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ABSTRACT

Quantization is the key method for reducing inference latency, power and mem-
ory footprint of generative AI models. However, accuracy often degrades sharply
when activations are quantized below eight bits. Recent work suggests that invert-
ible linear transformations (e.g. rotations) can aid quantization, by reparameteriz-
ing feature channels and weights. In this paper, we propose Sequence Transfor-
mation and Mixed Precision (STaMP) quantization, a novel strategy that applies
linear transformations along the sequence dimension to exploit the strong local
correlation in language and visual data. By keeping a small number of tokens
in each intermediate activation at higher precision, we can maintain model ac-
curacy at lower (average) activations bit-widths. We evaluate STaMP on recent
LVM and LLM architectures, demonstrating that it significantly improves low bit
width activation quantization and complements established activation and weight
quantization methods including recent feature transformations.

1 INTRODUCTION
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Figure 1: STaMP and feature transformations ap-
plied to PixArt-Σ with 4-bit activations. The ben-
efit of STaMP is orthogonal to (Hadamard) feature
transformation, drastically reducing artifacts.

Modern generative models, such as large lan-
guage models (LLMs) and large vision models
(LVMs), achieve state-of-the-art performance
in text and image generation but at the cost
of massive computational and memory require-
ments. As the demand for scalable and efficient
deployment of these models grows, both in the
cloud and on edge devices where computational
resources are scarce, achieving inference effi-
ciency has become a critical area of research.

Post-Training Quantization (PTQ) of weights
and activations is fundamental to enhancing
inference efficiency, especially for demand-
ing operations such as large matrix multiplica-
tions in linear layers, which dominate power
consumption. However, PTQ faces substan-
tial challenges when pushing the quantization
bitwidth down to 4-bits, often due to the pres-
ence of outliers in weights and activations.

To mitigate outliers, prior work applies function-preserving transformations (van Breugel et al.,
2025) to weights and activations. For example, Xiao et al. (2023) scales down outlier activations and
compensates by scaling up subsequent weights, preserving the model output. Similarly, Hadamard-
based feature mixing (Ashkboos et al., 2024; Liu et al., 2024; Ma et al., 2024; Zhao et al., 2025)
reduces activation variance and spreads outliers across dimensions.

1
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However, these methods operate primarily along the feature dimension and ignore correlations
across the sequence dimension. Drawing inspiration from traditional media compression methods,
in this paper we propose Sequence Transformation and Mixed Precision (STaMP) quantization, a
complementary approach that leverages sequence structure to improve activation quantization.

Our main contributions are summarized below:

• We introduce a new class of activation transformations operating along the sequence di-
mension, complementary to existing feature transformations (Figure 1).

• We characterize the quantization error for sequence transforms and design a novel mixed-
precision quantization scheme to exploit local activation correlation.

• We demonstrate that STaMP consistently improves the model accuracy when combined
with feature transformations and weight quantization on both LLM and LVM.

2 BACKGROUND

2.1 ACTIVATION QUANTIZATION

Consider X ∈ Rs×d as an activation matrix of shape sequence length s × feature size d (batch
size is omitted for the sake of clarity). Integer quantization refers to the operation of converting
the activations to integer values with lower bit width. The activation quantization operation Q :
Rs×d → Ns×d is defined as:

xint
ij

def
= Q(X)ij = clamp

(⌊
xij

sij

⌉
+ zij , 0, 2

bij − 1

)
, (1)

in which zij and sij can be interpreted as an offset and scaling parameter, while bij refers to the
number of bits used to quantize the entry xij . In order to make quantization efficient, offsets, scales
and bit widths are shared across all feature channels: sij = si, zij = zi, and bij = bi.

The de-quantization function Q−1 : Ns×d → Rs×d maps the integer-quantized activation into the
original domain: Q−1(X int)ij = (xint

ij − zij)sij . We will refer to the combination of the quan-

tization and de-quantization operation with Q (X)
def
= Q−1(Q(X)), omitting the quantization

parameters for brevity. The expected activation quantization error introduced by the quantization
and de-quantization operations is commonly defined as:

L (X)
def
= E

[
∥Q (X)−X∥22

]
=

s∑
i=1

L(xi)︷ ︸︸ ︷
E
[
∥Q (xi)− xi∥22

]
, (2)

in which the expectation is computed with respect to the activation distribution p(X) and ∥·∥22 refers
to the squared Frobenius norm. Nagel et al. (2021) identified two main causes of quantization error:
clipping error (due to the clamp operator) and rounding error (introduced by the rounding). As is
common practice in the literature, we will focus on a setting in which the scale si and offset zi
for the i-th token are set based on the range (xi)

def
= maxj xij −minj xij to prevent any clipping

error: si
def
= 2bi−1

range(xi)
, zi

def
= −minj xij

si
. In this setting, the quantization error for each token xi is

determined by its quantization scale si:

L (xi) ≤
d

4
E
[
si

2
]
=

d

4

E
[
range (xi)

2
]

(2bi − 1)2
. (3)

As the activation quantization error increases, so does the deterioration in performance for the model
outputs since the network output diverge from the original (unquantized) model.

2.2 FEATURE TRANSFORMATIONS

In order to reduce the activation quantization error, recent literature has introduced linear function-
preserving transformations in the form of (right) invertible matrices R, which are applied prior to

2
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the quantization operation (van Breugel et al., 2025). Clearly, the additional flexibility introduced
by Feature Transformations can aid in reducing the activation quantization error:

L (X) ≥ min
R

E
[∥∥Q (XR)R−1 −X

∥∥2
2

]
︸ ︷︷ ︸

L(X;R)

. (4)

In particular, rotation matrices can effectively reduce the activation range, effectively spreading
outliers across multiple channels and consequently reducing the subsequent quantization error:

s∑
i=1

E
[
range (xiR)

2
]
≤

s∑
i=1

E
[
range (xi)

2
]

=⇒ L (X;R) ≤ L (X) (5)

Hadamard matrices have proven very effective in reducing the number of outliers with limited ad-
ditional overhead: matrix multiplications with Hadamard matrices can be performed efficiency in
O(sd log d) thanks to the butterfly algorithm (Fino & Algazi, 1976) , and the inverse Hadamard
matrix can be fused into linear layer weights (Ashkboos et al., 2024).

Existing feature transformation techniques reduce activation quantization error by redistributing ac-
tivation ranges across features. However, they operate exclusively along the feature dimension and
ignore correlations across the sequence dimension. Visual and textual data exhibit strong local cor-
relations—neighboring pixels in images and adjacent tokens in text are strongly dependent. This
suggests that a similar structure could exist in the model intermediate activations and could be lever-
aged to improve quantization efficiency, which is described in the next section.

3 METHOD

We define a Sequence Transform as a linear transformation of X across sequence dimension de-
fined by a (left) invertible matrix L. Similarly to feature transformations R, sequence transforma-
tions can reduce the quantization error, and the two can be easily combined to further the error:

L (X) ≥ min
L

E
[∥∥L−1Q (LX)−X

∥∥2
2

]
︸ ︷︷ ︸

L(X;L)

≥ min
L,R

E
[∥∥L−1Q (LXR)R−1 −X

∥∥2
2

]
︸ ︷︷ ︸

L(X;L,R)

. (6)

Sequence transformations are linear, hence they commute with other linear operations. For a linear
layer:(

L−1Q (LX)
)
W + 1βT = L−1 (Q (LX)W ) + 1βT = L−1

Q (LX)W + (L1)︸ ︷︷ ︸
ℓ

βT

 ,

(7)

in which 1 represents a vector of ones of size s, indicating that the same bias β is applied to all the
tokens. This implies that we can invert sequence transformation (i) right before applying the bias
in a linear layer, or (ii) postpone this operation and use a sequence-transformed bias ℓβT in which
the scale ℓi may differ across different tokens as a function of L. The algorithm for a sequence
transformed linear layer is reported in Figure 2a.

We emphasize that, contrary to feature transformations, sequence transforms do not affect weights,
and hence they are orthogonal to more advanced weight quantization methods such as vector quan-
tization, GPTQ (Guo et al., 2024), and SVDQuant (Li et al., 2025).

3.1 SEQUENCE TRANSFORM AND MIXED PRECISION (STAMP)

To understand how sequence transformations affect quantization error, we first formalize the rela-
tionship between quantization error and sequence-transformed tokens (proof in Appendix A.1):
Theorem 1. The expected quantization error for activations X transformed by an orthogonal se-
quence transformation L and quantized using a min-max scale for each token is upper-bounded by
the weighted sum of the expected norm of the transformed tokens:

L (X;L) ≤ d

2

s∑
i=1

ei︷ ︸︸ ︷
E
[∥∥lTi X∥∥2

2

]
(2bi − 1)2

. (8)

3
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1: function STAMP LINEAR(X)
2: X ← LX
3: for i = 1 . . . s do
4: xi ← Q(xi; bi)
5: end for
6: Y ←XW T

7: Y ← L−1Y
8: Y ← Y + β
9: return Y

10: end function

(a) STaMP Linear Layer Pseudocode (b) Comparison of Upper-Bound and Quantization error

Figure 2: Summary of the STaMP Procedure. The sequence Transform L aims to concentrate
the energy in the initial tokens, which are quantized at higher precision. This reduces the value of
the upper-bound in Equation 8 (blue) and, consequently, the overall activation quantization error
(purple). For a fixed average bit width of 5 bits, combining energy concentration with two precision
levels (2b, right) achieves lower error than a uniform quantization scheme without sequence trans-
formations (2b, left). Activations are collected from the input to Layer 20 of LLaMA v3 8B.

Note that sequence transformations L do not alter the total energy E =
∑s

i=1 ei, so any improve-
ment to the bound in Equation 8 must come from redistributing the bit width. This observation
motivates a mixed precision strategy: instead of keeping energy and bit width uniform, we deliber-
ately concentrate most of the energy into a few tokens and allocate more bits to them. Because the
denominator in Equation 8 grows exponentially with bi, allocating extra bits to tokens with large
energy yields a disproportionately large reduction in their contribution to the error. In other words,
redistributing a bit from a low-energy token to a high-energy token reduces the total error more
than keeping bit widths and energy uniform. This property is illustrated in Figure 2b and further
elaborated in Appendix A.3.

Therefore, to improve activation quantization performance, we propose Sequence Transform and
Mixed Precision (STaMP) a simple yet effective strategy that concentrates activation energy into a
small set of tokens and assigns them higher precision. In the next section, we describe how to design
a transformation L that achieves this efficiently and how to determine the corresponding bit width
allocation.

3.2 EFFICIENT ENERGY CONCENTRATION

The energy of the i-th sequence-transformed token ei can be also seen as the projection of the
autocorrelation matrix S = E[XXT ] along the direction li:

ei = E
[
∥liX∥22

]
= lTi Sli. (9)

he direction that maximizes this energy is the eigenvector u1 associated with the largest eigen-
value λ1 of S. Similarly, the second largest energy corresponds to u2 and so on. Therefore, given
the eigendecomposition S = UΛUT , the optimal orthogonal transformation L for concentrating
the token norm is UT . In this case, the energy e of the transformed tokens LX aligns with the
squared eigenvalues λ2. This linear transformation is also known as the Karhunen-Loève Trans-
form (KLT), which requires a representative calibration set to estimate U . Despite its optimality,
KLT has the same computational complexity of a full-rank matrix multiplication, which is imprac-
tical since each transform needs to be applied twice for each linear layer. Estimating S for each
activation would further adds a costly calibration step.

Fortunately, the autocorrelation matrix of common LVM and LLM activations S exhibits a strong
structure induced by the properties of natural images and text. Figure 3a shows that tokens corre-
sponding to spatially or sequentially adjacent activations are highly correlated, while distant tokens
are weakly correlated. As a result S is approximately (block) Toeplitz, whose eigenvectors can be

4
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Figure 3: Visualization of (3a) a portion of the autocorrelation matrix, (3b) transformed token en-
ergy distribution, and (3c) transformation components for the input to the cross-attention layer 15 of
PixArt-Σ and the attention layer 20 of LLaMA-v3-8B, computed on COCO and Wikitext, respec-
tively. The block structure in the LVM activations arises from flattening 2D data into a 1D sequence.
Both matrices exhibit a Toeplitz-like diagonal structure, allowing their KLT eigenbases to be ef-
ficiently approximated by DCT (Figure 3c), which concentrates the token energy close to optimal
distribution (Figure 3b). The DWT closely approximates the optimal energy with discrete levels.

well-approximated by a Fourier basis1. In particular, since the autocorrelation is real and symmetric,
we can use a Discrete Cosine Transform (DCT) instead of a complex Fourier basis.

The complexity of DCT O(ds log s) is lower than a full matrix multiplication since the transfor-
mation requires only log s steps of the Fast Fourier Transform algorithm. Further simplification is
possible by retaining only the sign of Fourier coefficients, yielding the Walsh-Hadamard Trans-
form (WHT), which approximates DCT while enabling more efficient hardware implementations.

Finally, the Discrete Wavelet Transform (DWT)2 further reduces the computational complexity to
O(ds) while effectively concentrating the energy of the activations at each intermediate step. Each
DWT step pushes the energy in the first half (one quarter for 2D signal) of the tokens, requiring log s
steps to fully concentrate the energy.

Figure 3 compares energy distributions (3b) and basis components (3c) for KLT, DCT, and DWT on
intermediate activations of LVM and LLM architectures.

3.3 OPTIMAL BIT ALLOCATION

Given a vector of energies e, the optimal bit distribution b for a total maximum allocation of B
bits follows the logarithm of the squared root of the token energy: b∗i = log2

√
ei − C, with C =(

B −
∑s

i=1 log2
√
ei
)
/s. b∗ gives us an indication of the optimal bit width for each token, however,

in practice we are restricted to integer bit widths ⌊b∗⌉. Furthermore, due to practical limitations, it

1This follows from Szegő’s theorem.
2We use the Haar wavelet for its simplicity and minimal padding requirements.

5
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(a) Bit width allocation and transformation strategies
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(b) Bit width SQNR tradeoff

Figure 4: Comparison of energy and bit width allocation strategies. Figure 4a compares a uni-
form allocation without transformation against two STaMP strategies based on the DWT transform.
Restricting to only 4- and 8-bits precision (in yellow) introduces minimal overhead while signifi-
cantly improving output quality. The results in Figure 4b are obtained by varying the number of
high-precision tokens and adjusting the uniform quantization bit width for a per token-activation-
quantized PixArt-Σ model with QuaRot feature transformations.

is beneficial to use only a small number of different bit precisions which are supported on hardware,
such as 4 or 8 bits.

For this reason, although the DWT energy concentration is sub-optimal, its property of creating a
discrete number of energy levels makes it more suitable to our use case. As illustrated in Figure 4a
in yellow, we propose a simple allocation scheme that uses only two bit widths: the first 64 tokens
are kept at 8 bits, while the rest uses 4 bits, resulting only in a minor bit width overhead (4.0625
on the PixArt-Σ), while significantly improving the model accuracy (Figure 4b). For this reason,
STaMP with DWT and 2 precision level will be our main focus in the experimental section.

4 RELATED WORK

Quantization is a fundamental technique for reducing the computational and memory footprint of
deep neural networks, enabling efficient inference with minimal accuracy loss. The rapid growth
of LLMs and LVMs has intensified interest in post training quantization (PTQ) (Nagel et al., 2021;
Gholami et al., 2022), as retraining these models is often impractical. Recent PTQ approaches focus
on removing the outliers and reducing the dynamic range of weights and activations, to improve
quantization robustness.

SmoothQuant (Xiao et al., 2023) reduces activations outliers by scaling the feature channels, shifting
quantization difficulty from activations to weights. QuaRot and FlatQuant apply invertible feature
transforms over weights and activations to spread outliers across channels, employing randomized
Hadamard (Ashkboos et al., 2024) or learning lightweight affine transforms (Sun et al., 2025). van
Breugel et al. (2025) develop transforms that commute with transformer operations, such that they
can be merged into linear weights. Zhao et al. (2025) develops a Static-Dynamic Channel Bal-
ancing (SDCB) procedure based on channel scaling and mixing on Diffusion Transformer (DiT)
architectures and retaining certain quantization-sensitive layers to higher bitwidth to achieve W8A8.
Li et al. (2025) absorbs activation outliers into a high-precision low-rank branch via singular value
decomposition, while quantizing the residuals to 4-bit with a per-token/per-group quantization gran-
ularity to achieve W4A4 mixed-precision quantization on DiT. Federici et al. (2025) reduces the
dynamic range of DiT activations by subtracting the sequence average from each token and apply-
ing Hadamard feature rotations, at the cost of processing an extra token.

While these approaches have advanced PTQ for large models, they operate exclusively along the
feature dimension and ignore correlations across the sequence dimension. In contrast, STaMP intro-
duces sequence-aware transformations that exploit local token correlations by using a mixed preci-
sion allocation strategy under a fixed average budget. Our approach is strongly relates to classical
media compression techniques that leverage frequency-domain transforms to concentrate energy and

6
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Figure 5: Diagram of a LVM transformer block based on the PixArt-Σ architecture. The quantization
and sequence transformations operations are indicated explicitly. LLM architectures use the same
quantization scheme for the attn1 and ffn blocks. Note that no transform is applied to the attn2.to out
activations since the sequence autocorrelation does not present the block diagonal structure because
of its dependency on the pooled textual embedding.

enable adaptive quantization. JPEG (Leger et al., 1991) and JPEG2000 (Christopoulos et al., 2002)
rely on the Discrete Cosine Transform and Discrete Wavelet Transform, respectively, to decorrelate
spatial data and allocate bits based on perceptual importance. Similar principles underlie modern
video coding standards such AVC (Wiegand et al., 2003) and HEVC (Sullivan et al., 2012), as well as
audio codecs like MP3 and AAC, which use the Modified Discrete Cosine Transform (Princen et al.,
1987). STaMP demonstrates that it is possible to apply similar principles to the activation space
of generative models, where local correlation in the sequence dimension allows energy compaction
and selective precision allocation, improving quantization efficiency without retraining.

5 EXPERIMENTAL RESULTS

We demonstrate the effectiveness of STaMP on both LVM and LLM models, comparing against
uniform activation quantization, and showing its effectiveness in combination with popular feature
transformation and weight quantization approaches. Throughout this section, we focus on STaMP
with DWT due to its computational efficiency. We refer to Figure 5 for a visualization of how the
sequence transformations are applied to the architectures, and to Appendix C for additional results.

5.1 VISION LANGUAGE MODELS

Set-up Our LVM experiments focus on the DiT architectures of PixArt-Σ (Chen et al., 2024b) and
SANA (Xie et al., 2025). We quantize activation before each linear layer in transformer blocks using
asymmetric quantization with minmax scaling. As common practice, unless otherwise specified, we
use a separate scale si for each token and weight output channel. Following common procedure in

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: STaMP consistently improves LVM quantization. Image SQNR and Image Reward (IR)
for W4A4 per block quantization with block size 64. For all the STaMP results we keep 64 tokens
at 8-bits. STaMP consistently improves baselines.

COCO MJHQ

SQNR IR SQNR IR
STaMP→ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

PixArt-Σ

FP +∞ 0.90 +∞ 0.96

RTN 5.88 6.16 0.38 0.80 5.75 6.23 0.38 0.76
ViDiT-Q 7.82 6.37 0.83 0.84 7.55 8.53 0.76 0.86
SVDQuant 8.78 9.72 0.90 0.91 8.83 9.75 0.86 0.89

SANA

FP +∞ 0.87 +∞ 0.97

RTN 8.63 9.32 0.89 0.91 8.56 9.40 0.95 0.99
ViDiT-Q 10.03 10.74 0.89 0.86 10.04 10.69 0.96 0.97
SVDQuant 9.99 10.69 0.87 0.90 9.88 10.51 0.93 0.98

FP32

“a cute little dog nugget
looking up at the stars in
the sky, filled with hope

and determination.”

RTN ViDiT-Q SVDQuant

RTN + STaMP ViDiT-Q + STaMP SVDQuant + STaMP

Figure 6: Visualization of PixArt-Σ sample generation for the results reported in Table 1.

literature, in LVMs we do not quantize activations and weights corresponding to the cross-attention
key and value since their effect accounts for less than 5% of the runtime (Li et al., 2025).

We evaluate the fidelity of the quantized LVMs by computing the Signal to Quantized Noise Ratio
SQNR(Oorig,Oquant) = 10 log10

(
∥Oorig∥22 / ∥Oorig −Oquant∥22

)
both in the diffusion latent space

and image space. We further compute CLIP Score (Hessel et al., 2021) to assess alignment with
the textual prompt, CLIP IQA (Wang et al., 2023), and Image Reward (Xu et al., 2023) to evaluate
the generated image quality. Following standard procedures, we compute the metrics using 1000
prompts and images from the COCO (Lin et al., 2014) and MJHQ (Li et al., 2024) datasets.

We demonstrate the effectiveness STaMP alone and by combining it with other quantization meth-
ods developed in recent literature. We combine STaMP with feature transform methods such as
SmoothQuant (Xiao et al., 2023) and QuaRot (Ashkboos et al., 2024), and Static-Dynamic Channel
Balancing (SDCB) described in ViDiT-Q (Zhao et al., 2025). We further demonstrate the effec-
tiveness of STaMP with the mixed precision low-rank weight quantization method described in
SVDQuant (Li et al., 2025). We apply STaMP before each linear layer in the Transformer blocks,
inverting it right after each linear layer. We use 2-dimensional DWT with 64 8-bit (high precision)
tokens unless otherwise specified.

8
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Table 2: STaMP always improves LLM quantization. Perplexity (PPL) for W4A4KV4 quantiza-
tion, using the same setting as (Ashkboos et al., 2024; Sun et al., 2025). We use 64 8-bit tokens for
activations and KV-cache for all methods and baselines, even if we do not apply the sequence trans-
form (effectively W4A4.125KV4.125). The STaMP sequence transform improves all baselines.

Llama 3 8B Llama 3.2 1B it Llama 3.2 3B it Qwen 2.5 3B it
STaMP→ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

FP 6.14 13.16 11.27 8.56

RTN 668 95.3 1795 700 483 159 99723 18767
SmoothQuant 531 93.8 883 407 177 88.5 66929 29063
Quarot 9.05 8.66 25.78 23.72 18.43 17.57 94.86 71.13
FlatQuant 6.89 6.77 15.72 15.16 12.71 12.40 9.29 9.19

Results Table 1 reports the results obtained by combining STaMP with recent LVM quantization
method using the same quantization setting for all the baselines. Both activation and weights are
quantized at 4 bits with blocks of size 64, following the setup described in (Li et al., 2025). We
observe that STaMP consistently improves upon all the reported metrics on different models and
architectures resulting in visually more accurate generations, as shown in Figure 6.

5.2 NUMBER OF HIGH PRECISION TOKENS

Figure 4b demonstrates the trade-off between bit width and SQNR observed by changing the number
of high-precision tokens in STaMP, while fixing the high and low precision bit widths to 8 and
4 bits respectively. Only activations are quantized to focus the analysis solely on the activation
quantization error. We observe a sharp increase in SQNR whenever even a few high precision tokens
are introduced. Even in the 5 bits regime, STaMP achieves better performance uniform quantization.
Additional comparison with per-block activation quantization can be found in Appendix C.

5.3 LARGE LANGUAGE MODELS

Set-up We evaluate on language models of different sizes and model classes, including Llama 3
8B (Grattafiori et al., 2024), Llama 3.2 1B and 3B instruct, and Qwen 2.5 3B instruct (Qwen et al.,
2025). We take popular feature transforms from literature, including SmoothQuant (Xiao et al.,
2023), QuaRot (Ashkboos et al., 2024), and the state-of-the-art FlatQuant (Sun et al., 2025), and
evaluate whether STaMP (DWT) brings additional gains to these baselines. We use the exact same
quantization set-up as used in (Ashkboos et al., 2024; Sun et al., 2025), W4A4KV4 per token acti-
vation quantization, and like them, evaluate Wikitext-2 (Merity et al., 2017) perplexity at sequence
length 2048. We use round-to-nearest (RTN) for weight quantization (vs. GPTQ (Frantar et al.,
2022)), as weight quantization is completely perpendicular to sequence transforms. In this setup,
we keep the first 64 tokens in 8 bits for all baselines, which means all methods use an effective
activation/KV bit width of 4.125 bits. Note that, on LLMs, STaMP can be effectively applied only
for the prompt-processing phase, since during token generation, only one activation is available at
the time. Despite this limitation, STaMP remains useful for prompt processing, which is typically
compute-bound (Agrawal et al., 2023; Chen et al., 2024a; Kamath et al., 2025), as reducing the
activation size lowers total compute and latency. See Appendix B.2 for additional details.

Results We observe (Table 2) that all baselines improve consistently when STaMP is added. This
is especially apparent for scenarios where baselines are far from FP performance—e.g. for the small
Llama 3.2 1B and 3B instruct models, which are evidently hard to quantize at 4 bit. This demon-
strates that STaMP is not a competitor of other quantization techniques (e.g. feature transforms), but
an additional tool for achieving extremely low bit width quantization—which can be added without
any manual tuning or training to existing quantization methods. Appendix C includes additional
evaluations on few-shot reasoning tasks, which are consistent with the perplexity measurements.

9
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Figure 7: Effect of combining Feature Transforms (rows) and STaMP (columns) with A4 on the
PixArt-Σ and LLama v3 8B models.

5.4 COMBINING FEATURE AND SEQUENCE TRANSFORMATIONS

In Figure 7 we assess the effectivenes of STaMP for three different sequence transformations in
combination with popular feature transforms. Overall, we observe that improvements are largely
complementary, especially for LVMs. Furthermore, results show that DCT, WHT and DWT perform
similarly to each other, demonstrating that there is little price to pay for switching from the more
accurate and computationally expensive DCT to the cheaper approximate DWT.

5.5 OVERHEAD ESTIMATES

Table 3: Overhead in terms of latency on CUDA
and extra FLOPS for a single PixArt-Σ denoising
step. STaMP with DWT has little impact on the
latency and number of floating point operations.

Transformation Overhead [%]
Feature Sequence FLOPS CUDA

Hadamard - 0.24 3.0
- Hadamard 0.69 56.8
- DWT 0.21 4.8

Hadamard DWT 0.44 7.8

Table 3 reports that the theoretical compute
overhead and latency of CUDA for a latent de-
noising step with STaMP (DWT) is compara-
ble to Hadamard transforms on the features, ac-
counting for less than 5% of the total runtime.
The DWT transform is applied in three levels,
consistently with the results reported in Table 1
and Figure 4a, using a specialized CUDA ker-
nel that considers the memory layout of the ac-
tivation tensors. Appendix B.3 includes further
details on the benchmarking procedure. The
minimal FLOPS overhead suggests that the la-
tency overhead can be further reduced with bet-
ter optimized kernels or specialized hardware.

6 CONCLUSION

This work explores uncharted territories in the recent advancements of LLM and LVM quantization,
applying invertible transformations over the sequence dimension to further reduce quantization error.
Drawing inspiration from traditional signal processing, we introduce a novel method that exploits
the autocorrelation structure that is naturally present in the intermediate activations of generative
models to enable a more efficient mixed-precision activation quantization scheme.

We demonstrate that STaMP complements existing PTQ techniques such as SmoothQuant and
QuaRot, and plays a critical role in advancing low-precision activation quantization, pushing the
boundaries of W4A4 quantization for both LLMs and LVMs and offering training-free solution for
deploying high-performance models in resource-constrained environments.
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A PROOFS

A.1 PROOF FOR THEOREM 1

We prove the result reported in Theorem 1 in three steps. First, we demonstrate that the quantization
error for an orthogonal sequence transformation is the same as the quantization error on the sequence
transformed inputs:

L (X;L) = L (LX) (10)

Proof. This simply follows from the invariance of the Frobenious norm to orthogonal transforma-
tions.

L (X;L) =
∥∥L−1Q (LX)−X

∥∥2
2

=
∥∥L−1Q (LX)−L−1LX

∥∥2
2

=
∥∥L−1 (Q (LX)−LX)

∥∥2
2

= ∥Q (LX)−LX∥22
= L (LX)

Secondly, for completeness, we prove the upper-bound reported in Equation 3. For quantization
scheme with minmax scales shared across all feature channels sij = si:

L (xi) ≤
d

4

E
[
range (xi)

2
]

(2bi − 1)2
(11)

Proof.

L (xi) = E
[
∥Q (xi)− xi∥22

]
= E

[∥∥∥∥Q−1

(⌊
xi

si

⌉
+ zi

)
− xi

∥∥∥∥2
2

]

= E

[∥∥∥∥(⌊xi

si

⌉
+ zi − zi

)
si − xi

∥∥∥∥2
2

]

= E

[∥∥∥∥(⌊xi

si

⌉
− xi

si

)
si

∥∥∥∥2
2

]

= E

[∥∥∥∥(⌊xi

si

⌉
− xi

si

)∥∥∥∥2
2

s2i

]

≤ E

[∥∥∥∥12
∥∥∥∥2
2

s2i

]

=
d

4

E
[
range (xi)

2
]

(2bi − 1)2
.

Lastly, we bound the range using the norm 2:

range (xi)
2 ≤ 2 ∥xi∥22 . (12)

Equality is attained whenever x̂i consists of two non-zero entries −v and v, for which range (x) =
2v and ∥x∥2 =

√
2v.

Using this three steps we can write the proof for Theorem 1
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Proof.

L (X;L)
10
= L (LX)

=

s∑
i=1

L (liX)

11
≤ d

4

s∑
i=1

E
[
range (liX)

2
]

(2bi − 1)2

12
≤ d

2

s∑
i=1

E
[
∥liX∥22

]
(2bi − 1)2

A.2 OPTIMAL BIT WIDTH ALLOCATION

We determine the optimal bit width allocation b∗ for an energy vector e by determining the bit width
for which the ratio ei/2

2b∗i ≈ ei/(2
bi − 1)2 is constant for all tokens:{
ei

22b
∗
i
= k∑s

i=1 b
∗
i = B

(13)

=⇒ b∗i =
log2 ei − log2 k

2
(14)

=⇒
s∑

i=1

log2 ei − log2 k

2
= B (15)

=⇒ log2 k =
1

s

s∑
i=1

log2 ei −
2B

s
(16)

=⇒ b∗i =
log2 ei − 1

s

∑s
i=1 log2 ei +

2B
s

2
(17)

=⇒ b∗i = log2
√
ei +

B −
∑s

i=1 log2
√
ei

s︸ ︷︷ ︸
C

(18)

A.3 EFFECTIVENESS OF ENERGY CONCENTRATION

We demonstrate the effectiveness of the proposed Sequence Transform and Mixed precision scheme
by considering the upper bound in Equation 8 in two different settings. In order to simplify compu-
tation, we will consider ei

22bi
instead of ei

(2bi−1)2
since the difference between the two quantities is

negligible for practical values of bi.

1. Uniform Energy:
In this scenario we have ei = E/s and bi = B/s. We note that the energy for each token
is equal to the average of the squared eigenvalues λ2

i of S:

ei = E/s = Trace(S)/s =
1

s

s∑
i=1

λ2
i

def
= λ2. (19)

Therefore:

d

2

s∑
i=1

ei
22bi

=
d

2

s∑
i=1

λ2

22B/s
=

ds

2
2log2 λ2−2B/s (20)

2. Maximum Energy Concentration:
We consider a scenario in which the energy corresponds with the squared eigenvalues ei =
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λ2
i . The optimal bit allocation is given by Equation 18:

b∗i = log λi +
B

s
−

∑s
i=1 log2 λi

s︸ ︷︷ ︸
log2 λ

(21)

Therefore:

d

2

s∑
i=1

ei
22bi

=
d

2

s∑
i=1

λ2
i

2log λ2
i+

2B
s −2log2 λ

=
ds

2
2log2 λ2−2B/s (22)

Comparing the two results is equivalent to comparing log2 λ
2 (uniform) and log2 λ

2 (max concen-
tration). Using Jensen’s inequality and the convexity of log2, we have:

log2 λ
2 = E[log2 λ2

i ] ≤ logE[λ2
i ] = log2 λ

2
i . (23)

Therefore, the Maximum Energy concentration strategies achieves a lower value than the uniform
scheme.
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B EXPERIMENTAL DETAILS

B.1 LVMS

Baselines We implement SmoothQuant, QuaRot, ViDiT-Q and SVDQuant closely following the
details reported in the paper and the respective codebases. Specifically, for ViDiT-Q (Zhao et al.,
2025) we use α = 0.01, as reported in their PixArt-Σ setup. For SVDQuant and SmoothQuant we
use a default value of α = 0.5.

Quantization In order to promote a fair comparison with the other models, for the results reported
in Table 1, instead of using the 8-bits weight quatization scheme described in ViDiT-Q (8 bits for the
FFN blocks, first and last transformer blocks), we use per-block weight and activation quantization,
as described in SVDQuant (Li et al., 2025), which improves the ViDiT-Q results. In line with the
SVDQuant methodology, we retain the depth-wise convolutions within the feed-forward layers of
the SANA transformer blocks in full precision. Meanwhile, the two point-wise convolutions are
quantized by treating them as linear layers. Notably, unlike the original SVDQuant implementation,
our experiments do not incorporate GPTQ at any stage. The activation-quantization only results
reported in Figure 4b and Figure 7 use 4 bits per token quantization.

STaMP For the STaMP results, excluding the specific ablation study, we use 64 high-precision
tokens, which results in an effective activation bit-width of 4.0625 bits on the PixArt-Σ model and
4.125 bits on the SANA model. Non-STaMP result do not use any mixed precision tokens.

B.2 LLMS

Quantization We use dynamic quantization for the KV cache and activations. Quantization scales
and offsets are determined per token, sequence, and (for KV) head. We follow (Ashkboos et al.,
2024; Sun et al., 2025) and only quantize weights, KV cache, and inputs to linear layers within
the transformer block. We use round-to-nearest weight quantization, as weights are unaffected by
STaMP—more advanced weight quantization schemes could improve results further, but this is per-
pendicular to our contribution. we range set the weights by computing the weight quantization
squared error for a grid of candidate ranges and selecting the candidate with lowest error. For fair-
ness, for all experiments (incl. baselines) we keep the first 64 tokens in 8 bits, which gives an
effective bit width of 4.125 for both STaMP and non-STaMP results.

Baselines For SmoothQuant, we calibrate the scales based on the Wikitext-2 training dataset acti-
vations. For QuaRot, we follow the original paper and reduce the minmax activation range by 10%.
For FlatQuant, we use their recommended settings for all models (e.g. training for 15 epochs on 128
Wikitext-2 training sequences).

STaMP The first token in most LLMs acts as an attention sink Xiao et al. (2024); Gu et al. (2025),
and typically contains massive outliers Sun et al. (2024). Keeping the first token in 8 bits helps to
accurately represent these massive outliers. To ensure the massive outlier stays in the first token,
STaMP is not applied to the first token. Note that the baselines that do not use STaMP’s transform,
do benefit from keeping the first token (and next 63) in high-precision in our experiments.

B.3 NOTES ON THE RUNTIME ESTIMATION

B.3.1 DWT OVERHEAD

To compute the overhead associated with the sequence and feature transforms, we measured the
time required to run a single denoising step with the original PixArt-Σ model, and compared it with
the modified architectures (having the extra transform operations). Measurements are performed on
an A100-SXM4-80GB GPU using python 3.10.12, PyTorch 2.5.1+cu121, and CUDA drivers 12.5.
Hadamard transforms are based on the CUDA-accelerated kernels from the fast-hadamard-transform
package 3. For Haar DWT operations, we built a specialized CUDA kernel, optimized for applying

3https://github.com/Dao-AILab/fast-hadamard-transform
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Figure 8: Visualization of runtime estimation in terms of latency on CUDA for running matrix
multiplication kernels with different data types, shapes, and batch sizes, averaged over 1000 runs.
The proposed mixed precision approach has a minimal overhead that does not depend on the batch
size.

DWT over the sequence dimension. The increased latency measured with the Hadamard applied on
the sequence dimension can be mainly attributed to the memory reshaping operations required to
use the fast-hadamard-transform kernel.

B.3.2 MIXED-PRECISION MATRIX MULTIPLICATION

When using STaMP, the first tokens of the activation tensors are stored at a higher bit width with
respect to the subsequent ones (8 and 4 bits in our experimental settings). This implies that the
subsequent linear operation should perform part of the computation with higher precision. The
number of extra bit operations for the 8 bit part is minimal (about 1.56% on PixArt-Sigma).

It is important to note that STaMP 4-8 bits mixed precision scheme drastically reduces the number
of binary operations when compared to int8 matrix multiplications. However, ß the latency measure-
ments are heavily influenced by the support for specific data types and operations in the hardware
and software stack of the target device. Demonstrating the effectiveness of int4 quantization is an
important step towards developing support for more power-efficient solutions in commercial-grade
hardware.

We assessed the effectiveness of the proposed mixed precision design by measuring the time to
perform a mixed precision matrix multiplication on CUDA, and we compared to performing the
same operation with fp16, int8 or int4 data types. When using Nvidia hardware, one can take
advantage of Tensor Cores to accelerate low-precision operations and allow higher computational
throughput. PyTorch uses Tensor Cores kernels for most of the low-precision data types (such
as tf32, fp16, bf16, int8), but the PyTorch stack lacks an int4 accelerated kernel. Following the
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procedure from Sun et al. (2025) 4, we used a Cutlass-based gemm kernel with minor modifications
to the python bindings to enable inplace operations.

In Figure 8, we report the outcome of our benchmakrs for different batch sizes and for the tensor
shapes used in the Pixart-Σ architecture. The measured overhead for the mixed-precision matrix
multiplication over the int4 one for batch-size 2 (required for generating a single output image) vary
from about 30% (for smaller shapes) to approximately 10% (for fused Q/K/V computation and up
projection). Increasing the batch size to 8 reduces the relative overhead to under 10% on all layers.

One should consider that our Mixed-Precision implementation essentially runs two matmuls: one
using the custom cutlass kernel over the int4 data double-packed into an int8 tensor, the other using
the standard torch int8 kernel over the first 64 tokens and writing the results on the first 64 tokens
of the output tensor. For batch size 2, we also perform an additional int8 operation over the first
64 tokens of the second sample. For batch sizes 4 and larger we slice the tensors to retrieve the
first 64 tokens of each batch element and pack into contiguous memory before running a single
int8 matmul. Additional memory transfer optimization and kernel fusion could further decrease the
overhead introduced by the STaMP operations.

C ADDITIONAL RESULTS

C.1 LVMS

We report additional results for the setups described in Section 5, including an ablation of the effect
of STaMP on different activations (Table 4), bit width vs SQNR comparison against per-block acti-
vation quantization (Figure 10), and additional metrics (Table 5) and visualizations (Figure 11) for
the results reported in the main text.

C.2 LLMS

We report additional LLM evaluation involving common few-shots reasoning tasks in Table 6. The
evaluation is performed using the lm-eval-harness toolkit (Gao et al., 2024).

D USE OF LLMS

Large Language Models have been used only for sentence rephrasing and grammar check, which
resulted in minor alterations to the paper text.

4https://github.com/ruikangliu/FlatQuant

Table 4: Effect of A4 activation quantization on single activations of the Pixart-Σ model on the
Image SQNR. Each entry corresponds to a model for which only the corresponding input activation
is quantized. Note that STaMP has little to no effect on attn2.to out since the structure is determined
by pooled textual embedding, which does not present the same correlation structure as the other
activations in the network.

Transform attn1 attn1.to out attn2.to q attn2.to out ffn.up proj ffn.down proj

Identity 6.01 10.09 0.40 15.48 1.15 4.92
QuaRot 13.80 16.01 16.29 23.20 11.36 8.42
STaMP 7.68 13.89 11.60 15.49 8.75 9.61
QuaRot+STaMP 15.28 16.78 18.31 23.23 13.84 14.91
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Figure 9: Visualization of the Images generated with A4 activation quantization and several com-
bination of Feature and Sequence transforms for the Pixart-Σ architecture. The images refer to the
same setup described in Figure 7.
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Quantization Scheme Comparison
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Figure 10: Tradeoff between SQNR and bit width for per-token activation quantization (pt) per-block
activation quantization (pb) at different block size (from 16 to 1024), and per-token with STaMP
(pb+STaMP) at varying number of high precision tokens on the PixArt-Σ model. We consider 16
bits scales for each scale parameter. The visualization correspond to the Prompt ’A guy with a
backpack looking at the ground to his left.’.
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FP32

“portrait of an army of wild
mountain hares are roaming

the streets of central
Stockholm, summertime,

warm ans sunny, sunset life
style stock image popular no
text prompt trend. pinterest

contest winner”

RTN ViDiT-Q SVDQuant

RTN +STaMP ViDiT-Q +STaMP SVDQuant +STaMP

Figure 11: Visualization of a sample generation for the SANA for the results reported in Table 1.
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Table 5: Additional metrics for the experiments reported in Table 1.

Dataset LVM Method STaMP CLIP CLIP IQA SQNR (latent)

COCO

PixArt-Σ

FP 31.54 0.91 +∞

RTN ✗ 31.23 0.79 0.19
✓ 31.88 0.91 0.49

SVDQuant ✗ 31.68 0.91 0.96
✓ 31.76 0.91 1.47

ViDiT-Q ✗ 31.63 0.87 0.73
✓ 31.92 0.87 1.03

SANA

FP 31.85 0.89 +∞

RTN ✗ 31.85 0.89 3.39
✓ 31.94 0.89 4.09

SVDQuant ✗ 31.83 0.90 4.61
✓ 31.88 0.90 5.30

ViDiT-Q ✗ 31.79 0.89 4.63
✓ 31.82 0.89 5.42

MJHQ

PixArt-Σ

FP 31.46 0.85 +∞

RTN ✗ 29.90 0.75 0.28
✓ 30.96 0.87 0.71

SVDQuant ✗ 31.13 0.86 1.27
✓ 31.28 0.87 1.86

ViDiT-Q ✗ 30.97 0.81 0.86
✓ 31.20 0.83 1.31

SANA

FP 31.57 0.83 +∞

RTN ✗ 31.51 0.84 4.45
✓ 31.60 0.84 5.39

SVDQuant ✗ 31.52 0.83 5.69
✓ 31.55 0.83 6.46

ViDiT-Q ✗ 31.60 0.83 5.76
✓ 31.60 0.83 6.65
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Table 6: LLM evaluation on Common Reasoning tasks. The experimental setup is equivalent to the
one described in Table 2.

Llama 3 8B Llama 3.2 1B it Llama 3.2 3B it Qwen 2.5 3B it
Task STaMP → ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

arc challenge

FP 54.4 36.1 46.4 56.0

RTN 43.9 44.1 27.9 28.4 35.7 35.9 36.6 37.0
SmoothQuant 40.3 40.2 30.5 30.5 34.5 34.6 39.2 39.3
QuaRot 39.0 38.7 30.5 30.5 37.4 37.1 42.8 43.2
FlatQuant 52.0 52.5 33.9 34.2 44.4 45.5 52.0 54.0

arc easy

FP 84.2 70.7 79.7 83.5

RTN 75.2 75.8 56.2 56.3 63.6 63.8 66.7 66.8
SmoothQuant 71.4 72.1 61.7 62.4 64.5 65.1 69.0 69.3
QuaRot 71.5 71.3 58.2 58.3 66.5 66.5 73.5 73.6
FlatQuant 81.3 82.4 67.6 67.8 77.5 77.7 82.2 82.4

hellaswag

FP 61.3 44.3 52.8 56.2

RTN 39.2 50.2 31.0 34.0 37.2 41.9 32.4 33.2
SmoothQuant 39.1 47.4 33.3 36.5 40.1 45.3 33.3 33.8
QuaRot 49.5 51.2 37.9 38.9 45.9 46.9 34.0 33.9
FlatQuant 58.7 59.7 41.2 41.9 50.4 50.8 53.6 54.5

lambada

FP 71.1 55.1 63.3 59.3

RTN 0.2 1.2 0.3 0.9 0.7 3.6 0.0 0.0
SmoothQuant 0.5 2.7 0.6 1.6 2.4 9.0 0.0 0.0
QuaRot 15.1 24.6 16.4 20.6 37.6 40.6 0.0 0.0
FlatQuant 67.1 67.1 44.1 48.3 58.1 58.9 55.0 57.5

piqa

FP 81.1 74.0 77.3 78.0

RTN 75.4 76.5 66.2 66.5 69.7 70.3 71.5 71.6
SmoothQuant 74.1 74.3 68.7 68.8 71.6 72.0 72.1 72.3
QuaRot 74.2 73.9 68.9 68.4 70.9 70.7 73.1 72.9
FlatQuant 79.4 80.2 72.1 73.0 76.1 75.7 77.5 77.6

winogrande

FP 77.5 62.0 70.6 70.6

RTN 71.0 71.0 55.2 55.2 63.1 63.1 62.0 62.0
SmoothQuant 70.8 70.8 54.9 54.9 64.8 64.8 65.6 65.6
QuaRot 70.8 70.8 57.6 57.6 62.6 62.6 65.9 65.9
FlatQuant 75.2 74.9 58.6 60.1 66.4 68.8 66.6 68.1

Average

FP 69.7 55.7 63.8 65.5

RTN 50.8 53.1 39.4 40.2 45.0 46.5 44.9 45.1
SmoothQuant 49.4 51.2 41.6 42.5 46.3 48.5 46.5 46.7
QuaRot 53.3 55.1 44.9 45.7 53.5 54.1 48.2 48.2
FlatQuant 67.4 67.9 50.9 52.3 60.7 61.5 62.7 63.9
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