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Abstract

Autoregressive language models accumulate errors due to their fixed, irrevocable
left-to-right token generation. To address this, we propose a new sampling method
called Resample-Previous-Tokens (RPT). RPT mitigates error accumulation by
iteratively revisiting and potentially replacing tokens in a window of previously
generated text. Fine-tuning a pretrained 8B parameter model with RPT for only
100B resulted in∼10% relative improvements on reasoning and coding benchmarks
compared to the standard sampling.

1 Introduction

Autoregressive (AR) language models represent a pivotal advancement in sequence generation, deliv-
ering state-of-the-art results in translation, code generation, text summarization, question answering,
and many other text tasks. By factoring the probability p(x) of a sequence x with the chain rule,
AR training reduces to learning the next-token-prediction (NTP) conditional probabilities, making
both training and inference highly efficient. At inference time, however, this left-to-right process is
irrevocable: once a token is drawn the model cannot revise it, resulting in error propagating from the
NTP sampling.

Recent progress in LLMs has largely focused on improving training via: (i) better data quality (Meta,
2024; DeepSeek, 2024; Groeneveld et al., 2024; Gemini, 2025; Li et al., 2025; OLMo, 2025; Lambert
et al., 2025); (ii) modifications to the transformer architecture, such as, positional embeddings (Su
et al., 2021; Press et al., 2022), attention mechanism (Ainslie et al., 2023; Beltagy et al., 2020);
and (iii) Reinforcement learning fine-tuning (Ouyang et al., 2022; Ramesh et al., 2024; DeepSeek,
2025; Muennighoff et al., 2025; Kimi, 2025). Nevertheless, the sampling itself remains relatively
underexplored, with most models still relying on the vanilla NTP sampling (Holtzman et al., 2020).

In this work, we introduce Resample-Previous-Tokens (RPT), a novel sampling method that iteratively
revisits a fixed-size window of previously sampled tokens. Unlike NTP sampled tokens, which are
unchangeable once sampled, RPT allows local token replacements during generation, potentially
reducing error accumulation. RPT training is lightweight, allows fine-tuning pretrained AR models,
preserves their NTP sampling quality and speed (i.e., with key-value caching), and integrates seam-
lessly into existing AR models and code. We fine-tuned a pretrained 8B AR model for 10% of its
final training iterations and compared it to the fully-trained pretrained model to find RPT pretraining
and sampling provides 5%-10% relative improvements in common benchmarks. Our contributions
include: (1) Introducing RPT, a simple yet effective sampling process from LLMs; (2) Developing
a training algorithm that incorporates seamlessly in AR training loop with minimal overhead and
parameter cost; (3) Demonstrating empirically that RPT outperforms standard NTP sampling in both
reasoning and coding tasks, as well as in a controlled error analysis.
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2 Resample-Previous-Tokens sampling

We denote by x = (x1, x2, . . . , xn) a sequence of tokens, where each token xi is an element of a
vocabulary set V , i.e., xi ∈ V , and V = |V| denotes the size of the vocabulary. Autoregressive (AR)
modeling uses the probability chain-rule to model the joint probability of sequences x,

p(x) =

n∏
i=1

p(xi|x<i), (1)

where we use the notation x<i = (x1, . . . , xi−1), and learn a model (denoted with ∗̂)

p̂(xi|x<i) ≈ p(xi|x<i) (2)

that, in inference time, can be used for sampling from the joint x ∼ p via next-token-prediction (NTP)
sampling:

Next Token Prediction xi ∼ p̂(xi|x<i) (3)

for i = 1, 2, . . . , n. This procedure obviously introduces some errors into the NTP sampling process
that originates from the approximation errors in equation 2.

Our goal is to reduce the errors of the NTP sampling process by using Resample-Previous-Tokens
(RPT) sampling. In its simplest form, we consider pairs of adjacent tokens xi, xi+1, initialized with
NTP sampling, and perform iterations of the form

Resample Previous Tokens
{

xi ∼ p̂(xi |x<i, xi+1)

xi+1 ∼ p̂(xi+1|x<i+1)
(4)
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Figure 1: Windows (in black) show 2 iterations of
RPT sampling (see equation 4); green is context
x<i; blue are tokens introduced with NTP and red
are tokens changed during RPT iterations.

where the number of iterations is a hyper-
parameter or set by threshold (e.g., confidence),
see Figure 1 for an illustration. To implement
RPT sampling we require, in addition to the
learned NTP conditional p̂(xi|x<i) (used in the
second equation in 4), to learn the previous-
token-prediction (PTP) conditional (used in the
first equation in 4), i.e.,

p̂(xi|x<i, xi+1) ≈ p(xi|x<i, xi+1) (5)

that predicts the i-th token xi given the previ-
ous tokens x<i and a future token xi+1. A key
observation of this paper is that since the error
of predicting xi using a future token is smaller
than standard NTP error, the overall error in the
RPT sampling (4) can be shown (under certain
conditions) to be smaller than NTP and often
empirically leading to a better (yet more expen-
sive) sampling procedure than NTP. We will theoretically compare and analyze the errors in NTP and
RPT sampling in the next section.

More generally, we can consider longer sequences of w ∈ N tokens, xi, . . . , xi+w−1, where w is
called window size. Initialize it with NTP, and iterate

xi ∼ p̂(xi |x<i+w, xi)

xi+1 ∼ p̂(xi+1 |x<i+w, xi+1)

xi+2 ∼ p̂(xi+2 |x<i+w, xi+2)
...

xi+w−1 ∼ p̂(xi+w−1|x<i+w−1)

(6)
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Output p(x2|x<2) p(x3|x<3) p(x3|x4, x<3) p(x5|x<5) p(x6|x<6) · · · p(xn|x<n)

Model
Input x1 x2 x4 x3 x5 · · · xn−1

Figure 2: RPT training with window size 2: with some probability q two adjacent tokens are swapped
(bottom row, x3 ↔ x4), the model predicts the conditional probabilities as shown in the top row.

where xi means that the token xi is excluded from the condition, that is,

(w<i+w, xi) = (. . . , xi−1, xi+1, . . . , xi+w−1). (7)

Rearranging the indices, we need to learn conditionals of the form

p̂(xi−ℓ|x<i+1, xi−ℓ) ≈ p(xi−ℓ|x<i+1, xi−ℓ), 0 ≤ ℓ ≤ w − 1. (8)

The ℓ = 0 case corresponds to the NTP conditional. As above, all the conditional with 0 < ℓ < w,
enjoy lower error than the standard NTP prediction, and in fact, the more future tokens are used
(i.e., the larger w − ℓ), the lower the error (see Figure 5). Lastly, we note that performing RPT with
window size w = 0 collapse to standard NTP sampling.

2.1 Learning the conditionals required for RPT

For RPT sampling we need to learn to sample from conditionals of the form p(xi−ℓ|x<i+1, xi−ℓ),
0 ≤ ℓ ≤ w − 1 (see equation 8). To this end, we consider the following two sequences of indices:
first, σ = (σ1, . . . , σn), a permutation of {1, . . . , n} that encodes the order in which tokens are fed
into the model, i.e., the i-th token that is fed into the model is xσi ; we denote the entire permuted
sequence by xσ = (xσ1 , xσ2 , . . . , xσn). We consider only a particular type of permutations, namely,
where a random index k ∈ {1, . . . , n} is pushed w − 1 places to the right, that is

σ = (1, 2, . . . , k − 1,

k moves w − 1 places to the right︷ ︸︸ ︷
k+ 1, . . . ,k+w − 1,k , k + w , . . . , n).

(9)

The second sequence τ = (τ1, . . . , τn) prescribes the target token index xτi for the model i-th output,

τi =

{
i+ 1 if {σ1, σ2, . . . , σi} = {1, 2, . . . , i}
k o/w

. (10)

That is, for the permutation in equation 9 we have

τ = (2, 3, . . . , k ,

predict past k-th token︷ ︸︸ ︷
k , . . . ,k , k + w , k + w + 1, . . . , n).

(11)

Note that all the tokens predict the next token, as encoded in the respective τi, except those that
correspond to the part marked by over-brace that specifically predict the (past) k-th token, xk. With
σ, τ our network models

p̂(xτi |xσ<i+1) =

{
p̂(xi+1|x<i+1) if i < k or i ≥ k + w − 1

p̂(xi−ℓ|x<i+1, xi−ℓ) o/w 0 ≤ ℓ = i− k < w − 1
(12)

where we denote xσ<i+1 = (xσ1 , xσ2 , . . . , xσi). The first case in equation 12 corresponds to standard
NTP, while the second case corresponds exactly to the PTP conditionals required for our RPT
sampling with window equal or smaller than w, as summarized in equation 8. Figure 2 shows an
example corresponding to the choice of σ = (1, 2,4,3, 5, 6, . . . , n).

Training During training, we permute each given training data sequence with a probability of s using
a permutation σ as defined in equation 9. The permutation is performed with k sampled uniformly
from the set {1, . . . , n− w + 1}. In fact, due to the large sequence length typically used in text
modeling, we perform the swap on more than a single token. In detail, we set some probability
q ∈ (0, 1) and then construct a permutation σ as follows: (i) start with the identity permutation
σ = (1, 2, . . . , n) and traverse from left to right with indices k = 1, 2, . . .; (ii) for each index k, with
probability q we move it forward by w− 1 places. (iii) if an index k is moved forward, continue from
index k + w (to avoid overlaps); otherwise, proceed to the next index k + 1.
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Algorithm 1 Resample-Previous-Tokens (RPT) training

1: Input: dataset D; pretrained or initialized model f̂θ with params θ0
2: Hyperparameters: Probabilities s, q ∈ (0, 1); window size w ≥ 2; number of iterations m
3: θ ← θ0 ▷ Initialize parameters
4: for iteration i = 1 to m do
5: Draw x ∼ D ▷ Draw a training sample
6: Set σ = (1, 2, . . . , n− 1) ▷ The identity permutation
7: Set τ = (2, 3, . . . , n) ▷ Next token index
8: With probability s permute σ using q and w ▷ See “training” in section 2.1
9: Compute τ ▷ Use equation 10

10: X = (xσ, σ, τ) ▷ Set the input to the network
11: Y = xτ ▷ Set the target
12: L ← LCE(f̂θ(X), Y ) ▷ Evaluate cross-entropy loss, equation 13
13: θ ← optimize(L) ▷ Update θ with optimization step
14: end for

Modeling the NTP together with the PTP conditionals (equation 12) requires the model to be aware
whether the input and predicted tokens were permuted, as it cannot infer the true order of the sequence
otherwise. To address this, we use a learned positional embedding layer that takes in the input (i.e.,
σ) and target (i.e., τ ) positions, e.g., for NTP, the value is always one. The model is provided with
the input token xσi

, its input position σi, its target position τi (note that this is not a permutation in
our case), and the output is compared to the target token using a standard cross-entropy loss:

L(θ) = −Ex∼D

n∑
i=1

log p̂θ(xτi |xσ<i+1), (13)

where D is the training dataset. Algorithm 1 summarizes this training procedure, which can be used
to train from scratch or finetune a pretrained model.

3 Analysis of RPT versus NTP sampling

In this section we develop the relevant theory to compare the error in resample-previous-tokens
(RPT) sampling and the standard next-token-prediction (NTP) sampling. We provide the analysis
for the simple 2-token case (w = 2). For notational conciseness we denote by π(xi, xi+1) =
p(xi, xi+1|x<i) the ground-truth joint of the next two tokens (xi, xi+1) given the context x<i. When
there is a notational ambiguity we use a more explicit notation for joints, conditionals, and marginal,
i.e., πi,j(xi, xj) = π(xi, xj), πi|j(xi|xj) = π(xi|xj), and πi(xi) = π(xi). We will perform an
asymptotic error analysis. That is, we assume we introduce asymptotically small errors to the
approximated/learned conditionals used in the NTP (see equation 3) and RPT (see equation 4)
sampling schemes,

π̂(xi) = π(xi) + ϵ(xi), (14a)
π̂(xi+1|xi) = π(xi+1|xi) + ϵ(xi+1|xi), (14b)
π̂(xi|xi+1) = π(xi|xi+1) + ϵ(xi|xi+1), (14c)

where ϵ denotes the approximation errors and assumed to be very small (meaning that we ignore
second and higher powers of ϵ). The marginal πi and conditional πi+1|i represent the next-token-
prediction (also abbreviated NTP) while πi|i+1 represents the previous-token-prediction (PTP).

The two sampling methods NTP and RPT use the approximated conditionals in equation 14 and
consequently introduce a certain error to their sampled joint ϵi,i+1,

π̂(xi, xi+1) = π(xi, xi+1) + ϵ(xi, xi+1). (15)

Our goal: Quantify the errors ϵ(xi, xi+1) for each of the sampling method: NTP and RPT.
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To quantify the size of the errors we will use the total variation distance, defined between two
probability distributions p, p̂ over a state space A = {a} by

∥p− p̂∥TV = sup
A⊂A

∣∣p(A)− p̂(A)
∣∣ = 1

2
∥p− p̂∥1 , (16)

where we denote the 1-norm of a vector v ∈ RA by

∥v∥1 =
∑
a∈A
|v(a)| . (17)

The RPT sampling, under certain conditions, introduces improved error compared to NTP. In more
details, we define the RPT factor to be the ratio of RPT and NTP error bounds. It takes the form

RPT factor ρ = κ
∥ϵi|i+1∥∞ + ∥ϵi+1|i∥∞
∥ϵi∥1 + ∥ϵi+1|i∥∞

, (18)

where for matrices m ∈ RB×A we use the max-norm

∥m∥∞ = max
a

∑
b

|m(b|a)|. (19)

Theorem 1. If ρ < 1 then resample-previous-token (RPT) sampling achieves a lower error bound
compared to a tight error bound of next-token-rediction (NPT) sampling.

The RPT factor is composed of two parts: the first is κ which is a function of the ground truth
conditionals πi|i+1 and πi+1|i, which we cannot control (explained more later), and the ratio of the
sum of PTP and NPT errors ∥ϵi|i+1∥∞ + ∥ϵi+1|i∥∞ and the NPT errors ∥ϵi∥1 + ∥ϵi+1|i∥∞. Our
main observation is that, in practice, the PTP error ϵi|i+1 is considerably lower compared to the NTP
errors, ϵi and ϵi+1|i. Intuitively, this means that, given a context x<i, predicting the next token xi

given a future token xi+1 is easier than without it. That is
ϵp PTP error︷ ︸︸ ︷
∥ϵi|i+1∥∞ <

ϵn NTP error︷ ︸︸ ︷
∥ϵi∥1 ≈

ϵn NTP error︷ ︸︸ ︷
∥ϵi+1|i∥∞ (20)

and consequently the second part (and the part controlled by the approximation method) of the factor
is in practice smaller than 1. To justify 20 empirically we use the Pinsker inequality to bound the
total variation distance of general probability distributions p, p̂ with their KL-divergence,∥∥p− p̂

∥∥2
TV
≤ 1

2
DKL(p∥p̂), (21)
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Figure 3: Cross entropy training
curves of NTP and PTP.

where DKL(p∥p̂) = H(p, p̂)−H(p), where H(p, p̂) is the cross
entropy and H(p) is the entropy. Now, making the further as-
sumption that the entropy of the ground truth conditionals πi,
πi|i+1, πi+1|i is near zero for non trivial context x<i and large
vocabulary sizes V , we focus on the cross entropies and com-
pare those of the NTP, i.e., H(πi, π̂i) and H(πi+1|i, π̂i+1|i),
and the PTP, H(πi|i+1, π̂i|i+1). Figure 3 shows the cross en-
tropies H(πi, π̂i) and H(πi|i+1, π̂i|i+1) as computed during
the training of a 1.5B parameter model on a validations set
(training on less than 1 epoch). As can be noticed, the PTP
enjoys a considerably lower cross entropy loss and therefore
under our assumptions also lower total variation norm. Next, we derive asymptotic bounds on the
sampling errors ϵ for both NTP and RPT, and compute the RPT factor. We start with the NTP errors.

Next-token-prediction asymptotic error The error ϵ(xi, xi+1) in the NTP sampling of the next two
tokens can be calculated directly from the probability chain rule

π̂(xi, xi+1) = π̂(xi)π̂(xi+1|xi) (22)

=
(
π(xi) + ϵ(xi)

)(
π(xi+1|xi) + ϵ(xi+1|xi)

)
(23)

= π(xi, xi+1) + ϵ(xi)π(xi+1|xi) + ϵ(xi+1|xi)π(xi) + o(ϵ), (24)
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where by o(ϵ) we denote a terms that is asymptotically smaller than ϵ, e.g., in this case ϵ(xi)ϵ(xi+1|xi).
Therefore the asymptotic error in this case is

ϵ(xi, xi+1) = ϵ(xi)π(xi+1|xi) + ϵ(xi+1|xi)π(xi) + o(ϵ). (25)

We can use this asymptotic error expansion to derive a simple tight bound on the NTP error (see
Appendix A.1 for more details),

∥ϵ∥1 ≤ ∥ϵi∥1 + ∥ϵi+1|i∥∞ + o(ϵ). (26)

Resample-previous-token asymptotic error Analyzing the error ϵ(xi, xi+1) in RPT sampling
requires a more elaborate computation as it directly involves the stationary distribution of the RPT
iterative sampling procedure in equation 4. The RPT iterations can be seen as a Markov chain
where the states include all pairs of possible tokens (xi, xi+1) ∈ V × V . The RPT iterations can be
interpreted as sampling from the following Markov probability transition kernel, which corresponds
exactly to a single iteration of equation 4,

p(x′
i, x

′
i+1|xi, xi+1) = π(x′

i|xi+1)π(x
′
i+1|x′

i). (27)

Note that while π(x′
i+1|x′

i) is a standard next-token-prediction, the conditional π(x′
i|xi+1) predicts

the i-th token given the context x<i and the next token xi+1 and therefore introduces a smaller
error according to the assumption in equation 20. Before estimating the asymptotic error in the
joint ϵ(xi, xi+1) we first need to derive the asymptotic error in the kernel. We denote this error by
e(x′

i, x
′
i+1|xi, xi+1) and it can be computed similar to before by expanding

p̂(x′
i, x

′
i+1|xi, xi+1) =

(
π(x′

i|xi+1) + ϵ(x′
i|xi+1)

)(
π(x′

i+1|x′
i)) + ϵ(x′

i+1|x′
i)
)

(28)

and get the kernel asymptotic error

e(x′
i, x

′
i+1|xi, xi+1) = ϵ(x′

i|xi+1)π(x
′
i+1|x′

i) + ϵ(x′
i+1|x′

i)π(x
′
i|xi+1) + o(ϵ). (29)

Consequently a bound on the kernel error is

∥e∥∞ ≤ ∥ϵi|i+1∥∞ + ∥ϵi+1|i∥∞ + o(ϵ), (30)

where we use the max-norm again; see Appendix A.2 for the exact derivation. Next, to achieve a
bound on the RPT sampling error ϵi,i+1 of the stationary distribution of the Markov chain 28 we can
use standard perturbation bounds (Cho and Meyer, 2001; Seneta, 2006; Kirkland et al., 2008),

∥ϵ∥1 ≤ κ ∥e∥∞ , (31)

where κ is a constant that depended on the ground truth Markov chain 27 known as its conditional
number. There are different definitions of κ, some of them are tighter than others but harder to
compute/provide intuitive explanation. A relatively intuitive one is κ = (1 − Λ(P ))−1. Here, P
is the transition matrix of the Markov process 27 with entries p(x′

i, x
′
i+1|xi, xi+1), and Λ(P ) is

its ergodicity coefficient, which is a scalar in [0, 1] that quantifies how quickly the influence of the
initial state diminishes over time, or equivalently, how quickly the chain converges to its stationary
distribution. Plugging our kernel error (equation 30) into equation 31 we get the RPT error bound

∥ϵ∥1 ≤ κ
(
∥ϵi|i+1∥∞ + ∥ϵi+1|i∥∞

)
+ o(ϵ). (32)

Comparing this bound to the one in equation 26, we get the RPT factor in equation 18.

In the next paragraph we provide a synthetic experiment that shows the benefit of the RPT over NTP
in a controlled setting experiment.

Synthetic example We have conducted a synthetic (toy) experiment to compare the NTP and RPT
sampling. To that end we considered a random ground truth joint π(xi, xi+1) with V = 20 vocabulary
size. That is, for each entry π(xi, xi+1) we sampled i.i.d. from U(0, 1) (uniform distribution) and
normalized. To add noise to, e.g., πi, we random a noisy distribution n(xi) (as done before) and set

π̂i(xi) = (1− ϵn)πi(xi) + ϵnn(xi) (33)

where ϵn > 0 is the noise level, and similarly for the conditionals πi+1|i (with noise level ϵn) and
πi+1|i (with noise level ϵp). We used three cases for the noise levels ϵn > ϵp: (i) Oracle where ϵp = 0;
(ii) Medium where ϵp = 0.5ϵn; and (iii) Low where ϵp = 0.75ϵn. We take ϵn = 1 (we show other
choices of this base noise in Appendix A.3. We numerically computed the sampling error ϵi,i+1 of
NTP and RPT, and repeated this experiment 1000 times. Figure 4 shows the histograms of the total
variation distance ∥ϵi,i+1∥TV (bottom row) and max-norm ∥ϵi,i+1∥∞ (top row) per experiment, and
their respective mean. Note that the smaller the ratio ϵp/ϵn the larger the benefit in RPT sampling
over NTP, and that RPT already exhibits non-trivial improvement for cases where ϵp/ϵn = 0.75.
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Figure 4: Synthetic sampling experiment comparing next-token-prediction (NTP) and resample-
previous-token (RPT). Maximum errors and total variation errors are shown for three different error
levels ϵp < ϵn. The lower the relative error ϵp/ϵn the better RPT sampling over NTP, where RPT
already shows benefit over NTP for ϵp/ϵn = 0.75.

Table 1: Results of RPT sampling on coding and reasoning task. We fine-tuned the model with an
additional 100 billion tokens. Metrics are reported for both the fully autoregressively trained model
(AR-F, 1 trillion tokens) and the initial checkpoint (AR-C, 900 billion tokens). Note, k = 0 is NTP
sampling from our model. For all methods, we report best temperature in {0.0, 0.05, 0.1}.
k HumanEval+ MBPP GSM8K C++ C# PHP Bash Java TypeScript

AR-F 25.6 39.0 35.2 28.5 17.7 28.5 6.9 37.9 35.8
AR-C 24.4 -1.2% 38.8 -0.2% 35.4 +0.2% 28.6 +0.1% 22.8 +5.1% 24.2 -4.3% 8.8 +1.9% 32.9 -5.0% 33.9 -1.9%

0 27.4 +1.8% 39.6 +0.4% 35.5 +0.3% 31.0 +2.5% 22.8 +5.1% 26.1 -1.4% 9.5 +2.6% 38.3 +0.9% 37.7 +1.9%

0.5 27.4 +1.8% 39.6 +0.4% 37.3 +2.1% 31.0 +2.5% 22.8 +5.1% 26.1 -1.4% 9.5 +2.6% 40.5 +2.6% 37.7 +1.9%

1 27.4 +1.8% 40.6 +1.4% 37.5 +2.3% 31.0 +2.5% 22.2 +4.5% 25.5 -3.0% 9.5 +2.6% 41.1 +3.2% 38.4 +2.6%

1.5 28.6 +3.0% 40.6 +1.4% 37.5 +2.3% 31.0 +2.5% 22.2 +4.5% 25.5 -3.0% 9.5 +2.6% 41.1 +3.2% 38.4 +2.6%

2 28.0 +2.4% 39.0 +0.0% 36.3 +1.1% 31.0 +2.5% 19.6 +1.9% 26.7 -1.8% 9.5 +2.6% 37.9 +0.0% 37.7 +1.9%

4 Related work
Sampling methods Autoregressive models typically employ NTP sampling, which is based on the
chain rule of probabilities. However, NTP sampling has a limitation: it cannot correct previously
predicted tokens, potentially propagating errors throughout the generated sequence. To address this
issue, prior works have explored searching the model’s probability space using techniques like Beam
Search (Freitag and Al-Onaizan, 2017). Despite their appeal, these methods are not widely adopted
in practice due to issues like repetition and collapse (Holtzman et al., 2020). In contrast, our work
extends the traditional NTP sampling by introducing RPT, a novel sampling approach that allows
arguably improved sampling from the joint probability of tokens.

Predictor-corrector Discrete diffusion models often apply remasking of previously revealed to-
kens (Lezama et al., 2022; Campbell et al., 2024; Gat et al., 2024), but these methods are not be
directly applicable to autoregressive LLMs. Alternatively, other works suggest prompting the model
to self-correct through carefully designed inputs (Chen et al., 2025; Muennighoff et al., 2025). Other
approaches modify the model architecture or generation process to achieve similar goals: Li et al.
(2024) introduce a predictor-corrector mechanism by modifying the transformer architecture to
accumulate states; Stern et al. (2019); Gu et al. (2019) enable insertion, deletion, and replacement
of tokens during generation, effectively performing implicit corrector iterations. While previous
works have made significant progress, they fall short of achieving state-of-the-art performance. In
this work, we propose novel training and sampling procedures that enable corrector iterations for
LLMs, improving the current state-of-the-art.

Any-order architectures Our method augments standard next-token-prediction with explicit infor-
mation about permutations of the input and target tokens. Prior work has explored any-order language
modeling. Pannatier et al. (2024) propose an architecture that uses double positional embeddings to
encode the absolute positions of both the observed tokens and the targets to be predicted. Yang et al.
(2019) achieve permutation awareness by permuting the attention bias. A complementary line of
research employs discrete flow or diffusion models, which—by virtue of their bidirectional attention
and path training objectives can naturally generate tokens in arbitrary orders (Lezama et al., 2022;
Gat et al., 2024; Lipman et al., 2024; Shaul et al., 2024; Holderrieth et al., 2025; Nie et al., 2025).
In contrast to these global-order methods, our sampler requires only local permutation awareness
within a window of size w, and uses non permutation targets τ . This locality requires only a small
embedding table of dimension w + 1 that encodes the relative order of the w most recent context
tokens. This simple addition preserves the conventional next-token-prediction loss while requiring
only a minor modification to the training pipeline.
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5 Experiments

We study the performance of our resample-previous-token (RPT) in practice. First, in Section 5.2
we demonstrate that RPT sampling can be trained with a minimal fine-tuning of a pretrained next-
token-prediction (NTP) model, while maintaining its NTP performance. Second, in Section 5.3 we
perform an error analysis, comparing RPT to traditional NTP sampling showing improvement in total
variation distance of learned conditional probabilities p̂(xi|x<i) measured over test data, as partially
predicted by the theory in Section 3. Finally, in Section 5.4 we experiment with RPT sampling on
code generation and reasoning benchmarks demonstrating improvements in both RPT pretraining
and sampling.

5.1 Implementation details

Data, architectures, training, and baselines Our data consists of a corpus of one trillion (1T)
language tokens. Throughout all experiments, we use the same training dataset and maintain the
same data order. We pretrained an autoregressive model with 8B parameters, using the standard
cross entropy loss (i.e., equation 13 with σi = i and τi = i+ 1) and the same architectural design as
in Meta (2024) on this 1T token data for 240K iterations as our baseline, denoted AR-F. We denote its
224K iteration checkpoint (i.e., after 90% of the training tokens) by AR-C. We next finetuned AR-C
to reach 240K iteration and the remaining 100B tokens (10% of total training tokens) with m = 16K
iterations in Algorithm 1 with window size w = 3, and hyper-parameters s = 0.5 and q = 0.02,
which corresponds to 80 expected swaps in each sequences of n = 4096 tokens (equation 9). We
train on 256 H100 GPUs and a batch size of 4M tokens. We use AdamW optimizer with a warmup of
2000 steps, a peak learning rate of 1e-3 and a cosine scheduler.

Positional encoding Our method requires information on whether the predicted token is permuted,
see line 10 and 12 in Algorithm 1. To incorporate this information, we introduce a learned positional
embedding layer. One option is to learn this layer applied to the source-target pair, (σi, τi), however
this incorporates global positional encoding. Inspired by relative positional encoding (Su et al., 2021)
we note that the source-target pair can be encoded relatively by using the difference τi − σi as input
to the learned positional embedding layer. For example, in Figure 2, the positional embeddings are
{1, 1,−1, 2, 1, . . . , 1}.
Practical sampling We focus on sampling with w = 2 in the paper as we didn’t see a practical benefit
in sampling with w = 3 window size, which is more computationally demanding (see Appendix B.1).
A benefit in RPT sampling algorithms is that it allows incorporating different sampling heuristics not
usually available in standard AR sampling. Two useful heuristic we tested are: (i) Greedy decoding:
using argmax in PTP sampling p̂(xi|xi+1, x<i); and (ii) Confidence: accepting a token only if
its probability is greater than a threshold, i.e., η = 0.9. In the main paper we always use Greedy
decoding; we show ablation on Greedy decoding in Appendix B.2.

5.2 Evaluation
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Figure 5: NTP losses of the pretrain (in
red) and fine-tune (in green) stages. We
also show the loss curves of PTP-1 (in
orange) and PTP-2 (in blue) that corre-
spond to ℓ = 1 and ℓ = 2 in eq. (8).

We first verify that our fine-tuning process does not de-
grade the NTP sampling performance. Figure 5 presents
the autoregressive training loss for 900B tokens and the
fine-tuning phase, where we train our proposed method for
an additional 100B tokens. The NTP error continues the
same trend where, at convergence, we observe a slightly
higher NTP loss (∼0.02), which is negligible in terms of
cross-entropy (compared to 1.75 at convergence). At the
same time the PTP losses (there are two such conditionals
in w = 3 training corresponding to ℓ = 1, 2 in equation 8)
rapidly converge to a substantially lower error values com-
pared to the NTP loss, as conjectured in our theoretical
analysis in equation 20 in Section 3. Intuitively, the more
future tokens are used for next-token-prediction, the better.
Moreover, in Table 1, we show that sampling with k = 0
(NTP sampling with the fine-tuned model), often achieves
better scores on the benchmarks compared to our autore-
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gressive bassline at convergence, AR-F. This suggests that our fine-tuning in fact could potentially
improve the model’s performance.

5.3 Error analysis

Table 2: Empirical total variation dis-
tance (lower is better) of RPT condition-
als measured on validation data for an
increasing number of RPT iterations k.

k dclm github wiki arxiv se

0 .34 .18 .26 .27 .27
1 .30 .15 .23 .23 .24
2 .30 .14 .23 .22 .23
3 .30 .14 .22 .22 .23

We compute the empirical total variation (TV) distance
(equation 16) between the conditional p̂(xi|x<i) as com-
puted by RPT, and the ground truth distribution p(xi|x<i)
represented by the ground truth token xi in a validation
set. In Table 2 we report empirical TV distances computed
with 128K validation set tokens from each dataset, all of
them with context of at-least 20 tokens, and compute the
RPT error ϵ(k)(xi) = 1−p̂(k)(xi|x<i) where p̂(k)(xi|x<i)
is the predicted probability of xi after k = 0, 1, 2, 3 RPT
iterations (see 4). Iteration k = 0 corresponds to NTP
sampling with our trained model, and the TV error decreases mostly after the first RPT iteration, and
continue to decrease moderately afterwards; this is consistent across all tested validation datasets.
The analysis in Section 3 discusses the error in the limit (mixed) case, which seems to happen after
only a few iterations in practice (for our chosen sampling method).
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Figure 6: Difference of RPT (k = 1) and
NPT probabilities on validation tokens.
RPT improves probabilities of validation
tokens.

Figure 6 compares the probabilities assigned to ground
truth tokens xi by RPT (after k = 1 iteration) and NTP
sampling process, i.e., p̂(1)(xi)− p̂(0)(xi) on the DCLM
dataset. RPT improves the probability of the ground truth
token in 64.5% cases which is another indication of the
improved sampling properties fo RPT compared to NTP.

5.4 Coding and reasoning tasks

We evaluate our method on popular coding and reasoning
benchmarks: HumanEval+ (Chen et al., 2021; Liu et al.,
2023) is a task where the model is required to complete a
given a function signature with a docstring. MBPP (Austin
et al., 2021) contains few-shot code generation tasks from
problem descriptions. GSM8K (Cobbe et al., 2021) consists of grade-school-level mathematical word
problems. Finally, we report results on MultiPL-E, a non-Pythonic version of HumanEval (Ben Allal
et al., 2022).

Table 1 summarizes the results of our experiments, comparing the performance of RPT sampling to
NTP on several baselines. AR-F is our fully trained AR model using NTP sampling. We also report
results using the initial fine-tuning checkpoint AR-C, providing a direct comparison to the initial
pre-fine-tuning state. Additionally, we include results from NTP sampling on our trained model
(k = 0). Our results demonstrate a consistent and significant improvement in performance when
using RPT sampling compared to the NTP baseline. RPT improves both in pretraining (0 iterations)
and RPT sampling (>0 iterations) rather consistently across all 9 benchmarks. All results are reported
with confidence sampling. In Appendix B.2 we also provide the ablation results for non-confidence
sampling, and non-greedy sampling. For a fair comparison between the methods, we follow Gloeckle
et al. (2024) and report oracle score over the temperatures {0.0, 0.05, 0.1}.

6 Conclusions and future work

We introduce Resample-Previous-Tokens (RPT), a sampling method that allows models to revisit and
replace previously generated tokens. After a short fine-tuning of a pretrained model, RPT leads to
approximately 10% relative improvements in reasoning and coding tasks. In the paper, we analyze
the method in a controlled environment as well as large-scale validation datasets. We believe that
RPT sampling has the potential to further enhance AR performance by incorporating larger window
sizes and other pre-defined permutations, such as block-permutations. As our work introduces an
alternative sampling paradigm to autoregressive models, it does not seem to introduce significant
societal risks beyond those that already exist with large language models.
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A Analysis of RPT versus NTP sampling

A.1 Next-token-prediction asymptotic error

Let us first derive the NTP error bound

∥ϵ∥1 ≤ ∥ϵi∥1 + ∥ϵi+1|i∥∞ + o(ϵ). (34)

consider equation 25, i.e.,

ϵ(xi, xi+1) = ϵ(xi)π(xi+1|xi) + ϵ(xi+1|xi)π(xi) + o(ϵ). (35)

and sum both sides after taking absolute values and using the triangle inequality on the r.h.s. to get

∥ϵi,i+1∥1 ≤
∑

xi,xi+1

|ϵ(xi)|π(xi+1|xi) + |ϵ(xi+1|xi)|π(xi) + o(ϵ2) (36)

=
∑
xi

|ϵ(xi)|+
∑
xi

π(xi)

∑
xi+1

|ϵ(xi+1|xi)|

 (37)

≤ ∥ϵi∥1 + ∥ϵi+1|i∥∞. (38)

This bound will be tight for any scenario where

ϵ(xi)ϵ(xi+1|xi)π(xi)π(xi+1|xi) ≥ 0. (39)

We provide a simple example when this holds. Consider V = 2 (vocabulary of size 2), and let

π =

[
α 0
0 β

]
, ϵ =

[
ϵ 0
0 −ϵ

]
, π̂ =

[
α+ ϵ 0
0 β − ϵ

]
, (40)

with α, β > 0 and α+β = 1 and 0 < ϵ < min {a, b}. In this case we have π(xi+1|xi) = π̂(xi+1|xi)
for all xi, xi+1 and therefore ϵ(xi+1|xi) = 0 and equation 39 holds trivially.

A.2 Resample-previous-token asymptotic error

We derive the asymptotic error in the RPT Markov chain transition kernel and consequently the error
bound in equation 32. First, the asymptotic kernel error is

p̂(x′
i, x

′
i+1|xi, xi+1) = π̂(x′

i|xi+1)π̂(x
′
i+1|x′

i)

=
(
π(x′

i|xi+1) + ϵ(x′
i|xi+1)

)(
π(x′

i+1|x′
i)) + ϵ(x′

i+1|x′
i)
)

= p(x′
i, x

′
i+1|xi, xi+1) + ϵ(x′

i|xi+1)π(x
′
i+1|x′

i) + ϵ(x′
i+1|x′

i)π(x
′
i|xi+1) + o(ϵ),

where o(ϵ) are asymptotically smaller than ϵ terms. Therefore the asymptotic kernel error is

e(x′
i, x

′
i+1|xi, xi+1) = ϵ(x′

i|xi+1)π(x
′
i+1|x′

i) + ϵ(x′
i+1|x′

i)π(x
′
i|xi+1) + o(ϵ). (41)

Let us compute the max-norm of the kernel errors,

∥e∥∞ = max
xi,xi+1

∑
x′
i,x

′
i+1

∣∣e(x′
i, x

′
i+1|xi, xi+1)

∣∣ (42)

≤ max
xi,xi+1

 ∑
x′
i,x

′
i+1

|ϵ(x′
i|xi+1)|π(x′

i+1|x′
i) +

∑
x′
i,x

′
i+1

∣∣ϵ(x′
i+1|x′

i)
∣∣π(x′

i|xi+1)

+ o(ϵ) (43)

≤ max
xi,xi+1

∑
x′
i

|ϵ(x′
i|xi+1)|+

∑
x′
i

∑
x′
i+1

∣∣ϵ(x′
i+1|x′

i)
∣∣π(x′

i|xi+1)

+ o(ϵ) (44)

≤ max
xi+1

∑
x′
i

|ϵ(x′
i|xi+1)|+max

x′
i

∑
x′
i+1

∣∣ϵ(x′
i+1|x′

i)
∣∣+ o(ϵ) (45)

=
∥∥ϵi|i+1

∥∥
∞ +

∥∥ϵi+1|i
∥∥
∞ + o(ϵ). (46)
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A.3 Synthetic example - base noises

In section 3 we present results with ϵn = 1. Here we report results of our synthetic experiment with
different base noises, ϵn ∈ {0.1, 0.01}. The RPT improvements are invariant to absolute noise level.
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(a) Maximum errors, ϵn = 0.01.
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(b) Total variation errors, ϵn = 0.01.
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(d) Total variation errors, ϵn = 0.1.
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(f) Total variation errors, ϵn = 1.
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B Ablations

B.1 Window size

Our trained model supports a sampling window of three tokens (w = 3). In the main paper, we present
results for a two-token window (w = 2) sampling. A comparison between the two window sizes is
presented in the table below, which shows that sampling with two and three tokens yields roughly
comparable results. Given the similar performance and the increased efficiency of the two-token
window during sampling, we opted to present results using the two-token window in the main paper.

k w HumanEval+ MBPP GSM8K C++ C# PHP Bash Java TypeScript

AR-F - 25.6 39.0 35.2 28.5 17.7 28.5 6.9 37.9 35.8
AR-C - 24.4 38.8 35.4 28.6 22.8 24.2 8.8 32.9 33.9

0 - 27.4 39.6 35.5 31.0 22.8 26.1 9.5 38.3 37.7

1 2 27.4 40.6 37.5 31.0 22.2 25.5 9.5 41.1 38.4
2 2 28.0 39.0 36.3 31.0 19.6 26.7 9.5 37.9 37.7

1 3 28.0 39.2 35.5 30.4 22.2 25.5 9.5 41.7 38.4
2 3 28.6 39.2 35.6 30.4 19.6 26.7 9.5 39.2 38.4

B.2 Sampling parameters

Table 1 reports results on various task benchmarks using our default RPT sampling that includes
greedy decoding and confidence (set to 0.9), see the practical sampling paragraph in Section 5.1.
Here we complete the picture by showing in the table below ablation results of samplings without
greedy sampling and confidence. We find that the chosen setup is the most stable among the options
considered. Note however, that naive sampling already introduces non-trivial improvements.

k HumanEval+ MBPP GSM8K C++ C# PHP Bash Java TypeScript

AR-F 25.6 39.0 35.2 28.5 17.7 28.5 6.9 37.9 35.8
AR-C 24.4 38.8 35.4 28.6 22.8 24.2 8.8 32.9 33.9

0 27.4 39.6 35.5 31.0 22.8 26.1 9.5 38.3 37.7

1 28.6 39.0 36.0 32.3 20.9 27.9 7.0 34.8 37.7
2 29.9 39.0 35.5 30.4 22.2 27.9 8.9 41.1 35.2

+ Greedy decoding
1 29.9 38.8 35.0 31.7 19.0 27.9 7.0 37.6 35.2
2 28.6 38.8 35.6 32.3 20.9 27.9 7.0 37.6 35.2

+ Greedy decoding + confidence
1 27.4 40.6 37.5 31.0 22.2 25.5 9.5 41.1 38.4
2 28.0 39.0 36.3 31.0 19.6 26.7 9.5 37.9 37.7
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C Temperature analysis

We compare RPT sampling (k > 0) to NTP sampling (k = 0) using nucleus sampling (Holtzman
et al., 2020) with a top-p value of 0.95 and various sampling temperatures. The figures below suggest
that our method is highly and consistently effective, particularly at reasonably large temperatures,
which are larger than the commonly used temperature values for pass@1 evaluations. We demonstrate
these results across various sampling parameter choices (see Appendix B) and find that RPT sampling
consistently improves performance compared to NTP sampling. Experiments here are performed on
HumanEval+.
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(a) Naive sampling (no greedy decoding/confidence).
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(b) Greedy decoding and confidence 0.9.
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(c) Greedy decoding, no confidence.
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(d) Greedy decoding and confidence 0.9.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Implementation is straightforward and general to AR LLMs.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We follow common practice in reporting standard benchmarks.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
[Yes]

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: Foundational research and not tied to particular applications, let alone deploy-
ments.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
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