 2024; Casper et al., 2023). Existing strate-
gies to mitigate noisy preferences broadly fall into
two categories. First, robust loss-based methods
like Conservative DPO (¢cDPO) (Mitchell, 2023)
and Robust DPO (rDPO) (Chowdhury et al., 2024)
adjust the DPO objective based on an estimated



global noise ratio, often requiring a clean vali-
dation set. These are part of a broader class of
techniques for learning with noisy labels that mod-
ify loss functions or sample importances (Patrini
et al., 2017; Song et al., 2022). While helpful,
these methods may lack adaptability to instance-
specific noise characteristics. Second, data-centric
approaches such as Perplexity-aware Correction
(PerpCorrect) (Kong et al., 2024) aim to detect and
correct noisy preferences using signals like perplex-
ity differences (PPLDiff) as a data pre-processing
step. These methods, however, often rely on heuris-
tic rules or fixed thresholds for correction. MSPO
differs by adaptively learning how to generate or
refine soft preference labels using these signals
within a meta-learning framework, rather than ap-
plying fixed pre-processing rules.

Meta-learning for Robust Label Correction.
Meta-learning has proven effective for robust learn-
ing in noisy settings, particularly for label cor-
rection and sample re-weighting in classification
tasks (Ren et al., 2018; Shu et al., 2019; Wu et al.,
2021; Wang et al., 2020). These methods typically
train a meta-learner on a small set of clean data to
learn a strategy (e.g., a weighting function or a la-
bel correction model) that improves the main task’s
performance on noisy data. For example, Meta-
Weight-Net (Shu et al., 2019) learns a function to
assign weights to training samples based on their
loss. While these works demonstrate the potential
of meta-learning for handling label noise, its appli-
cation to adaptively optimize soft preference labels
within LLM preference alignment, especially by
leveraging model-intrinsic signals like PPLDiff dy-
namically derived from the LLM being aligned,
has been less explored. MSPO aims to bridge this
gap by proposing such a meta-learning framework
tailored for soft preference label optimization in
LLM alignment.

3 Methodology

This section details our proposed meta-learning
framework, MSPO, for adaptively generating soft
preference labels to improve the robustness of LLM
alignment. We begin by outlining the foundational
concepts of DPO and GDPO. We then introduce
how Perplexity Difference (PPLDiff), calculated
using the main language model being trained, can
serve as a dynamic noise indicator. Finally, we
present the architecture of MSPO and elaborate on
its meta-optimization procedure, designed to learn

an effective soft label generation strategy.

3.1 Preliminaries
3.1.1 Direct Preference Optimization (DPO)

Direct Preference Optimization (DPO) (Rafailov
et al., 2023) directly aligns LLMs from preference
data D = {(z@, yg), yl(i))}, avoiding explicit re-
ward modeling. It optimizes the policy 7 by mini-
mizing the negative log-likelihood of preferences
under a Bradley-Terry model. This encourages
higher probabilities for preferred responses g, over
dispreferred ones y;, relative to a reference policy

Tref:
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3.1.2 Geometric-averaged DPO (GDPO) with
Soft Preference Labels

Recognizing that human preferences often possess
varying degrees of certainty, Geometric-averaged
DPO (GDPO) (Furuta et al., 2024) extended DPO
by incorporating soft preference labels p. This
label p € [0.5,1.0] quantifies the estimated prob-
ability P(y; = y2|x), where y; is nominally pre-
ferred. GDPO modulates the core DPO log-ratio,

he(x,y1,y2) = log %, by a factor
(2p —1):
Leppo(mg; Tref, P) = ~E(@y1.92,5)~D 2

[logo (B(2p — 1)he(x,y1,42))] -

3.1.3 Dynamic Perplexity Difference
(PPLDiIff) as a Noise Indicator

The perplexity (PPL) of a sequence reflects its like-
lihood under a given language model. The differ-
ence in log-PPL between two responses y; and y»
to a prompt z,

PPLDIff(x, y1, y2; m9) = log PPL([x; y1]; 7p)
— log PPL([; ya]; ma),
3)

can serve as a potent indicator of preference
noise (Kong et al., 2024). Specifically, a negative
PPLD:iff suggests my assigns a higher likelihood to
y1 over yo (implying y; is preferred by the model),
and vice versa for a positive PPLDiff. This quan-
tifiable preference signal derived from PPLDiff is
thus utilized as a key input signal by meta-learner
in MSPO.
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Figure 2: Overview of the MSPO framework. A meta-learner V (-; ¢) processes PPLDIff, calculated using the
current main LLM 7, to generate optimized soft labels py. These labels guide the training of mg via a GDPO-style
preference loss. V' is optimized using a clean meta-dataset D,,, ., to enhance 7y’s alignment performance.

3.2 MSPO: Meta-learning for Soft Preference
Label Optimization

Obtaining reliable soft preference labels p is chal-
lenging in noisy datasets. MSPO addresses this
by introducing a meta-learning framework. This
framework trains a meta-learner V'(-; ¢) to generate
appropriate soft preference labels py directly from
a dynamic Perplexity Difference (PPLDiff) signal.
The overall architecture is depicted in Figure 2.

3.2.1 The Meta-learner Module V' (-; ¢)

The meta-learner V, parameterized by ¢, is a neural
network. Its role is to map an input PPLDiff feature
to a soft preference label p, € [0, 1]. For each train-
ing sample (x,y1, y2) from the noisy training set
Dirain, the PPLDIfT is calculated using the current
main policy my):

PPLDIff") = PPLDIff(z, y1, yo; Tpr)).  (4)

This PPLDiff®) serves as the input to V(-;¢),
which then outputs the soft label:

Py = V(PPLDiff®); ¢). (5)

This generated label py is subsequently used in a
GDPO-style loss to train the main LLM my.

3.2.2 Bilevel Optimization Procedure

The training of MSPO involves optimizing the
main LLM parameters ¢ and the meta-learner pa-
rameters ¢ through a bilevel process. At each itera-
tion t, this process unfolds in three key steps:

STEP 1: Compute Virtual LLM Parameter Up-
date. This step simulates the effect of the cur-
rent meta-learner on the LLM. For a mini-batch
Birain from Dyyqin, we first calculate the Perplex-
ity Difference PPLDiff(") (x, y1, ya; my(r) ) for each
sample using the current main LLM parameters
0 (Eq. (4)). This PPLDIff(® serves as input
to the current meta-learner V (-; ¢(Y)), which gen-
erates soft preference labels p,) for the batch:
Py = V(PPLDIff"); ¢()). The main LLM’s
preference loss for this virtual update, denoted as a
manner analogous to GDPO loss:

1

Lvi'rtual(e; qb(t), 7_[_9“)) - _ |B |
train B

main

train (6)
log 7 (8204 — Dholw,y1,92))

The virtual LLM parameters, 0., ¢uqi (¢™®), are ob-
tained by a gradient descent step on this loss, start-
ing from 0®):

9virtual(¢(t)) == g(t)_
aVoLhrtuel (9: 61 7)) g—geo-

(N
This provides a lookahead into how mg would adapt
under V (-; ).

STEP 2: Update Meta-learner Parameters.
Next, the meta-learner parameters ¢ are refined.
The performance of the virtual LLM T irtuar (6)
(from STEP 1) is evaluated on a mini-batch B,
from the clean meta-dataset D, ¢sq. This yields the



meta-loss Emeta(¢(t)), calculated using the stan-
dard DPO loss (Eq. (1)):

Emeta (¢(t) ) = E(x'm sYwm 7ylm)68'meta
[Lppo (T

(®)
virtual (6(1) TrTef)]'

This meta-loss measures how well the soft labels
generated by V(+; qﬁ(t)) guide the LLM towards
alignment with clean preferences. The meta-learner
parameters ¢ are then updated by descending this

meta-loss:

oD =00 —nctaVoLmera( @) ©)

Efficient computation of V¢Emem(¢>(t)) can fol-
low Shu et al. (2019). This step improves V'’s
ability to produce beneficial soft labels.

STEP 3: Update Main LLLM Parameters. Fi-
nally, the actual main LLM parameters 0®) are
updated. This update uses the PPLDiff values
(PPLDiff(V)) calculated at the start of STEP 1
(from 7)) and the newly updated meta-learner
V(-;¢+1)) from STEP 2. This V (-; ¢(**1)) gen-
erates a fresh set of soft labels, p+1), for the
training batch Byqin. The preference loss for this
actual main LLM update, denoted L,,4in, is then
calculated using these new soft labels:

1
'Cmain(e; ¢(t+1)7 We(t)) = _W
train Birain
log 7 (8200 — Dho(w,01,02) )

(10)

The main LLM parameters are then updated by a
gradient step on this loss:

00 = 00 — a4V Loain (05 0, 7g0))lg—pr -

1D
This completes one iteration ¢. This cycle of three
steps is repeated, allowing MSPO to adaptively
learn to generate effective soft preference labels.
The complete procedure is detailed in Algorithm 1.
Theoretically, this bilevel process enables MSPO to
learn an implicit weighting scheme favoring benefi-
cial soft labels, and its generalization performance
is related to the complexity of the meta-learner and
the size of the meta-dataset (see Appendix B for a
detailed analysis).

3.3 Experimental Setup

This subsection outlines our core experimental
configurations, including datasets, noise simula-
tion, model architectures, the methods we compare
against, and evaluation metrics.

Datasets and Noise Simulation. Our primary
experiments utilize two widely-used human pref-
erence datasets: Golden HH (Bai et al., 2022a), a
high-quality subset of Anthropic HH-RLHF, and
OASST1 (Kopf et al., 2023), a large-scale mul-
tilingual dataset. To assess robustness, we inject
random label flipping noise into their training splits,
with noise ratios r € {10%, 20%, 30%, 40%}. For
a selected pair (yy,, y;), its preference is inverted to
(Y1, Yuw). When methods require initial soft prefer-
ence labels pg (i.e., GDPO), these are first assigned
to clean pairs (0.9 for y,,, 0.1 for ;) and then cor-
respondingly inverted for flipped pairs to simulate
confident mislabeling. Our MSPO, as designed,
generates pg primarily from PPLDiff and does not
use Py as a direct input to its meta-learner V. The
meta-dataset (D) for training our meta-learner
is a small, clean subset of approximately 100-200
high-quality preference pairs sampled from the
original training data of each main dataset, ensur-
ing no overlap with training or test sets. We pri-
marily use its original binary preference labels for
calculating the meta-loss.

Models. We use two open-source LLMs as base
architectures: Llama2-7B (Touvron et al., 2023)
and Phi-2 (2.7B) (Javaheripi et al., 2023), aligning
with Kong et al. (2024). All methods start from a
supervised fine-tuned (SFT) version of these mod-
els, which also serves as the reference policy 7, .
For baseline methods that require perplexity cal-
culations from a fixed surrogate model, such as
Perplexity-aware Correction (PerpCorrect), this sur-
rogate model 7, is the SFT model, further aligned
on D¢t using DPO for a small number of steps
and then kept fixed. In contrast, our MSPO frame-
work, as detailed in Section 3, dynamically calcu-
lates PPLDiff using the current main LLM 7,
being aligned.

Comparative Methods. We compare MSPO
against several strong methods. These include stan-
dard DPO (Rafailov et al., 2023) on noisy binary
preferences; GDPO(pg) (Furuta et al., 2024) us-
ing initial noisy soft labels (as described above);
robust DPO variants cDPO (Mitchell, 2023) and
rDPO (Liang et al., 2024), with their required
noise ratio €' estimated from D1, and PerpCor-
rect+DPO (Kong et al., 2024), which applies Perp-
Correct as a data pre-processing step before DPO
training. Further detailed hyperparameters and im-
plementation specifics for all methods are provided
in Appendix C.



Table 1: Win Rates (%) of Llama-2-7B Against SFT on Golden HH and OASST1 Datasets under Random Label

Flipping Noise. Best results are in bold.

Golden HH OASST1
Method Clean (0%) 10% 20% 30% 40% Clean (0%) 10% 20% 30% 40%
Vanilla DPO 97.22 9253 82.62 6850 53.15 97.17 96.64 92771 90.21 86.29
GDPO (p = 0.75) 97.57 97.15 9553 9426 91.21 97.52 97.06 9421 93.08 92.73
c¢DPO (Oracle €) 97.38 96.04 90.85 83.23 65.60 97.67 96.18 93.63 90.62 88.02
rDPO 97.21 96.65 9522 9390 90.45 97.76 95.92 9373 92.05 90.62
PerpCorrect-DPO 97.87 97.51 96.24 9553 94.92 98.05 96.38 94.04 9399 93.17
MSPO (Ours) 98.42 97.94 96.62 96.32 96.11 98.67 97.37 9535 94.65 94.42

Table 2: Win Rates (%) of Phi-2 Against SFT on Golden HH and OASST1 Datasets under Random Label Flipping

Noise. Best results are in bold.

Golden HH OASST1
Method Clean (0%) 10% 20% 30% 40% Clean (0%) 10% 20% 30% 40%
Vanilla DPO 96.50 93.19 85.57 73.07 54.98 69.12 66.94 62.61 5844 5242
GDPO (p = 0.75) 97.07 97.54 96.08 94.52 85.39 68.73 6793 63.58 59.88 53.05
cDPO (Oracle €) 97.56 97.21 92.63 81.05 66.72 69.30 67.30 61.44 5487 49.21
rDPO 97.01 96.49 95.73 9334 84.55 67.16 63.95 5947 5645 45.20
PerpCorrect-DPO 98.18 98.17 97.05 96.66 96.39 72.55 7134 69.04 6827 68.49
MSPO (Ours) 98.86 98.39 98.04 9749 97.25 74.83 7249 71.22 70.63 70.01

Evaluation Metric. The primary evaluation met-
ric is the win rate against GPT-4! as an automated
LLM judge, following common practice (Bai et al.,
2022a; Kong et al., 2024). For a held-out set of
test prompts, responses from trained models and
baselines are pairwise compared. Win rates are
calculated as (wins / (wins + losses)), ignoring ties,
typically against the SFT model. All reported win
rates are averaged over 3 independent runs with
different random seeds.

3.4 Main Results: Robustness to Noisy
Preferences

We evaluate the robustness of MSPO against vary-
ing levels of random label flipping noise (0% to
40%). Performance is measured by win rates
against SFT models, presented in Table 1 for
Llama-2-7B and Table 2 for Phi-2, across Golden
HH and OASST1 datasets.

Overall, both tables demonstrate a clear trend:
standard DPO and GDPO (with fixed p = 0.75)
suffer substantial performance degradation as noise
levels increase. Robust DPO variants (cDPO,
rDPO) and PerpCorrect+DPO offer notable im-
provements by mitigating some noise effects. How-
ever, our proposed MSPO consistently achieves the
highest win rates across nearly all noise conditions,
datasets, and base models.

"Model version gpt-4-0613, accessed via OpenAl API.

For instance, with Llama-2-7B on Golden
HH (Table 1), MSPO maintains a win rate of
96.11% even at 40% noise, significantly outper-
forming DPO (53.15%) and strong baselines like
PerpCorrect-DPO (94.92%). Similar superiority is
observed on OASST1, where MSPO (94.42% at
40% noise) surpasses others. This robust perfor-
mance underscores the effectiveness of its adaptive
meta-learning mechanism in dynamically generat-
ing optimized soft preference labels.

The advantages of MSPO are further confirmed
with the smaller Phi-2 model (Table 2). On Golden
HH, MSPO exhibits exceptional resilience, achiev-
ing 97.25% win rate at 40% noise. While absolute
win rates are generally lower on OASST1 with Phi-
2 for all methods, MSPO again consistently leads,
for example, achieving 70.01% at 40% noise com-
pared to PerpCorrect-DPQO’s 68.49% and DPO’s
52.42%.

In summary, MSPO demonstrates significant and
consistent improvements in alignment robustness
across different models, datasets, and high levels
of preference noise. Its ability to learn an adaptive
strategy for generating soft preference labels, pri-
marily guided by PPLDIff, provides a clear advan-
tage over methods relying on global noise estimates
or heuristic data pre-processing.



Table 3: Ablation study for MSPO on Golden HH
(Llama-2-7B) with 30% random label flipping noise.
Win rates (%) against SFT. Best performance is in bold.

Method Variant Win Rate (%)
MSPO (Full, uses PPLDiff) 96.72
Impact of Meta-learning Mechanism:
w/o Meta-learning (DPO with binary labels) 68.50
Choice of Meta-learner Input Feature:
Meta-learner uses Loss instead of PPLDiff 89.47
Impact of Meta-dataset Size (| Dpetal):
Dpetq size: 50 samples 94.33
Dietq size: 100 samples (Default) 96.72
Dietq size: 150 samples 96.75
Dietq size: 200 samples 96.82

3.5 Ablation Studies

To understand the contributions of key components
and design choices within MSPO, we conduct abla-
tion studies on the Golden HH dataset with Llama-
2-7B under 30% random label flipping noise. Re-
sults are presented in Table 3.

Effectiveness of Meta-learning. Removing the
meta-learning component and reverting to standard
DPO (which does not use adaptive soft labels) re-
duces the win rate from 96.72% to 68.50% (at 30%
noise, from Table 1). This highlights the significant
benefit of our adaptive meta-optimization strategy
for generating soft labels compared to using fixed
binary labels in a noisy environment.

Choice of Input Feature for Meta-learner. Our
full MSPO model utilizes PPLDiff as the primary
input feature for the meta-learner. We compare this
against an alternative where the meta-learner in-
stead uses the main alignment loss value of the cur-
rent sample (from L4, before any soft label ap-
plication) as its input signal. Using the loss signal
results in a substantially lower win rate of 89.47%,
compared to 96.72% with PPLDiff. This finding
strongly supports our hypothesis that PPLDiff, an
intrinsic measure of preference consistency under
a surrogate model, is a more effective and infor-
mative signal for the meta-learner to generate ap-
propriate soft labels compared to the training loss
signal.

Sensitivity to Meta-dataset Size. We examine
the impact of varying the size of the clean meta-
dataset Dyperq. With only 50 meta-samples, the
performance is 94.33%. Increasing the size to our
default of 100 samples yields 96.72%. Further
increases to 150 and 200 samples result in slight
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Figure 3: Average generated soft preference label ()
by the MSPO meta-learner as a function of binned
PPLDiff values. The dashed line indicates py = 0.5
(indifference).

improvements to 96.75% and 96.82%, respectively.
This indicates that while performance benefits from
more meta-data, MSPO can achieve strong results
even with a very small meta-dataset, demonstrat-
ing its practical applicability. The marginal gains
beyond 100-150 samples suggest that a relatively
small amount of clean data is sufficient for the meta-
learner to learn an effective soft label generation
heuristic.

3.6 Analysis of Meta-Learner Behavior

To gain deeper insights into the mechanism of
MSPO, we analyze the behavior of the trained
meta-learner V'(+; ¢). Understanding the patterns
learned by the meta-learner helps validate its effec-
tiveness in generating appropriate soft preference
labels from noise-indicative signals.

Sensitivity of Generated Labels to PPLDiff. A
central tenet of MSPO is that its meta-learner inter-
prets Perplexity Difference (PPLDiff) to generate
suitable soft preference labels. Figure 3 visualizes
this learned mapping, showing the average soft la-
bel (pg) produced by our trained meta-learner as a
function of binned PPLDiff values. The underlying
(PPLDiff, py) data was aggregated from the MSPO
training of Llama-2-7B on the Golden HH dataset
(30% random flip noise). Critically, PPLDiff is dy-
namically calculated at each relevant training step
using the evolving main LLM (), with the meta-
learner V(- qﬁ(t)) generating the corresponding p.
For plotting, these PPLDiff values were binned and
associated py values averaged.

The plot exhibits a clear and rational sigmoidal
trend. When PPLDiff is substantially negative, in-
dicating the nominally preferred y; is significantly
more likely than y5 under the main LLM’s current
understanding, the meta-learner assigns a high py,
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Figure 4: Comparison of naive initial (po, for reference) and MSPO generated (p) soft label distributions on Clean

and Noisy (Sim. 40% True Flips) subsets.

(approaching 1.0), reflecting strong confidence in
y1 > y2. Conversely, as PPLDiff becomes substan-
tially positive, suggesting y; is less likely and the
nominal preference potentially incorrect, the gen-
erated py trends towards 0.0, effectively signaling
a reversed preference for mislabeled pairs. Near
PPLDiff = 0, where the main LLM shows simi-
lar likelihoods, the average pgy is approximately
0.5, representing indifference. This adaptive and
graded response demonstrates that MSPO success-
fully learns to translate the dynamic PPLDiff signal
into nuanced, contextually appropriate soft prefer-
ence labels.

Distributional Impact of Learned Soft Labels.
To further elucidate the adaptive mechanism of
our meta-learner, we analyze the distribution of
its generated soft preference labels (py). Figure 4
contrasts these py distributions on representative
clean and noisy (40% label flips) subsets of the
Golden HH training data.

On the Clean Subset (left panel), where true
preferences are consistently labeled, the MSPO
D¢ distribution is characterized by a dominant and
sharply-defined peak concentrated very near 1.0.
This strong concentration signifies that MSPO con-
fidently assigns high belief to preferences it deems
correct, closely mirroring an ideal scenario where
all labels would be 1.0. The presence of some
lesser probability mass extending to slightly lower
values (e.g., within the 0.7-0.95 range) can be at-
tributed to the inherent stochasticity of PPLDiff
signals and the nuanced decision boundary learned
by the meta-learner, reflecting minor, data-driven
variations in confidence rather than outright uncer-
tainty for these clean examples. The density then
rapidly diminishes for py values further below this
high-confidence region.

The transformative impact of MSPO’s adaptive
labeling is most striking on the Noisy Subset (right

panel). Here, the py distribution becomes dis-
tinctly bimodal. A sharp peak near 0.0 corresponds
to the 40% of instances where MSPO identifies
likely label flips (where PPLDiff contradicts the
label), assigning a very 1ow P(Ynominal winner =
Ynominal_loser)- Concurrently, a taller, steep peak
near 1.0 represents the 60% of correctly identified
non-flipped preferences, for which MSPO main-
tains high confidence. The relative peak heights
accurately reflect the underlying noise proportion.
The significantly lower density in the intermedi-
ate region (e.g., 0.2-0.8) highlights MSPO’s ten-
dency to make decisive judgments, pushing labels
towards extreme confidence rather than default-
ing to uncertainty for many noisy samples. This
bimodal characteristic compellingly demonstrates
MSPO’s learned capacity to differentiate reliable
preferences from probable noise by interpreting
signals like PPLDiff and adaptively recalibrating
preference strength.

4 Conclusion

In this work, we addressed the critical challenge of
noisy preferences in aligning Large Language Mod-
els. We proposed MSPO, a novel meta-learning
framework that learns to adaptively generate soft
preference labels. By training a meta-learner to
leverage noise-indicative signals, notably perplex-
ity differences (PPLDiff), and optimizing this meta-
learner on a small clean meta-dataset, MSPO effec-
tively generates appropriate soft labels to guide the
main LLM alignment more robustly. Our extensive
experiments on benchmark datasets with various
LLMs and noise levels demonstrate that MSPO
significantly outperforms existing DPO variants
and noise-handling techniques, particularly in high-
noise scenarios. This leads to more robust and
reliable LLM alignment.



Limitations and Future Work. Despite its
strong performance, MSPO introduces computa-
tional overhead from its meta-learning process and
depends on a clean meta-dataset. The PPLDiff
signal, while effective, may have limitations for
subtle semantic noise. Future research could fo-
cus on more efficient meta-optimization, exploring
diverse noise indicators beyond PPLDiff, and de-
signing more advanced meta-learners. Reducing
meta-data dependency and extending the frame-
work to other preference learning paradigms or
multi-dimensional soft labels are also promising
avenues.
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A Algorithm for MSPO Training

The training procedure for MSPO is detailed in Al-
gorithm 1. It outlines the iterative, three-step pro-
cess for updating the main LLM parameters 6 and
the meta-learner parameters ¢, assuming PPLDiff
is derived from the current main LLM 7).

B Theoretical Analysis of MSPO
B.1 Weighting Scheme in MSPO

The meta-learning process in MSPO can be inter-
preted as learning an implicit weighting scheme.
The meta-learner parameters ¢ are updated to min-
imize the meta-loss Leta(¢(*)), which is the DPO
loss evaluated on a clean meta-dataset Dyper, using
a virtual LLM T it (6 This virtual LLM itself
is obtained by a one-step gradient update on the
noisy training batch By, using the virtual main
loss E;igﬁ‘fl, which incorporates soft labels p )
generated by the current meta-learner V' (+; <Z>(t)) .
The update rule for ¢ is (Eq. (9)):

¢ = 6 — Neta Vg Lineta(6")
Using the chain rule for Vg Limeta (6™®):

(12)

vqﬁ‘cmeta = EBmm vévmual['DPO(ngmualw(t)); 7rref)

] |

. d(gvirtual (¢(t) ))
F70)
(13)
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Algorithm 1 MSPO Training (with PPLDiff from current 7y and explicit steps)

1: Input: Noisy training data Dy,qin = {(z, y1,y2)}, clean meta-data D, 4, (approx. 100-200 samples),

batch sizes N, Ny, learning rates o, 1.

riudt as defined in

2: Qutput: Trained LLM parameters 6.
3: Initialize LLM 7o), meta-learner V'(+; $(©)), reference . I
4: for iterationt =0to 7T — 1 do
5: Sample a training mini-batch Birqin, ~ Dirgin-
6: Sample a meta mini-batch B,etq ~ Dmeta-
7: // STEP 1: Compute Virtual LLM Parameter Update
8: For each sample i = (:z:(i),ygi), y(i)) € Birain, compute PPLDIff(*) (i 7o) using Eq. (4).
9: Generate soft labels for Byyqir: 15¢<t> = {V(PPLDIff®) (i; 7p0) ); 6™) Ve, as -
10: Compute virtual LLM parameters 6,;,1,q:(¢()) using Eq. (7) (which uses £Virtual
Eq. (6)).
11: // STEP 2: Update Meta-learner Parameters
12: Compute meta-loss £mem(¢(t)) using GUiTtual(qﬁ(t)) on B,,¢tq via Eq. (8).
13: Update meta-learner parameters: ¢(*1) < ¢() — VL, 01q(¢*)) using Eq. (9).
14: // STEP 3: Update Main LLM Parameters
15:

{V (PPLDIff" (4; 7y ); ') Ficyy ain-

17:
18:
19:

end for
return 6(7).

Generate new soft labels for By, using the updated meta-learner:

Py

Compute actual main LLM loss L4 (6; pt+1) Ty ) using Eq. (10).
Update main LLM parameters: 0+ « 00 — aV L0 (0; 60V 7o) g—ge) using Eq. (11).

The derivative

MTW in Eq. (13) is given by:

—aV VoLl 9. 6O o) gpwr-  (14)

The term V, Vo £Vl in Bq. (14) involves the gra-

main

dient of the meta-learner’s output p ) with respect
to its parameters ¢*), i.e., V¢V(PPLDiff(t); oM.

This structure implies that the meta-learner pa-
rameters ¢ are updated in a direction that rewards
the generation of soft labels ps which, when used
to define Ervrilgti‘;al for training the virtual LLM on
Bhrain, lead to improved performance (lower Lppo)
on the clean meta-dataset Bea. Effectively, train-
ing instances (via their PPLDiff signals) that are
transformed by V' (+; ¢) into “beneficial” soft la-
bels (as judged by downstream performance on
clean data) exert a stronger influence on the meta-
learner’s update. This can be viewed as an implicit,
adaptive re-interpretation or re-weighting of the
training preferences based on their utility for clean
alignment.

B.2 Generalization Bound for MSPO

We provide a high-level generalization bound for
MSPO, inspired by meta-learning analyses (Zhao
etal., 2019). Let R¢jean(¢) be the true expected per-
formance (e.g., negative expected Lppo on the true
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clean preference distribution Fpjeay) of the main
LLM my when its training is guided by soft labels
generated by V(a ¢) Let Rmeta((b) = _Emeta((b)
be the empirical performance on the clean meta-
dataset Dpera Of size M. We aim to bound the
generalization gap.

Assumptions:

1. Meta-learner parameters ¢ belong to a
bounded space ® C R% (where dg is the
dimensionality of ¢).

2. The DPO loss Lppo is bounded, e.g., in
[OvBloss]-

3. The meta-dataset Dpera consists of M 1.i.d.
samples from Ppeqp.

Theorem (MSPO Generalization Bound - In-
formal): Let ¢* arg maXeea Rmeta(qﬁ) be
the parameters learned by MSPO by minimizing
Lmeta(¢). Then, for any § > 0, with probability at
least 1 — ¢ over the draw of Dypeta:

Rclean(¢*) S Rmeta(d)*) + 0 ( w)

(15)
where Comp(Fg) is a measure of the complexity
of the function class Fo = {(Zm, Ywm, Yim) —



Lppo (Tg, () (- --)) | ¢ € @} (e.g., Rademacher
complexity or VC dimension if applicable). For
parametric models like neural networks for V'(-; ¢),
Comp(Fg) is often related to d.

Proof Sketch: The proof follows standard argu-
ments:

1. For a fixed ¢, ﬁtmeta(qb) is an empirical mean.
Hoeffding’s inequality bounds |Rjean(¢) —

Rmeta(¢) | .

To ensure the bound holds uniformly over all
¢ € @, uniform convergence bounds (e.g.,
based on Rademacher complexity) are used.

. The generalization gap then bounds
Rclean(ﬁb*) relative  to Rclean(¢true_opt)y
where e opt = argmaxped Relean(¢). A
common final form is:

Rclean (Qb* ) S Rclean (¢true_opt)
(16)

o ( \/Comp(}_@)—i—log(l/&)

M

This bound indicates that as M increases, the per-
formance of the MSPO-learned meta-learner ¢* on
unseen clean data approaches the performance of
the best possible meta-learner within the hypothesis
space ®. The complexity of the meta-learner (re-
lated to dy) also influences the required size of M.
This provides theoretical justification for MSPO’s
adaptive label generation.

C Implementation Details

This appendix provides further details on our ex-
perimental setup, including model configurations,
training hyperparameters, dataset processing, and
evaluation specifics, to facilitate reproducibility.

Cl1

Base Large Language Models. We utilize two
publicly available pre-trained language models as
the foundation for our experiments:

e Llama-2-7B (Touvron et al., 2023): We use
the L1ama-2-7b-chat-hf model version.

Model Configurations

e Phi-2 (Javaheripi et al., 2023): We use the
base pre-trained version of this 2.7-billion pa-
rameter model.

All alignment methods are initialized from a Su-
pervised Fine-Tuned (SFT) version of these base
models. The SFT model also serves as the refer-
ence policy 7, s in all DPO-style loss calculations.
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Supervised Fine-Tuning (SFT). The SFT phase
is conducted on the clean training split of the re-
spective datasets (Golden HH, OASST1) before
any noise injection. We fine-tune the base LLMs
for 1 epoch using a causal language modeling ob-
jective on the chosen responses (¥,) from the pref-
erence pairs, formatted as instruction-response se-
quences. Key SFT hyperparameters include a learn-
ing rate of 2e-3, a global batch size of 64, a weight
decay of 0.01, and a cosine learning rate scheduler
with a warm-up ratio of 0.03 of total training steps.

Perplexity Difference (PPLDIiff) Calculation.
Our MSPO framework, as detailed in Section 3,
dynamically calculates PPLDiff using the current
main LLM 7, being aligned. For baseline meth-
ods that require PPLDiff calculations from a fixed
surrogate model, such as Perplexity-aware Correc-
tion (PerpCorrect) (Kong et al., 2024), we employ
a surrogate model 7. This 7 is the SFT version
of the respective base LLM, further aligned on a
small, clean preference dataset (a subset of D,,etq
or a similar clean set) using DPO for a few steps,
and then kept fixed to provide stable PPLDiff esti-
mations for those baselines.

Meta-learner Architecture (V' (-; ¢)). The meta-
learner V' in MSPO is implemented as a Multi-
Layer Perceptron (MLP). It consists of:

* An input layer that takes the calculated PPLD-
iff value (from the current 7, for MSPO) as
input. PPLDIff values are z-score normalized
based on statistics computed from an initial
portion of the training set or a held-out cali-
bration set.

* Two hidden layers, each with 128 units and
ReLU activation functions.

* An output layer with a single neuron and a
sigmoid activation to ensure the generated soft
label g is within the range [0, 1].

C.2 Training Hyperparameters

Training hyperparameters for all DPO-style align-
ment methods (DPO, GDPO, cDPO, rDPO, and the
main LLM component of MSPO) are kept consis-
tent where applicable. All alignment methods are
trained for 1 epoch over their respective training
datasets using the AdamW optimizer (Loshchilov
and Hutter, 2017). Specifics are detailed below and
summarized in Table 4.



Table 4: Key Hyperparameters for LLM Alignment and MSPO Meta-learner.

Hyperparameter LLM Alignment (7y) MSPO Meta-learner (V(-; ¢))
Optimizer AdamW AdamW
Learning Rate (o, 71,) Llama-2-7B: 1e-6 le-4
Phi-2: 5e-6
Effective Batch Size (N¢-, Ny,) Main Training: 64 pairs Meta-Update: 32 pairs
5 in DPO/GDPO loss 0.1 N/A
Warm-up Steps (for LLM «) 100 N/A
Gradient Clipping (Max Norm, for LLM) 1.0 N/A
Training Epochs 1 Concurrent with LLM (1 epoch total)
C.3 Dataset Processing and Noise Injection For win rate calculation, options (A) and (B) con-

Dataset Splits. Standard public train/test splits ~ Stitute a win for Response A, while (C) and (D)

are used for Golden HH and OASST1. D, ez, is constitute a win for Response B. Options (E) and
sampled from the clean training split (100 sam- (F) are treated as ties and excluded from win/loss
ples). counts. Response positions (A or B) are random-

ized to mitigate positional bias.
Initial Soft Label py Generation (for GDPO
baseline). For methods requiring initial soft la-
bels pg (specifically GDPO in our comparisons),
on clean data, we set po(y, >~ ;) = 0.9 and
Po(yr > yw) = 0.1. MSPO does not use py as
input.

Test Set and Sampling. Evaluation is performed
on a held-out test set of 1,000 prompts randomly
sampled from the original test splits of Golden HH
and OASST1. For each prompt, one response is
generated from each model using nucleus sampling

with p = 0.9 and temperature 7' = 0.7.
Noise Injection Protocol. Random label flipping

is applied as described in Section 3.3. If a pair

(x, Yw, y) is flipped to (z, y1, Yy ), for GDPO its ini-
~flip

Statistical Significance. Reported win rates (Ta-
bles 1 and 2) are averaged over 3 independent

tial soft label would become pJ/™ (1 = yu) = 0.9. runs. For key comparisons between MSPO and

MSPO processes the (, 41, ) pair and generates the strongest baseline under each noise condition,
its soft label from PPLISiff7 v we perform McNemar’s test, with p < 0.05 consid-

ered statistically significant.
C.4 Evaluation Details

LLM Judge. We use GPT-4 (model version:

gpt-4-0613) via the OpenAl API as our LLM Experiments were conducted on a cluster with
judge. The prompt template is: NVIDIA A100 (40GB) GPUs. The SFT phase

takes approximately 2-3 hours for Llama-2-7B and

C.5 Computational Resources

You are an impartial Al assistant evaluating the 4-5 hours for Phi-2 on their respective full training
quality of two anonymous responses (Response A sets. Training Llama-2-7B with MSPO (which in-
and Response B) to a given user prompt. Please cludes dynamic PPLDiff calculation) for 1 epoch
consider helpfulness, harmlessness, honesty, and on Golden HH (approx. 80k pairs) takes approx-
overall quality. User Prompt: [User Prompt Here] imately 10-12 hours on 4 A100 GPUs. Similarly,
Response A: [Response A Here] Response B: [Re- training Phi-2 with MSPO on an OASST1 subset
sponse B Here] Which response is better? (A) (approx. 100k pairs) takes approximately 15-18
Response A is significantly better. (B) Response hours on 4 A100 GPUs.

A is slightly better. (C) Response B is signifi- For baseline methods requiring pre-computed
cantly better. (D) Response B is slightly better. PPLDiff from a fixed surrogate model (PerpCor-
(E) Both responses are of similar quality. (F) Both rect), the preparation of this surrogate 7 (initial
responses are very poor. Please choose only one alignment on a small clean dataset) takes approxi-
option (A, B, C, D, E, or F) and briefly explain mately 0.5-1 hour. The subsequent calculation of
your reasoning in one or two sentences. Your PPLDiff values for the entire training set using this
choice (A-F): fixed 7 takes an additional 1-2 hours.
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