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Abstract—Federated learning (FL), as a promising distributed
learning paradigm, has put many efforts into distributed in-
trusion detection systems (IDS), for defending against various
malicious attacks, such as SQL injection and DDoS attacks. Com-
pared with traditional IDS based on centralized deep learning
(DL), FL-based solutions require not to share users’ raw data
while yielding better detection performance. However, state-of-
the-art FL-based methods still suffer from two key limitations:
1) insufficient detection performance on non-independent and
identically distributed (non-IID) data, and 2) high communication
and computational overheads due to the utilization of large-scale
neural network models. In this paper, we propose a lightweight
collaborative intrusion detection framework, called CoLGBM,
the first of its kind in the regime of decentralized IDS, where
decision tree and light gradient boosting machine (LGBM) are
combined for constructing the detection scheme. The main insight
is that through combining user-trained decision trees (each
user’s decision tree is derived from its own data with unique
distribution), our framework can perform effectively on non-IID
data while working efficiently for handling enormous samples.
Compared with the current FL-based methods, our CoLGBM
achieves higher accuracy and lower overhead on both IID and
non-IID data. Extensive experiment results demonstrate our
scheme with high-level performance.

Index Terms—Intrusion Detection, Light Gradient Boosting
Machine, Collaborative Learning.

I. INTRODUCTION

Deep learning (DL) has demonstrated tremendous success
in constructing intrusion detection systems (IDS) [1] . For
example, Wang et al. [2] utilized convolutional neural net-
works (CNN) to classify and identify malicious traffic by
representing raw IP flow data as images. Novaes et al. [3]
conducted a network operation detection scheme, in which
Long-Short-Term-Memory (LSTM) models are used to predict
the abnormal behavior of IP flows. However, centralized DL
requires the raw data to be uploaded to the center server
for achieving the training of neural networks, so that users’
privacy cannot be guaranteed during the process [4]. This
severely limits its scope of utilization, especially in scenarios
where privacy is concerned.

Recently, federated learning (FL) has attracted widespread
attention in both industry and academic [5]. Different from
the centralized DL, there is no requirement to share users’
original data to the server. Instead, just only a few gradients

of the local trained model need to be uploaded. Due to
such an advantage, FL has gradually been applied in the
intrusion detection domain. For example, Nguyen et al. [6]
introduced a self-learning system for detecting compromised
devices in IoT networks using Gate Recurrent Unit (GRU)
based FL. However, our experimental results found that their
method is unable to effectively extend to non-IID scenarios.
Abeshu et al. [7] proposed a distributed intrusion detection
system based on the DL scheme using a pre-trained stacked
autoencoder as feature extraction. Nevertheless, local training
involving stacked autoencoder evaluation requires extensive
computational resources, which is prohibitively expensive for
resource-limited edge devices in a distributed setting. Besides,
Diro et al. [8] proposed an LSTM network for distributed
cyber-attack detection in fog-to-things communication. How-
ever, their scheme can just defend against only two categories
of attacks, being noneffective for the problem with multiple
malicious attacks. In summary, the research of distributed de-
tection framework is still in its infancy, suffering from two key
limitations: 1) insufficient detection performance on non-IID
data; 2) high communication and computational overheads.
Therefore, it is urgent to design a collaborative detection
framework, which can improve detection performance on both
IID and non-IID data with minimized communication and
computation overhead.

To address the above issues, we propose CoLGBM, a hybrid
method combining decision tree and light gradient boosting
algorithm. Although the decision tree can effectively mine
the relationship between features and labels based on the
mechanism of automatical feature combination, using it alone
may cause the model overfitting for the data with biased
distribution. To solve the problem, we combine each user’s
trained decision tree, thereby effectively handling the non-
IID data. Additionally, we apply the distributed LGBM for
further improving the efficiency for processing a large amount
of data and features. As a result, compared with state-of-the-
art FL-based methods, our CoLGBM can perform better in
terms of accuracy on both IID and non-IID data, as well as
computation and communication overhead. We summarize our
contributions as follows:
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• We propose a novel collaborative intrusion detection
framework, CoLGBM, which for the first time suggests
leveraging the LightGBM to detect multiple malicious
attacks.

• Compared with state-of-the-art FL-based methods, CoL-
GBM can achieve a better performance in terms of
accuracy and overhead for both non-IID and IID data.

• We conduct extensive experiments to evaluate the perfor-
mance of our scheme, where the CICDDoS2019 dataset
is utilized for model learning and testing. As a result,
our CoLGBM obtains an average 13% accuracy improve-
ment, a 90% reduction in false positive rate and 15×
less communication compared with the state-of-the-art
FL-based work.

The remaining parts of this paper are organized as follows.
In Section II, we state the problem. In Section III, we describe
the details of our scheme. In Section IV, we conduct a series
of experiments to evaluate the performance. Finally, Section
V concludes the paper.

II. PROBLEM STATEMENT
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Fig. 1: Client-Server System

In the typical client-server system, as shown in Fig. 1,
a botmaster may send malicious commands to the client
through the controller, thus corrupting the client and even the
cloud server. For guaranteeing the security of the system, it
is essential to conduct an Intrusion Detection System (IDS)
for detecting malicious intrusions and protecting the system
from malware attacks. The main idea of IDS is to detect the
malicious traffic (abnormal traffic) in real-time through cloud-
based monitoring, thus activating attack warning and traffic
interception.

For constructing the Intrusion Detection System, many
DL-based methods [9] [10] have been proposed in various
dimensions. Recently, FL-based methods [7] [8] [6] have
been demonstrated more efficiency and higher accuracy than
traditional centralized DL-based works. However, there are
still 5 significant challenges faced by many researchers, as
follows.

• Non-IID data: In the era of big data, the traffic data in
the hands of each participant may be non-independent and

identically distributed. So the devised framework should
be able to deal with the intrusion detection problem on
non-IID data.

• Accuracy: Compared with traditional centralized learn-
ing, the accuracy of the IDS model in distributed scenar-
ios may drop significantly. Thus, the framework should
not sacrifice the detection accuracy, no matter the model
is trained with IID data or non-IID data.

• False Positive Rate: The false positive rate is a very
important metric to measure an IDS framework. The high
volume of false alarms will bring a heavy burden to IDS
service providers, and even lead to their systems being
paralyzed. Consequently, the designed framework should
preserve a very low false positive rate.

• Efficiency: Participants in distributed IDS are of-
ten resource-constrained mobile devices or IoT devices.
Therefore, the method should not cause excessive compu-
tation and communication overheads to the participants.

• Diversified Deployment: As technology evolves, the
server is no longer the most important subject, and user
involvement is often required when it comes to final
predictions. Thereby, the new system should support
multiple intrusion detection services, including service
providers assisted detection and localized detection.

For addressing above issues, in this paper, we propose a
novel framework (CoLGBM), which allows the server and
separate monitors to jointly achieve the detection task. The
details of this technology will be introduced in Section III.

III. METHODOLOGY

In this section, we first provide a high-level view of our
scheme and then demonstrate an end-to-end intrusion detection
framework consisting of training and prediction processes.
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Fig. 2: System Overview

A. Overview of the proposed system

Traditional Federated Learning does not transmit data di-
rectly, which protects user privacy to a certain extent. However,
it has a large time and communication overhead and cannot
achieve the desired results that can be practically applied. Our
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proposed CoLGBM also does not transmit user data directly
and contains test datasets in the server just like federated learn-
ing. However, our approach differs from existing federated
learning methods in both the training and prediction phases.
Specifically, in the training phase, we define the LGBM
parameters instead of the neural network architecture, and each
client trains its local LGBM using local data. Considering
that federated learning requires uploading gradient information
for each round, our approach does not require uploading any
information in the training phase. In the prediction phase,
based on efficiency and security considerations, we propose
two schemes, as shown in Fig. 2. In this case, clients can
send their LGBM models to the server, or the server can
send the test set to all clients (this process can be performed
simultaneously in the client training phase). Finally, the server
obtains the final result by plurality voting.

Because LGBM uses a leaf-wise strategy to generate trees,
and DT itself is characterized by fast prediction speed, less
feature engineering required, and automatic combination of
multiple features, LGBM also uses Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB) to
deal with the problem of excessive data volume and number
of features, so LGBM can achieve higher accuracy with lower
time overhead in distributed scenarios. In addition, the tree can
be constructed quickly after specifying the parameters, and the
training process does not require any data transfer, and only the
tree or test dataset is transferred during the prediction phase,
so it is more efficient than the traditional FL [11].

B. Training process

In our CoLGBM, we use a new GBDT variant called
LightGBM [12], which contains two novel techniques: GOSS
and EFB to deal with a large number of data instances and a
large number of features, respectively. Specifically, we denote
the total amount of data as A0, the amount of non-zero data
as A1, the total amount of features as S0, and the number
of feature buckets as S1. Due to estimating information gain
of all splits by scanning all the data instances will cost much
time, we utilize the GOSS and EFB algorithms for reducing
the complexity of histogram building from O(A0 × S0) to
O(A1×S1), s.t. S1 << S0 [12], which significantly improves
the efficiency of the training process. In addition, the Light-
GBM uses a leaf-wise strategy to grow trees and an additional
parameter max depth to limit the depth of the tree and avoid
overfitting.

In the training process, as shown in Fig. 2, each client k
has its local data Dk that is non-independent and identically
distributed. Each client k firstly sets the training parameters
locally and uses the LightGBM framework to train the decision
tree Tk on the dataset Dk. Algorithm 1 shows the specific
process of training. Here, we explain the symbols in Algorithm
1. There are K clients each with the private dataset Dk, k ∈
K; n denotes the boosting round; B denotes current batch of
the test dataset; client k trains a tree model Tk locally and it
is used to predict the label lk of current batch B; the function
of mode() is to return the mode of l1, l2...lK . Subsequently,

Algorithm 1 CoLGBM

1: procedure SERIAL PROCESS
2: for each client k in parallel do
3: Tk ← ClientTrain(k,Dk, n)
4: pass Tk to Server
5: end for
6: Server executes:
7: for i = 1, 2...K do
8: li ← Ti(B)
9: end for

10: l← mode(l1, l2...lK)

11: end procedure

12: procedure PARALLEL PROCESS
13: Server executes:
14: send B to each client k
15: for each client k in parallel do
16: Tk ← ClientTrain(k,Dk, n)
17: lk ← Tk(B)
18: send lk to Server
19: end for
20: Server executes:
21: l← mode(l1, l2...lK)

22: end procedure

23: procedure ClientTrain(k,Dk, n)
24: setting LGBM parameters
25: T ← LGB.train(Dk, n)
26: return T
27: end procedure

in the data preprocessing phase, both our CoLGBM and FL
method need to do some feature selection. However, CoLGBM
does not require other data preprocessing operations, while FL
requires global data standardization or normalization.

C. Prediction process

In this subsection, we introduce two prediction methods for
different application scenarios.

1) Serial process: As we discussed in Section III-C, the
clients get the final LightGBM models after training on their
local data. When requiring to make predictions on the test
dataset, the server collects all clients’ models and makes a
prediction using each model. Finally, the prediction result is
generated by plurality voting as shown in procedure serial
process of Algorithm 1. The advantage of this algorithm
is that clients’ private original data will not be disclosed,
since the IDS service provider cannot immediately recover
users’ original data according to the rules of decision trees.
Moreover, by analyzing the transmitted data size, we found
our method had a much lower communication overhead. In
the traditional FL-based method, the total transmitted data size
is approximately equal to O(2 × n × r × d1), while the data
size our method transmits is O(n× d2), where n denotes the
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number of clients, r the round of iteration, d1 the size of
neural network gradients and d2 the size of the decision tree.
(see our experimental results in Section IV). But it also has
some flaws. Specifically, when there are too many users, all
trees will be stored on the server as shown in Fig. 2 (a), which
poses a challenge to the storage capacity of the server. Besides,
the server can only calculate the result of each tree serially,
which would cost a lot of time.

2) Parallel process: Another method for prediction is that
the IDS service provider sends its test dataset to all clients. Af-
ter that, as shown in procedure parallel process of Algorithm
1 and Fig. 2 (b), each client makes prediction on test datasets
using its local LightGBM model. Note that the information
transmitted through this method still does not reveal the users’
original data. All information the server received is only the
prediction result from every client. Moreover, this method can
be run in parallel, which is why we call it parallel process.
In addition, to deal with the problem of some users offline
or network delay, the server can set a time threshold T. Once
the waiting time exceeds the time threshold T, the server can
decide to stop receiving any results. Despite these advantages,
this method is more dangerous to reveal IDS service provider’s
privacy than sending the user’s rules of LightGBM models.

IV. EVALUATION AND RESULTS

A. Experimental Setup
We utilize the public dataset called CICDDoS2019 [13]

from the University of New Brunswick’s Canadian Institute
for Cybersecurity. The dataset contains 11 different types of
DDoS attack traffic and 1 type of benign traffic. For each
type of traffic, we extracted 300,000 pieces of data samples
to construct the training dataset. In the test dataset, there are
50,000 pieces of benign traffic and 10,000 pieces of each
malicious traffic. For comparing the performance of FL and
LightGBM, we make a feature selection. In LightGBM, we
use the EFB algorithm [12] to bundle many exclusive features,
which significantly decreases the computational cost. In FL,
we manually select features to train the neural network model.
Similar to [13], we choose the 20 best features for each type
of traffic data.

Additionally, we respectively set model parameters for both
FL and our CoLGBM, as follows.

• FL setting. In FL, we used the Fully Connected (FC)
layer and the Gated Recurrent Units (GRU) to con-
struct models FL FC and FL GRU, respectively. For the
FL FC model, there have three hidden layers with 512,
256, and 128 neurons, followed by the ReLU activation
function. The number of nodes in the output layer is
12, and the activation function is changed to softmax
accordingly. For the FL GRU model, we set a lookback
history of k = 20 and use a GRU network with three
layers of size 256 neurons each.

• CoLGBM setting. In CoLGBM method, we set the
parameters of LGBM as shown in Table I.

Fianlly, we list all the evaluation metrics, including accu-
racy, false positive rate (FPR), recall, and F1 score. Note that

TABLE I: The parameters of CoLGBM

Parameters Values
boosting type gbdt
objective multiclass
num leaves 40
learning rate 0.05
feature fraction 0.9
bagging fraction 0.8
bagging freq 5
num class 12

F1 score calculates the unweighted mean of the metrics for
each label, without considering label imbalance.

B. Experiment Implementation

1) Constructing data with different distributions: To illus-
trate the versatility of our method, we simulate a variety of data
distributions including IID data and non-IID data, as shown
below:

• Non-IID data. In this setting, we construct an unbalanced
dataset with only a few traffic types for each client.
To simulate the real situation, each client has the same
amount of data, but different traffic types. In the eval-
uation, we change the number of traffic types for each
client from 2 to 12 to observe the effects of an unbalanced
degree on detection performance.

• Server-aided non-IID data. This setting is the same as
non-IID data setting, except for a small public dataset.
Specifically, the server constructs the public dataset that
contains all types of traffic. After that, clients download
the public dataset and combine it with their local datasets
(e.g., non-IID data), to generate the combined datasets
for training. Note that although the combined dataset of
each client contains all types of traffic data, the amount
of data for each traffic type is still unbalanced such that
it is different from the IID data below.

• IID data. In this case, we uniformly construct a dataset
for each client, which includes all traffic types with the
same amount of data. In our experiments, we modify
the number of clients to observe the impact on detection
performance.

2) Experiments for centralized setting: In order to compre-
hensively analyze our framework, we first conduct experiments
on the centralized scenario, where the training data is collected
centrally by the server. We compare our CoLGBM with the
FL GRU method [14] and the FL FC method that can be seen
as an improved version of FL GRU. In addition, the training
dataset of the server contains all traffic types and the amount
of data for each type is almost the same. As shown in Table
II, our CoLGBM outperforms the other two methods in terms
of the accuracy, FPR, Recall, and F1 score in the centralized
scenario. Moreover, the performance of FL GRU is inferior to
the improved method FL FC. Therefore, in the subsequently
distributed scenario, we will use FL FC as the benchmark for
experimental comparison.
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TABLE II: The experimental results for different methods

Methods Accuracy FPR Recall F1 score

FL FC 74.81± 1.72% 00.34± 0.09% 52.30± 2.13% 64.59± 2.03%
FL GRU 66.25± 0.47% 12.69± 1.02% 63.66± 1.67% 17.95± 1.35%
CoLGBM 86.27± 1.34%86.27± 1.34%86.27± 1.34% 00.04± 0.02%00.04± 0.02%00.04± 0.02% 67.39± 1.79%67.39± 1.79%67.39± 1.79% 75.09± 2.31%75.09± 2.31%75.09± 2.31%

(a) (b) (c)

Fig. 3: Comparison with different data distributions. (a) Non-IID dataset. (b) Server-aided Non-IID dataset. (c) Client-aided
Non-IID dataset.

3) Experiments for distributed setting: In the distributed
setting, we compare our CoLGBM with the FL FC method
on non-IID and IID data.

a) Comparison on the non-IID data: Fig. 3a shows that
the accuracy of FL FC is stable at about 73.37%, indicating
that the stability of FL is good under non-IID data. Moreover,
we found that there is strong relation between the accuracy of
the CoLGBM and the number of labels owned by clients, i.e.,
the more labels a client has, the higher the accuracy can be
obtained. The accuracy of CoLGBM is close to that of FL FC
in the case where the client data contains 4 types of labels.
When the client has more than 4 types of labels, the accuracy
of the CoLGBM model is improved by 13.44% on average
compared to FL FC. Finally, when users have all 12 labels,
i.e., each user’s data is IID, CoLGBM achieves an accuracy
rate of 91.37%. Observing the false positive rate (FPR), when
the client’s label types are more than or equal to 4, the FPR
is lower than FL FC, and it is especially obvious in the case
of IID data distribution.

We found that in the case of the non-IID dataset, the
accuracy of the CoLGBM model does not perform well with
fewer labels. In response to this result, we propose a feasible
solution as follows.

b) Comparison on the server-aided non-IID data: In this
setting, the clients’ dataset consists of local datasets and the
public dataset provided by the server. As shown in Fig. 3b,
benefit from the public dataset, the accuracy of our CoLGBM
is improved by about 15.38% compared with that of the
FL FC model. Compared to the experiment on the non-IID
dataset, the accuracy of the CoLGBM model performs better
in this setting with fewer types of labels, and the accuracy of
the model is relatively stable. Moreover, the FPR of CoLGBM
is much lower than that of the FL FC method in all cases.

In addition, we consider a reasonable alternative when
the server is unwilling to disclose the dataset to clients.
Specifically, as a special participant, the server participates in

(a) (b)

Fig. 4: The accuracy with different client numnbers. (a) IID
dataset. (b) Non-IID dataset.

the training process with all types of traffic data, called client-
aided non-IID data. Such a setting is feasible in practical
scenarios and easy to implement. In Fig. 3c, the experimental
results show that the accuracy of the CoLGBM model is
significantly higher than that of the FL FC model. The results
of the FPR are similar to Fig. 3a. The difference is that the
FPR of the CoLGBM model decreases with less than 4 tags
(although it is still higher compared to the FL FC model),
and the FPR of our scheme is much smaller compared to the
FL FC model when the number of tags is greater than 4.

c) The impact of the number of clients: We further
discuss the impact of the number of clients on the accuracy
and FPR of the model. There are two situations for discussion,
namely that clients’ data is IID and non-IID. In the former
case, as shown in Fig. 4a, CoLGBM has an average of 14%
higher accuracy than FL FC. For the FPR, CoLGBM is not
only very low but also stable, while on the contrary FL FC
fluctuates more. In the latter case, we set the number of traffic
types owned by each client to 6 on the client-aided non-IID
data setting. The experimental results are shown in Fig. 4b.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 10,2022 at 12:41:25 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: The communication and computation overhead

Methods Time Transmitted data size

IID Dataset Non-IID Dataset IID Dataset Non-IID Dataset

FL FC 156.35± 3.77s 162.90± 4.43s 660.00± 1.00MB 660.00± 1.00MB
Serial CoLGBM 208.84± 24.84s 192.27± 14.47s 49.45± 0.51MB49.45± 0.51MB49.45± 0.51MB 40.9± 0.30MB40.9± 0.30MB40.9± 0.30MB

parallel CoLGBM 145.13± 8.33s145.13± 8.33s145.13± 8.33s 147.03± 15.80s147.03± 15.80s147.03± 15.80s 1487.85± 0..10MB 1487.85± 0.10MB

In terms of accuracy, CoLGBM performs better than FL FC
when the number of clients is greater than 4. Besides, the FPR
is always lower than FL FC. Adding one user does not have
much impact on the final result, but gives our solution a better
performance compared to FL FC. Therefore, our solution on
both IID and non-IID datasets is feasible.

d) Comparison on communication and computation com-
plexity: We conduct experiments on the communication and
time costs of FL FC serial CoLGBM and parallel CoLGBM.
In the experimental setup, 15 users are involved and we set
the FL’s iteration as 200 epochs. The size of the transmitted
test dataset is 97.6 M. As we can see, the time in the second
column of Table III is the sum of the time consumed in the
training and prediction phases, and the communication cost is
the sum of the size of the data transmitted by all client.

The experimental results are shown in Table III. Specifically,
the FL FC takes less time but transmits a larger data size. Our
proposed serial CoLGBM reduces the communication cost by
13×-15× compared to FL FC. However, the serial CoLGBM
takes a longer time, mainly because it is very time-consuming
for the server to make predictions using the received trees
in the prediction phase. In parallel CoLGBM, the time spent
is minimal because the server sends the test dataset to each
client and the client can make predictions in parallel and
pass the prediction results to the server. But the shortcoming
of parallel CoLGBM is that more data is transferred, which
depends mainly on the size of the test dataset.

So, the serial CoLGBM can reduce the transmission cost by
13×-15× to achieve higher accuracy than FL FC, although it
will take some extra time. The parallel CoLGBM can reduce
the training and prediction time compared to FL FC, and the
size of its transmitted data mainly depends on the size of the
test dataset.

V. CONCLUSION AND FUTURE WORK

In this paper, we use the distributed decision tree to conduct
a lightweight collaborative intrusion detection framework,
called CoLGBM. We address two key challenges in existing
FL-based intrusion detection methods, e.g., insufficient detec-
tion performance on non-IID data and high communication
and computational overheads. Extensive evaluations on the
CICDDoS2019 dataset show that CoLGBM outperforms prior
FL-based works in terms of accuracy, FPR on both IID and
non-IID data. In addition, we propose two schemes to reduce
the communication overhead and computation overhead re-
spectively. In the future, we will investigate our CoLGBM’s
performance on different datasets and compare it with other

neural network models. We also want to design a lightweight
secure protocol tailored to decision tree evaluation.
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