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Abstract

Retrieval-Augmented Generation (RAG) sig-
nificantly enhances Large Language Models
(LLMs) in knowledge-intensive tasks. How-
ever, traditional static retrieval strategies fail to
adapt to the evolving informational needs dur-
ing generation, often resulting in insufficient or
redundant content. Existing adaptive retrieval
methods commonly rely on output probabilities
or external heuristics, which fail to accurately
reflect the model’s true knowledge needs. To
address this, we introduce Semantic Entropy-
based Adaptive RAG (SEARAG), training a
discriminative model to predict binary seman-
tic entropy from intermediate hidden-layer
states, quantifying generation uncertainty in
real-time. During generation, we perform iter-
ative sentence-by-sentence reasoning. If high
semantic entropy is detected in an iteration,
external knowledge retrieval is triggered for
enhanced generation; otherwise, the process
proceeds to the next iteration. This mecha-
nism accurately identifies the model’s knowl-
edge needs, reduces redundant retrieval, and
improves output quality. Experimental results
on five multi-hop QA tasks show SEARAG
outperforms existing adaptive RAG methods
in performance and efficiency, confirming its
effectiveness and generalization. We release
our code in our Github repository.

1 Introduction

Retrieval-Augmented Generation (RAG) has
emerged as a promising method to address halluci-
nations and factual inaccuracies inherent in Large
Language Models (LLMs), which, despite their ex-
ceptional performance across various NLP tasks,
frequently generate plausible but incorrect outputs
(Brown et al., 2020; Ji et al., 2023; Min et al.,
2023; Zhao et al., 2025). Traditional RAG frame-
works typically follow a straightforward retrieve-
and-generate pipeline (Lewis et al., 2020; Guu
et al., 2020; Izacard and Grave, 2021), effec-
tively handling simple queries through a single

retrieval step. However, complex multi-step ques-
tions or long-form generations necessitate dynamic
retrieval strategies capable of adapting the retrieval
process according to real-time information needs
(Zhang et al., 2023; Shao et al., 2023; Cheng et al.,
2023).

Adaptive RAG methods have been developed to
dynamically decide when and how external knowl-
edge retrieval should occur. Broadly, these methods
can be categorized into confidence-based strategies,
model-decided retrieval, and external classifier-
based approaches. Confidence-based methods such
as FLARE (Jiang et al., 2023b) and DRAGIN (Su
et al., 2024) rely on token-level uncertainties or
attention distributions to trigger retrieval. Model-
decided retrieval approaches, like Self-RAG (Asai
et al., 2023), allow the language model itself, either
through fine-tuning or prompting, to autonomously
determine retrieval necessity. External classifier-
based methods, exemplified by Adaptive-RAG
(Jeong et al., 2024) and Self-Knowledge Guided
Generation (Wang et al., 2023), incorporate ad-
ditional classifiers to assess query complexity or
output uncertainty.

Despite significant advancements in Adaptive
Retrieval-Augmented Generation (RAG), precisely
determining when large language models (LLMs)
require external knowledge retrieval and effectively
deciding how to formulate retrieval queries re-
main critical challenges. Recent methods such as
Probing-RAG (Baek et al., 2025) have employed
internal hidden-state probing to assess whether re-
trieval is necessary, achieving efficiency through
lightweight classifiers. However, Probing-RAG is
inherently non-adaptive; it lacks the ability to dy-
namically and continuously monitor information
needs during the generation process. Consequently,
it fails to detect and address evolving knowledge
gaps that arise incrementally, especially in com-
plex, multi-hop scenarios. On the other hand, meth-
ods such as SeaKR (Yao et al., 2024) effectively



leverage deep uncertainty signals derived from in-
ternal model states to guide adaptive retrieval de-
cisions. However, SeaKR measures uncertainty by
repeatedly generating outputs for the same prompt,
significantly increasing computational overhead.
Moreover, although SeaKR comprehensively ad-
dresses knowledge integration strategies, including
self-aware re-ranking and reasoning, it neglects ef-
ficient and dynamic query formulation. This over-
sight can lead to mismatches between retrieved
documents and the model’s real-time informational
needs.

However, these existing methods face critical
challenges, such as unreliable retrieval triggers aris-
ing from superficial uncertainty assessments and in-
effective integration of retrieved knowledge, which
often leads to unnecessary retrieval steps and in-
formation conflicts. Therefore, an ideal Adaptive-
RAG framework should effectively combine the
capabilities of real-time detection of internal uncer-
tainty during generation and dynamically construct
precise retrieval queries that align closely with im-
mediate information requirements.

To overcome the above limitations, we propose
a novel Adaptive-RAG framework that leverages
internal-state probing to estimate semantic uncer-
tainty. Specifically, we construct training datasets
using multi-hop question answering data and train
a MLP-based semantic entropy prober, inspired by
recent work on semantic entropy (Kossen et al.,
2024), to predict binary semantic entropy from in-
termediate hidden states during generation. This
enables accurate, real-time decisions on whether
to trigger external retrieval. Furthermore, we intro-
duce an advanced Query Formulation strategy: dur-
ing the generation process, we dynamically iden-
tify uncertain words and utilize relevant histori-
cal context and entities to formulate targeted re-
trieval queries. Additionally, if newly retrieved
information inadvertently increases the model’s un-
certainty, we adaptively expand the retrieval scope
(top-k documents) and further refine the results
using a reranker. Experiments demonstrate that
our method consistently achieves performance that
matches or surpasses state-of-the-art approaches
across both in-domain and out-of-domain datasets.
By integrating real-time internal-state probing and
precise query formulation, our method effectively
balances retrieval efficiency and generation accu-
racy, substantially advancing the performance of
Adaptive-RAG systems.

Our main contributions are:

* We propose SEARAG, an adaptive RAG
framework that uses a semantic entropy prober
to decide when to retrieve based on hidden
states of LLMs.

* We empirically show that SEARAG outper-
forms existing adaptive RAG baselines on
multiple knowledge-intensive QA datasets.

2 Related Work

2.1 Adaptive Retrieval-Augmented
Generation

Adaptive Retrieval-Augmented Generation (RAG)
dynamically decides when and how external knowl-
edge should be retrieved during generation, aim-
ing for improved accuracy and efficiency. Exist-
ing methods primarily fall into three categories:
confidence-based, model-decided, and external
classifier-based. Confidence-based methods, such
as FLARE (Jiang et al., 2023b) and DRAGIN (Su
et al., 2024), use token-level uncertainty or atten-
tion weights to trigger retrieval. Model-decided
methods, like Self-RAG (Asai et al., 2023) and
MIGRES (Wang et al.,, 2025), enable models
themselves to determine retrieval necessity via
fine-tuning or prompting. External classifier-
based methods, including Self-Knowledge Guided
Generation (Wang et al., 2023) and Adaptive-
RAG (Jeong et al., 2024), introduce additional clas-
sifiers to evaluate model outputs or query complex-
ity. However, these methods often face issues such
as inaccurate retrieval triggers due to superficial
uncertainty measures and inefficient integration of
external knowledge. Recent approaches, such as
SeaKR (Yao et al., 2024), leverage deeper internal
hidden-layer uncertainty signals within Large Lan-
guage Models (LLMs) to better inform adaptive
retrieval decisions.

2.2 Self-awareness via Internal States of
LLMs

Recent studies have explored leveraging internal
hidden states of LLMs for uncertainty detection
and self-awareness. Hidden-layer representations
effectively capture model confidence and detect
hallucinations or inaccuracies. Fomicheva et al.
(2020) and Azaria and Mitchell (2023) demonstrate
that internal states reflect the truthfulness of model
outputs. Approaches such as Probing-RAG (Baek
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Figure 1: Two-stage framework of our semantic entropy-based adaptive RAG(SEARAG). The upper part constructs
training data and supervises the training of a semantic entropy prober. The lower part performs inference, where a

prober model decides retrieval using LLM hidden states.

etal., 2025) and SeaKR (Yao et al., 2024) explicitly
utilize these internal states to assess knowledge suf-
ficiency and hallucination risks, enhancing adaptive
retrieval strategies. Other methods, like Lookback
Lens (Chuang et al., 2024a) and Dola (Chuang
et al., 2024b), exploit transformer attention and
logits across layers to reduce hallucinations and
improve output reliability.

2.3 Semantic Entropy

Semantic entropy has emerged as a powerful mea-
sure to quantify semantic uncertainty in LLLM out-
puts, surpassing traditional lexical-based metrics.
Introduced by Farquhar et al. (2024), semantic en-
tropy captures model uncertainty across diverse se-
mantic interpretations rather than lexical variations.
To overcome the computational burden of multi-
ple output generation, Semantic Entropy Probes
(SEP) proposed by Kossen et al. (2024) approxi-
mate semantic entropy directly from internal states,
achieving efficient and robust uncertainty detection.
Thus, semantic entropy serves as a nuanced and
effective real-time indicator of uncertainty, well-
suited for adaptive retrieval tasks.

3 Method

In this section, we present the SEARAG framework
in detail (see Figure 1). Specifically, in Section 3.1,

we introduce the Semantic Entropy Prober, includ-
ing the training data construction, training strategy,
and how it is applied to determine whether retrieval
should be triggered. In Section 3.2, we describe
our Uncertainty-aware Query Formulation method.
Finally, Section 3.3 presents the Uncertainty-aware
Reranking Strategy.

3.1 Semantic Entropy Prober

Hallucination signals in language models appear
in early activations before generating the first to-
ken (Snyder et al., 2024), making it possible to pre-
dict the reliability of subsequent outputs based on
its hidden state. Semantic Entropy Probes (SEPs;
Kossen et al. (Kossen et al., 2024)) use logistic re-
gression to detect semantic uncertainty from hidden
states at the token level. However, SEPs overlook
how uncertainty relates to hidden states when rel-
evant facts are introduced via in-context learning
(ICL). Considering that the representativeness of
the first token may diminish in long-text genera-
tion, we iteratively utilize sentence-level first-token
signals to predict uncertainty and guide retrieval
decisions.

Specifically, our designed Semantic Entropy
Probe is a feed-forward network comprising a
single hidden layer and an output layer that pro-
vides binary classification outcomes, determining



whether additional knowledge retrieval is neces-
sary. Considering that the model’s first layer typi-
cally captures shallow lexical or syntactic informa-
tion lacking deep semantic representation (Chuang
et al., 2024b), we exclude the first layer and uti-
lize representations from all subsequent layers to
leverage mid-to-high-level semantic information
comprehensively.

The probe takes as input the direct concatenation
of hidden states from all layers excluding the first
layer for the first generated token at each step. If
the input text length is n, this token is at index n.
Assuming the model has L layers, the concatena-
tion is represented as:

T = concatlL:2 Hi[n,:] € R(L_l)dmodel’ (1)

where Hj[n,:] € Rém is the hidden state at po-
sition n of the [-th layer, and dyoqe) is the hidden
dimension. Subsequently, 7" is input into the probe
to compute logits, which are transformed via a Sig-
moid function and used to make a binary decision
on whether retrieval is necessary.

Probe Training Data Construction We itera-
tively generate and construct training data at the
sentence level: first generating sentences at low
temperature (low randomness) and recording their
first token hidden states, then performing multi-
ple samplings (N = 10) at high temperature (high
randomness) to estimate semantic entropy for the
same input. Low-temperature decoding (e.g., tem-
perature 0.1) is nearly greedy, so hidden states are
scarcely affected by sampling noise; they chiefly re-
flect the genuine context and retrieval state, giving
the probe a clean, generalizable signal. Following
discrete semantic entropy computation methods by
Kuhn et al. (Kuhn et al., 2023), we cluster the sam-
pled sentences semantically and compute entropy:

K

Hsp(z) == p(Cilz) log p(Cilz). ()
k=1

Threshold Determination — Minimizing Seman-
tic Constraints: SEPs traditionally employ only
Mean Squared Error (MSE) to determine binariza-
tion thresholds, neglecting the smoothness of the se-
mantic space. To enhance semantic consistency and
robustness, we propose Semantic-Constraint En-
tropy Splitting (SCES), which augments the MSE
objective with variance constraints on hidden layer

features. For a candidate threshold ¢, we define:

L) =Y (Hi—pow)>+ Y (Hi — ftnign)*
H;<t H;>t
MSE(t)
+ A (ol (t) + opign(t)) 3)

where 110w and pipign denote the mean entropy val-
ues of samples below and above the threshold ¢,
respectively, and o (t), Jﬁigh(t) represent the cor-
responding variances in hidden-layer feature space.
The final threshold 7 is selected by minimizing this
objective: 7 = arg miny L£(t).

SCES maintains the simplicity of MSE while in-
troducing semantic consistency constraints to yield
more robust binary labels.A detailed description of
semantic entropy estimation and SCES threshold
binarization is provided in Appendix A.

After data collection, semantic entropy values
are uniformly calculated, and SCES determines
a global threshold 7. Samples are binarized ac-
cordingly: if Hggr > 7, the case requires retrieval
(y = 0), otherwise it does not (y = 1).

During data collection, if subsequent semantic
entropy computation labels a case as requiring re-
trieval, external knowledge retrieval is triggered
during sampling, and the sentence is regenerated;
otherwise, the low-temperature-generated sentence
is retained directly. This process repeats until com-
pletion. We construct two versions: full-document
retrieval and support paragraph retrieval, to ana-
lyze the independent effects of uncertainty estima-
tion.

The final training set consists of 4,000 samples
derived from the multi-hop question-answering
datasets: 2WikiMultiHopQA (Ho et al., 2020), Hot-
potQA (Yang et al., 2018), IIRC (Ferguson et al.,
2020), and StrategyQA (Geva et al., 2021), main-
taining approximately balanced positive and neg-
ative labels. Examples of the constructed training
data are provided in Appendix ??. The probe is
trained using binary cross-entropy loss with logits:

£=—% 2L lwilogo(p) + (1L —y)log (1 - o(p)]  (4)
See Appendix B for training hyperparameters.

3.2 Uncertainty-aware Query Formulation

To construct retrieval queries reflecting model un-
certainty, we first extract the initial generated sen-
tence and compute word-level entropy by averaging



token-level entropies. A dynamic threshold is then
set as:

threshold = Hentropy T & * Oentropy )

where flentropy and Tengropy are the mean and stan-
dard deviation of the word entropies, and o controls
sensitivity. We identify the first high-entropy word
exceeding this threshold and use words preceding
it as reliable context.

We selectively preserve content words (e.g.,
nouns, verbs, adjectives, numbers) from this uncer-
tain region. To ensure query robustness, we evalu-
ate overlap—both lexical and semantic—between
these words and entities in the previous sentence
or the original query. If overlap exists, we adopt
the prior sentence as the query base; otherwise, we
revert to the original user query. The final retrieval
query concatenates the chosen base with these fil-
tered content words, ensuring semantic relevance
and contextual coherence.

3.3 Post-Retrieval Generation Continuation

At sentence-level timestep ¢, the model M
first produces a response sentence s;. The
Semantic-Entropy Prober then inspects the
hidden-state bundle from this generation step and
returns a binary judgement (certain vs. uncertain).
If the judgement is certain, s; is emitted as the
output for step ¢; otherwise, an external retrieval
is triggered. A query qry(q, s’, s¢) is formulated
with our proposed uncertainty-aware query formu-
lation strategy and issued to the corpus D, yielding
contextual passages C;. Subsequently, we build
a new prompt by placing a few in-context exam-
ples at the top and concatenating C}, the original
question ¢, and the previously confirmed sentence
sequence s.,. Feeding this Prompt, back into
the generator yields a refined sentence s}, which
replaces the potentially hallucinated s;.

Uncertainty-aware Reranking After re-
trieval and sentence regeneration, we continuously
monitor the semantic uncertainty scores pypc. If the
regenerated sentence exhibits higher uncertainty
than the original sentence by a small margin d, i.e.,

pretrieved > poriginal + 5’ (6)

unc unc

an adaptive expand—rerank—regenerate procedure
is triggered. This small margin ¢ ensures robust-
ness by preventing unnecessary fluctuations near
the decision boundary.

1. Dynamic Recall Expansion Temporarily in-
crease the current top-k by five (capped at ten)
and issue a new retrieval.

2. Semantic Reranking Re-order the newly
retrieved passages with the open-source model
gte-reranker-modernbert-base  (Zhang
et al., 2024), obtaining a relevance-sorted list.

3. Prompt Reconstruction Replace the original
Cy in the prompt with the reranked passages
and rebuild the prompt together with the exam-
ples and answer prefix.

4. Regeneration Invoke the generator on the re-
constructed prompt to produce a revised sen-
tence s;.

When a non-decreasing rise is detected, this strat-
egy enlarges recall and applies the reranker to miti-
gate quality drop caused by retrieval noise or miss-
ing information.

Iterative Refinement Loop After appending
sy to the answer, the system advances to timestep
t+1 and repeats: (1) generate a new sentence and
probe its uncertainty; (2) if retrieval is required,
fetch passages and regenerate the sentence, fol-
lowed—if necessary—by the uncertainty-aware
reranking cycle; (3) if retrieval is not required, ap-
pend the sentence directly. Each step thus pro-
duces a final sentence s;, which is appended to
the prompt for subsequent reasoning. The loop
continues until the answer is complete, coupling
retrieval decisions, uncertainty detection, and dy-
namic reranking within a single refinement frame-
work and thereby reducing the impact of informa-
tion gaps and retrieval noise on generation quality.

4 Experiment

4.1 Experimental Setup

Datasets We conduct experiments on five pub-
licly available open-source multi-hop QA datasets.
Among them, datasets used in the training of our
uncertainty prober—2WikiMultiHopQA (Ho et al.,
2020), HotpotQA (Yang et al., 2018), IIRC (Fer-
guson et al., 2020), and StrategyQA (Geva et al.,
2021)—are considered in-domain datasets, while
MuSiQue (Trivedi et al., 2022), which is not used
during training, serves as our out-of-domain bench-
mark to evaluate generalization under domain shift.



Evaluation Metrics we sample 500 examples
from the test split of each dataset for evaluation.
To guide the model’s reasoning process and en-
courage more interpretable outputs, we incorpo-
rate Chain-of-Thought prompting (Wei et al., 2022)
and few-shot demonstrations (Brown et al., 2020)
into the input prompt. Full prompt templates are
provided in Appendix A. For StrategyQA, we re-
port the exact match (EM) score, as the target an-
swers are binary (“yes” or “no”). For the remain-
ing datasets—2WikiMultiHopQA, MuSiQue, Hot-
potQA, and IIRC—we evaluate using both answer-
level exact match (EM) and token-level F1, as the
answers are free-form textual spans.

For StrategyQA, we report exact match (EM)
scores since the answers are binary (“yes” or “no”).
For the remaining datasets—2WikiMultiHopQA,
MuSiQue, HotpotQA, and IIRC—we use both
answer-level EM and token-level F1 scores to as-
sess the accuracy and completeness of generated
answers.

Baselines We compare our method with
several representative baselines, including the
non-retrieval setting (wo-RAG), and three adap-
tive retrieval-augmented generation methods:
FLARE (Jiang et al., 2023b), DRAGIN (Su et al.,
2024), and SEAKR (Yao et al., 2024). FLARE
triggers retrieval whenever a token’s probability
falls below a predefined threshold, and constructs
the query by removing low-confidence tokens from
the last generated sentence. DRAGIN determines
retrieval timing based on token-level importance
and uncertainty, using attention signals over the
full context to formulate semantically rich queries.
SEAKR leverages internal hidden-state uncertainty
to decide when to retrieve, and integrates retrieved
knowledge through self-aware re-ranking and rea-
soning strategies.

Models We evaluate all methods using three
open-source instruction-tuned large language mod-
els: LLaMA-2-7b-Chat-hf (Touvron et al., 2023),
LLaMA-3.1-8B-Instruct (Dubey et al., 2024), and
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023a). All
experiments are conducted under a white-box set-
ting to allow extraction of hidden states for adaptive
retrieval.

Implementation Details We use English
Wikipedia (Karpukhin et al., 2020) as the exter-
nal knowledge source, segmented into passages of
100 tokens each.For each retrieval (using the same

top-k cutoff for every method on each dataset), we
return the top £ most relevant documents with the
BM25 algorithm (Robertson et al., 2009), which
ranks passages based on lexical matching with the
input query. We directly leverage the token-level
hidden states returned by Hugging Face Transform-
ers (setting output_hidden_states=True).
Further details are provided in Appendix E.

4.2 Overall Results

Table 1 summarizes the performance of SEARAG
and baseline methods across five open-domain
QA datasets under three different language mod-
els. Several key findings emerge from the re-
sults: (1) While many RAG-based methods im-
prove performance over the non-retrieval baseline,
this trend is not consistent across all settings. In
some cases—particularly on tasks like StrategyQA
where the model already performs well without
retrieval—certain static or poorly timed retrieval
methods (e.g., SeaKR) may underperform com-
pared to direct generation. This suggests that
when retrieval is unnecessary or misaligned with
the model’s information needs, it can introduce
noise that harms output quality. (2) SEARAG
achieves the best performance on a majority of
datasets and evaluation metrics across all three
models. Its advantage is particularly evident on
multi-hop reasoning datasets such as 2WikiMulti-
HopQA and HotpotQA, where precise timing and
relevance of retrieval play a critical role. Com-
pared to adaptive baselines like FLARE, DRA-
GIN, and SeaKR, SEARAG exhibits stronger con-
sistency and robustness, especially under larger
models such as LLaMA-3.1-8B. (3) Unlike meth-
ods such as FLARE, which rely on token-level
uncertainty and may suffer from noisy retrieval
triggers, SEARAG utilizes internal hidden states
to make more informed retrieval decisions, lead-
ing to fewer unnecessary retrievals and higher-
quality responses. The performance gain is par-
ticularly evident under more capable models (e.g.,
LLaMA-3.1-8B), where SEARAG achieves up to
+0.171 EM and +0.153 F1 improvements over the
best baseline on 2WikiMultiHopQA. (4) On out-
of-domain data (MuSiQue), SEARAG maintains
superior performance without access to domain-
specific training data, outperforming all baselines
in both EM and F1. This highlights its general-
ization capability beyond in-domain scenarios. (5)
Compared to SeaKR, which also leverages inter-
nal signals, SEARAG shows clear improvements,



Table 1: Overall results of SEARAG and baselines on five datasets. The best results are in bold, and the second-best

are underlined.

In-Domain Out-of-Domain
2WikiMultiHopQA HotpotQA StrategyQA IIRC MuSiQue
EM F1 EM F1 Accuracy EM F1 EM F1

Llama2-7b
w/o RAG 0.142 0.2181 0.189 0.2710 0.654 0.139 0.1733 | 0.068 0.1477
FLARE 0.226 0.3089 0.210 0.2874 0.608 0.162 0.1942 | 0.085 0.1593
DRAGIN 0.234 0.2884 0.235 0.3372 0.660 0.193 0.2429 | 0.105 0.1733
SeaKR 0.302 0.3601 0.279 0.3970 0.544 0.195 0.2351 | 0.042 0.1038
SEARAG (Ours) | 0.303 0.3933 0.248 0.3594 0.683 0.239 0.2879 | 0.113 0.1987

Llama3-8b
w/o RAG 0.257 0.3427 0.193 0.2949 0.757 0.160 0.1931 | 0.072 0.1675
FLARE 0.322 0.4126 0.260 0.3588 0.732 0.216 0.2595 | 0.080 0.1681
DRAGIN 0.277 0.3417 0.285 0.3802 0.760 0.196 0.2252 | 0.080 0.1737
SeaKR 0.302 0.3682 0.300 0.3985 0.640 0.200 0.2397 | 0.088 0.1642
SEARAG (Ours) | 0.493 0.5656 0.417 0.5163 0.767 0.317 0.3681 | 0.133 0.2696

Mistral-7b
w/o RAG 0.187 0.2884 0.193 0.2949 0.740 0.183 0.2231 | 0.070 0.1614
FLARE 0.193 0.3137 0.223  0.3225 0.723 0.143 0.1843 | 0.075 0.1590
DRAGIN 0.327 0.4397 0.263 0.4102 0.743 0.273 0.3381 | 0.115 0.2365
SeaKR 0.264 0.3452 0.140 0.2771 0.546 0.132 0.1835 | 0.056 0.1466
SEARAG (Ours) | 0.387 0.5018 0.357 0.4805 0.763 0.297 0.3459 | 0.120 0.2172

likely due to its semantic-entropy-based probing
and uncertainty-aware reranking mechanism that
better aligns retrieval timing and content relevance.
In summary, SEARAG demonstrates consistent
and superior performance across various models,
datasets, and reasoning types, particularly excelling
in multi-hop and open-domain settings, validating
the effectiveness of our semantic-entropy-driven
adaptive retrieval design.

4.3 Timing of Retrieval

In this analysis, we investigate the impact of re-
trieval timing by fixing the query formulation
strategy—all methods use the last complete sen-
tence generated by the LLLM as the query—and
varying only the timing mechanism across dif-
ferent adaptive RAG frameworks. We compare
SEARAG against two representative baselines:
FLARE, which triggers retrieval whenever any
generated token’s probability falls below a prede-
fined threshold, and DRAGIN, which determines
retrieval timing based on the importance and uncer-
tainty of generated tokens.

As shown in Table 2, SEARAG consistently out-
performs both FLARE and DRAGIN on HotpotQA
and IIRC across two model backbones (LLaMA3-
8B and Mistral-7B). These results demonstrate the

Table 2: Comparison of adaptive RAG methods under
different retrieval timing strategies. All methods use the
last complete sentence from the LLM as the query. Re-
sults on HotpotQA and IIRC with LLaMA3-8B (L8B)
and Mistral-7B (M7B). Best results are in bold.

HotpotQA IIRC
EM F1 EM F1

0.233  0.3215 0.200 0.2407
0.276 0.3759 0.183 0.2134
0.395 0.5028 0.298 0.3469

0.202 0.3023 0.122 0.1678
0.243  0.3945 0.262 0.3256
0.343 0.4623 0.278 0.3347

Models Methods

FLARE
DRAGIN
SEARAG

FLARE
DRAGIN
SEARAG

L8B

M7B

effectiveness of our semantic entropy—driven re-
trieval timing strategy. By leveraging internal hid-
den state representations to assess sentence-level
uncertainty, SEARAG is able to more reliably de-
tect the model’s need for external knowledge and
initiate retrieval at appropriate moments. This leads
to substantial performance gains in both EM and
F1 across datasets, highlighting the benefit of using
internal confidence signals for adaptive control of
the retrieval process.



Table 3: Ablation study of SEARAG on three multi-hop
QA datasets: 2Wiki(2WikiMultiHopQA), IIRC

Models 2Wiki IIRC

EM F1 EM F1
SEARAG 0493 0.5656 0.317 0.3681
Ablating Uncertainty-aware Query Formulation
Previous Sentence Only 0.322 03981 0.206 0.2402

Uncertainty Sentence Only  0.424  0.5089 0.298  0.3469
Full History Query 0.368 0.4562 0.291 0.3432
Ablating Uncertainty-aware Reranking

— U.A. Reranking 0412 05025 0.290 0.3265

4.4 Ablation Study

To assess the contribution of each component in
SEARAG, we conduct ablation studies on two
multi-hop QA datasets: 2WikiMultiHopQA and
IIRC. All experiments are performed using the
LLaMA3.1-8B-Instruct model. The results are pre-
sented in Table 3.

Ablating Uncertainty-aware Query Formula-
tion. We evaluate the impact of our proposed
uncertainty-aware query formulation by replacing
it with three alternative strategies: (1) Previous
Sentence Only, which uses only the last complete
sentence from the previously generated output as
the query; (2) Uncertainty Sentence Only, which
directly uses the uncertain sentence that triggered
retrieval; and (3) Full History Query, which con-
catenates the question with all previously generated
content to form the query. As shown in Table 3, all
alternatives result in performance drops compared
to our method, demonstrating the effectiveness of
uncertainty-guided query construction that not only
selectively retains relevant entities from the uncer-
tain sentence but also incorporates context from
previously generated content, enabling both preci-
sion and continuity in retrieval.

Ablating Uncertainty-aware Reranking. We
further assess the impact of our uncertainty-aware
reranking strategy by disabling it and directly us-
ing the top-k retrieved documents based on the ini-
tial retrieval scores, without applying uncertainty-
based reranking or top-(k+5) expansion. The re-
sults in Table 3 show a clear performance drop,
indicating that reranking plays a key role in sup-
pressing noisy evidence and refining the retrieved
context. Compared to query formulation variants,
the removal of reranking causes a comparable or
even greater decrease in performance, underscoring
its importance in adaptive knowledge integration.

Table 4: Performance comparison of prober training
under different supervision signals (Accuracy (Acc) vs.
Binary Semantic Entropy (BSE)) and data construction
strategies (Single-turn vs. Multi-turn), evaluated on
LLaMA-2-7B-Chat across two QA datasets.

2Wiki NRC
Strategy
EM F1 EM Fl1
Single (Acc) 0.243 0.3478 0.180 0.2262
Single (BSE) 0.273 0.3686 0.210 0.2565
Multi (Acc)  0.273  0.3556  0.207 0.2635
Multi (BSE)  0.303 0.3933 0.239 0.2879

4.5 Data Construction Strategy

To assess the impact of data construction and super-
vision signals on prober performance, we conduct
ablation experiments comparing single-turn and
multi-turn training strategies under two types of
supervision: answer accuracy (Acc) and binary
semantic entropy (BSE). All experiments are per-
formed using LLaMA-2-7B-Chat on 2Wiki and
IIRC, as shown in Table 4.

In the single-turn setting, each training instance
is based on an isolated sentence-level generation.
In contrast, the multi-turn strategy incorporates
generation history, better reflecting the iterative
reasoning in multi-hop QA.

We observe two trends: (1) multi-turn training
consistently improves performance over single-turn
(e.g., EM improves from 0.273 to 0.303 on 2Wiki),
and (2) BSE supervision yields better results than
Acc, especially in F1 (e.g., 0.3933 vs. 0.3556 on
2Wiki). These results support our design choice of
using multi-turn construction with BSE labels as
default.

5 Conclusion

In this work, we present SEARAG, an adaptive
RAG framework that employs a semantic entropy
prober to estimate uncertainty from intermediate
hidden states and guide retrieval decisions. We fur-
ther introduce an uncertainty-aware query formula-
tion and reranking strategy to enhance retrieval
quality. Experiments on five open-domain QA
datasets demonstrate that SEARAG consistently
outperforms or matches existing adaptive RAG
methods across both in-domain and out-of-domain
settings.



6 Limitations

While SEARAG demonstrates strong performance
and generalization, it has several limitations. Our
framework relies on access to intermediate hidden
states via the output_hidden_states setting in
HuggingFace-style Transformer implementations,
which restricts its applicability to open-source mod-
els and makes it incompatible with API-based sys-
tems. Additionally, to focus on demonstrating the
method’s effectiveness, we adopt fixed thresholds
in several components without extensive tuning,
which may limit performance in some settings. The
prober is trained only on the hidden states of the
first generated token (excluding the first layer), and
we do not explore variations in token position or
layer depth. Lastly, our experiments are conducted
on relatively small models, and the effectiveness
of SEARAG on larger-scale LLMs remains to be
verified. In future work, we plan to overcome these
limitations through methodological improvements
and expanded evaluations.

7 Ethics Statement

We have taken active steps to ensure our research
complies with ethical standards in responsible Al
development. All datasets used in our experi-
ments—such as 2WikiMultiHopQA, HotpotQA,
IIRC, StrategyQA, and MuSiQue—are publicly
available and curated for research purposes. We
avoid the use of any data that may involve per-
sonal, sensitive, or manually crowdsourced anno-
tations beyond the original dataset construction.
Our experiments rely solely on inference from
open-source large language models (e.g., LLaMA-
3.1-8B, LLaMA-2-7B-Chat, Mistral-7B-Instruct).
These models are released under research-friendly
licenses, and we do not perform any additional
fine-tuning or gradient-based training. As such, our
methodology does not introduce additional bias,
memorization risk, or ethical concerns beyond what
is already present in the base models. To encour-
age transparency and reproducibility, we release
our code and evaluation protocols to the commu-
nity. This allows others to validate, improve, and
extend our work in a responsible manner.
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A Semantic Entropy Estimation and
Threshold Binarization

Semantic Entropy Estimation. For a given con-
text z, an auto-regressive LLM defines the joint
probability of a sequence s = (t1,...,t,) as

n

p(s | 2) = [ plti | tess ),

i=1

(7

11

and the probability mass of a semantic cluster CY
is the sum of the probabilities of all sequences that
fall into that cluster,

p(Cr | 2) = pls|x). ®)
s€Clk
The semantic entropy of x is then
K
Hsp(z) = — ZP(Ck- | ) logp(Ck | ). (9)
k=1
Practical estimation. Direct evaluation of

Egs. (7)—(9) is infeasible: the number of possi-
ble token sequences grows exponentially with
sequence length. Following the Monte-Carlo
protocol of Kuhn et al. (2023), we therefore
draw N 10 high-temperature generations
S = {S(j)}é\le and cluster them semantically:
two samples are assigned to the same cluster if
they mutually entail each other according to an
off-the-shelf NLI model. This greedy procedure
yields at most K < N clusters {C }X_|. Let ny,
denote the number of samples in Cj. The cluster
probability is approximated by

ng

PO @) =2, (10

and the semantic entropy estimate becomes

K
Hsp(x) = = > p(Cx | z) log p(Cx | ). (1)
k=1

This discrete, sampling-based estimator is model-
agnostic and supplies a reliable measure of se-
mantic uncertainty for the subsequent threshold-
binarization step.

Global Threshold via Semantic-Constraint En-
tropy Splitting (SCES). To convert the continu-
ous entropy scores into binary labels required by
the prober, we determine a global threshold 7 on
the training set. Let {H,} be the set of entropy
scores and { Z; } the corresponding hidden-state fea-
tures of the first output token (concatenated across
layers). Previous work (SEPs) minimizes the mean-
squared error (MSE) of within-group entropy to se-
lect 7, but ignores the topology of the feature space.
We therefore introduce Semantic-Constraint En-
tropy Splitting (SCES), which augments the MSE
objective with a variance term that penalizes fea-
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ture dispersion on both sides of 7:

L(t) = Z (Hi — pow)” + Z (H; — pnigh)’
Hi<t H;>t
MSE(t)

+ MOl () + Oiign (1)) (12)

where 110w and pipign are the mean entropies below
and above t, and o (t) = ﬁ Yol Zi —
ZloWH% denotes the feature variance (analogously
for aﬁigh). The hyper-parameter A is kept small
to avoid over-regularisation. A fine-grained grid
search over ¢t minimises (12), yielding 7
arg min; £(t). Each sample is then labelled y;
1[H; < 7], and the same 7 is applied at inference
to decide whether the current sentence warrants
external retrieval.

SCES retains the simplicity of the original MSE
split while enforcing semantic smoothness in the
hidden-state space, resulting in more stable binary
decisions and improved prober performance.

B Semantic Entropy Prober Training
Configuration

Table 5: Prober Training Configuration

Hyperparameter Value
Learning Rate le-3

Batch Size 64

Max Epochs 100
Dropout Rate 0.3
Activation Function ReLU
Optimizer AdamW
Learning Rate Scheduler =~ ReduceLROnPlateau
Patience 10

Weight Decay le-5
Criterion (Loss Function) BCEWithLogitsLoss
Device A100 x 2
Early Stopping Enabled

This section outlines the key hyperparameters
used for training the prober model (see Table 5 for
details). We employed early stopping to prevent
overfitting, using validation loss as the primary
criterion. If the validation loss did not improve for
a specified number of epochs (patience), training
was halted, and the best model state was retained.

Our focus was primarily on methodological in-
novation, and we did not conduct extensive hyper-
parameter tuning. The model’s parameters were set
to reasonable defaults.
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Algorithm 1 Iterative Refinement with
Uncertainty-aware Retrieval
Input: question g; corpus D; LLM M; retriever
R; prober P; thresholds 7, §; M.generate(-) G
Qutput: final answer A

1: prompt < q; A <« ()

2: while not done do

3 (s,h) < G(M, prompt)
4: Uorig < P(h)
5: if Uorig > T then
6: C + RETRIEVE(R, qry(q, A, s))
7: (s',h') + G(M, [prompt; C])
8: Uger < P(R)
9: if Urer > Uorig + 0 then
10: C < EXPAND(C, +5)
11: C < RERANK(C)
12: (', 1) + G(M, [prompt; C])
13: end if
14: s* s
15: else
16: §*¥ < s
17: end if
18: A+ Als
19: prompt < [prompt; s*]
20: end while
21: return A
C SEARAG: Sentence-level Iterative

Generation with Semantic
Entropy-guided Retrieval

This algorithm 1 presents the core procedure of
SEARAG, our proposed sentence-level adaptive
generation framework. At each decoding step, the
language model generates a sentence and computes
its semantic entropy via internal hidden states. If
the uncertainty exceeds a learned threshold, the
system triggers retrieval to regenerate the sentence
using relevant external knowledge. When retrieval
fails to reduce uncertainty, SEARAG performs a
one-time expansion and reranking of the retrieved
results. This process continues iteratively until the
full answer is produced, ensuring each sentence is
generated with minimal hallucination and maximal
grounding.

D Examples of Training Data for the
Semantic Entropy Prober

Tables 6, 7, 8 illustrates three representative cases
from our training data under different retrieval con-
ditions: no retrieval, full-document retrieval, and



Table 6: Example: No Retrieval

Question Question: In what city and country was the Jagdgeschwader 77 based?
Generated
/
Answer
1. Jagdgeschwader 77 was a German World War II fighter wing.
2. The Jagdgeschwader 77 was based in Neuburg.
3. The Jagdgeschwader 77 was based in Merseburg, Germany.
4. Jagdgeschwader 77 (77th Air Fighter Wing) was based in Merseburg, in the country
High- of Germany. . .
temperature 5. The Jagdgeschwader 77 was based in Berhg, Germany. '
Samples 6. The Jagdgeschwader 77 (JG 77) was based in Graz, Austria.
7. Jagdgeschwader 77 was a Luftwaffe fighter wing based in the city of Lille in the
country of France.
8. Jagdgeschwader 77 was based in Berlin, Germany.
9. Jagdgeschwader 77 (77th Fighter Wing) was based in the city of Doberitz, Germany.
10. Jagdgeschwader 77 was a Luftwaffe fighter wing of World War II.
Semantic
Entropy 1.89

supporting-paragraph retrieval. Each example in-
cludes the model-generated answer, a set of high-
temperature generations, and the corresponding
semantic entropy value computed using our NLI-
based clustering and Eq. 11.

These entropy scores are subsequently con-
verted into binary supervision labels using our
proposed Semantic-Constraint Entropy Splitting
(SCES) method (see Section A). Specifically, a
global threshold 7 is determined by jointly mini-
mizing intra-cluster entropy variance and hidden-
state dispersion. Samples with entropy below 7 are
labelled as confident (i.e., no retrieval required),
while those exceeding the threshold are treated as
uncertain (i.e., retrieval beneficial). These binary
labels serve as training targets for the semantic
entropy prober.

E More Details about Experiment Setup

Datasets We conduct experiments on five
open-domain, knowledge-intensive QA datasets
to evaluate our model’s reasoning ability across
diverse dimensions, including multi-hop reason-
ing, reading comprehension under incomplete con-
texts, and strategic commonsense reasoning. The
datasets include 2WikiMultiHopQA (Ho et al.,
2020), HotpotQA (Yang et al., 2018), IIRC (Fergu-
son et al., 2020), StrategyQA (Geva et al., 2021),
and MuSiQue (Trivedi et al., 2022).
2WikiMultiHopQA is a multi-hop question an-
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swering benchmark constructed over Wikipedia
articles. It contains roughly 20,000 questions, each
designed to require reasoning over two support-
ing passages from different articles. This dataset
emphasizes the model’s ability to synthesize in-
formation across multiple sources, trace entity re-
lationships, and perform multi-step reasoning to
select the correct answer from a candidate set.

HotpotQA is another large-scale multi-hop QA
dataset containing 113,000 questions. Unlike
2WikiMultiHopQA, HotpotQA not only requires
reasoning across documents but also includes dis-
tractor paragraphs, introducing additional noise and
making retrieval more challenging. Questions of-
ten have concise factual answers, such as names,
dates, or short descriptions, and demand evidence
aggregation from multiple documents for correct
answering.

MuSiQue (Multi-hop Structured Questions) is a
manually curated multi-hop QA dataset that com-
bines high-quality questions with structured multi-
step reasoning annotations. It is designed to reduce
shortcut artifacts common in other QA datasets
and to ensure that answering requires following an
explicit multi-fact reasoning chain. MuSiQue is
known for its compositional complexity and lin-
guistic variation, providing a stringent testbed for
evaluating step-wise retrieval and reasoning capa-
bilities.

IIRC (Incomplete Information Reading Com-



Table 7: Example: Full Document Retrieval

Question Are The Great Commandment and The Night Is My Kingdom from the same country?
Retrieved
Paragraphs | [1] Mir Kino Theatre in Moscow. The film was screened throughout ...
from the [2] Great Is My Country Vast is my Native Land (1958), also known ...
Full [3] Night", set a record in late 2013 as the first male country music...
Document
Generated . . .
The Great Commandment is from the country of United States of America.
Answer
1. The Night Is My Kingdom is from the country of Russia.
2. The Night Is My Kingdom is from the country of United Kingdom.
3. The Night Is My Kingdom is from the country of Australia.
High- 4. The Ni.ght Is My Ki'ngdorn i.s from the country of Russi.a.
T 5. The N%ght Is My K¥ngdom is from the country of Russ%a.
St 6. The N.1ght Is My K'mgdom is from the country of Russ.m.
7. The Night Is My Kingdom is from the country of Russia.
8. The Night Is My Kingdom is from the country of Republic of Macedonia.
9. The Night Is My Kingdom is from the country of Russia.
10. The Night Is My Kingdom is from the country of Russia.
Semantic
Entropy 0.94

prehension) consists of 13,441 questions grounded
in Wikipedia paragraphs. Each question is con-
structed to deliberately lack sufficient context in its
immediate paragraph, thereby requiring retrieval
of additional information from linked documents.
The minimal lexical overlap between questions
and their required evidence simulates real-world
information-seeking scenarios. Moreover, the
dataset contains unanswerable and multi-hop ques-
tions, posing a significant challenge to retrieval-
based methods.

StrategyQA is a compact yet highly challenging
dataset of 2,780 strategic yes/no questions. Each
sample includes a high-level question, a decompo-
sition of implicit reasoning steps, and supporting
evidence. The questions require models to combine
world knowledge with common sense and perform
implicit, often abstract reasoning. Adversarial fil-
tering and annotation protocols ensure the dataset
avoids superficial cues, making it an ideal bench-
mark for evaluating reasoning generalization.

Taken together, these datasets cover a wide spec-
trum of retrieval and reasoning difficulty. While
HotpotQA, 2WikiMultiHopQA, and MuSiQue fo-
cus on compositional multi-hop reasoning, IIRC
emphasizes the ability to bridge incomplete infor-
mation. StrategyQA evaluates models’ competence
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in abstract commonsense reasoning, where surface-
level lexical overlap is minimal and strategic think-
ing is crucial.

Prompt Settings The prompt template used in
all experiments is structured as follows:

Examples:

Question: Q1

Answer: Reasoning steps... So the answer is Al.
Question: Q2

Answer: Reasoning steps... So the answer is A2.

Context:
[1] Context 1
[2] Context 2

Answer in the same format as before.
Question: < input question >
Answer:

We adopt few-shot prompting with fixed num-
bers of exemplars for each dataset, considering
both reasoning complexity. Specifically, we use 6
exemplars for 2WikiMultiHopQA, and 8 exemplars
for HotpotQA, IIRC, StrategyQA, and MuSiQue.
Across all datasets, we set the retrieval top-k to 3
to balance knowledge coverage and prompt com-
pactness.



Table 8: Example: Supporting Paragraph Retrieval

Question What is the date of birth of the performer of song Titanic (Falco Song)?
[1] Titanic (Falco song): "Titanic" is a song by Falco from his 1992 studio album
Supporting | "Nachtflug".
Paragraphs | [2] Falco (musician): Johann Holzel (19 February 1957 — 6 February 1998), better
known by his stage name Falco, was an Austrian singer and songwriter.
Generated The date of birth of the performer of the song "Titanic" is 19 February 1957.
Answer
1. The date of birth of Falco is 19 February 1957.
2. Falco was born on 19 February 1957.
3. Falco was born on 19 February 1957.
High- 4. Falco was born on 19 February 1957.
T 5. Falco was born on 19 February 1957.
St e 6. Falco was born on 19 February 1957.
7. Falco’s date of birth is 19 February 1957.
8. The date of birth of Falco is 19 February 1957.
9. Falco was born on 19 February 1957.
10. Falco was born on 19 February 1957.
Semantic
Entropy
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