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Abstract001

Retrieval-Augmented Generation (RAG) sig-002
nificantly enhances Large Language Models003
(LLMs) in knowledge-intensive tasks. How-004
ever, traditional static retrieval strategies fail to005
adapt to the evolving informational needs dur-006
ing generation, often resulting in insufficient or007
redundant content. Existing adaptive retrieval008
methods commonly rely on output probabilities009
or external heuristics, which fail to accurately010
reflect the model’s true knowledge needs. To011
address this, we introduce Semantic Entropy-012
based Adaptive RAG (SEARAG), training a013
discriminative model to predict binary seman-014
tic entropy from intermediate hidden-layer015
states, quantifying generation uncertainty in016
real-time. During generation, we perform iter-017
ative sentence-by-sentence reasoning. If high018
semantic entropy is detected in an iteration,019
external knowledge retrieval is triggered for020
enhanced generation; otherwise, the process021
proceeds to the next iteration. This mecha-022
nism accurately identifies the model’s knowl-023
edge needs, reduces redundant retrieval, and024
improves output quality. Experimental results025
on five multi-hop QA tasks show SEARAG026
outperforms existing adaptive RAG methods027
in performance and efficiency, confirming its028
effectiveness and generalization. We release029
our code in our Github repository.030

1 Introduction031

Retrieval-Augmented Generation (RAG) has032

emerged as a promising method to address halluci-033

nations and factual inaccuracies inherent in Large034

Language Models (LLMs), which, despite their ex-035

ceptional performance across various NLP tasks,036

frequently generate plausible but incorrect outputs037

(Brown et al., 2020; Ji et al., 2023; Min et al.,038

2023; Zhao et al., 2025). Traditional RAG frame-039

works typically follow a straightforward retrieve-040

and-generate pipeline (Lewis et al., 2020; Guu041

et al., 2020; Izacard and Grave, 2021), effec-042

tively handling simple queries through a single043

retrieval step. However, complex multi-step ques- 044

tions or long-form generations necessitate dynamic 045

retrieval strategies capable of adapting the retrieval 046

process according to real-time information needs 047

(Zhang et al., 2023; Shao et al., 2023; Cheng et al., 048

2023). 049

Adaptive RAG methods have been developed to 050

dynamically decide when and how external knowl- 051

edge retrieval should occur. Broadly, these methods 052

can be categorized into confidence-based strategies, 053

model-decided retrieval, and external classifier- 054

based approaches. Confidence-based methods such 055

as FLARE (Jiang et al., 2023b) and DRAGIN (Su 056

et al., 2024) rely on token-level uncertainties or 057

attention distributions to trigger retrieval. Model- 058

decided retrieval approaches, like Self-RAG (Asai 059

et al., 2023), allow the language model itself, either 060

through fine-tuning or prompting, to autonomously 061

determine retrieval necessity. External classifier- 062

based methods, exemplified by Adaptive-RAG 063

(Jeong et al., 2024) and Self-Knowledge Guided 064

Generation (Wang et al., 2023), incorporate ad- 065

ditional classifiers to assess query complexity or 066

output uncertainty. 067

Despite significant advancements in Adaptive 068

Retrieval-Augmented Generation (RAG), precisely 069

determining when large language models (LLMs) 070

require external knowledge retrieval and effectively 071

deciding how to formulate retrieval queries re- 072

main critical challenges. Recent methods such as 073

Probing-RAG (Baek et al., 2025) have employed 074

internal hidden-state probing to assess whether re- 075

trieval is necessary, achieving efficiency through 076

lightweight classifiers. However, Probing-RAG is 077

inherently non-adaptive; it lacks the ability to dy- 078

namically and continuously monitor information 079

needs during the generation process. Consequently, 080

it fails to detect and address evolving knowledge 081

gaps that arise incrementally, especially in com- 082

plex, multi-hop scenarios. On the other hand, meth- 083

ods such as SeaKR (Yao et al., 2024) effectively 084
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leverage deep uncertainty signals derived from in-085

ternal model states to guide adaptive retrieval de-086

cisions. However, SeaKR measures uncertainty by087

repeatedly generating outputs for the same prompt,088

significantly increasing computational overhead.089

Moreover, although SeaKR comprehensively ad-090

dresses knowledge integration strategies, including091

self-aware re-ranking and reasoning, it neglects ef-092

ficient and dynamic query formulation. This over-093

sight can lead to mismatches between retrieved094

documents and the model’s real-time informational095

needs.096

However, these existing methods face critical097

challenges, such as unreliable retrieval triggers aris-098

ing from superficial uncertainty assessments and in-099

effective integration of retrieved knowledge, which100

often leads to unnecessary retrieval steps and in-101

formation conflicts. Therefore, an ideal Adaptive-102

RAG framework should effectively combine the103

capabilities of real-time detection of internal uncer-104

tainty during generation and dynamically construct105

precise retrieval queries that align closely with im-106

mediate information requirements.107

To overcome the above limitations, we propose108

a novel Adaptive-RAG framework that leverages109

internal-state probing to estimate semantic uncer-110

tainty. Specifically, we construct training datasets111

using multi-hop question answering data and train112

a MLP-based semantic entropy prober, inspired by113

recent work on semantic entropy (Kossen et al.,114

2024), to predict binary semantic entropy from in-115

termediate hidden states during generation. This116

enables accurate, real-time decisions on whether117

to trigger external retrieval. Furthermore, we intro-118

duce an advanced Query Formulation strategy: dur-119

ing the generation process, we dynamically iden-120

tify uncertain words and utilize relevant histori-121

cal context and entities to formulate targeted re-122

trieval queries. Additionally, if newly retrieved123

information inadvertently increases the model’s un-124

certainty, we adaptively expand the retrieval scope125

(top-k documents) and further refine the results126

using a reranker. Experiments demonstrate that127

our method consistently achieves performance that128

matches or surpasses state-of-the-art approaches129

across both in-domain and out-of-domain datasets.130

By integrating real-time internal-state probing and131

precise query formulation, our method effectively132

balances retrieval efficiency and generation accu-133

racy, substantially advancing the performance of134

Adaptive-RAG systems.135

Our main contributions are: 136

• We propose SEARAG, an adaptive RAG 137

framework that uses a semantic entropy prober 138

to decide when to retrieve based on hidden 139

states of LLMs. 140

• We empirically show that SEARAG outper- 141

forms existing adaptive RAG baselines on 142

multiple knowledge-intensive QA datasets. 143

2 Related Work 144

2.1 Adaptive Retrieval-Augmented 145

Generation 146

Adaptive Retrieval-Augmented Generation (RAG) 147

dynamically decides when and how external knowl- 148

edge should be retrieved during generation, aim- 149

ing for improved accuracy and efficiency. Exist- 150

ing methods primarily fall into three categories: 151

confidence-based, model-decided, and external 152

classifier-based. Confidence-based methods, such 153

as FLARE (Jiang et al., 2023b) and DRAGIN (Su 154

et al., 2024), use token-level uncertainty or atten- 155

tion weights to trigger retrieval. Model-decided 156

methods, like Self-RAG (Asai et al., 2023) and 157

MIGRES (Wang et al., 2025), enable models 158

themselves to determine retrieval necessity via 159

fine-tuning or prompting. External classifier- 160

based methods, including Self-Knowledge Guided 161

Generation (Wang et al., 2023) and Adaptive- 162

RAG (Jeong et al., 2024), introduce additional clas- 163

sifiers to evaluate model outputs or query complex- 164

ity. However, these methods often face issues such 165

as inaccurate retrieval triggers due to superficial 166

uncertainty measures and inefficient integration of 167

external knowledge. Recent approaches, such as 168

SeaKR (Yao et al., 2024), leverage deeper internal 169

hidden-layer uncertainty signals within Large Lan- 170

guage Models (LLMs) to better inform adaptive 171

retrieval decisions. 172

2.2 Self-awareness via Internal States of 173

LLMs 174

Recent studies have explored leveraging internal 175

hidden states of LLMs for uncertainty detection 176

and self-awareness. Hidden-layer representations 177

effectively capture model confidence and detect 178

hallucinations or inaccuracies. Fomicheva et al. 179

(2020) and Azaria and Mitchell (2023) demonstrate 180

that internal states reflect the truthfulness of model 181

outputs. Approaches such as Probing-RAG (Baek 182
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Figure 1: Two-stage framework of our semantic entropy-based adaptive RAG(SEARAG). The upper part constructs
training data and supervises the training of a semantic entropy prober. The lower part performs inference, where a
prober model decides retrieval using LLM hidden states.

et al., 2025) and SeaKR (Yao et al., 2024) explicitly183

utilize these internal states to assess knowledge suf-184

ficiency and hallucination risks, enhancing adaptive185

retrieval strategies. Other methods, like Lookback186

Lens (Chuang et al., 2024a) and Dola (Chuang187

et al., 2024b), exploit transformer attention and188

logits across layers to reduce hallucinations and189

improve output reliability.190

2.3 Semantic Entropy191

Semantic entropy has emerged as a powerful mea-192

sure to quantify semantic uncertainty in LLM out-193

puts, surpassing traditional lexical-based metrics.194

Introduced by Farquhar et al. (2024), semantic en-195

tropy captures model uncertainty across diverse se-196

mantic interpretations rather than lexical variations.197

To overcome the computational burden of multi-198

ple output generation, Semantic Entropy Probes199

(SEP) proposed by Kossen et al. (2024) approxi-200

mate semantic entropy directly from internal states,201

achieving efficient and robust uncertainty detection.202

Thus, semantic entropy serves as a nuanced and203

effective real-time indicator of uncertainty, well-204

suited for adaptive retrieval tasks.205

3 Method206

In this section, we present the SEARAG framework207

in detail (see Figure 1). Specifically, in Section 3.1,208

we introduce the Semantic Entropy Prober, includ- 209

ing the training data construction, training strategy, 210

and how it is applied to determine whether retrieval 211

should be triggered. In Section 3.2, we describe 212

our Uncertainty-aware Query Formulation method. 213

Finally, Section 3.3 presents the Uncertainty-aware 214

Reranking Strategy. 215

3.1 Semantic Entropy Prober 216

Hallucination signals in language models appear 217

in early activations before generating the first to- 218

ken (Snyder et al., 2024), making it possible to pre- 219

dict the reliability of subsequent outputs based on 220

its hidden state. Semantic Entropy Probes (SEPs; 221

Kossen et al. (Kossen et al., 2024)) use logistic re- 222

gression to detect semantic uncertainty from hidden 223

states at the token level. However, SEPs overlook 224

how uncertainty relates to hidden states when rel- 225

evant facts are introduced via in-context learning 226

(ICL). Considering that the representativeness of 227

the first token may diminish in long-text genera- 228

tion, we iteratively utilize sentence-level first-token 229

signals to predict uncertainty and guide retrieval 230

decisions. 231

Specifically, our designed Semantic Entropy 232

Probe is a feed-forward network comprising a 233

single hidden layer and an output layer that pro- 234

vides binary classification outcomes, determining 235
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whether additional knowledge retrieval is neces-236

sary. Considering that the model’s first layer typi-237

cally captures shallow lexical or syntactic informa-238

tion lacking deep semantic representation (Chuang239

et al., 2024b), we exclude the first layer and uti-240

lize representations from all subsequent layers to241

leverage mid-to-high-level semantic information242

comprehensively.243

The probe takes as input the direct concatenation244

of hidden states from all layers excluding the first245

layer for the first generated token at each step. If246

the input text length is n, this token is at index n.247

Assuming the model has L layers, the concatena-248

tion is represented as:249

T ′ = concatLl=2Hl[n, :] ∈ R(L−1) dmodel , (1)250

where Hl[n, :] ∈ Rdmodel is the hidden state at po-251

sition n of the l-th layer, and dmodel is the hidden252

dimension. Subsequently, T ′ is input into the probe253

to compute logits, which are transformed via a Sig-254

moid function and used to make a binary decision255

on whether retrieval is necessary.256

Probe Training Data Construction We itera-257

tively generate and construct training data at the258

sentence level: first generating sentences at low259

temperature (low randomness) and recording their260

first token hidden states, then performing multi-261

ple samplings (N = 10) at high temperature (high262

randomness) to estimate semantic entropy for the263

same input. Low-temperature decoding (e.g., tem-264

perature 0.1) is nearly greedy, so hidden states are265

scarcely affected by sampling noise; they chiefly re-266

flect the genuine context and retrieval state, giving267

the probe a clean, generalizable signal. Following268

discrete semantic entropy computation methods by269

Kuhn et al. (Kuhn et al., 2023), we cluster the sam-270

pled sentences semantically and compute entropy:271

272

HSE(x) = −
K∑
k=1

p(Ck|x) log p(Ck|x). (2)273

Threshold Determination – Minimizing Seman-274

tic Constraints: SEPs traditionally employ only275

Mean Squared Error (MSE) to determine binariza-276

tion thresholds, neglecting the smoothness of the se-277

mantic space. To enhance semantic consistency and278

robustness, we propose Semantic-Constraint En-279

tropy Splitting (SCES), which augments the MSE280

objective with variance constraints on hidden layer281

features. For a candidate threshold t, we define: 282

L(t) =
∑
Hi<t

(Hi − µlow)
2 +

∑
Hi≥t

(Hi − µhigh)
2

︸ ︷︷ ︸
MSE(t)

283

+ λ
(
σ2

low(t) + σ2
high(t)

)
, (3) 284

where µlow and µhigh denote the mean entropy val- 285

ues of samples below and above the threshold t, 286

respectively, and σ2
low(t), σ

2
high(t) represent the cor- 287

responding variances in hidden-layer feature space. 288

The final threshold τ is selected by minimizing this 289

objective: τ = argmint L(t). 290

SCES maintains the simplicity of MSE while in- 291

troducing semantic consistency constraints to yield 292

more robust binary labels.A detailed description of 293

semantic entropy estimation and SCES threshold 294

binarization is provided in Appendix A. 295

After data collection, semantic entropy values 296

are uniformly calculated, and SCES determines 297

a global threshold τ . Samples are binarized ac- 298

cordingly: if HSE > τ , the case requires retrieval 299

(y = 0), otherwise it does not (y = 1). 300

During data collection, if subsequent semantic 301

entropy computation labels a case as requiring re- 302

trieval, external knowledge retrieval is triggered 303

during sampling, and the sentence is regenerated; 304

otherwise, the low-temperature-generated sentence 305

is retained directly. This process repeats until com- 306

pletion. We construct two versions: full-document 307

retrieval and support paragraph retrieval, to ana- 308

lyze the independent effects of uncertainty estima- 309

tion. 310

The final training set consists of 4,000 samples 311

derived from the multi-hop question-answering 312

datasets: 2WikiMultiHopQA (Ho et al., 2020), Hot- 313

potQA (Yang et al., 2018), IIRC (Ferguson et al., 314

2020), and StrategyQA (Geva et al., 2021), main- 315

taining approximately balanced positive and neg- 316

ative labels. Examples of the constructed training 317

data are provided in Appendix ??. The probe is 318

trained using binary cross-entropy loss with logits: 319

320

L = − 1
N

∑N
i=1 [yi log σ(pi) + (1− yi) log (1− σ(pi))] (4) 321

See Appendix B for training hyperparameters. 322

3.2 Uncertainty-aware Query Formulation 323

To construct retrieval queries reflecting model un- 324

certainty, we first extract the initial generated sen- 325

tence and compute word-level entropy by averaging 326
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token-level entropies. A dynamic threshold is then327

set as:328

threshold = µentropy + α · σentropy, (5)329

where µentropy and σentropy are the mean and stan-330

dard deviation of the word entropies, and α controls331

sensitivity. We identify the first high-entropy word332

exceeding this threshold and use words preceding333

it as reliable context.334

We selectively preserve content words (e.g.,335

nouns, verbs, adjectives, numbers) from this uncer-336

tain region. To ensure query robustness, we evalu-337

ate overlap—both lexical and semantic—between338

these words and entities in the previous sentence339

or the original query. If overlap exists, we adopt340

the prior sentence as the query base; otherwise, we341

revert to the original user query. The final retrieval342

query concatenates the chosen base with these fil-343

tered content words, ensuring semantic relevance344

and contextual coherence.345

3.3 Post-Retrieval Generation Continuation346

At sentence-level timestep t, the model M347

first produces a response sentence st. The348

Semantic-Entropy Prober then inspects the349

hidden-state bundle from this generation step and350

returns a binary judgement (certain vs. uncertain).351

If the judgement is certain, st is emitted as the352

output for step t; otherwise, an external retrieval353

is triggered. A query qry(q, s′<t, st) is formulated354

with our proposed uncertainty-aware query formu-355

lation strategy and issued to the corpus D, yielding356

contextual passages Ct. Subsequently, we build357

a new prompt by placing a few in-context exam-358

ples at the top and concatenating Ct, the original359

question q, and the previously confirmed sentence360

sequence s′<t. Feeding this Promptt back into361

the generator yields a refined sentence s′t, which362

replaces the potentially hallucinated st.363

Uncertainty-aware Reranking After re-364

trieval and sentence regeneration, we continuously365

monitor the semantic uncertainty scores punc. If the366

regenerated sentence exhibits higher uncertainty367

than the original sentence by a small margin δ, i.e.,368

369

pretrieved
unc > poriginal

unc + δ, (6)370

an adaptive expand–rerank–regenerate procedure371

is triggered. This small margin δ ensures robust-372

ness by preventing unnecessary fluctuations near373

the decision boundary.374

1. Dynamic Recall Expansion Temporarily in- 375

crease the current top-k by five (capped at ten) 376

and issue a new retrieval. 377

2. Semantic Reranking Re-order the newly 378

retrieved passages with the open-source model 379

gte-reranker-modernbert-base (Zhang 380

et al., 2024), obtaining a relevance-sorted list. 381

3. Prompt Reconstruction Replace the original 382

Ct in the prompt with the reranked passages 383

and rebuild the prompt together with the exam- 384

ples and answer prefix. 385

4. Regeneration Invoke the generator on the re- 386

constructed prompt to produce a revised sen- 387

tence s′t. 388

When a non-decreasing rise is detected, this strat- 389

egy enlarges recall and applies the reranker to miti- 390

gate quality drop caused by retrieval noise or miss- 391

ing information. 392

Iterative Refinement Loop After appending 393

s′t to the answer, the system advances to timestep 394

t+1 and repeats: (1) generate a new sentence and 395

probe its uncertainty; (2) if retrieval is required, 396

fetch passages and regenerate the sentence, fol- 397

lowed—if necessary—by the uncertainty-aware 398

reranking cycle; (3) if retrieval is not required, ap- 399

pend the sentence directly. Each step thus pro- 400

duces a final sentence s′t, which is appended to 401

the prompt for subsequent reasoning. The loop 402

continues until the answer is complete, coupling 403

retrieval decisions, uncertainty detection, and dy- 404

namic reranking within a single refinement frame- 405

work and thereby reducing the impact of informa- 406

tion gaps and retrieval noise on generation quality. 407

4 Experiment 408

4.1 Experimental Setup 409

Datasets We conduct experiments on five pub- 410

licly available open-source multi-hop QA datasets. 411

Among them, datasets used in the training of our 412

uncertainty prober—2WikiMultiHopQA (Ho et al., 413

2020), HotpotQA (Yang et al., 2018), IIRC (Fer- 414

guson et al., 2020), and StrategyQA (Geva et al., 415

2021)—are considered in-domain datasets, while 416

MuSiQue (Trivedi et al., 2022), which is not used 417

during training, serves as our out-of-domain bench- 418

mark to evaluate generalization under domain shift. 419
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Evaluation Metrics we sample 500 examples420

from the test split of each dataset for evaluation.421

To guide the model’s reasoning process and en-422

courage more interpretable outputs, we incorpo-423

rate Chain-of-Thought prompting (Wei et al., 2022)424

and few-shot demonstrations (Brown et al., 2020)425

into the input prompt. Full prompt templates are426

provided in Appendix A. For StrategyQA, we re-427

port the exact match (EM) score, as the target an-428

swers are binary (“yes” or “no”). For the remain-429

ing datasets—2WikiMultiHopQA, MuSiQue, Hot-430

potQA, and IIRC—we evaluate using both answer-431

level exact match (EM) and token-level F1, as the432

answers are free-form textual spans.433

For StrategyQA, we report exact match (EM)434

scores since the answers are binary (“yes” or “no”).435

For the remaining datasets—2WikiMultiHopQA,436

MuSiQue, HotpotQA, and IIRC—we use both437

answer-level EM and token-level F1 scores to as-438

sess the accuracy and completeness of generated439

answers.440

Baselines We compare our method with441

several representative baselines, including the442

non-retrieval setting (wo-RAG), and three adap-443

tive retrieval-augmented generation methods:444

FLARE (Jiang et al., 2023b), DRAGIN (Su et al.,445

2024), and SEAKR (Yao et al., 2024). FLARE446

triggers retrieval whenever a token’s probability447

falls below a predefined threshold, and constructs448

the query by removing low-confidence tokens from449

the last generated sentence. DRAGIN determines450

retrieval timing based on token-level importance451

and uncertainty, using attention signals over the452

full context to formulate semantically rich queries.453

SEAKR leverages internal hidden-state uncertainty454

to decide when to retrieve, and integrates retrieved455

knowledge through self-aware re-ranking and rea-456

soning strategies.457

Models We evaluate all methods using three458

open-source instruction-tuned large language mod-459

els: LLaMA-2-7b-Chat-hf (Touvron et al., 2023),460

LLaMA-3.1-8B-Instruct (Dubey et al., 2024), and461

Mistral-7B-Instruct-v0.3 (Jiang et al., 2023a). All462

experiments are conducted under a white-box set-463

ting to allow extraction of hidden states for adaptive464

retrieval.465

Implementation Details We use English466

Wikipedia (Karpukhin et al., 2020) as the exter-467

nal knowledge source, segmented into passages of468

100 tokens each.For each retrieval (using the same469

top-k cutoff for every method on each dataset), we 470

return the top k most relevant documents with the 471

BM25 algorithm (Robertson et al., 2009), which 472

ranks passages based on lexical matching with the 473

input query. We directly leverage the token-level 474

hidden states returned by Hugging Face Transform- 475

ers (setting output_hidden_states=True). 476

Further details are provided in Appendix E. 477

4.2 Overall Results 478

Table 1 summarizes the performance of SEARAG 479

and baseline methods across five open-domain 480

QA datasets under three different language mod- 481

els. Several key findings emerge from the re- 482

sults: (1) While many RAG-based methods im- 483

prove performance over the non-retrieval baseline, 484

this trend is not consistent across all settings. In 485

some cases—particularly on tasks like StrategyQA 486

where the model already performs well without 487

retrieval—certain static or poorly timed retrieval 488

methods (e.g., SeaKR) may underperform com- 489

pared to direct generation. This suggests that 490

when retrieval is unnecessary or misaligned with 491

the model’s information needs, it can introduce 492

noise that harms output quality. (2) SEARAG 493

achieves the best performance on a majority of 494

datasets and evaluation metrics across all three 495

models. Its advantage is particularly evident on 496

multi-hop reasoning datasets such as 2WikiMulti- 497

HopQA and HotpotQA, where precise timing and 498

relevance of retrieval play a critical role. Com- 499

pared to adaptive baselines like FLARE, DRA- 500

GIN, and SeaKR, SEARAG exhibits stronger con- 501

sistency and robustness, especially under larger 502

models such as LLaMA-3.1-8B. (3) Unlike meth- 503

ods such as FLARE, which rely on token-level 504

uncertainty and may suffer from noisy retrieval 505

triggers, SEARAG utilizes internal hidden states 506

to make more informed retrieval decisions, lead- 507

ing to fewer unnecessary retrievals and higher- 508

quality responses. The performance gain is par- 509

ticularly evident under more capable models (e.g., 510

LLaMA-3.1-8B), where SEARAG achieves up to 511

+0.171 EM and +0.153 F1 improvements over the 512

best baseline on 2WikiMultiHopQA. (4) On out- 513

of-domain data (MuSiQue), SEARAG maintains 514

superior performance without access to domain- 515

specific training data, outperforming all baselines 516

in both EM and F1. This highlights its general- 517

ization capability beyond in-domain scenarios. (5) 518

Compared to SeaKR, which also leverages inter- 519

nal signals, SEARAG shows clear improvements, 520
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Table 1: Overall results of SEARAG and baselines on five datasets. The best results are in bold, and the second-best
are underlined.

In-Domain Out-of-Domain
2WikiMultiHopQA HotpotQA StrategyQA IIRC MuSiQue

EM F1 EM F1 Accuracy EM F1 EM F1

Llama2-7b
w/o RAG 0.142 0.2181 0.189 0.2710 0.654 0.139 0.1733 0.068 0.1477
FLARE 0.226 0.3089 0.210 0.2874 0.608 0.162 0.1942 0.085 0.1593
DRAGIN 0.234 0.2884 0.235 0.3372 0.660 0.193 0.2429 0.105 0.1733
SeaKR 0.302 0.3601 0.279 0.3970 0.544 0.195 0.2351 0.042 0.1038
SEARAG (Ours) 0.303 0.3933 0.248 0.3594 0.683 0.239 0.2879 0.113 0.1987

Llama3-8b
w/o RAG 0.257 0.3427 0.193 0.2949 0.757 0.160 0.1931 0.072 0.1675
FLARE 0.322 0.4126 0.260 0.3588 0.732 0.216 0.2595 0.080 0.1681
DRAGIN 0.277 0.3417 0.285 0.3802 0.760 0.196 0.2252 0.080 0.1737
SeaKR 0.302 0.3682 0.300 0.3985 0.640 0.200 0.2397 0.088 0.1642
SEARAG (Ours) 0.493 0.5656 0.417 0.5163 0.767 0.317 0.3681 0.133 0.2696

Mistral-7b
w/o RAG 0.187 0.2884 0.193 0.2949 0.740 0.183 0.2231 0.070 0.1614
FLARE 0.193 0.3137 0.223 0.3225 0.723 0.143 0.1843 0.075 0.1590
DRAGIN 0.327 0.4397 0.263 0.4102 0.743 0.273 0.3381 0.115 0.2365
SeaKR 0.264 0.3452 0.140 0.2771 0.546 0.132 0.1835 0.056 0.1466
SEARAG (Ours) 0.387 0.5018 0.357 0.4805 0.763 0.297 0.3459 0.120 0.2172

likely due to its semantic-entropy-based probing521

and uncertainty-aware reranking mechanism that522

better aligns retrieval timing and content relevance.523

In summary, SEARAG demonstrates consistent524

and superior performance across various models,525

datasets, and reasoning types, particularly excelling526

in multi-hop and open-domain settings, validating527

the effectiveness of our semantic-entropy-driven528

adaptive retrieval design.529

4.3 Timing of Retrieval530

In this analysis, we investigate the impact of re-531

trieval timing by fixing the query formulation532

strategy—all methods use the last complete sen-533

tence generated by the LLM as the query—and534

varying only the timing mechanism across dif-535

ferent adaptive RAG frameworks. We compare536

SEARAG against two representative baselines:537

FLARE, which triggers retrieval whenever any538

generated token’s probability falls below a prede-539

fined threshold, and DRAGIN, which determines540

retrieval timing based on the importance and uncer-541

tainty of generated tokens.542

As shown in Table 2, SEARAG consistently out-543

performs both FLARE and DRAGIN on HotpotQA544

and IIRC across two model backbones (LLaMA3-545

8B and Mistral-7B). These results demonstrate the546

Table 2: Comparison of adaptive RAG methods under
different retrieval timing strategies. All methods use the
last complete sentence from the LLM as the query. Re-
sults on HotpotQA and IIRC with LLaMA3-8B (L8B)
and Mistral-7B (M7B). Best results are in bold.

Models Methods
HotpotQA IIRC

EM F1 EM F1

L8B
FLARE 0.233 0.3215 0.200 0.2407
DRAGIN 0.276 0.3759 0.183 0.2134
SEARAG 0.395 0.5028 0.298 0.3469

M7B
FLARE 0.202 0.3023 0.122 0.1678
DRAGIN 0.243 0.3945 0.262 0.3256
SEARAG 0.343 0.4623 0.278 0.3347

effectiveness of our semantic entropy–driven re- 547

trieval timing strategy. By leveraging internal hid- 548

den state representations to assess sentence-level 549

uncertainty, SEARAG is able to more reliably de- 550

tect the model’s need for external knowledge and 551

initiate retrieval at appropriate moments. This leads 552

to substantial performance gains in both EM and 553

F1 across datasets, highlighting the benefit of using 554

internal confidence signals for adaptive control of 555

the retrieval process. 556
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Table 3: Ablation study of SEARAG on three multi-hop
QA datasets: 2Wiki(2WikiMultiHopQA), IIRC

Models 2Wiki IIRC

EM F1 EM F1

SEARAG 0.493 0.5656 0.317 0.3681

Ablating Uncertainty-aware Query Formulation
Previous Sentence Only 0.322 0.3981 0.206 0.2402
Uncertainty Sentence Only 0.424 0.5089 0.298 0.3469
Full History Query 0.368 0.4562 0.291 0.3432

Ablating Uncertainty-aware Reranking
– U.A. Reranking 0.412 0.5025 0.290 0.3265

4.4 Ablation Study557

To assess the contribution of each component in558

SEARAG, we conduct ablation studies on two559

multi-hop QA datasets: 2WikiMultiHopQA and560

IIRC. All experiments are performed using the561

LLaMA3.1-8B-Instruct model. The results are pre-562

sented in Table 3.563

Ablating Uncertainty-aware Query Formula-564

tion. We evaluate the impact of our proposed565

uncertainty-aware query formulation by replacing566

it with three alternative strategies: (1) Previous567

Sentence Only, which uses only the last complete568

sentence from the previously generated output as569

the query; (2) Uncertainty Sentence Only, which570

directly uses the uncertain sentence that triggered571

retrieval; and (3) Full History Query, which con-572

catenates the question with all previously generated573

content to form the query. As shown in Table 3, all574

alternatives result in performance drops compared575

to our method, demonstrating the effectiveness of576

uncertainty-guided query construction that not only577

selectively retains relevant entities from the uncer-578

tain sentence but also incorporates context from579

previously generated content, enabling both preci-580

sion and continuity in retrieval.581

Ablating Uncertainty-aware Reranking. We582

further assess the impact of our uncertainty-aware583

reranking strategy by disabling it and directly us-584

ing the top-k retrieved documents based on the ini-585

tial retrieval scores, without applying uncertainty-586

based reranking or top-(k+5) expansion. The re-587

sults in Table 3 show a clear performance drop,588

indicating that reranking plays a key role in sup-589

pressing noisy evidence and refining the retrieved590

context. Compared to query formulation variants,591

the removal of reranking causes a comparable or592

even greater decrease in performance, underscoring593

its importance in adaptive knowledge integration.594

Table 4: Performance comparison of prober training
under different supervision signals (Accuracy (Acc) vs.
Binary Semantic Entropy (BSE)) and data construction
strategies (Single-turn vs. Multi-turn), evaluated on
LLaMA-2-7B-Chat across two QA datasets.

Strategy 2Wiki IIRC

EM F1 EM F1

Single (Acc) 0.243 0.3478 0.180 0.2262
Single (BSE) 0.273 0.3686 0.210 0.2565
Multi (Acc) 0.273 0.3556 0.207 0.2635
Multi (BSE) 0.303 0.3933 0.239 0.2879

4.5 Data Construction Strategy 595

To assess the impact of data construction and super- 596

vision signals on prober performance, we conduct 597

ablation experiments comparing single-turn and 598

multi-turn training strategies under two types of 599

supervision: answer accuracy (Acc) and binary 600

semantic entropy (BSE). All experiments are per- 601

formed using LLaMA-2-7B-Chat on 2Wiki and 602

IIRC, as shown in Table 4. 603

In the single-turn setting, each training instance 604

is based on an isolated sentence-level generation. 605

In contrast, the multi-turn strategy incorporates 606

generation history, better reflecting the iterative 607

reasoning in multi-hop QA. 608

We observe two trends: (1) multi-turn training 609

consistently improves performance over single-turn 610

(e.g., EM improves from 0.273 to 0.303 on 2Wiki), 611

and (2) BSE supervision yields better results than 612

Acc, especially in F1 (e.g., 0.3933 vs. 0.3556 on 613

2Wiki). These results support our design choice of 614

using multi-turn construction with BSE labels as 615

default. 616

5 Conclusion 617

In this work, we present SEARAG, an adaptive 618

RAG framework that employs a semantic entropy 619

prober to estimate uncertainty from intermediate 620

hidden states and guide retrieval decisions. We fur- 621

ther introduce an uncertainty-aware query formula- 622

tion and reranking strategy to enhance retrieval 623

quality. Experiments on five open-domain QA 624

datasets demonstrate that SEARAG consistently 625

outperforms or matches existing adaptive RAG 626

methods across both in-domain and out-of-domain 627

settings. 628
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6 Limitations629

While SEARAG demonstrates strong performance630

and generalization, it has several limitations. Our631

framework relies on access to intermediate hidden632

states via the output_hidden_states setting in633

HuggingFace-style Transformer implementations,634

which restricts its applicability to open-source mod-635

els and makes it incompatible with API-based sys-636

tems. Additionally, to focus on demonstrating the637

method’s effectiveness, we adopt fixed thresholds638

in several components without extensive tuning,639

which may limit performance in some settings. The640

prober is trained only on the hidden states of the641

first generated token (excluding the first layer), and642

we do not explore variations in token position or643

layer depth. Lastly, our experiments are conducted644

on relatively small models, and the effectiveness645

of SEARAG on larger-scale LLMs remains to be646

verified. In future work, we plan to overcome these647

limitations through methodological improvements648

and expanded evaluations.649

7 Ethics Statement650

We have taken active steps to ensure our research651

complies with ethical standards in responsible AI652

development. All datasets used in our experi-653

ments—such as 2WikiMultiHopQA, HotpotQA,654

IIRC, StrategyQA, and MuSiQue—are publicly655

available and curated for research purposes. We656

avoid the use of any data that may involve per-657

sonal, sensitive, or manually crowdsourced anno-658

tations beyond the original dataset construction.659

Our experiments rely solely on inference from660

open-source large language models (e.g., LLaMA-661

3.1-8B, LLaMA-2-7B-Chat, Mistral-7B-Instruct).662

These models are released under research-friendly663

licenses, and we do not perform any additional664

fine-tuning or gradient-based training. As such, our665

methodology does not introduce additional bias,666

memorization risk, or ethical concerns beyond what667

is already present in the base models. To encour-668

age transparency and reproducibility, we release669

our code and evaluation protocols to the commu-670

nity. This allows others to validate, improve, and671

extend our work in a responsible manner.672
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A Semantic Entropy Estimation and897

Threshold Binarization898

Semantic Entropy Estimation. For a given con-899

text x, an auto-regressive LLM defines the joint900

probability of a sequence s = (t1, . . . , tn) as901

p(s | x) =
n∏

i=1

p(ti | t<i, x), (7)902

and the probability mass of a semantic cluster Ck 903

is the sum of the probabilities of all sequences that 904

fall into that cluster, 905

p(Ck | x) =
∑
s∈Ck

p(s | x). (8) 906

The semantic entropy of x is then 907

HSE(x) = −
K∑
k=1

p(Ck | x) log p(Ck | x). (9) 908

Practical estimation. Direct evaluation of 909

Eqs. (7)–(9) is infeasible: the number of possi- 910

ble token sequences grows exponentially with 911

sequence length. Following the Monte-Carlo 912

protocol of Kuhn et al. (2023), we therefore 913

draw N = 10 high-temperature generations 914

S = {s(j)}Nj=1 and cluster them semantically: 915

two samples are assigned to the same cluster if 916

they mutually entail each other according to an 917

off-the-shelf NLI model. This greedy procedure 918

yields at most K ≤ N clusters {Ck}Kk=1. Let nk 919

denote the number of samples in Ck. The cluster 920

probability is approximated by 921

p̂(Ck | x) =
nk

N
, (10) 922

and the semantic entropy estimate becomes 923

ĤSE(x) = −
K∑
k=1

p̂(Ck | x) log p̂(Ck | x). (11) 924

This discrete, sampling-based estimator is model- 925

agnostic and supplies a reliable measure of se- 926

mantic uncertainty for the subsequent threshold- 927

binarization step. 928

Global Threshold via Semantic-Constraint En- 929

tropy Splitting (SCES). To convert the continu- 930

ous entropy scores into binary labels required by 931

the prober, we determine a global threshold τ on 932

the training set. Let {Hi} be the set of entropy 933

scores and {Zi} the corresponding hidden-state fea- 934

tures of the first output token (concatenated across 935

layers). Previous work (SEPs) minimizes the mean- 936

squared error (MSE) of within-group entropy to se- 937

lect τ , but ignores the topology of the feature space. 938

We therefore introduce Semantic-Constraint En- 939

tropy Splitting (SCES), which augments the MSE 940

objective with a variance term that penalizes fea- 941
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ture dispersion on both sides of τ :942

L(t) =
∑
Hi<t

(Hi − µlow)
2 +

∑
Hi≥t

(Hi − µhigh)
2

︸ ︷︷ ︸
MSE(t)

943

+ λ
(
σ2

low(t) + σ2
high(t)

)
, (12)944

where µlow and µhigh are the mean entropies below945

and above t, and σ2
low(t) = 1

|Hi<t|
∑

Hi<t∥Zi −946

Z̄low∥22 denotes the feature variance (analogously947

for σ2
high). The hyper-parameter λ is kept small948

to avoid over-regularisation. A fine-grained grid949

search over t minimises (12), yielding τ =950

argmint L(t). Each sample is then labelled yi =951

1[Hi ≤ τ ], and the same τ is applied at inference952

to decide whether the current sentence warrants953

external retrieval.954

SCES retains the simplicity of the original MSE955

split while enforcing semantic smoothness in the956

hidden-state space, resulting in more stable binary957

decisions and improved prober performance.958

B Semantic Entropy Prober Training959

Configuration960

Table 5: Prober Training Configuration

Hyperparameter Value

Learning Rate 1e-3
Batch Size 64
Max Epochs 100
Dropout Rate 0.3
Activation Function ReLU
Optimizer AdamW
Learning Rate Scheduler ReduceLROnPlateau
Patience 10
Weight Decay 1e-5
Criterion (Loss Function) BCEWithLogitsLoss
Device A100 × 2
Early Stopping Enabled

This section outlines the key hyperparameters961

used for training the prober model (see Table 5 for962

details). We employed early stopping to prevent963

overfitting, using validation loss as the primary964

criterion. If the validation loss did not improve for965

a specified number of epochs (patience), training966

was halted, and the best model state was retained.967

Our focus was primarily on methodological in-968

novation, and we did not conduct extensive hyper-969

parameter tuning. The model’s parameters were set970

to reasonable defaults.971

Algorithm 1 Iterative Refinement with
Uncertainty-aware Retrieval
Input: question q; corpus D; LLMM; retriever
R; prober P ; thresholds τ, δ;M.generate(·) G
Output: final answer A

1: prompt← q; A← ∅
2: while not done do
3: (s, h)← G(M,prompt)
4: uorig ← P(h)
5: if uorig > τ then
6: C ← RETRIEVE(R, qry(q,A, s))
7: (s′, h′)← G(M, [prompt;C])
8: uret ← P(h′)
9: if uret > uorig + δ then

10: C ← EXPAND(C,+5)
11: C ← RERANK(C)
12: (s′, h′)← G(M, [prompt;C])
13: end if
14: s⋆ ← s′

15: else
16: s⋆ ← s
17: end if
18: A← A ∥ s⋆
19: prompt← [prompt; s⋆]
20: end while
21: return A

C SEARAG: Sentence-level Iterative 972

Generation with Semantic 973

Entropy-guided Retrieval 974

This algorithm 1 presents the core procedure of 975

SEARAG, our proposed sentence-level adaptive 976

generation framework. At each decoding step, the 977

language model generates a sentence and computes 978

its semantic entropy via internal hidden states. If 979

the uncertainty exceeds a learned threshold, the 980

system triggers retrieval to regenerate the sentence 981

using relevant external knowledge. When retrieval 982

fails to reduce uncertainty, SEARAG performs a 983

one-time expansion and reranking of the retrieved 984

results. This process continues iteratively until the 985

full answer is produced, ensuring each sentence is 986

generated with minimal hallucination and maximal 987

grounding. 988

D Examples of Training Data for the 989

Semantic Entropy Prober 990

Tables 6, 7, 8 illustrates three representative cases 991

from our training data under different retrieval con- 992

ditions: no retrieval, full-document retrieval, and 993

12



Table 6: Example: No Retrieval

Question Question: In what city and country was the Jagdgeschwader 77 based?

Generated
Answer /

High-
temperature
Samples

1. Jagdgeschwader 77 was a German World War II fighter wing.
2. The Jagdgeschwader 77 was based in Neuburg.
3. The Jagdgeschwader 77 was based in Merseburg, Germany.
4. Jagdgeschwader 77 (77th Air Fighter Wing) was based in Merseburg, in the country
of Germany.
5. The Jagdgeschwader 77 was based in Berlin, Germany.
6. The Jagdgeschwader 77 (JG 77) was based in Graz, Austria.
7. Jagdgeschwader 77 was a Luftwaffe fighter wing based in the city of Lille in the
country of France.
8. Jagdgeschwader 77 was based in Berlin, Germany.
9. Jagdgeschwader 77 (77th Fighter Wing) was based in the city of Döberitz, Germany.
10. Jagdgeschwader 77 was a Luftwaffe fighter wing of World War II.

Semantic
Entropy 1.89

supporting-paragraph retrieval. Each example in-994

cludes the model-generated answer, a set of high-995

temperature generations, and the corresponding996

semantic entropy value computed using our NLI-997

based clustering and Eq. 11.998

These entropy scores are subsequently con-999

verted into binary supervision labels using our1000

proposed Semantic-Constraint Entropy Splitting1001

(SCES) method (see Section A). Specifically, a1002

global threshold τ is determined by jointly mini-1003

mizing intra-cluster entropy variance and hidden-1004

state dispersion. Samples with entropy below τ are1005

labelled as confident (i.e., no retrieval required),1006

while those exceeding the threshold are treated as1007

uncertain (i.e., retrieval beneficial). These binary1008

labels serve as training targets for the semantic1009

entropy prober.1010

E More Details about Experiment Setup1011

Datasets We conduct experiments on five1012

open-domain, knowledge-intensive QA datasets1013

to evaluate our model’s reasoning ability across1014

diverse dimensions, including multi-hop reason-1015

ing, reading comprehension under incomplete con-1016

texts, and strategic commonsense reasoning. The1017

datasets include 2WikiMultiHopQA (Ho et al.,1018

2020), HotpotQA (Yang et al., 2018), IIRC (Fergu-1019

son et al., 2020), StrategyQA (Geva et al., 2021),1020

and MuSiQue (Trivedi et al., 2022).1021

2WikiMultiHopQA is a multi-hop question an-1022

swering benchmark constructed over Wikipedia 1023

articles. It contains roughly 20,000 questions, each 1024

designed to require reasoning over two support- 1025

ing passages from different articles. This dataset 1026

emphasizes the model’s ability to synthesize in- 1027

formation across multiple sources, trace entity re- 1028

lationships, and perform multi-step reasoning to 1029

select the correct answer from a candidate set. 1030

HotpotQA is another large-scale multi-hop QA 1031

dataset containing 113,000 questions. Unlike 1032

2WikiMultiHopQA, HotpotQA not only requires 1033

reasoning across documents but also includes dis- 1034

tractor paragraphs, introducing additional noise and 1035

making retrieval more challenging. Questions of- 1036

ten have concise factual answers, such as names, 1037

dates, or short descriptions, and demand evidence 1038

aggregation from multiple documents for correct 1039

answering. 1040

MuSiQue (Multi-hop Structured Questions) is a 1041

manually curated multi-hop QA dataset that com- 1042

bines high-quality questions with structured multi- 1043

step reasoning annotations. It is designed to reduce 1044

shortcut artifacts common in other QA datasets 1045

and to ensure that answering requires following an 1046

explicit multi-fact reasoning chain. MuSiQue is 1047

known for its compositional complexity and lin- 1048

guistic variation, providing a stringent testbed for 1049

evaluating step-wise retrieval and reasoning capa- 1050

bilities. 1051

IIRC (Incomplete Information Reading Com- 1052
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Table 7: Example: Full Document Retrieval

Question Are The Great Commandment and The Night Is My Kingdom from the same country?

Retrieved
Paragraphs
from the
Full
Document

[1] Mir Kino Theatre in Moscow. The film was screened throughout ...
[2] Great Is My Country Vast is my Native Land (1958), also known ...
[3] Night", set a record in late 2013 as the first male country music...

Generated
Answer The Great Commandment is from the country of United States of America.

High-
temperature
Samples

1. The Night Is My Kingdom is from the country of Russia.
2. The Night Is My Kingdom is from the country of United Kingdom.
3. The Night Is My Kingdom is from the country of Australia.
4. The Night Is My Kingdom is from the country of Russia.
5. The Night Is My Kingdom is from the country of Russia.
6. The Night Is My Kingdom is from the country of Russia.
7. The Night Is My Kingdom is from the country of Russia.
8. The Night Is My Kingdom is from the country of Republic of Macedonia.
9. The Night Is My Kingdom is from the country of Russia.
10. The Night Is My Kingdom is from the country of Russia.

Semantic
Entropy 0.94

prehension) consists of 13,441 questions grounded1053

in Wikipedia paragraphs. Each question is con-1054

structed to deliberately lack sufficient context in its1055

immediate paragraph, thereby requiring retrieval1056

of additional information from linked documents.1057

The minimal lexical overlap between questions1058

and their required evidence simulates real-world1059

information-seeking scenarios. Moreover, the1060

dataset contains unanswerable and multi-hop ques-1061

tions, posing a significant challenge to retrieval-1062

based methods.1063

StrategyQA is a compact yet highly challenging1064

dataset of 2,780 strategic yes/no questions. Each1065

sample includes a high-level question, a decompo-1066

sition of implicit reasoning steps, and supporting1067

evidence. The questions require models to combine1068

world knowledge with common sense and perform1069

implicit, often abstract reasoning. Adversarial fil-1070

tering and annotation protocols ensure the dataset1071

avoids superficial cues, making it an ideal bench-1072

mark for evaluating reasoning generalization.1073

Taken together, these datasets cover a wide spec-1074

trum of retrieval and reasoning difficulty. While1075

HotpotQA, 2WikiMultiHopQA, and MuSiQue fo-1076

cus on compositional multi-hop reasoning, IIRC1077

emphasizes the ability to bridge incomplete infor-1078

mation. StrategyQA evaluates models’ competence1079

in abstract commonsense reasoning, where surface- 1080

level lexical overlap is minimal and strategic think- 1081

ing is crucial. 1082

Prompt Settings The prompt template used in 1083

all experiments is structured as follows: 1084

Examples:
Question: Q1
Answer: Reasoning steps... So the answer is A1.
Question: Q2
Answer: Reasoning steps... So the answer is A2.
...
Context:
[1] Context 1
[2] Context 2
...
Answer in the same format as before.
Question: < input question >
Answer:

1085

We adopt few-shot prompting with fixed num- 1086

bers of exemplars for each dataset, considering 1087

both reasoning complexity. Specifically, we use 6 1088

exemplars for 2WikiMultiHopQA, and 8 exemplars 1089

for HotpotQA, IIRC, StrategyQA, and MuSiQue. 1090

Across all datasets, we set the retrieval top-k to 3 1091

to balance knowledge coverage and prompt com- 1092

pactness. 1093
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Table 8: Example: Supporting Paragraph Retrieval

Question What is the date of birth of the performer of song Titanic (Falco Song)?

Supporting
Paragraphs

[1] Titanic (Falco song): "Titanic" is a song by Falco from his 1992 studio album
"Nachtflug".
[2] Falco (musician): Johann Hölzel (19 February 1957 – 6 February 1998), better
known by his stage name Falco, was an Austrian singer and songwriter.

Generated
Answer The date of birth of the performer of the song "Titanic" is 19 February 1957.

High-
temperature
Samples

1. The date of birth of Falco is 19 February 1957.
2. Falco was born on 19 February 1957.
3. Falco was born on 19 February 1957.
4. Falco was born on 19 February 1957.
5. Falco was born on 19 February 1957.
6. Falco was born on 19 February 1957.
7. Falco’s date of birth is 19 February 1957.
8. The date of birth of Falco is 19 February 1957.
9. Falco was born on 19 February 1957.
10. Falco was born on 19 February 1957.

Semantic
Entropy 0
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