
Riemannian SAM: Sharpness-Aware Minimization on
Riemannian Manifolds

Jihun Yun
KAIST

arcprime@kaist.ac.kr

Eunho Yang
KAIST, AITRICS

eunhoy@kaist.ac.kr

Abstract

Contemporary advances in the field of deep learning have embarked upon an
exploration of the underlying geometric properties of data, thus encouraging the in-
vestigation of techniques that consider general manifolds, for example, hyperbolic
or orthogonal neural networks. However, the optimization algorithms for training
such geometric deep models still remain highly under-explored. In this paper, we
introduce Riemannian SAM by generalizing conventional Euclidean SAM to Rie-
mannian manifolds. We successfully formulate the sharpness-aware minimization
on Riemannian manifolds, leading to one of a novel instantiation, Lorentz SAM. In
addition, SAM variants proposed in previous studies such as Fisher SAM can be
derived as special examples under our Riemannian SAM framework. We provide
the convergence analysis of Riemannian SAM under a less aggressively decaying
ascent learning rate than Euclidean SAM. Our analysis serves as a theoretically
sound contribution encompassing a diverse range of manifolds, also providing the
guarantees for SAM variants such as Fisher SAM, whose convergence analyses are
absent. Lastly, we illustrate the superiority of Riemannian SAM in terms of gener-
alization over previous Riemannian optimization algorithms through experiments
on knowledge graph completion and machine translation tasks.

1 Introduction

Deep learning incorporating the underlying geometry of data, referred to as geometric deep learning
(GDL), has emerged as a significant research area in recent years due to its remarkable capability to
effectively capture intrinsic structural properties. As a significant direction in this line, hyperbolic
representation learning has been shown to offer several advantages over conventional Euclidean
geometry. For example, the hyperbolic space allows for more efficient representations of high-
dimensional data by offering a more flexible and natural way to model hierarchical structures,
which are commonly encountered in network embeddings [1, 2, 3], computer visions [4, 5], and
natural language processing [6, 7]. Adding to the fascinating array of approaches in geometric deep
learning, the orthogonal neural networks enforcing the orthogonality in model parameters emerge
as a promising research area. In another dimension, the orthogonal neural networks that constrain
the model parameter to satisfy the orthogonality (known as Stiefel manifold) are proposed [8, 9, 10]
under the motivation that they prevent the vanishing/exploding gradient problem and theoretically
enhance the model generalization [11]. Furthermore, more generally, the Riemannian extension
of deep learning technique on Euclidean space continues to be proposed in many fields including
Riemannian normalizing flows [12, 13], Riemannian diffusion models [14], Poincaré ResNet [15],
hyperbolic deep reinforcement learning [16].

Along with the attempts to learn non-Euclidean representations in deep learning, Riemannian opti-
mization has also been greatly studied to train non-Euclidean deep models. As a pioneering example,
Riemannian (stochastic) gradient descent (R(S)GD) [17] is an extension of (stochastic) gradient
descent to Riemannian manifolds, which updates the gradient computed on (a random subset of) the

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

training data at each iteration and then projects the gradient onto the tangent space of the manifold
before taking a descent step. Starting with Riemannian gradient descent, several popular optimization
algorithms in Euclidean space, such as conjugate gradient and trust region, have been generalized
to Riemannian manifolds [18, 19, 20, 21, 22, 23, 24]. In addition to these previous works, there
have been many studies to incorporate the momentum and variance reduction technique into the
Riemannian manifolds. In this line of work, many optimization algorithms are proposed including
the stochastic variance reduction scheme (R-SVRG) [25], stochastic recursive momentum (R-SRG)
[26], and stochastic path-integrated differential estimator (R-SPIDER) [27], extended from their Eu-
clidean counterparts. Going beyond the first-order algorithms, Riemannian (quasi)-Newton methods
[28, 29] are a family of second-order methods using a (quasi)-Newton approach on Riemannian
manifolds. In the context of deep learning, Riemannian extensions of adaptive gradient methods
(ex. AdaGrad/Adam/AMSGrad) are proposed [30, 31, 32], which combines the benefits of adaptive
learning rate methods with the efficiency of Riemannian optimization techniques.

However, the exploration of optimization algorithms for training deep learning models on non-
Euclidean geometry has been considerably limited, highlighting the need to generalize successful
optimizers in Euclidean space to Riemannian manifolds. Under this motivation, we introduce a new
class of optimization schemes on Riemannian manifolds. Toward this, as our motivating optimization
algorithm, we consider the sharpness-aware minimization (SAM) [33] in Euclidean space, which
efficiently improves model generalization by considering the underlying geometry of loss landscapes.
With the great success of SAM, several SAM variants including adaptive SAM [34], Fisher SAM
[35], Efficient SAM [36], and GSAM [37], are proposed in recent years. In this paper, we propose
Riemannian SAM, a sharpness-aware minimization on Riemannian manifolds that can be applied to
various manifolds. Our Riemannian SAM considers the sharpness of the loss defined on manifolds,
thereby effectively improving model generalization. We believe that our framework could further
bring out the potential of the Riemannian deep models and enable more accurate evaluation.

Our contributions are summarized as follows:

• We introduce Riemannian SAM, a sharpness-aware minimization scheme on Riemannian
manifolds. Under our framework, we present a novel instance, Lorentz SAM, mainly used
in our empirical evaluations. Furthermore, one of the SAM variants, Fisher SAM, which
considers the underlying distribution space of neural networks can be derived as a special
example under our Riemannian SAM framework.

• We provide the convergence analysis of Riemannian SAM. Our convergence analysis
achieves the first-order optimal rate of SGD and we highlight the challenges in our analysis.
We allow for a less aggressively decaying ascent learning rate than the condition in the
convergence of Euclidean SAM. Also, we provide the convergence guarantee for the SAM
variants such as Fisher SAM whose convergence proofs are absent.

• We validate the Riemannian SAM on knowledge graph completion and machine trans-
lation tasks for hyperbolic neural networks. The state-of-the-art hyperbolic architecture
equipped with our Riemannian SAM improves the performance of the baselines trained with
Riemannian Adam, which is a conventional optimizer in Riemannian deep learning.

2 Preliminaries

Before introducing the sharpness-aware minimization on Riemannian manifolds, we organize the
necessary concepts and notations for Riemannian geometry and Riemannian optimization.

2.1 Riemannian Geometry for Optimization

We refer to the definitions in literature [38, 39, 40] where one can find more details.

Definition 1 (Riemannian manifold). For each w ∈ M, let TwM denote the tangent space at
w. An inner product on tangent space TwM is a bilinear, symmetric, positive definite function
gw(·, ·) := ⟨·, ·⟩w : TwM× TwM→ R. If a metric ⟨·, ·⟩w smoothly varies with w ∈ M, we call
⟨·, ·⟩w a Riemannian metric. An induced norm on TwM is ∥ζ∥w :=

√
⟨ζ, ζ⟩w. A Riemannian

manifold is a pair (M, g) of the manifoldM and the associated Riemannian metric tensor g.

2

Definition 2 (Geodesic). A geodesic is a curve γ(·) : [0, 1]→M that locally minimizes the distance
between two points on a manifold with constant speed, which is the generalization of a straight line
in Euclidean space.
Definition 3 (Exponential maps/Retraction). An exponential map expw : TwM → M maps a
tangent vector ζw ∈ TwM onto M along a geodesic curve such that γ(0) = w and γ(1) = z
with γ̇(0) = ζw. Specifically, γ(t) := expw(ζwt) represents a geodesic. A retraction Rw(·) is a
(computationally efficient) generalization of an exponential map satisfying the following properties:

• Rw(0) = w and DRw(0) = IdTwM where DRw represents the derivatives of Rw and
IdTwM denotes an identity map on TwM.

Definition 4 (Parallel translation/Vector transport). A parallel translation Pw
z (·) : TzM→ TwM

transport a tangent vector in TzM to TwM in parallel while preserving norm and direction (i.e.,
along a geodesic). A vector transport T (γ)wz (·) : TzM → TwM with respect to retraction
map R maps a vector ζz ∈ TzM to ζw ∈ TwM along a retraction curve γ(t) = Rw(ξwt) for
some ξw ∈ TwM, which is computationally efficient approximation of a parallel translation. In
this work, we only consider isometric vector transport, i.e., ⟨T w

z ζz, T w
z ηz⟩w = ⟨ζw, ηw⟩w for all

ζw, ηw ∈ TwM.

We introduce important examples of Riemannian manifolds in deep learning. The initial two instances
represent dominant manifolds within the realm of hyperbolic deep learning. Hyperbolic space is a
natural geometry for capturing underlying tree-like, graph-shaped, or hierarchical structures, which
are properties existing in many real datasets. Owing to this characteristic, there have been many
approaches to hyperbolic deep learning encompassing network embeddings [1, 2, 3, 41], computer
vision [4, 5], and natural language processing [42, 6]. For manifolds in hyperbolic space, we mainly
follow the definitions in [1, 2].

Poincaré Ball. The Poincaré ball Pn = (Bn, gp) is a Riemannian manifold with

Bn = {x ∈ Rn : ∥x∥2 < 1}, gp(x) =
(2

1− ∥x∥22

)2

ge(x).

where ge represents an Euclidean metric tensor. The associated distance on Poincaré ball is given by

dp(x, y) = arcosh
(
1 + 2

∥x− y∥22
(1− ∥x∥22)(1− ∥y∥22)

)
.

We remark on some properties of the Poincaré ball. The Poincaré ball is a conformal model, meaning
that angles between curves are preserved under conformal transformations. This property enables the
Poincaré ball to accurately represent the local geometry of complex spaces. Additionally, the Poincaré
ball offers an intuitive visualization of hyperbolic spaces, particularly in two or three dimensions.
Despite these advantageous properties, the Poincaré ball also presents challenges in computing
mathematical concepts such as geodesics and distances.

Lorentz Model. The Lorentz model Ln = (Hn, gℓ) is a semi-Riemannian manifold, but it is still
possible to employ Riemannian optimization. The Lorentz model consist of

Hn = {x ∈ Rn+1 : ⟨x, x⟩L = −1, x0 > 0}, gℓ(x) =


−1 · · · 0 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 . (1)

where ⟨x, y⟩L = −x0y0 +
∑n

j=1 xjyj is known as the Lorentzian scalar product. The associated
distance function is given by

dℓ(x, y) = arcosh
(
− ⟨x, y⟩L

)
Note that an n-dimensional Lorentz model requires one more redundant dimension in Euclidean
space. Importantly, Poincaré ball and the Lorentz model are equivalent under the diffeomorphism
φ : Hn → Pn (with the corresponding inverse mapping φ−1 : Pn → Hn) defined as

φ(x0, x1, · · · , xn) =
(x1, x2, · · · , xn)

p0 + 1
, (2)

φ−1(x1, x2, · · · , xn) =
(1 + x2

1 + · · ·+ x2
n, 2x1, · · · , 2xn)

1− (x2
1 + · · ·+ x2

n)
. (3)

3

We also remark on some characteristics of the Lorentz model. The main advantage is that it allows for
more stable Riemannian optimization under relatively simple formulas for mathematical quantities,
such as geodesics and distances. However, the visualization is difficult due to less intuitive projection
onto a lower-dimensional space. As noted in each manifold, both two manifolds on hyperbolic
space are equivalent, but they have different purposes. For this reason, some studies [2] use Lorentz
manifolds for their model design and training, then visualize the results on Poincaré ball using the
diffeomorphism φ in (2) and (3).

Stiefel manifold. The orthogonality, i.e., WTW = I for model parameter W , plays a role to
circumvent the vanishing/exploding gradient problem [8, 10, 43] and delivers theoretically enhanced
generalization error bounds [11]. The Stiefel manifold St(n, p) = (Vn, gW) for n ≥ p is prevalent
for orthogonal neural networks, which is also a Riemannian manifold defined by

Vn = {X ∈ Rn×p : XTX = I}, gW (Z1, Z2) = Tr(ZT
1 Z2).

for tangent vectors Z1, Z2 ∈ TWSt(n, p). The tangent space of St(n, p) at W is defined by
TWSt(n, p) = {Z : ZTW +WTZ = 0}.

2.2 Riemannian Optimization

We are interested in the following optimization problem over the Riemannian manifold (M, g)

min
w∈M

L(w).

where L : M → R is a smooth function defined on manifold M. Following the work [17],
Riemannian stochastic gradient descent (RSGD) updates the model parameter w ∈M as

wt+1 = expwt

(
− αtgradL(wt)

)
. (4)

where gradL(wt) ∈ Twt
M is a Riemannian gradient at wt and αt is the learning rate. In some

practical cases, the exponential map is computationally inefficient. Hence, it may be replaced with
(more computationally efficient) suitable retraction map Rwt(·), yielding the update rule wt+1 =
Rwt

(
− αtgradL(wt)

)
. Generally, the Riemannian gradient gradL(wt) in (4) is computed with the

Riemannian metric tensor g as

gradL(wt) = g−1(wt)∇L(wt). (5)

where ∇L(wt) denotes the Euclidean gradient. This is also known as natural gradient descent [44].
The quantity on the right-hand side in (5) may not be on Twt

M. In this case, we should project the
gradient onto the tangent space since the exponential map is not defined.

3 Sharpness-Aware Minimization on Riemannian Manifolds

In empirical risk minimization (ERM) including deep learning tasks, we generally minimize the
finite-sum objective (or equivalently expected objective) for training dataset D = {(xi, yi)}ni=1 as

min
w∈M

L(w) := 1

n

n∑
i=1

L(w;xi). (6)

where the smooth loss function L(·) : M → R is defined on a Riemannian manifold M. We
formulate the sharpness-aware minimization in terms of loss function values on the manifoldM as

min
w∈M

max
∥δ∥2

w≤ρ2

{
L(Rw(δ))− L(w)

}
︸ ︷︷ ︸

Sharpness in terms of loss function

. (7)

In contrast to Euclidean space, the Riemannian manifold is not a vector space in general. Hence,
the familiar concepts defined in Euclidean space may not be well-defined. Therefore, we restrict
the perturbation δ in the tangent space TwM. To solve the inner subproblem, we resolve the inner
optimization problem in a different manner as

max
δ∈TwM

L
(
Rw(δ)

)
− L(w) such that ∥δ∥2w ≤ ρ2. (8)

4

for a fixed point w ∈ M. For ease of computations, we approximate the perturbed loss function
L
(
Rw(δ)

)
via Taylor’s expansion as

L
(
Rw(δ)

)
≈ L(w) + ⟨gradL(w), δ⟩w. (9)

Then, our inner maximization problem comes in hand:

max
δ∈TwM

⟨gradL(w), δ⟩w such that ∥δ∥2w ≤ ρ2. (10)

This problem could be easily solved since it finds the steepest direction δ on Riemannian manifold
M, whose solution is known to be just Riemannian gradient. Therefore, we have

δ∗ = ρ
gradL(w)
∥gradL(w)∥w

. (11)

Under the optimal perturbation δ∗ in (11), we further approximate the gradient of the sharpness-aware
minimization in (7) (for outer minimization problem) as

gradL
(
Rw(δ

∗)
)
≈ gradL(w)|w=Rw(δ∗). (12)

since the left-hand side of (12) requires a higher-order Riemannian gradient, which is not compu-
tationally feasible in practice. The remaining is that the approximated Riemannian SAM gradient
gradL(w)|w=Rw(δ∗) in (12) is not on the tangent space at w, TwM. To perform an actual parameter
update on w, we should transport the Riemannian SAM gradient to the tangent space TwM via
vector transport T w

Rw(δ∗) with respect to the retraction Rw. We summarize the overall optimization
procedure in Algorithm 1. Note that, in order to consider the most practical case, we assume that
the same minibatch is used for computing SAM perturbation with the ascent step and the actual
parameter updates with the descent step (see lines 5, 6, and 8). In fact, one can use different batches
for lines 5 ∼ 7 and lines 8 ∼ 10 respectively or full-batch gradient for both ascent and descent steps.

Remarks on Algorithm 1. In fact, it might be most natural to choose a perturbation region at the cur-
rent point as in the conventional Euclidean SAM, δ ∈ Bρ(wt) := {x ∈M : dM(wt, x) ≤ ρ} where
dM represents the distance on the manifold. However, adopting the constraint in this manner may pose
challenges in utilizing the standard assumptions for analyzing non-convex Riemannian optimization,
such as geodesic or retraction smoothness (see condition (C-4) in Section 4), which makes it difficult
to guarantee convergence. Moreover, the computation of dM is often computationally inefficient in
practice. Another possible extension is to apply the vector transport operation from line 8 of Algorithm
1 to line 9. The following outlines the modified procedure: (i) gadvt = A

(
gradL(w;S)|w=wadv

t

)
and (ii) ∆t = T wt

wadv
t

gadvt . For base optimizer A, any optimization algorithm commonly used in
Riemannian optimization can be adopted (e.g., Riemannian SGD). In the meanwhile, when the vector
transport is applied after constructing gadvt via the momentum-based optimizer A, the momentum
construction takes place on the tangent space Twadv

t
M at the perturbed point wadv

t , while the pa-
rameter update occurs on the different tangent space at the point. As a consequence, this might
introduce another challenges in understanding and analyzing the overall optimization process. In this
perspective, various alternative extensions can also be possible, but among them, we have carefully
designed a theoretically valid, computationally practical, and non-trivially extended Sharpness-Aware
Minimization on general manifolds for Riemannian optimization. Then, we have successfully demon-
strated both convergence analysis (Section 4) and empirical studies (Section 5) to corroborate our
Riemannian SAM.

Existing example of Riemannian SAM framework: Fisher SAM. Following our Riemannian
SAM update rule in Algorithm 1, we can show that Fisher SAM is a special instance of Riemannian
SAM. We can view the set of neural networks as a neuromanifold [45, 46] equipped with the KL
divergence metric between two points. Hence, let w ∈ M be the point on a neuromanifold (or
statistical manifold)M which is realized by Euclidean network parameter θ ∈ Rd. On distribution
space, the corresponding metric tensor g is known to be Fisher information matrix [44, 45, 46].
According to Algorithm 1, the perturbation at line 6 and 7 could be computed as

gradL(w) = F (θ)−1∇L(θ)

δ∗ = ρ
gradL(w)
∥gradL(w)∥w

= ρ
F (θ)−1∇L(θ)√

gradL(w)TF (θ)gradL(w)
= ρ

F (θ)−1∇L(θ)√
∇L(θ)TF (θ)−1∇L(θ)

.

5

Algorithm 1 Riemannian SAM: Sharpness-Aware Minimization on Riemannian Manifolds

1: Input: Descent learning rate αt, ascent learning rate ρt, and a base Riemannian optimizer A
(such as Riemannian SGD, Riemannian Adam).

2: Initialize: w0 ∈M
3: for t = 0, 1, . . . , T − 1 do
4: Draw a minibatch sample S = {x1, · · · , x|S|}.

5: gt ← 1
|S|

|S|∑
i=1

gradL(wt;xi). ▷ Stochastic Riemannian gradient

6: δt ← gt
∥gt∥wt

. ▷ Perturbation (11)

7: wadv
t ← Rwt(ρtδt). ▷ SAM ascent step

8: gadvt ← T wt

wadv
t

gradL(w;S)|w=wadv
t

. ▷ Gradient at wadv
t and transport to Twt

M
9: ∆adv

t ←A(gadvt). ▷ An update vector via a base optimizer A
10: wt+1← Rwt

(
− αt∆

adv
t

)
. ▷ Final descent step

11: end for
12: Output: wT

which is entirely identical to the perturbation of Fisher SAM [35].

Novel example: Lorentz SAM on hyperbolic geometry. We derive the novel instance of Riemannian
SAM called Lorentz SAM over the Lorentz model introduced in 2.1. First, we derive the Riemannian
gradient on the Lorentz model Ln = (Hn, gℓ). As in Section 2.2, the Riemannian gradient could be
computed as

h = g−1
ℓ ∇L(w). (13)

Since gℓ in (1) is a diagonal matrix, it is easy to compute the vector h with Euclidean gradient∇L(w).
However, the vector h is not on the tangent space at w, TwLn, thus we should have to project the
vector h onto the tangent space TwLn. The projection is easily computed in a closed-form as

projw(v) = v + ⟨w, v⟩Lw. (14)

Hence, the Riemannian gradient on Lorentz model is computed by

gradL(w) = projw
(
g−1
ℓ ∇L(w)

)
. (15)

As a next step, we should normalize the Riemannian gradient as in line 6 in Algorithm 1, and this
is easy to compute as ∥gradL(w)∥w =

√
⟨gradL(w), gradL(w)⟩L via Lorentzian scalar product

⟨·, ·⟩L defined in Section 2.1.

We utilize the Lorentz SAM derived above for our primary empirical studies conducted on hyperbolic
space. In a similar way, one can derive the Riemannian SAM on Poincaré ball or Stiefel manifold,
which we defer to Appendix.

3.1 Riemannian SAM Illustration: Toy 3D Illustration

−π −π
2 0 π

2 π

θ

−π
2

0

π
2

ϕ

Toy Example

0.27 0.27

0.27 0.27

0.
27

0.27 0.
27 0.27

0.
27

0.
27

0.
27

0
.2

7

0.
30 0.
30

0.
30

0.
30

0.30

0.
30

0.30

0.
30

0.30

0.
30

0.30

0.
30

0.33 0.33 0.33 0.33

0
.3

3

0.33

0
.3

3

0.33

0.
33

0.33

0.
33

0.33

0.36

0
.3

6

0.36

0
.3

6

0.
36

0.36

0.
36

0.36

0.36

0.
36

0.36

0.36

0.
39

0.
39

0.39

0.39

0.39

0.39

0.
42

0.42

0.
42

0.42

0.45

0.45

0.
45

0.45

0.
45

0.
45

0.
45

0.450.45

0.
45

0.
48

0
.4

8

0.48

0.
48

0.48

0.48

0.48

0.
48

0.48

0.48

0
.5

1

0
.5

1

0.51

0.5
1

0.
51

0.51

0.51

0.
510.
51

0.51

0.54

0.
54

0.5
4

0
.5

4

0.54

0.
54

0.
54

0.54

0.
54

0.
54

0.57

0.
57

0.57 0.
57

0.57

0.
57

0
.5

7

0
.5

70
.5

7 0
.5

7

0.60

0.60

0.
60

0.
60

0.60
0.60

0
.6

0

0.60

0.60

0
.6

0

0.
63

0.
63

0.
63 0.63

0
.6

3

0.63

0.63

0.
630.63

0.
63

0.66

0
.6

6

0.
66

0.66

0.66

0.
66

0.66

0.
66

0
.6

6

0.66

0
.6

9

0.69

0.69

0.
69

0
.6

9

0
.6

9

0.
69

0
.6

9

0
.7

2 0
.7

2

0.
72

0
.7

2

0.72

0.72

0
.7

2

0.
72

0.75

0
.7

5

0.
75

Initial Point

RiemannianSAM

Euclidean SAM

Figure 1: Toy 3D illustration

We illustrate the 3-dimensional toy example on the sphere
manifold. Let us define the 3D sphere manifold S2 with
the tangent space at w, TwM as

S2 := {w ∈ R3 : ∥w∥2 = 1},
TwS2 := {v ∈ R3 : wTv = 0}

We consider the regression problem with the neural-net-
like objective function on the randomly generated syn-
thetic dataset. Toy 3D optimization problem with ob-
jective function f(w) = 1

2n∥y − ReLU(Xw)∥22 where
X ∈ R500×3 and y ∈ R500 are drawn from N (0, 12)
and U(0, 1) respectively with the model parameter w =
(x, y, z) ∈ R3 under ∥w∥2 = 1. (a) Comparison of con-
verged points for each method. We plot the contour plots
with the spherical coordinates under the relation (x, y, z)↔ (r, θ, φ) = (1, θ, φ).

6

0 20 40 60 80 100
Iteration

2.80

2.85

2.90

2.95

3.00

3.05

3.10

T
r(
H

(θ
))

Hessian Trace

RiemannianSAM

Euclidean SAM

(a) Trace of Hessian, Tr(∇2f(w))

0 20 40 60 80 100
Iteration

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

‖g
ra

d
f

(θ
)‖
θ

Manifold-Aware Sharpness

RiemannianSAM

Euclidean SAM

(b) Manifold-Aware Sharpness, ∥gradf(w)∥w

Figure 2: Comparison of two sharpness measures.

The Figure 1 corresponds to Cartesian coordinates (x, y, z) to spherical coordinates (r, θ, φ) =
(1, θ, φ), rendering contour plots. In Figure 1, we showcases the converged points on the objective
function under the optimization using Riemannian SAM (in purple color) and the conventional
Euclidean SAM (in pink color). Within a maximum iteration budget 100, the purple point (Riemannian
SAM) attains a loss value of 0.3800 while the pink point (conventional Euclidean SAM) converges
with a slightly higher loss value of 0.3808.

Furthermore, in terms of sharpness measures, we consider the following basic two quantities: (i)
the trace of the Hessian (sharpness in the context of Euclidean space), and (ii) manifold-aware
sharpness, characterized by the Riemannian gradient norm ∥gradL(w)∥w. Notably, the manifold-
aware sharpness aligns with information-geometric sharpness [47] when dealing with statistical
manifolds, where the Riemannian metric is defined by the Fisher information. For the aforementioned
problem, we compare two metrics and Figure 2 depicts the results. In both metrics, Riemannian SAM
achieves smaller sharpness values than Euclidean SAM, implying convergence toward flatter regions.
In other words, since the Euclidean SAM might fail to properly consider the underlying structure
of the manifold even for toy examples, this phenomenon is expected to be exacerbated in extremely
high-dimensional problems such as deep learning.

4 Convergence Analysis

In this section, we present the convergence guarantees for the RiemSAM framework. Our goal is to
find a first-order ϵ-approximate solution: the output w̃ such that E

[
∥gradL(w̃)∥2w̃

]
≤ ϵ2, which is a

generalized convergence criterion of Euclidean ϵ-stationary point. To guarantee the convergence for
ϵ-approximate solution, we require the following mild assumptions.

(C-1) (Upper-Hessian bounded) The objective function L is said to be upper-Hessian bounded
in U ⊂ M with respect to retraction R if there exists some positive constant C such that
d2L(Rw(tη))

dt2 ≤ C, for all w ∈ U and η ∈ TwM with ∥η∥w = 1, and for all t such that Rw(τη)
for all τ ∈ [0, t].

(C-2) (Lower-bounded) The objective function L(·) is differentiable and has bounded suboptimality.
L(w∗) > −∞.

for the optimal point w∗ ∈M.
(C-3) (Unbiasedness and bounded variance) The stochastic Riemannian gradient is unbiased and

has a bounded variance:
E(x,y)∈D[gradL(w;x)] = gradL(w),
E(x,y)∈D[∥gradL(w;x)− gradL(w)∥2w] ≤ σ2.

where gradL(w) is a true Riemannian gradient evaluated on a full batch of training dataset D.
(C-4) (Retraction smoothness) We assume that there exists a constant LS > 0 such that

L(z) ≤ L(w) + ⟨gradL(w), η⟩w +
1

2
LS∥η∥2w.

7

for all w, z ∈M and γ(t) := Rw(tη) represents a retraction curve onM for η ∈ TwM with the
starting point γ(0) = w and the terminal point γ(1) = z.

(C-5) (Individual Retraction Lipschitzness) We assume that there exists LR > 0 such that

∥T (γ)wz gradL(z;x)− gradL(w;x)∥w ≤ LR∥η∥w.
for all w, z ∈ M. As in condition (C-4), γ(t) denotes a retraction curve and T (γ)wz is a vector
transport associated with this retraction curve.

The function class with condition (C-1) corresponds to the continuous function family with Lipschitz
continuous gradients in the Euclidean space [26, 32, 48]. The assumptions (C-2)∼ (C-4) are standard
in convergence analysis of Riemannian optimization algorithms, under which Riemannian SGD
is known to be first-order optimal [49]. Note that, unlike in Euclidean space, the constant LS in
(C-4) and LR in (C-5) may be different. According to [26, 50], the condition (C-5) can be derived
under the standard assumption on retraction Lipschitzness with parallel translation and one additional
assumption on the bound between the parallel translation and the vector transport, but we assume
the retraction Lipschitzness with the vector transport for simplicity. Lastly, in condition (C-5), the
retraction Lipschitzness is assumed individually with respect to each sample in order to control the
alignment of SAM gradient and the original gradient step as in [51].

Now, we are ready to present our main theorem.
Theorem 1 (Convergence of Riemannian SAM). Let w̃ denote an iterate uniformly chosen at random
from {w1, w2, · · · , wT }. Further, we let L̃ = max{LS , LR} where the constants LS and LR are
defined in condition (C-4) and (C-5) respectively. Under the conditions (C-1) ∼ (C-5) with descent
learning rate αt =

1√
TL̃

and ascent learning rate ρt =
1

T 1/6L̃
, we have the following complexity for

the constant batch size b:

E
[
∥gradL(w̃)∥2w̃

]
≤ Q1∆√

T
+

Q2σ
2

b
√
T

+
Q3σ

2

bT 5/6
= O(1/

√
T). (16)

where ∆ = L(w0)−L(w∗) and the constants {Qi}3i=1 are irrelevant to the total iteration T or the
manifold dimension d.

We make some remarks on our convergence results and relationship to conventional Euclidean SAM.

0 5 10 15 20
Iteration

0

5

10

15

20

25

D
eg

re
e

b
et

w
ee

n
V

ec
to

rs

On Statistical Manifold

6 (T wt
wadvt

gradf(wadvt), gradf(wt)) (Ours)

6 (∇f(wadvt),∇f(wt)) (Euclidean SAM)

Figure 3: Toy 2D illustration

Theoretical implications. Our key observation of Theo-
rem 1 lies in the alignment between the Riemannian gradi-
ent gradL(wt) (line 5 in Algorithm 1) and the Riemannian
SAM gradient T wt

wadv
t

gradL(wadv
t) (line 9 in Algorithm 1)

for the perturbed point wadv
t , wadv

t . The previous study
[51] on Euclidean SAM says that Euclidean SAM gradient
should be well-aligned with the true gradient step for con-
vergence. Unlike the theoretical claim in [51], we stress
that for convergence guarantee those gradients should be
well-aligned within the preconditioned space (by inverse
Riemannian metric) regardless of alignment in Euclidean
space. To verify this insight, we directly measure the an-
gles between two vectors with a 2D toy example, illustrat-
ing how they align in practice. Toward this, we consider
two angles: (i) ∠(∇f(wadv

t),∇f(wt)) (Euclidean Align-
ment) and (ii) ∠(T wt

wadv
t

gradf(wadv
t), gradf(wt)) (Riemannian Alignment, Ours). In this example,

we consider the logistic regression where 200 data samples are generated with 100 of them sampled
from N (−1, 12) and the remaining sampled from N (1, 12). The labels are assigned such that if a
sample was drawn from a Gaussian distribution with a mean of −1, the label was set to y = 0, and
otherwise, we set y = 1. We minimize the cross-entropy loss with our Riemannian SAM with the
Fisher information matrix as the Riemannian metric. The Figure 3 depicts the comparison of angles.
The loss decreases up to 10-th iteration, after which it remains around the converged point. As evident
from the illustration, while the angles between the Euclidean space SAM gradient and the gradient
deviate by up to around 25 degrees, the angles between the preconditioned SAM gradient and the
preconditioned gradient, influenced by the Fisher information, align more closely with deviations

8

Table 1: Link prediction results (%) in the filterated setting for WN18RR and FB15k-237 datasets. For
hyperbolic architectures, β ∈ {200, 400, 500} and we report the best result. The results of baselines
are taken from [52] except for HYBONET whose results are reproduced by ourselves. The best results
among hyperbolic architectures with the same dimensions are in boldface. Our Riemannian SAM
(denoted by rSAM) shows the superior performance compared to Riemannian Adam (denoted by
rAdam).

WN18RR FB15k-237

Manifold Model #Dims MRR H@10 H@3 H@1 #Dims MRR H@10 H@3 H@1

Hyperbolic

MURP 32 46.5 54.4 48.4 42.0 32 32.3 50.1 35.3 23.5
ROTH 32 47.2 55.3 49.0 42.8 32 31.4 49.7 34.6 22.3
ATTH 32 46.6 55.1 48.4 41.9 32 32.4 50.1 35.4 23.6
HYBONET
w/ rAdam 32 48.8±0.2 55.4±0.1 50.3±0.2 45.5±0.3 32 33.5±0.2 51.5±0.2 36.5±0.3 24.2±0.3

HYBONET
w/ rSAM 32 49.3±0.2 56.0±0.2 50.7±0.1 46.2±0.3 32 34.3±0.2 52.0±0.1 37.3±0.3 25.1±0.4

MURP β 48.1 56.6 49.5 44.0 β 33.5 51.8 36.7 24.3
ROTH β 49.6 58.6 51.4 44.9 β 34.4 53.5 38.0 24.6
ATTH β 48.6 57.3 49.9 44.3 β 34.8 54.0 38.4 25.2
HYBONET
w/ rAdam β 51.2±0.2 57.1±0.2 52.5±0.2 48.3±0.2 β 35.2 52.9 38.7 26.3

HYBONET
w/ rSAM β 51.6±0.2 58.7±0.3 53.3±0.2 48.6±0.1 β 36.0±0.2 54.3±0.4 39.6±0.2 26.6±0.1

only up to a maximum of 10 degrees. In high-dimensional loss landscapes, we expect that the angles
would become significantly larger, corroborating our theoretical insight.

On upper bound. Distinct from the convergence of Euclidean SAM [51], our upper bound (16) has
the additional term involving Q3, but we still achieve the optimal complexity of SGD, O(1/ϵ4) for
ϵ-approximate solution. Note that the presence of term involving the constant Q3 in our bound comes
from the fact that (i) smoothness condition (C-4) and Lipschitzness condition (C-5) are not equivalent
on manifolds and (ii) we should handle the vector-transported gradients (see line 8 in Algorithm 1) at
each iteration, which are the main challenges in our proof. Our results can also provide the guarantees
for SAM variants such as Fisher SAM [35], whose convergence guarantees are missing.

5 Experiments

We conduct two sets of experiments; (i) knowledge graph completion, and (ii) machine translation.
The first experiment aims to evaluate our Riemannian SAM on shallow networks and the second
task is for optimizing large-scale deep neural networks. For all our experiments, we consider the
Lorentz manifold introduced in Section 2.1 and employ the recent hyperbolic architecture, HYBONET
[52]. The HYBONET is a fully hyperbolic neural network, whose each layer is constructed on the
Lorentz manifold including a linear, attention, residual, and positional encoding layer. We implement
our Riemannian SAM upon Geoopt framework [53] written in PyTorch library [54]. Regarding
hyperparameters, we basically adhere to the same experiment settings in [52] and the details are
provided in each section and Appendix.

5.1 Knowledge Graph Completion

A knowledge graph completion aims to predict missing relationships within a knowledge graph, which
represents structured information as a collection of entities, their attributes, and the relationships
between them. More precisely, knowledge in a graph is of the form of triplets (h, r, t) where h, r,
and t denote the head entity, the relationship or predicate, and the tail entity respectively. In the
knowledge graph completion task, given a partially populated knowledge graph, the goal is to predict
the missing entity or relationship in a triplet: solving (h, r, ?) and (?, r, t).

In our experiments, we use two popular benchmark datasets; WN18RR [41] and Fb15k-237 [55]. We
employ the same data preprocessing in [3] and two standard metrics for evaluations: (i) Mean Recipro-
cal Rank (MRR), the average of the inverse of the true entity ranking, and (ii) Precision at K (H@K),
the proportion of test instances where the correct answer appears in the top-K ranked predictions. For

9

Table 2: The BLEU scores on the test set of IWSLT ’14 and WMT ’14 under low-dimensional setting
following the hyperbolic study [56] with the word vector dimension d = 64. The results on baselines
are taken from [52] except for HYBONET whose results are reproduced by ourselves.

Manifold Model IWSLT ’14 WMT ’14

Euclidean CONVSEQ2SEQ [57] 23.6 14.9
TRANSFORMER [58] 23.0 17.0

Hyperbolic

HYPERNN++ [56] 22.0 17.0
HATT [42] 23.7 18.8
HYBONET (with Riemannian Adam) 25.5 19.3

HYBONET (with Riemannian SAM, Ours) 26.0 20.1

marginal hyperparameter tuning, we tune the ascent learning rate ρt ∈ {10−4, 10−3, 10−2, 10−1} for
Riemannian SAM and the other hyperparameters are the same as HYBONET [52] for fair comparisons.

Table 1 illustrates the results on WN18RR and Fb15k-237 datasets. As in previous work [52], we
test our Riemannian SAM on two different regimes: (i) small embedding dimension 32 and (ii) large
dimension β ∈ {200, 400, 500} for both datasets. Regarding the large dimension, we report the best
results among the dimension candidates. In Table 1, Riemannian SAM on the Lorentz model achieves
the best performance with great margins for all comparison metrics. In the same way, Riemannian
SAM shows the state-of-the-art performance for all metrics considered under both regimes.

5.2 Machine Translation

In this experiment, we evaluate our Riemannian SAM on Lorentz Transformer built with Lorentz
components introduced in [52] for IWSLT ’14 and WMT ’14 benchmark datasets in machine
translation. We use the BLEU score as an evaluation metric on the IWSLT ’14 test set and the
newstest2013 test set of WMT ’14 respectively. According to [56], we train hyperbolic models
with Riemannian SAM in a low-dimensional setting where the dimension of the word vector is
d = 64. As in the knowledge graph completion task, we choose the ascent learning rate in ρt ∈
{10−5, 10−4, · · · , 10−2} for marginal hyperparameter tuning.

Table 2 demonstrates the results. HYBONET baseline trained with Riemannian Adam already outper-
forms the Euclidean Transformer in both IWSLT ’14 and WMT ’14 datasets. Upon this baseline, we
only substitute our Riemannian SAM for Riemannian Adam with other hyperparameters unchanged.
As seen in Table 2, Riemannian SAM significantly outperforms the Riemannian Adam baseline for
both datasets. Note that both HYPERNN++ and HATT are partially hyperbolic networks, so we could
not evaluate our Riemannian SAM on these models since it is difficult for a fair evaluation.

Wall-clock time. As in Euclidean SAM, Riemannian SAM requires additional forward and backward
propagation in a single iteration loop (see Algorithm 1). Thus, we report the wall-clock time compar-
ison for each experiment. For knowledge graph completion (Section 5.1) and machine translation
(Section 5.2), Riemannian SAM takes roughly 1.6 and 1.8 times longer than Riemannian Adam for
one epoch, respectively. To alleviate the computational overhead, one can employ the stochastic
weight perturbation (SWP) and sharpness-sensitive data selection (SDS) suggested in [36], which do
not depend on the manifold structure. Another practical consideration is to use a subset of minibatch
in computing perturbation (see line 6 in Algorithm 1) for large-scale models. We leave the study on
reducing computational cost as future work.

6 Conclusion

In this study, we proposed a sharpness-aware minimization on Riemannian manifolds, called Rieman-
nian SAM. Under our framework, we presented novel examples of Riemannian SAM including a
Lorentz SAM. We analyzed the convergence of the Riemannian SAM for general manifolds with a
less aggressively decaying ascent learning rate condition. Moreover, we showed that Riemannian
SAM can provide the convergence guarantee for SAM variants whose convergence proofs are missing
such as Fisher SAM. We also illustrated that Riemannian SAM empirically outperforms ERM-based
Riemannian optimization algorithms for popular deep learning tasks with hyperbolic neural net-
works. As future work, we plan to study the technique to reduce the computations and analyze the
generalization error bounds of Riemannian SAM theoretically.

10

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grants
(No.2018R1A5A1059921, RS-2023-00209060), Institute of Information & Communications Technol-
ogy Planning & Evaluation (IITP) grants (No.2019-0-00075, Artificial Intelligence Graduate School
Program(KAIST)) funded by the Korea government (MSIT).

References
[1] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.

Advances in neural information processing systems, 30, 2017.

[2] Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of hyperbolic
geometry. In International conference on machine learning, pages 3779–3788. PMLR, 2018.

[3] Ivana Balazevic, Carl Allen, and Timothy Hospedales. Multi-relational poincaré graph embeddings.
Advances in Neural Information Processing Systems, 32, 2019.

[4] Keegan Lensink, Bas Peters, and Eldad Haber. Fully hyperbolic convolutional neural networks. Research
in the Mathematical Sciences, 9(4):60, 2022.

[5] Aleksandr Ermolov, Leyla Mirvakhabova, Valentin Khrulkov, Nicu Sebe, and Ivan Oseledets. Hyperbolic
vision transformers: Combining improvements in metric learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7409–7419, 2022.

[6] Zhe Liu and Yibin Xu. Thg: Transformer with hyperbolic geometry. arXiv preprint arXiv:2106.07350,
2021.

[7] Boli Chen, Yao Fu, Guangwei Xu, Pengjun Xie, Chuanqi Tan, Mosha Chen, and Liping Jing. Probing
{bert} in hyperbolic spaces. In International Conference on Learning Representations, 2021.

[8] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International conference on machine learning, pages 1120–1128. PMLR, 2016.

[9] Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks with scaled cayley
transform. In International Conference on Machine Learning, pages 1969–1978. PMLR, 2018.

[10] Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and Stella X Yu. Orthogonal convolutional neural
networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
11505–11515, 2020.

[11] Shuai Li, Kui Jia, Yuxin Wen, Tongliang Liu, and Dacheng Tao. Orthogonal deep neural networks. IEEE
transactions on pattern analysis and machine intelligence, 43(4):1352–1368, 2019.

[12] Mevlana C Gemici, Danilo Rezende, and Shakir Mohamed. Normalizing flows on riemannian manifolds.
arXiv preprint arXiv:1611.02304, 2016.

[13] Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows. Advances in Neural
Information Processing Systems, 33:2503–2515, 2020.

[14] Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, and Aaron C Courville. Riemannian
diffusion models. Advances in Neural Information Processing Systems, 35:2750–2761, 2022.

[15] Max van Spengler, Erwin Berkhout, and Pascal Mettes. Poincar\’e resnet. arXiv preprint arXiv:2303.14027,
2023.

[16] Edoardo Cetin, Benjamin Paul Chamberlain, Michael M. Bronstein, and Jonathan J Hunt. Hyperbolic deep
reinforcement learning. In The Eleventh International Conference on Learning Representations, 2023.

[17] Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions on Automatic
Control, 58(9):2217–2229, 2013.

[18] Antti Honkela, Tapani Raiko, Mikael Kuusela, Matti Tornio, and Juha Karhunen. Approximate riemannian
conjugate gradient learning for fixed-form variational bayes. The Journal of Machine Learning Research,
11:3235–3268, 2010.

[19] Nicolas Boumal. Riemannian trust regions with finite-difference hessian approximations are globally
convergent. In Geometric Science of Information: Second International Conference, GSI 2015, Palaiseau,
France, October 28-30, 2015, Proceedings 2, pages 467–475. Springer, 2015.

11

[20] P-A Absil. Trust-region methods on riemannian manifolds. Foundations of Computational Mathematics,
7:303–330, 2007.

[21] Nilesh Tripuraneni, Nicolas Flammarion, Francis Bach, and Michael I Jordan. Averaging stochastic
gradient descent on riemannian manifolds. In Conference On Learning Theory, pages 650–687. PMLR,
2018.

[22] Orizon P Ferreira, Mauricio S Louzeiro, and LF4018420 Prudente. Gradient method for optimization on
riemannian manifolds with lower bounded curvature. SIAM Journal on Optimization, 29(4):2517–2541,
2019.

[23] Xiaojing Zhu and Hiroyuki Sato. Riemannian conjugate gradient methods with inverse retraction. Compu-
tational Optimization and Applications, 77:779–810, 2020.

[24] Melanie Weber and Suvrit Sra. Riemannian optimization via frank-wolfe methods. Mathematical
Programming, pages 1–32, 2022.

[25] Hongyi Zhang, Sashank J Reddi, and Suvrit Sra. Riemannian svrg: Fast stochastic optimization on
riemannian manifolds. Advances in Neural Information Processing Systems, 29, 2016.

[26] Hiroyuki Kasai, Hiroyuki Sato, and Bamdev Mishra. Riemannian stochastic recursive gradient algorithm.
In International Conference on Machine Learning, pages 2516–2524. PMLR, 2018.

[27] Jingzhao Zhang, Hongyi Zhang, and Suvrit Sra. R-spider: A fast riemannian stochastic optimization
algorithm with curvature independent rate. arXiv preprint arXiv:1811.04194, 2018.

[28] Zhi Zhao, Zheng-Jian Bai, and Xiao-Qing Jin. A riemannian newton algorithm for nonlinear eigenvalue
problems. SIAM Journal on Matrix Analysis and Applications, 36(2):752–774, 2015.

[29] Hiroyuki Kasai, Hiroyuki Sato, and Bamdev Mishra. Riemannian stochastic quasi-newton algorithm with
variance reduction and its convergence analysis. In International Conference on Artificial Intelligence and
Statistics, pages 269–278. PMLR, 2018.

[30] Soumava Kumar Roy, Zakaria Mhammedi, and Mehrtash Harandi. Geometry aware constrained optimiza-
tion techniques for deep learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4460–4469, 2018.

[31] Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In International
Conference on Learning Representations, 2019.

[32] Hiroyuki Kasai, Pratik Jawanpuria, and Bamdev Mishra. Riemannian adaptive stochastic gradient algo-
rithms on matrix manifolds. In International Conference on Machine Learning, pages 3262–3271. PMLR,
2019.

[33] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. In International Conference on Learning Representations, 2021.

[34] Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware
minimization for scale-invariant learning of deep neural networks. In International Conference on Machine
Learning, pages 5905–5914. PMLR, 2021.

[35] Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher sam: Information geometry and
sharpness aware minimisation. In International Conference on Machine Learning, pages 11148–11161.
PMLR, 2022.

[36] Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and Vincent
Tan. Efficient sharpness-aware minimization for improved training of neural networks. In International
Conference on Learning Representations, 2022.

[37] Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha C Dvornek, sekhar
tatikonda, James s Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware training.
In International Conference on Learning Representations, 2022.

[38] John M Lee and John M Lee. Smooth manifolds. Springer, 2012.

[39] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
Princeton University Press, 2008.

[40] Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press, 2023.

12

[41] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d knowledge
graph embeddings. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

[42] Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz Hermann,
Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, and Nando de Freitas. Hyperbolic attention
networks. In International Conference on Learning Representations, 2019.

[43] Asher Trockman and J Zico Kolter. Orthogonalizing convolutional layers with the cayley transform. In
International Conference on Learning Representations, 2021.

[44] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

[45] Ovidiu Calin. Neuromanifolds, pages 465–504. Springer International Publishing, Cham, 2020.

[46] Shun-ichi Amari, Hyeyoung Park, and Tomoko Ozeki. Geometrical singularities in the neuromanifold of
multilayer perceptrons. Advances in neural information processing systems, 14, 2001.

[47] Cheongjae Jang, Sungyoon Lee, Frank Park, and Yung-Kyun Noh. A reparametrization-invariant sharpness
measure based on information geometry. Advances in neural information processing systems, 35:27893–
27905, 2022.

[48] Andi Han and Junbin Gao. Riemannian stochastic recursive momentum method for non-convex optimiza-
tion. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, pages 2505–2511. International Joint Conferences on Artificial Intelligence Organi-
zation, 8 2021. Main Track.

[49] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth. Lower
bounds for non-convex stochastic optimization. Mathematical Programming, 199(1-2):165–214, 2023.

[50] Andi Han and Junbin Gao. Variance reduction for riemannian non-convex optimization with batch size
adaptation. arXiv preprint arXiv:2007.01494, 2020.

[51] Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware minimization.
In International Conference on Machine Learning, pages 639–668. PMLR, 2022.

[52] Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
Fully hyperbolic neural networks. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 5672–5686, Dublin, Ireland, May 2022.
Association for Computational Linguistics.

[53] Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in pytorch. arXiv
preprint arXiv:2005.02819, 2020.

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

[55] Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text inference.
In Proceedings of the 3rd workshop on continuous vector space models and their compositionality, pages
57–66, 2015.

[56] Ryohei Shimizu, YUSUKE Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. In International
Conference on Learning Representations, 2021.

[57] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional sequence
to sequence learning. In International conference on machine learning, pages 1243–1252. PMLR, 2017.

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

13

Supplementary Materials

A Proofs of Theorem 1

We basically follow the arguments in the convergence of Euclidean SAM [51], but the details are totally different.
Lemma 1 (Properties of Retraction Smoothness). Let w∗ = Rw

(
ρgradL(w)

)
and the curve γ(t) = Rw(tη)

with the endpoints γ(0) = w and γ(1) = w∗. Then, we have

⟨T (γ)ww∗gradL(w∗), gradL(w)⟩ ≥ (1− ρLR)∥gradL(w)∥2w

Proof. By the condition (C-5), we have

∥T (γ)ww∗gradL(w∗)− gradL(w)∥w ≤ LR∥η∥w
By the Cauchy-Schwarz inequality, we have

|⟨T (γ)ww∗gradL(w∗)− gradL(w), η⟩w| ≤ ∥T (γ)ww∗gradL(w∗)− gradL(w)∥w∥η∥w
≤ LR∥η∥2w
≤ ρ2LR∥gradL(w)∥2w

Therefore, we obtain

⟨T (γ)ww∗gradL(w∗)− gradL(w), ρgradL(w)⟩w ≥ −ρ2LR∥gradL(w)∥2w
Removing the constant ρ, the above inequality becomes

⟨T (γ)ww∗gradL(w∗)− gradL(w), gradL(w)⟩w ≥ −ρLR∥gradL(w)∥2w
Lastly, we arrive at the final result as

⟨T (γ)ww∗gradL(w∗), gradL(w)⟩w = ⟨T (γ)ww∗gradL(w∗)− gradL(w), gradL(w)⟩w + ∥gradL(w)∥2w
≥ (1− ρLR)∥gradL(w)∥2w

In the next lemma, we will show the alignment of the true Riemannian gradient and the true Riemannian SAM
gradient.
Lemma 2 (Alignment of the true Riemannian gradient and the true Riemannian SAM gradient). Let us
denote the stochastic Riemannian gradient at time t by gradLt(w) = 1

b

∑
i∈Jt

gradL(w;xi) ∈ TwM and
wadv = Rw

(
ρgradLt(w)

)
. Further, let γ(t) = Rw(tη) be a retraction curve with γ(0) = w and γ(1) = wadv .

Then, we have the following inequality

E
[〈

T (γ)wwadvgradLt(w
adv), gradL(w)

〉
w

]
≥
(1
2
− ρLR − 3ρ2L2

R

)∥∥∥gradL(w)
∥∥∥2
w
− 2ρ2L2

Rσ
2

b

Proof. Let w∗ = Rw

(
ρgradL(w)

)
evaluated on the loss function. We first add and subtract

⟨T (ζ)ww∗gradLt(w
∗), gradL(w)⟩w where ζ(t) = Rw(tξ) is a retraction curve where ζ(0) = w and

ζ(1) = w∗.

⟨T (γ)wwadvgradLt(w
adv), gradL(w)⟩w = ⟨T (γ)wwadvgradLt(w

adv)− T (ζ)ww∗gradLt(w
∗), gradL(w)⟩w︸ ︷︷ ︸

T1

+ ⟨T (ζ)ww∗gradLt(w
∗), gradL(w)⟩w︸ ︷︷ ︸

T2

We will bound two terms, T1 and T2, separately. Regarding the term T1, we derive

−T1 = −⟨T (γ)wwadvgradLt(w
adv)− T (ζ)ww∗gradLt(w

∗), gradL(w)⟩w

≤ 1

2

∥∥∥T (γ)wwadvgradLt(w
adv)− T (ζ)ww∗gradLt(w

∗)
∥∥∥2
w
+

1

2

∥∥∥gradL(w)
∥∥∥2
w

≤
∥∥∥T (γ)wwadvgradLt(w

adv)− gradLt(w)
∥∥∥2
w
+
∥∥∥T (ζ)ww∗gradLt(w

∗)− gradLt(w)
∥∥∥2
w
+

1

2

∥∥∥gradL(w)
∥∥∥2
w

≤ L2
R∥ρgradLt(w)∥2w + L2

R∥ρgradL(w)∥2w +
1

2
∥gradL(w)∥2w

≤ ρ2L2
R

(
2∥gradLt(w)− gradL(w)∥2w + 2∥gradL(w)∥2w

)
+
(1
2
+ ρ2L2

R

)
∥gradL(w)∥2w

≤ 2ρ2L2
Rσ

2

b
+
(1
2
+ 3ρ2L2

R

)
∥gradL(w)∥2w

14

From the above inequality, we could finally bound the term T1 as

T1 ≥ −2ρ2L2
Rσ

2

b
−
(1
2
+ 3ρ2L2

R

)
∥gradL(w)∥2w

Regarding the term T2, we just use the lemma as

T2 = ⟨T (ζ)ww∗gradLt(w
∗), gradL(w)⟩w ≥ (1− ρLR)∥gradL(w)∥2w

Hence, we arrive at

E
[〈

T (γ)wwadvgradLt(w
adv), gradL(w)

〉
w

]
≥
(1
2
− ρLR − 3ρ2L2

R

)∥∥∥gradL(w)
∥∥∥2
w
− 2ρ2L2

Rσ
2

b

According to Algorithm 1, we follow the notation as

gradLt(w) =
1

b

∑
i∈It

gradℓi(w)

wadv
t = Rwt

(
ρgradLt(wt)

)
We assume the stochastic m-SAM where the same batch is used for both inner and outer updates.
Lemma 3 (Descent inequality). Under the assumptions in Theorem 1, we have

E
[
L(wt+1)

]
≤ E

[
L(wt)

]
− 3α

8
E
[
∥gradL(wt)∥2wt

]
+

α2LSσ
2

b
+

2α2L3
Sρ

2σ2

b
+

2αρ3L2
Rσ

2

b

Proof. Using the condition (C-4), we have

L(wt+1) = L

(
Rwt

(
− αT (γ)wt

wadv
t

gradLt(w
adv
t)

))

≤ L(wt)− α
〈
gradL(wt), T (γ)wt

wadv
t

gradLt(w
adv
t)

〉
wt

+
α2LS

2

∥∥∥T (γ)wt

wadv
t

gradLt(w
adv
t)

∥∥∥2
wt

For the last term in RHS, we can bound as∥∥∥T (γ)wt

wadv
t

gradLt(w
adv
t)

∥∥∥2
wt

= −∥gradL(wt)∥2wt
+
∥∥∥T (γ)wt

wadv
t

gradLt(w
adv
t)− gradL(wt)

∥∥∥2
wt

+ 2
〈
T (γ)wt

wadv
t

gradLt(w
adv
t), gradL(wt)

〉
wt

Again, we have

L(wt+1) ≤ L(wt)− α
〈
gradL(wt), T (γ)wt

wadv
t

gradLt(w
adv
t)

〉
wt

+
α2LS

2

∥∥∥T (γ)wt

wadv
t

gradLt(w
adv
t)

∥∥∥2
wt

= L(wt)−
α2LS

2
∥gradL(wt)∥2wt

+
α2LS

2

∥∥∥T (γ)wt

wadv
t

gradLt(w
adv
t)− gradL(wt)

∥∥∥2
wt

− α(1− αLS)
〈
T (γ)wt

wadv
t

gradLt(w
adv
t), gradL(wt)

〉
wt

≤ L(wt)−
α2LS

2
∥gradL(wt)∥2wt

+ α2LS

∥∥∥T (γ)wt

wadv
t

gradLt(w
adv
t)− gradLt(wt)

∥∥∥2
wt

+ α2LS∥gradLt(wt)− gradL(wt)∥2wt
− α(1− αLS)

〈
T (γ)wt

wadv
t

gradLt(w
adv
t), gradL(wt)

〉
wt

≤ L(wt)−
α2LS

2
∥gradL(wt)∥2wt

+ α2L3
Sρ

2∥gradLt(wt)∥2wt
+ α2LS∥gradLt(wt)− gradL(wt)∥2wt

− α(1− αLS)
〈
T (γ)wt

wadv
t

gradLt(w
adv
t), gradL(wt)

〉
wt

≤ L(wt)−
α2LS

2
∥gradL(wt)∥2wt

+ 2α2L3
Sρ

2∥gradL(wt)∥2wt
+ 2α2L3

Sρ
2∥gradLt(wt)− gradL(wt)∥2wt

+ α2LS∥gradLt(wt)− gradL(wt)∥2wt
− α(1− αLS)

〈
T (γ)wt

wadv
t

gradLt(w
adv
t), gradL(wt)

〉
wt

= L(wt)−
α2LS(1− 4L2

Sρ
2)

2
∥gradL(wt)∥2wt

+ α2LS(1 + 2L2
Sρ

2)∥gradLt(wt)− gradL(wt)∥2wt

− α(1− αLS)
〈
T (γ)wt

wadv
t

gradLt(w
adv
t), gradL(wt)

〉
wt

15

Taking the expectation on both sides, we have

E
[
L(wt+1)

]
≤ E

[
L(wt)

]
− α2LS(1− 4L2

Sρ
2)

2
E
[
∥gradL(wt)∥2wt

]
+

α2LS(1 + 2L2
Sρ

2)σ2

b

− α(1− αLS)E

[〈
T (γ)wt

wadv
t

gradLt(w
adv
t), gradL(wt)

〉
wt

]

E
[
L(wt)

]
− α2LS(1− 4L2

Sρ
2)

2
E
[
∥gradL(wt)∥2wt

]
+

α2LS(1 + 2L2
Sρ

2)σ2

b

− α(1− αLS)

[(1
2
− ρLR − 3ρ2L2

R

)
E
[
∥gradL(wt)∥2wt

]
− 2ρ2L2

Rσ
2

b

]

For sufficiently large number of total iteration T , the condition ρ ≤ 1

4L̃
is easily satisfied where L̃ =

max{LR, LS} (defined in Theorem 1). Hence, we obtain

3α

8
E
[
∥gradL(wt)∥2wt

]
≤ E

[
L(wt)

]
− E

[
L(wt+1)

]
+

α2LS(1 + 2L2
Sρ

2)σ2

b
+

2α(1− αLS)ρ
3L2

Rσ
2

b

≤ E
[
L(wt)

]
− E

[
L(wt+1)

]
+

α2LSσ
2

b
+

2α2L3
Sρ

2σ2

b
+

2αρ3L2
Rσ

2

b

By telescoping the above inequality from t = 0 ∼ T − 1, we arrive at

E
[
∥gradL(w̃)∥2w̃

]
=

1

T

T−1∑
t=0

E
[
∥gradL(wt)∥2wt

]
≤ 8∆

3αT
+

8α2LSσ
2

3b
+

16α2L3
Sρ

2σ2

3b
+

16αρ3L2
Rσ

2

3b

Under the step size condition αt =
1√
TL̃

and ρt =
1

T1/6L̃
, we finally get

E
[
∥gradL(w̃)∥2w̃

]
≤ Q1L̃∆√

T
+

Q2σ
2

b
√
T

+
Q3σ

2

bT 5/6

for appropriate constants {Qi}3i=1.

16

B Hyperparameter Details

We use the almost same hyperparameters in the study [52] and implement our experiments in Section 5 upon
its official implementation. For completeness, we summarize the hyperparameter configurations in Table 3 and
Table 4.

Table 3: Hyperparameter configurations for knowledge graph completion.

WN18RR FB15k-237
Dimension 32 β 32 β

Batch Size 1000 1000 500 500
Negative Samples 50 50 50 50
Margin 8.0 8.0 8.0 8.0
Epochs 1000 1000 500 500
Max Norm 1.5 2.5 1.5 1.5
Max Scaler 3.5 2.5 2.5 2.5
Learning Rate 0.005 0.003 0.003 0.003
Gradient Norm 0.5 0.5 0.5 0.5

Table 4: Hyperparameter configurations for machine translation.

Hyperparameter IWSLT’14 WMT’14
GPU Numbers 4 4
Embedding Dimension d 64 64
Feed-forward Dimension 256 256
Batch Type Token Token
Batch Size 10240 10240
Gradient Accumulation Steps 1 1
Training Steps 40000 200000
Dropout 0.0 0.1
Attention Dropout 0.1 0.0
Max Gradient Norm 0.5 0.5
Warmup Steps 8000 6000
Decay Method noam noam
Label Smoothing 0.1 0.1
Layer Number 6 6
Head Number 4 8
Learning Rate 5.0 5.0
Adam β2 0.998 0.998

17

	Introduction
	Preliminaries
	Riemannian Geometry for Optimization
	Riemannian Optimization

	Sharpness-Aware Minimization on Riemannian Manifolds
	Riemannian SAM Illustration: Toy 3D Illustration

	Convergence Analysis
	Experiments
	Knowledge Graph Completion
	Machine Translation

	Conclusion
	Proofs of Theorem 1
	Hyperparameter Details

