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ABSTRACT

Self-supervised learning has emerged as an effective pre-training strategy for
representation learning using large-scale unlabeled data. However, models pre-
trained with self-supervised learning still require supervised fine-tuning to achieve
optimal task-specific performance. Due to the lack of label utilization, it is dif-
ficult to accurately distinguish between positive and hard negative samples. Su-
pervised contrastive learning methods address the limitation by leveraging labels,
but they focus on global representations, leading to limited feature diversity and
high cross-correlation between representation dimensions. To address these chal-
lenges, we propose Supervised Dimension Contrastive Learning, a novel approach
that combines supervision with dimension-wise contrastive learning. Inspired by
redundancy reduction techniques like Barlow Twins, this approach reduces cross-
correlation between embedding dimensions while enhancing class discriminabil-
ity. The aggregate function combines the embedding dimensions to generate pre-
dicted class variables, which are optimized to correlate with their corresponding
class labels. Orthogonal regularization is applied to ensure the full utilization of
all dimensions by enforcing full-rankness in the aggregate function. We evaluate
our method on both in-domain supervised classification tasks and out-of-domain
transfer learning tasks, demonstrating its superior performance compared to tra-
ditional supervised learning, supervised contrastive learning, and self-supervised
learning methods. Our results show that the proposed method effectively reduces
inter-dimensional correlation and enhances class discriminability, proving its gen-
eralizability across various downstream tasks.

1 INTRODUCTION

Recent advances in self-supervised learning (Chen et al., 2020; Zbontar et al., 2021; Caron et al.,
2020; 2021) have demonstrated its effectiveness as a pre-training method using large-scale unlabeled
data. This approach leverages data augmentation to generate semantically similar examples and then
aligns the representations of the two examples. Despite its success, models pre-trained through self-
supervised learning still require fine-tuning with labeled data to achieve sufficient performance on
specific tasks. Moreover, relying solely on data augmentation and sample discrimination limits the
ability to distinguish between positive and hard negative samples. effectively (Robinson et al., 2020;
Wu et al., 2020).

With the growing availability of large labeled datasets, e.g. JFT-300M (Sun et al., 2017), supervised
representation learning has gained importance. By directly utilizing labels, supervised methods can
capture semantically meaningful relationships between data points without heavily depending on
data augmentation. Contrastive learning has shown promising results in supervised frameworks,
similar to its success in the field of self-supervised learning. Supervised contrastive learning meth-
ods (Khosla et al., 2020; Zha et al., 2024; Cui et al., 2021; 2023) encourage representations of
data points from the same class to cluster closely while pushing apart representations from differ-
ent classes in the representation space. It demonstrated superior performance in classification tasks
compared to both self-supervised learning and traditional cross-entropy-based approaches.

Despite these advantages, supervised contrastive learning methods primarily focus on global repre-
sentations and do not induce the learning of additional discriminative features, once different classes
are sufficiently separated. This results in a lack of feature diversity, as evidenced by the high cross-
correlation between dimensions of the learned representations in Figure 1. Consequently, supervised
contrastive learning methods may underperform in tasks that require diverse feature representations
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Figure 1: Evaluating representation diversity and generalization across learning methods.
From left to right, we present the in-domain classification Top-1 accuracy on ImageNet-1K, the
average Top-1 accuracy across in-domain and 10 out-domain downstream datasets, and the mean of
off-diagonal cross-correlation values between dimensions in the representation space. These results
are based on a ResNet50 backbone pre-trained on ImageNet-1K using various methods.

such as transfer learning. To address these limitations, supervised representation learning must cap-
ture a wide range of discriminative features that are semantically meaningful. These features should
maximize class separability while maintaining diversity within the learned representations.

To achieve diverse feature learning, we leverage Barlow Twins (Zbontar et al., 2021), a redundancy
reduction-based self-supervised learning method. Barlow Twins operates by decorrelating embed-
ding dimensions to learn more diverse features across different embedding dimensions. We describe
such approaches as dimension contrastive learning.

In this work, we propose a method called Supervised Dimension Contrastive Learning (SupDCL), a
novel way of applying supervision to dimension contrastive learning. By incorporating supervision,
SupDCL reduces cross-correlation between embedding dimensions while simultaneously enhanc-
ing class discriminability within each dimension. Specifically, we introduce a new concept called
discriminativeness, which reflects how strongly each embedding dimension contributes to class sep-
arability. Our method ensures that each dimension is trained to be discriminative, meaning it cor-
relates with specific class variables, enhancing its ability to distinguish between different classes.
We employ the aggregate function combining the embedding dimensions to generate predicted class
variables that are trained to correlate with their corresponding class labels. To ensure that the ag-
gregate function utilizes all dimensions without exclusion, we apply orthogonal regularization. It
enforces the function to be full-rank thereby leveraging the entire embedding space.

We evaluate our method on both in-domain supervised classification tasks, where the dataset and
task are defined by the same labels used during training, and out-domain transfer learning tasks,
where the dataset and task differ from those encountered during pre-training. Our results show
that SupDCL outperforms self-supervised learning methods in in-domain classification tasks and
achieves results comparable to supervised contrastive methods. Moreover, in out-domain transfer
learning, SupDCL consistently outperforms all other methods, demonstrating its superior general-
ization capability across various downstream tasks. The main contributions of this work are sum-
marized as follows:

• We identify a limitation in existing supervised representation learning, specifically in supervised
contrastive learning methods, which suffers from high cross-correlation between dimensions,
leading to limited feature diversity and suboptimal generalization.

• We introduce SupDCL, a novel method that applies supervision to dimension contrastive learning,
reducing inter-dimensional correlation while enhancing discriminative ability.

• The proposed method outperforms self-supervised learning methods for in-domain classification
tasks and achieves comparable results to supervised contrastive methods. For out-domain transfer
learning, SupDCL surpasses all methods, demonstrating its ability to generalize effectively across
diverse datasets.
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2 RELATED WORKS

2.1 SELF-SUPERVISED LEARNING

Recent advancements in self-supervised learning leverage the potential of unlabeled data, draw-
ing significant attention to various methodologies (Chen et al., 2020; He et al., 2020; Caron et al.,
2020; Grill et al., 2020; Chen & He, 2021; Caron et al., 2021; Zbontar et al., 2021; Bardes et al.,
2021). Self-supervised methods are typically categorized into three main directions: contrastive,
non-contrastive, and dimension contrastive learning, each addressing robust learning challenges.

Contrastive learning focuses on instance-level pairwise similarity by attracting positive pairs (aug-
mented versions of the same instance) and repelling negative pairs (different instances). Methods
like SimCLR (Chen et al., 2020) show the effectiveness of such learning but require large batches to
provide sufficient negatives. MoCo (He et al., 2020) addresses this issue with a memory bank and
momentum encoder for efficient negative sampling. These approaches excel at learning representa-
tions invariant to augmentations, enabling strong out-domain transfer performance.

Non-contrastive methods (Grill et al., 2020; Chen & He, 2021; Caron et al., 2021) avoid negatives,
addressing the collapse problem where representations converge to trivial solutions. BYOL (Grill
et al., 2020) and SimSiam (Chen & He, 2021) use asymmetric architectures with predictors and
stop-gradient mechanisms to prevent collapse. DINO (Caron et al., 2021) aligns student-teacher
networks via knowledge distillation, emphasizing consistency without contrastive objectives.

Dimension contrastive learning methods (Zbontar et al., 2021; Bardes et al., 2021; Caron et al.,
2021) focus on relationships between embedding dimensions rather than instances. Barlow
Twins (Zbontar et al., 2021) minimizes correlation between dimensions to enforce independence,
while VICReg (Bardes et al., 2021) combines invariance, variance, and covariance terms to balance
dimension-level and global relationships. The duality between contrastive and dimension contrastive
learning (Garrido et al., 2022) highlights their complementary strengths.

2.2 SUPERVISED LEARNING

Supervised learning methods commonly rely on cross-entropy loss for classification tasks. However,
its limitations, including sensitivity to class imbalance and reliance on instance-specific predictions,
are well-documented (Elsayed et al., 2018; Cao et al., 2019; Zhang & Sabuncu, 2018). Studies
propose alternatives involving label distribution modifications (Müller et al., 2019; Szegedy et al.,
2016) and advanced augmentations like MixUp (Zhang et al., 2017).

Contrastive-based supervised learning extends self-supervised methods by incorporating class in-
formation. SupCon (Khosla et al., 2020) generalizes contrastive learning by treating all same-class
samples as positive pairs, improving generalization compared to cross-entropy. PaCo (Cui et al.,
2021) and GPaCo (Cui et al., 2023) propose class-wise learnable centers, validating their effec-
tiveness under class-balanced and imbalanced settings. Despite these advancements, supervised
representation learning approaches often fail to address feature redundancy and diversity in learned
representations, limiting their out-domain performance.

Our work bridges this gap by proposing a novel framework that incorporates dimension decorre-
lation and class-specific discriminativeness to learn generalizable features. Unlike SupCon, which
emphasizes global relationships between instances within the same class, our method optimizes
dimension-level independence while explicitly maximizing class-related information, achieving
strong transfer performance comparable to self-supervised methods.

3 METHOD

We generate two augmented views of each image in the input batch X using augmentations tA, tB ∼
T , resulting in XA and XB . These augmented views are then passed through the encoder network
f to obtain representations Y A and Y B respectively. Instead of directly applying the training loss
to these representations, we first pass them through the projector network g to produce embeddings
ZA = (FA

1 , . . . , FA
M ) and ZB = (FB

1 , . . . , FB
M ), each with an embedding dimension of M . The

training loss is applied to these embeddings, as is common in self-supervised learning methods.
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Figure 2: The overall framework of Supervised Dimension Contrastive Learning (SupDCL).
The left side illustrates dimension contrastive learning, which reduces redundancy through decorre-
lation and enforces augmentation invariance across dimensions. The right side shows the discrimi-
nativeness learning process, where an aggregate function predicts class variables that are correlated
with their true class labels. The aggregate function is constrained to be full-rank, ensuring that all
embedding dimensions contribute to the prediction. By combining these processes, SupDCL en-
hances both redundancy reduction and discriminative power in the learned representations.

3.1 SELF-SUPERVISED DIMENSION CONTRASTIVE LOSS

According to previous study (Garrido et al., 2022), dimension contrastive learning methods such
as Barlow Twins (Zbontar et al., 2021) and VICReg (Bardes et al., 2021) can be categorized under
a unified objective. Our approach builds upon the formulation of Barlow Twins, a representative
method in dimension contrastive learning. The left side of Figure 2 illustrates the objective of
Barlow Twins, which is also defined as:

LDCL ≜ λinv

M∑
i=1

(1− Cii)2︸ ︷︷ ︸
invariance

+λdecorr

M∑
i=1

M∑
j ̸=i

Cij2︸ ︷︷ ︸
decorrelation

= λinvLinv + λdecorrLdecorr. (1)

Here, the cross-correlation matrix C is computed between two embeddings, ZA and ZB , along
the batch dimension. By treating each dimension of the embeddings as a random variable, the
embeddings themselves can be viewed as vectors composed of these variables. The cross-correlation
between embedding dimensions is then represented as:

Cij = Cor[FA
i , FB

j ] =
Cov[FA

i , FB
j ]√

Var[FA
i ]Var[FB

j ]
for i, j ∈ [M ], (2)

where the covariance and variance of embedding dimensions are computed empirically using the
samples within the batch. The invariance loss ensures that the cross-correlation between corre-
sponding dimensions of embeddings from different views converges to one, promoting augmenta-
tion invariance within each embedding dimension. In contrast, the decorrelation loss minimizes
the correlation between different embedding dimensions, aiming to reduce redundancy and enhance
feature diversity across dimensions.

3.2 SUPERVISED DIMENSION CONTRASTIVE LOSS

3.2.1 CLASS CORRELATION

For supervised pre-training, it is crucial to ensure that the embedding dimensions learned from
self-supervised dimension contrastive loss are both augmentation-invariant and decorrelated, while
also being discriminative for classification. To achieve this, we encode class labels into a one-hot
vector of size K, where K represents the number of classes. This allows us to treat each dimension
Ci ∈ {0, 1} as a class variable representing the corresponding class i.
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We define an aggregate function h : RM → RK , which takes the embedding Z = (F1, . . . , FM )

as input and produces the predicted class variables Ĉ = (Ĉ1, . . . , ĈK) as output. To measure the
alignment between predicted class variables Ĉi and their corresponding true class variables Ci, we
calculate the correlation between each pair of predicted and true class variables. We refer to this as
the class correlation di, which is formulated as:

di = Cor[Ci, Ĉi] =
Cov[Ci, Ĉi]√
Var[Ci]Var[Ĉi]

for i ∈ [K]. (3)

By maximizing the class correlation, we encourage the embedding dimensions to be not only
augmentation-invariant and decorrelated but also discriminative for the supervised classification
task. To formalize this alignment, we introduce the class correlation loss, which is defined as:

Lclass ≜
K∑
i=1

(1− di)
2. (4)

3.2.2 FULL RANK AGGREGATION

To guarantee that all embedding dimensions contribute to class separability, every embedding di-
mension should play a role in generating the predicted class variables through the aggregate function.
It can be achieved by enforcing aggregate function is full-rank. The aggregate function satisfies the
full-rank property by constraining the weight matrices of the aggregate function to be orthogonal.
The orthogonal regularization loss is defined as:

Lortho ≜
L∑

l=1

∥(W (l)
h )TW

(l)
h − I∥2F , (5)

where W
(l)
h , I , and L denote the weight matrix of the aggregate function h at layer l, the identity

matrix, and the total number of layers in the aggregate function, respectively.

3.2.3 DISCRIMINATIVENESS LOSS

By combining the class correlation loss and orthogonal regularization loss, as shown on the right
side of Figure 2, we ensure that each embedding dimension learns class-discriminative features,
meaning that the dimensions acquire the ability to effectively distinguish between different classes,
referred to as discriminativeness. The overall discriminativeness loss is defined as:

Ldisc ≜ Lclass + λorthoLortho. (6)

This combined loss drives the model to maximize class separability while ensuring that all dimen-
sions contribute effectively.

Overall loss function. The overall loss, combining the discriminativeness loss to ensure each di-
mension of the embedding becomes class discriminative with the existing self-supervised dimension
contrastive loss, can be expressed as follows:

LSupDCL ≜ Ldisc + LDCL = Lclass + λorthoLortho + λinvLinv + λdecorrLdecorr, (7)

where λinv, λdecorr, and λortho are hyperparameters that balance the respective loss terms.

In our approach, we aim to maximize the mutual information between the class variable C and the
learned representation Y , building on existing dimension contrastive learning frameworks such as
Barlow Twins (Zbontar et al., 2021). This mutual information maximization is achieved through two
main objectives: maximizing diversity via dimension decorrelation, and maximizing discriminative-
ness via covariate shift-invariant alignment with true class distributions and information-preserving
aggregation. The mutual information can be expressed as:

I(C;Y ) = H(Y )︸ ︷︷ ︸
diversity

− (H(Ĉ | C) +H(Ynull))︸ ︷︷ ︸
discriminativeness

, (8)

for theoretical details, refer to Appendix A.
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Table 1: In-domain classification and out-domain transfer learning. Linear evaluation perfor-
mance comparison on 10 downstream datasets, for ResNet-50 pre-trained on ImageNet-1K.

In-domain Out-domain Whole
Method IN1K CIFAR10 CIFAR100 Food Pets Flowers Caltech101 Cars Aircraft DTD SUN397 Average

Supervised 76.1 91.7 74.4 71.2 92.3 95.4 88.7 50.0 48.6 71.9 60.4 74.6

Self-supervised Representation Learning:
SimCLR 69.1 90.6 71.6 68.4 83.6 91.2 90.3 50.3 50.3 74.5 58.8 72.6
Barlow Twins 73.2 92.9 78.3 76.1 89.9 97.7 89.9 65.4 60.2 76.9 62.9 78.5
SwAV 75.3 94.1 79.7 76.9 87.7 97.2 90.9 61.8 58.0 77.8 65.8 78.7
MoCo v3 71.1 94.8 80.1 73.9 90.7 96.9 91.7 65.9 61.4 75.7 63.0 78.7
DINO 75.3 93.9 79.4 78.6 89.3 97.8 90.9 67.9 62.4 77.2 65.9 79.9

Supervised Representation Learning:
SupCon 77.9 93.0 76.3 71.9 92.8 96.5 91.7 61.2 57.3 74.7 62.9 77.8
PaCO 78.7 91.1 70.6 64.4 92.3 88.4 87.9 37.8 34.8 68.1 58.2 70.2
GPaCo 79.5 92.2 73.5 62.5 91.9 84.4 88.4 37.6 32.7 67.7 57.2 69.8
SupDCL-1024 (Ours) 78.2 93.8 78.5 74.3 93.1 96.6 91.7 66.5 56.2 74.6 63.9 78.9
SupDCL (Ours) 77.5 94.1 79.9 78.3 92.6 98.1 91.3 71.1 61.9 75.9 64.7 80.5

4 EXPERIMENTS

Baselines. We compare our method with self-supervised learning methods, including Sim-
CLR (Chen et al., 2020), Barlow Twins (Zbontar et al., 2021), SwAV (Caron et al., 2020), Mo-
Cov3 (Chen et al., 2021), and DINO (Caron et al., 2021), as well as supervised methods trained with
cross-entropy and contrastive learning methods such as SupCon (Khosla et al., 2020), PaCo (Cui
et al., 2021), and GPaCo (Cui et al., 2023). We evaluate on both in-domain classification tasks and
out-of-domain transfer learning tasks.

Datasets. For all tasks, except cross-entropy-based supervised learning, we pre-train a ResNet-
50 backbone on ImageNet-1K and evaluate performance using a linear layer. Classification is
evaluated using the standard linear protocol on ImageNet-1K, while transfer learning is assessed
on 10 downstream tasks (CIFAR10/100 (Krizhevsky et al., 2009), Food (Bossard et al., 2014),
Pets (Parkhi et al., 2012), Flowers (Nilsback & Zisserman, 2008), Caltech101 (Fei-Fei et al., 2004),
Cars (Krause et al., 2013), Aircraft (Maji et al., 2013), DTD (Cimpoi et al., 2014), SUN397 (Xiao
et al., 2010)) with the standard linear transfer protocol (Sun et al., 2017).

Setup. In SupDCL, we use a 3-layer non-linear MLP for both the projector and aggregate function,
with a 2048-dimensional embedding. The hyperparameters λinv and λdecorr are set to 1 and 0.0051,
respectively, following the settings from Barlow Twins. The orthogonal regularization parameter
λortho is set to 0.1. For large-scale evaluation, we pre-train a ResNet-50 backbone on the ImageNet
dataset using a batch size of 2048 with 4 H100 GPUs. We utilize the LARS optimizer with a weight
decay of 1.5× 10−6, training for 1000 epochs with a learning rate of 0.2, which is linearly warmed
up over the first 10 epochs, followed by cosine decay. Additionally, we evaluate a SupDCL-1024
variant with a reduced embedding dimension of 1024, a batch size of 1024, and an adjusted λdecorr of
0.04 to optimize decorrelation. For ablation studies, we pre-train a ResNet-18 backbone on CIFAR-
100 using a single A6000 GPU. The model is trained with SGD, using a learning rate of 0.03, cosine
scheduling with a 10-epoch warm-up, a weight decay of 5×10−4, and momentum of 0.9. The batch
size is set to 256, and the embedding dimension is 128. Details on downstream tasks are provided
in Appendix B.

4.1 MAIN RESULTS

In-domain classification & Out-domain transfer learning. As shown in Table 1, SupDCL
demonstrates comparable performance to supervised contrastive learning methods for in-domain
classification tasks, while outperforming supervised learning, self-supervised contrastive learning,
and self-supervised non-contrastive learning. Additionally, we conduct out-domain transfer learn-
ing experiments to evaluate the generalization ability of the SupDCL. SupDCL achieves the highest
average performance across all datasets, even though it is trained with labels for fixed tasks. This re-
sult highlights the effectiveness of the proposed method in enhancing the discriminativeness of each
embedding dimension. Consequently, SupDCL enables more detailed and effective representation
learning, leading to superior generalization performance on various datasets.
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Table 2: Decorrelation and discriminativeness of representation dimensions. Analysis of decor-
related dimensions and discriminative dimensions based on correlations between representation di-
mensions and class variables. Note that τr is the redundancy threshold, and τd is the discrimina-
tiveness threshold. We set τr = 0.2 when measuring dimensions that are both decorrelated and
discriminative.

Method Dim. Corr. ↓ Decorrelated Dims ↑ Discriminative Dims ↑ Decorrelated Discriminative Dims ↑

(×10−3) τr = 0.1 τr = 0.2 τd = 0.1 τd = 0.2 τd = 0.5 τd = 0.1 τd = 0.2 τd = 0.5

Supervised 61.9 6 39 1965 197 0 37 4 0
Barlow Twins 31.3 48 904 1320 440 34 628 248 23
SupCon 37.5 20 532 2004 1298 132 525 325 30
SupDCL-1024 27.3 57 699 1880 1258 375 641 387 141
SupDCL 29.5 49 645 1788 950 207 565 309 98

4.2 ANALYSIS

4.2.1 REDUNDANCY IN REPRESENTATION

Measuring the number of decorrelated dimensions is crucial as it reflects how effectively a model
reduces redundancy across dimensions, ensuring that each dimension contributes unique infor-
mation rather than duplicating the information captured by other dimensions. For a representa-
tion Y = (R1, . . . , RD), we classify two dimensions Ri and Rj as redundant if their correla-
tion Cor[Ri, Rj ] exceeds a redundancy threshold τr. Dimensions are considered decorrelated if
Cor[Ri, Rj ] < τr for all i ̸= j. The total number of decorrelated dimensions is calculated by
grouping correlated dimensions based on a redundancy threshold τr. We construct a graph G(V,E),
where V = {1, 2, . . . , D} represents the dimensions of Y , and E = {(i, j) : |Cor[Ri, Rj ]| ≥ τr}
defines edges between dimensions i and j if their correlation exceeds τr. The total number of decor-
related groups corresponds to the number of connected components in G. This ensures that highly
correlated dimensions are grouped together, and the resulting count reflects the effective number of
independent, decorrelated groups.

As shown in Table 2, with τr = 0.1, SupDCL-1024 achieves the highest number of decorrelated
dimensions with 57, surpassing Barlow Twins with 48. At τr = 0.2, Barlow Twins achieves the
highest count with 904, while SupDCL-1024 achieves 699, outperforming SupCon with 532 and
the supervised baseline with 39. This demonstrates that SupDCL effectively balances decorrelation
while retaining discriminative power, a key advantage over previous methods.

4.2.2 DISCRIMINATIVENESS OF REPRESENTATION

To assess discriminativeness, we analyze the correlation between each representation dimension and
class variables. We define a dimension as discriminative if it correlates with at least one class vari-
able above a discriminativeness threshold τd. Specifically, the number of discriminative dimensions
is computed as:

# Discriminative dimensions =
∣∣∣∣{i : max

k
|Cor[Ri, Ck]| > τd

}∣∣∣∣ , (9)

where Ck represents the class variable for class k. As shown in Table 2, at τd = 0.2, SupCon has the
highest number of discriminative dimensions, with 1298, followed by SupDCL-1024 with 1258, and
the supervised model with 197. When the threshold is relaxed to τd = 0.1, Barlow Twins achieves
the lowest count of 1320. This is expected as Barlow Twins lacks supervision, resulting in fewer
dimensions strongly correlated with class variables.

Importantly, when measuring the number of correlated groups that contain at least one discriminative
dimension, SupDCL-1024 maintains a strong balance with 641 dimensions at τd = 0.1, compared to
525 of SupCon and 628 of Barlow Twins. This highlights the ability of SupDCL to simultaneously
reduce redundancy and enhance class discriminability, which is crucial for generalization across
tasks.
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Table 3: Effect of discriminativeness. kNN evalu-
ation Top-1 accuracy (%) of ResNet18 pre-trained on
CIFAR-100 with different learning policies.

Method In-domain Out-domain

Barlow Twins 52.6 39.1

Barlow Twins + Shuffle 59.2 38.0
Barlow Twins + LCE + Lortho 73.8 40.8

SupDCL 74.1 42.0

Table 4: Effect of loss function. kNN evalua-
tion Top-1 accuracy (%) of ResNet18 pre-trained on
CIFAR-100 using various loss functions.

Case Lcls Lortho Linv Ldecorr Accuracy

(a) - - ✓ ✓ 41.3
(b) ✓ ✓ - ✓ 72.9
(c) ✓ - ✓ ✓ 73.6

Ours ✓ ✓ ✓ ✓ 74.2

4.3 ABLATION STUDY

4.3.1 ALTERNATIVES OF DISCRIMINATIVENESS LOSS

To evaluate the effect of discriminativeness loss, we compare SupDCL with two straightforward
supervised extensions of Barlow Twins: (1) Barlow Twins with Cross-Entropy (CE) and a full-rank
aggregate function, and (2) Barlow Twins with Class-Wise Shuffle, which replaces positive pairs
with data from the same class. Table 3 shows that while both extensions improve performance
over the original Barlow Twins, they remain suboptimal compared to SupDCL. Barlow Twins with
CE aligns logits with class labels but neglects batch-level relationships, limiting its generalization
ability. Barlow Twins with Class-Wise Shuffle learns intra-class consistency but struggles to differ-
entiate between classes effectively. SupDCL, which combines discriminativeness and decorrelation
losses, achieves the best performance in both in-domain and out-domain tasks, highlighting its abil-
ity to learn diverse and discriminative features.

4.3.2 LOSS FUNCTIONS

We conduct ablation experiments to assess the contribution of each component in the proposed loss
function: class correlation loss, orthogonal regularization loss, invariance loss, and decorrelation
loss. Table 4 shows that even without the invariance loss, the combination of discriminativeness and
decorrelation losses outperforms standard dimension contrastive learning, indicating that discrimi-
nativeness loss enables the model to learn class-discriminative features without relying on augmen-
tation invariance. However, omitting orthogonal regularization results in a performance drop, high-
lighting its importance for maintaining the full-rank property of the aggregate function. SupDCL,
with all losses included, achieves the best performance, demonstrating that each component plays a
vital role.

4.3.3 AGGREGATE FUNCTION

Table 5: Aggregate function ablations. kNN
evaluation Top-1 accuracy (%) of ResNet18
pre-trained on CIFAR-100 with various aggre-
gate function designs.

# Layers Linearity Accuracy

2 linear 73.1
2 non-linear 73.5
3 linear 74.1
3 non-linear 74.2

We analyze the impact of different aggregate func-
tion designs on the quality of the learned repre-
sentations. By varying the number of layers and
introducing non-linearity, we assessed which de-
sign leads to better performance. As shown in Ta-
ble 5, deeper, non-linear aggregate functions im-
proved representation quality. However, increas-
ing the number of layers has a greater effect than
adding non-linearity, suggesting that sufficient ca-
pacity is essential for effectively combining infor-
mation from the embedding dimensions.

4.3.4 ORTHOGONAL REGULARIZATION

We evaluate the effect of orthogonal regularization in Figure 3a. We measure the in-domain clas-
sification task performance and the rank of the aggregate function h at the first layer. As λortho
increases from 0 to 0.001, the classification accuracy is improved. The aggregate function satisfies
the full-rank property when λortho is set to 0.1, achieving the highest accuracy. However, increasing
λortho beyond the point where the full-rank property is satisfied may lead to a degradation in perfor-
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Figure 3: Ablation studies for SupDCL. All experiments are conducted using the ResNet-18 encoder on the
CIFAR-100 dataset. (a): Top-1 accuracy of SupDCL for in-domain classification task and rank of W (1)

h . Note
that the maximum value of rank of W (1)

h is 128. (b): Relative Top-1 accuracy of Barlow twins and SupDCL
for in-domain classification task and downstream out-domain transfer learning tasks. Each line represents the
difference from its respective maximum value. (c): Relative Top-1 accuracy of SimCLR, SupCon, Barlow
Twins, and SupDCL for in-domain classification task. Each line represents the difference from its respective
maximum value.

mance. These results demonstrate that ensuring the full-rankness of the aggregate function enhances
in-domain classification task performance.

4.3.5 EMBEDDING DIMENSION

In Figure 3b, we investigate how the dimensionality of the projector affects the performance of
in-domain classification and out-domain transfer learning tasks. For out-domain transfer learning
tasks, our method achieves the highest accuracy when using the largest output dimension, similar to
Barlow Twins. However, our method achieves the best performance with a projection dimension of
128 for in-domain classification task.

4.3.6 BATCH SIZE

Figure 3c presents the effect of batch size. SupCon and SimCLR experience significant performance
degradation with smaller batch sizes since they are based on contrastive learning. In contrast, di-
mension contrastive learning methods, Barlow Twins and our method, exhibit strong performance
even with smaller batch sizes. Moreover, our method shows the most robust performance across
batch size variations.

5 DISCUSSION AND CONCLUSION

We introduce Supervised Dimension Contrastive Learning (SupDCL), a novel method that applies
supervision to dimension contrastive learning, reducing redundancy across embedding dimensions
and improving the discriminativeness of the learned representations. By applying discriminative-
ness loss, we ensure that each dimension contributes to class discrimination, while simultaneously
promoting augmentation invariance and dimensional decorrelation. Our approach demonstrates su-
perior performance across in-domain and out-domain tasks compared to existing self-supervised
and supervised methods. Additionally, our analysis confirms that the proposed method functions as
intended, further validating its effectiveness.

Limitations. Despite these successes, our approach relies on the use of fixed-form class labels
for supervision. This limitation suggests potential avenues for future work. Expanding SupDCL to
handle more diverse forms of supervision, such as missing or noisy labels, or even non-categorical
and multi-task labels, could further enhance its generalizability. Moreover, exploring the integration
of continuous or hierarchical labels, and even weak supervision, could broaden the applicability
of our method across different domains and tasks. Addressing these challenges will be critical in
developing a more robust, flexible, and widely applicable representation learning framework.
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A THEORETICAL JUSTIFICATION

The framework aims to maximize the mutual information I(C;Y ) between the class variable C and
the learned representation Y . This is achieved by:

1. Maximizing the diversity via dimension decorrelation.

2. Maximizing the discriminativeness via covariate shift-invariant alignment with true class distri-
bution and information-preserving aggregation.

A.1 MUTUAL INFORMATION DECOMPOSITION: DIVERSITY AND DISCRIMINATIVENESS

The mutual information I(C;Y ) between the true class C and the learned representation Y is ex-
pressed as:

I(C;Y ) = H(Y )−H(Y |C), (A1)

where H(Y ) is the total entropy of Y , capturing the diversity of the representation, and H(Y |C) is
the conditional entropy of Y given C, quantifying the uncertainty in Y given the class label.

We decompose Y using the null-range decomposition into two components: Yrange and Ynull. Specif-
ically, Yrange = AA†Y is the projection of Y onto the row space of the aggregation function A,
where A† is the pseudo-inverse of A. Ynull = (I − AA†)Y represents the projection of Y into the
null space of A.

By using this null-range decomposition and the law of total entropy, we can express the conditional
entropy H(Y |C) as:

H(Y |C) = H(Yrange|C) +H(Ynull|C). (A2)

Since A is injective in its range space, there exists a one-to-one mapping between Yrange and the
aggregated prediction Ĉ = AYrange, which implies:

H(Yrange|C) = H(AYrange|C) = H(Ĉ|C). (A3)

Furthermore, because the aggregation function A is designed to capture all C-relevant information
in Y , the null space contains no information about C. Therefore, we treat H(Ynull | C) as simply
H(Ynull), the entropy of the null space projection.

Substituting these relationships into the expression for I(C;Y ), we obtain:

I(C;Y ) = H(Y )︸ ︷︷ ︸
diversity

− (H(Ĉ | C) +H(Ynull))︸ ︷︷ ︸
discriminativeness

, (A4)

where:

• H(Y ) measures the total information capacity of the learned representation Y , which reflects the
ability to capture a broad range of features from the input data, as diversity.

• H(Ĉ|C) + H(Ynull) quantifies the uncertainty and information loss related to the aggregation
process, specifically the model’s ability to distinguish between classes and the preservation of
class-relevant information, as discriminativeness.
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A.2 DIVERSITY H(Y )

Claim: Correlation between representation dimensions limits the information capacity H(Y ) of Y .

The entropy of Y , assuming a Gaussian distribution, is given by:

H(Y ) =
1

2
log det(2πeΣY ), (A5)

where ΣY is the covariance matrix of Y .

The determinant det(ΣY ) is the product of its eigenvalues {λ1, λ2, . . . , λD}, so:

H(Y ) =
1

2

D∑
i=1

log λi + constant. (A6)

If the dimensions of Y are highly correlated, some eigenvalues λi will be close to zero, reducing
H(Y ) and limiting the effective information capacity of Y . By reducing inter-dimension correlation,
decorrelation directly enhances the information capacity of Y , improving feature diversity.

A.3 DISCRIMINATIVENESS H(Ĉ|C) +H(YNULL)

A.3.1 MINIMIZING H(Ĉ|C) VIA CORRELATION MAXIMIZATION

Claim: Correlation maximization provides covariate shift-invariant distributional alignment, unlike
cross-entropy, which relies on pointwise alignment.

The conditional entropy H(Ĉ|C) is expressed as:

H(Ĉ|C) = Ex [DKL(p(c | x)∥qθ(c | x)) +H(p(c | x))] , (A7)

where DKL(p(c | x)∥qθ(c | x)) is the Kullback-Leibler (KL) divergence between true class distribu-
tion p(c | x) and predicted class distribution qθ(c | x), representing the misalignment between the
model’s predictions and the true class probabilities, and H(p(c | x)) is the intrinsic uncertainty of
p(c | x).

Thus, minimizing H(Ĉ|C) corresponds to minimizing the KL divergence DKL(p(c | x)∥qθ(c | x)),
which ensures the alignment between the true and predicted class distributions.

However, minimizing the KL divergence directly via cross-entropy, which aligns qθ(c|x) to p(c|x)
pointwise,

LCE = −Eptrain(x)

[∑
c

p(c | x) log p̂(c | x)

]
, (A8)

relies heavily on the specific weighting of ptrain(x). In this approach, regions with higher density in
ptrain(x) dominate the optimization, leading to sensitivity under covariate shift, where p(x) changes
but p(c | x) remains constant.

In contrast to pointwise alignment via cross-entropy, correlation maximization aligns the global
relationship between the true class variable C and the aggregated class variable Ĉ. Correlation
maximization aligns the true and predicted class distributions p(c | x) and qθ(c | x) by optimizing
the global relationship between the aggregated class variable Ĉ and the true class variable C, with
p(c | x) and qθ(c | x) corresponding to the probability distributions of C and Ĉ, respectively.

To achieve this, both C and Ĉ are normalized to have zero mean and unit variance, thereby reducing
the dependency on the distribution p(x). The normalized variables are given by:

13
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C ′ =
C − Ep(x)[C]

Stdp(x)[C]
and Ĉ ′ =

Ĉ − Ep(x)[Ĉ]

Stdp(x)[Ĉ]
, (A9)

where Ep(x)[·] and Stdp(x)[·] represent the mean and standard deviation of C and Ĉ under the
marginal distribution p(x). This normalization step ensures that the alignment between C and Ĉ
is invariant to the underlying covariate distribution p(x), making it less sensitive to shifts in the
input distribution.

The alignment between C ′and Ĉ ′ is measured using the Pearson correlation coefficient, which quan-
tifies the relationship between the two variables. This is given by:

Cor[C, Ĉ] = Eptrain(x)[C
′Ĉ ′]. (A10)

Maximizing this correlation encourages a strong alignment between the true and predicted class
variables, regardless of the distribution of x. Since measuring correlation uses normalization, it
mitigates the effects of covariate shift, ensuring a more robust distributional alignment.

A.3.2 MINIMIZING H(YNULL) VIA FULL-RANK AGGREGATION

Claim: Full-rank aggregation minimizes information loss by ensuring that Ynull is as low-
dimensional as possible, ideally reducing the dimension of the null space.

To minimize information loss in the aggregation process, we aim to reduce the dimensionality of
Ynull, which represents the part of the learned representation that is not relevant to the class in-
formation. The key assumption is that Ynull contains irrelevant or unlearned information, which is
commonly modeled as Gaussian noise. Specifically, we assume that Ynull ∼ N (0,Σnull), where Σnull
is the covariance matrix of the null space. The entropy of Ynull is then expressed as:

H(Ynull) =
1

2
log

(
(2πe)d det(Σnull)

)
(A11)

where d is the dimensionality of Ynull. This expression captures the information content in the null
space. To minimize the information loss, we need to minimize H(Ynull), which can be achieved by
reducing d, the dimensionality of the null space.

The dimensionality d of Ynull depends on the rank of the aggregation function A : RD → RK , which
maps the high-dimensional input representation Y ∈ RD to a lower-dimensional aggregated class
variable Ĉ ∈ RK . The rank of the function A determines the amount of class-relevant information
retained. If A has rank r, the dimensionality of Ynull is d = D−r. To minimize H(Ynull), we want to
reduce d, which means maximizing the rank r of A. The rank of A is limited by the dimensionality of
the output space (which is K, the number of classes) and the input space (which is D, the dimension
of the learned representation). Therefore, the maximum possible rank of A is r = min(K,D), and
in the case of full-rank aggregation, we set r = K. This means that the dimensionality of Ynull
becomes d = D −K.

Thus, by ensuring that the aggregation function A is full-rank, we minimize the dimensionality of
Ynull, thereby reducing H(Ynull) and minimizing the information loss during the aggregation process.
This full-rank condition ensures that as much class-relevant information as possible is preserved
while irrelevant information is minimized, leading to a more efficient and informative representation.
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B IMPLEMENTATION DETAILS

B.1 IN-DOMAIN CLASSIFICATION

For the linear evaluation protocol used after pretraining on ImageNet-1K, a standard linear classifier
is trained on top of frozen features. Specifically, the representation is first extracted from the pre-
trained model, and then a linear layer is trained on the frozen features to classify ImageNet-1K
data. During training, common augmentations such as random resized crops and horizontal flips
are applied. The accuracy is reported on the central crop of each validation image. The model is
optimized for 100 epochs using stochastic gradient descent (SGD) with a momentum of 0.9, a batch
size of 128 and a base learning rate of 0.01.

B.2 OUT-DOMAIN TRANSFER LEARNING

We perform transfer learning with the linear evaluation on 10 datasets: CIFAR10/100 (Krizhevsky
et al., 2009), Food (Bossard et al., 2014), Pets (Parkhi et al., 2012), Flowers (Nilsback & Zisserman,
2008), Caltech101 (Fei-Fei et al., 2004), Cars (Krause et al., 2013), Aircraft (Maji et al., 2013),
DTD (Cimpoi et al., 2014), SUN397 (Xiao et al., 2010). We follow the standard linear transfer
evaluation protocol (Sun et al., 2017), training linear classifiers on frozen features from 224×224 re-
sized images without data augmentation. We use L-BFGS to minimize ℓ2-regularized cross-entropy
loss, selecting the regularization parameter from 45 logarithmically spaced values between 10−6

and 105 via the validation set. Then, the linear classifier is retrained on both training and validation
data with test accuracy.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C VISUALIZATION OF REPRESENTATION DIMENSIONS

To validate our analysis of the redundancy and discriminativeness of representation dimensions, as
detailed in Table 2, we provide UMAP-based (McInnes et al., 2018) visualizations of the learned
representations to clarify the role of each dimension. These visualizations enable low-dimensional
projection while preserving the structure of high-dimensional data, offering insight into how the
learned representations encode class-relevant information and exhibit decorrelation.

Dataset and Classes. We utilize a subset of ImageNet known as the ”16-class-ImageNet” (Geirhos
et al., 2018), which maps ImageNet categories to 16 entry-level superclasses: airplane, bear, bicy-
cle, bird, boat, bottle, car, cat, chair, clock, dog, elephant, keyboard, knife, oven, and truck. This
mapping provides semantically diverse yet interpretable class groups for our analysis.

Visualization Setup. Representations are extracted from the validation set of ImageNet-1K and
mapped to two dimensions using UMAP with the following hyperparameters: the number of neigh-
bors is set to 5, the minimum distance is 0.8, and the distance metric is Euclidean. For the visu-
alizations, we use thresholds τd = 0.1 for discriminative dimensions, and τr = 0.2, τd = 0.1 for
decorrelated discriminative dimensions. The visualizations analyze four categories of dimensions:
(1) whole dimensions, (2) discriminative dimensions, (3) non-discriminative dimensions, and (4)
decorrelated discriminative dimensions.

For whole dimensions, discriminative dimensions, and decorrelated discriminative dimensions, Fig-
ures A1, A2, A3, and A4 demonstrate that the learned representations effectively separate the data
based on class information. Among these, the decorrelated discriminative dimensions are sufficient
to represent the class-separating information, resulting in similar class separability compared to the
whole and discriminative dimensions while avoiding redundancy. In contrast, the non-discriminative
dimensions exhibit more diffuse distributions with unclear class boundaries, indicating that these di-
mensions fail to encode class-relevant information.

We observe that for methods such as Barlow Twins and SupDCL, even the non-discriminative di-
mensions exhibit a degree of class separability. This can be attributed to their explicit focus on
decorrelating dimensions, which allows a larger number of dimensions to encode non-redundant
features. This highlights the benefit of decorrelation in promoting feature diversity, even if all di-
mensions are not fully discriminative.

Finally, we divide the decorrelated discriminative dimensions into four groups and visualize their
class separation patterns. Each group exhibits distinct clustering behavior, indicating that these di-
mensions learn complementary features. This analysis further supports our claim that the number of
decorrelated discriminative dimensions serves as an indirect indicator of the diversity in meaningful
features.
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Figure A1: Visualization of the representations on 16-class-ImageNet learned by SupDCL.
Colors denote superclasses of the dataset. Best viewed in color.

Figure A2: Visualization of the representations on 16-class-ImageNet learned by Barlow Twins.
Colors denote superclasses of the dataset. Best viewed in color.
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Figure A3: Visualization of the representations on 16-class-ImageNet learned by SupCon. Col-
ors denote superclasses of the dataset. Best viewed in color.

Figure A4: Visualization of the representations on 16-class-ImageNet learned by Supervised
Learning. Colors denote superclasses of the dataset. Best viewed in color.
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