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ABSTRACT

Aggregating data from multiple sources can be formalized as an Optimal Transport
(OT) barycenter problem, which seeks to compute the average of probability
distributions with respect to OT discrepancies. However, in real-world scenarios,
the presence of outliers and noise in the data measures can significantly hinder the
performance of traditional statistical methods for estimating OT barycenters. To
address this issue, we propose a novel, scalable approach for estimating the robust
continuous barycenter, leveraging the dual formulation of the (semi-)unbalanced
OT problem. To the best of our knowledge, this paper is the first attempt to develop
an algorithm for robust barycenters under the continuous distribution setup. Our
method is framed as a min-max optimization problem and is adaptable to general
cost function. We rigorously establish the theoretical underpinnings of the proposed
method and demonstrate its robustness to outliers and class imbalance through a
number of illustrative experiments.

1 INTRODUCTION

The world is full of data, and accurate analysis of this data allows for solving a number of problems in
the world related to science, medicine, engineering, etc. A common challenge in data analysis arises
from two factors: (i) a huge quantity of data, and (ii) the data originating from multiple sources, such
as different scientific experiments, hospitals, or engineering trials. One promising way to address
these difficulties is to perform data aggregation. This means reducing the particular source-specific
characteristics and leaving only source-agnostic information for solving a practical case on hand.

Recently, a fruitful branch of research (Li et al., 2020; Fan et al., 2021; Korotin et al., 2022; Kolesov
et al., 2024a;b) has emerged that focuses on addressing the challenge of data aggregation through
the framework of the Optimal Transport (OT) barycenter problem. Given a number of reference
distributions representing data from different sources, the problem is to discover a geometrically
meaningful average of these distributions by minimizing the average OT costs from the reference
distributions to the desired one.

Originally introduced for a rather specific setup (quadratic Euclidean OT cost functions) (Agueh
& Carlier, 2011), the subfield of OT barycenter has evolved tremendously over the last decade. At
present, it is the subject of deep learning and can be adapted to high-dimensional data setups, e.g.,
images. However, current barycenter research tends to ignore a typical and important property of
data appearing in real-world applications: the presence of undesirable noise and outliers (Le et al.,
2021). This motivates the development of a robust OT barycenter framework which (i) inherits all the
advances of current barycenter researches, e.g., permits deep learning and could be adapted to high
dims; (ii) wisely deals with aforementioned inconveniences of real-world data. To satisfy both aims,
we propose to opt for recent continuous unbalanced OT techniques (Gazdieva et al., 2023b; Choi
et al., 2024b;a) which are naturally aligned with data imperfection. Our contributions are as follows:

1. We propose a novel semi-unbalanced OT (SUOT) barycenter framework that is robust to outliers
and class imbalance in the reference distributions (§4).

2. We develop a solid theoretical foundation of our proposed approach (§4.1).

3. We conduct a number of experiments on toy and image data setups to demonstrate the performance
of our method and showcase its robustness to outliers and imbalance of classes. (§5)
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To the best of our knowledge, our work is the first attempt to construct robust OT barycenters under
continuous computational setup (§2.3). Existing works with similar problematic consider exclusively
discrete setting (Le et al., 2021; Wang et al., 2024).

Notations. Throughout the paper, we denote K = {1, ...,K} for K ∈ N and use s[1:K] to denote
the tuplet of objects (s1, ..., sK). We define X ⊂ RD′

, Xk ⊂ RDk and Y ⊂ RD as the compact
subsets of Euclidian spaces. We use C(Y) to denote the set of continuous functions on Y . The
sets of absolutely continuous Borel probability (or non-negative) measures on X are denoted as
P(X ) (orM+(X )). For two measures µ1, µ2 ∈ M+(X ), we write µ1 ≪ µ2 to denote that the
measure µ1 is absolutely continuous w.r.t. the measure µ2. The joint probability distributions
on X × Y with the marginals P and Q are denoted as Π(P,Q) and usually called the transport
plans. All joint positive measures on X × Y are referred to asM+(X × Y). For a given measure
γ(x, y) ∈ P(X ×Y) (orM+(X ×Y)), we use γx(x), γy(y) to denote its marginals. All probability
measures γ(x, y) ∈ P(X × Y) s.t. γy = Q for a given probability measure Q are denoted as Π(Q).
We use γ(y|x) to denote the conditional probability measure. For a measurable map T , T# denotes
the corresponding push-forward operator. The Fenchel conjugate of a function ψ(u) is denoted as
ψ(t)

def
= supu∈R{ut− ψ(u)}.

2 BACKGROUND

In this section, we give an overview of the theoretical concepts related to our paper. In M2.1, we state
the SUOT problems and its semi-dual formulation. In M2.2, we formulate the OT/UOT barycenter
problem. Then, in M2.3, we describe our computational setup. For details on OT, we refer to
(Santambrogio, 2015; Villani et al., 2009; Peyré et al., 2019), unbalanced OT - (Chizat, 2017; Liero
et al., 2018; Séjourné et al., 2022), OT barycenters - (Agueh & Carlier, 2011; Chizat, 2023).

To begin with, we introduce the concept of ψ-divergences needed for our further derivations.

ψ-divergences for positive measures. Let µ1, µ2 ∈M+(X ′) be two positive measures. Then, for a
function ψ : R+ → R+ ∪ {∞}, the ψ-divergence between µ1, µ2 is given by:

Dψ (µ1∥µ2)
def
=

∫
X
ψ

(
µ1(x)

µ2(x)

)
dµ2(x) if µ1 ≪ µ2 and +∞ otherwise.

Here the generator function ψ(t) is assumed to be convex, non-negative, lower semi-continuous and
attain zero uniquely when t = 1. Note that ψ(t) is non-decreasing since function ψ(t) is non-negative
(Choi et al., 2024a). Under these assumptions, Dψ is a valid measure of dissimilarity between two
positive measures. Well known examples of such ψ-divergences include Kullback-Leibler divergence
DKL (Chizat, 2017; Séjourné et al., 2022) and χ2-divergence Dχ2 . For the extended discussion on
admissible divergences, we refer to (Gazdieva et al., 2023a, Appendix C).

2.1 OPTIMAL TRANSPORT

Classic OT problem. Consider two probability measures P∈P(X ), Q∈P(Y) and the cost function
c(x, y) ∈ C(X × Y). Then the OT problem (Kantorovich, 1942) between P and Q is given by

OTc(P,Q)
def
= inf

π∈Π(P,Q)

∫
X×Y

c(x, y)π(x, y)dxdy. (1)

Under the mild assumptions on the distributions P, Q and cost function c, the minimizer π∗ of (1)
always exists but is not guaranteed to be unique, see (Villani et al., 2009). In the special case of the
quadratic cost c(x, y) = ∥x−y∥2

2 , problem (1) reduces to the well-known (squared) Wasserstein-2
distance (W2

2(P,Q)). Problem (1) admits a semi-dual reformulation:

OTc(P,Q) = sup
f∈C(Y)

[ ∫
X
f c(x)dP(x) +

∫
Y
f(y)dQ(y)

]
(2)

where f c(x) def
= infµ∈P(Y)

∫
Y
(
c(x, y) − f(y)

)
dµ(y) is the c-transform. Note that the standard

c-transform in the OT duality is usually defined as f c(x) = infy∈Y{c(x, y)− f(y)}. Here, for the
future needs, we substitute the classic c-transform by the weak c-transform (Backhoff-Veraguas

2
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et al., 2019, Theorem 1.3), (Gozlan et al., 2017). This transition is valid since the infimum in weak
transform is anyway attained at any µ ∈ P(Y) supported on the arg infy∈Y{c(x, y)− f(y)} set.

Unbalanced & semi-unbalanced OT problems. The standard formulation of the OT problem entails
various issues (Balaji et al., 2020; Séjourné et al., 2022), such as sensitivity to outliers, inability to
deal with class imbalance in the source and target measures and inapplicability to positive measures.
Still, we consider the mass transportation between probability measures and focus on the first two
issues. Fortunately, they can be overcome by relaxing the hard marginal constraints of the OT problem
which yields the Unbalanced OT (Chizat, 2017; Liero et al., 2018, UOT) problem. Formally, the
UOT problem between the probability measures P∈P(X ), Q∈P(Y) is

UOTc,ψ,ϕ(P,Q) = inf
γ∈M+(X×Y)

∫
X×Y

c(x, y)γ(x, y)dxdy + Dψ (γx∥P) + Dϕ (γy∥Q) (3)

where c(x, y) ∈ C(X × Y) is a continuous cost function and Dψ , Dϕ are ψ-divergences over X and
Y respectively. Note that the classic OT problem (1) is a particular instance of the UOT problem (3)
when theψ-divergences Dψ , Dϕ satisfy Dψ′(P′,Q′) = 0 if P′ = Q′, and +∞ otherwise. Equivalently,
it means that the generator functions ψ, ϕ are the convex indicators of {1} and their conjugates are
defined as ψ(t) = ϕ(t) = t. We can tune the degree of penalizing the marginal distributions mismatch
by introducing the unbalancedness parameter τ > 0 and considering Dψ′ = τDψ, Dϕ′ = τDϕ.
Informally, when τ → +∞, the corresponding UOT problem tends to classic OT (1).

In this paper, we focus on the semi-unbalanced OT (SUOT) problem, i.e., the case when only the first
marginal constraint in the OT problem (1) is softened:

SUOTc,ψ(P,Q) = inf
γ∈Π(Q)

∫
X×Y

c(x, y)γ(x, y)dxdy + Dψ (γx∥P) . (4)

Note that the minimizer γ∗ of (4) always exists thanks to the compactness of the space X × Y
(yielding the compactness of Π(Q)), continuity of the cost function c(x, y) and lower semi-continuity
of the function ψ (yielding the lower-semi-continuity of the optimized functional w.r.t. γ).

The semi-dual SUOT problem is given by

SUOTc,ψ(P,Q) = sup
f∈C(Y)

{
−
∫
X
ψ(−f c(x))dP(x)+

∫
Y
f(y)dQ(y)

}
. (5)

Note that when ψ(t) = t, we get dual problem (2) for balanced OT problem (1).

2.2 (SEMI-)UNBALANCED OPTIMAL TRANSPORT BARYCENTER

Consider probability measures Pk ∈ P(Xk) and continuous cost functions ck(x, y) : Xk × Y 7→ R,
k ∈ K. Given weights λk ≥ 0 s.t.

∑K
k=1 λk = 1, the classic OT barycenter problem consists in

finding a minimizer of the sum of OT problems with fixed first marginals P[1:K]:

inf
Q∈P(Y)

K∑
k=1

λkOTck(Pk,Q). (6)

To ensure the robustness of the barycenter estimation it is natural to consider the relaxation of the
marginals P[1:K], i.e., substitute the OT problems in (6) with the SUOT problems. Let ψ[1:K] be the
set of ψ-divergences. Then the SUOT barycenter problem is

L∗ def
= inf

Q∈P(Y)
Bu(Q)

def
= inf

Q∈P(Y)

K∑
k=1

λkSUOTck,ψk
(Pk,Q). (7)

Clearly, the SUOT barycenter problem (7) subsumes the conventional OT one (6). We also note that
in principle one may substitute OT with UOT problem (3) unbalanced from the both sides (Friesecke
et al., 2021; Chung & Phung, 2021; Bonafini et al., 2023). However, this is not practically meaningful.
Indeed, the ultimate goal is to get rid of the potential outliers and noises in the input data, not in the
barycenter. So there is no need for unbalancedness in the barycenter.

Thanks to (Liero et al., 2018, Corollary 2.9), the functionals Q 7→ SUOTck,ψk
(Pk,Q) (k ∈ K) are

convex and lower semi-continuous. Thus, the functional Q 7→ Bu(Q) is convex and lower semi-
continuous itself. We note that P(Y) is weakly compact. Thus, thanks to the Weierstrass theorem

3
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(Santambrogio, 2015, Box 1.1), Bu(Q) admits at least one minimizer meaning that the barycenter Q∗

exists. Still, we can not claim that it is unique since the functional Q 7→ Bu(Q) is not proved to be
strictly convex.

2.3 COMPUTATIONAL SETUP

In a real-world scenario, the distributions Pk are not available explicitly and can be assessed only via
empirical samples. Assume that we are given Nk empirical samples xk[1:Nk]

∼ Pk, k ∈ K. Our goal
is to find approximations γ̂k of the SUOT plans γ∗k between the measures Pk and unknown SUOT
barycenter Q∗ for the given cost functions and ψ-divergences ck, ψk, k ∈ K. After that, we can
use the learned plans to perform the conditional sampling, i.e., derive new points y ∼ γ̂k(·|xk) from
the (approximate) barycenter taking samples xk ∼ (γ̂k)x as inputs. Actually, sampling from the left
marginals of the learned plans is not an easy task since the marginal can not be easily assessed using
the learned plans or potentials. Fortunately, we can deal with this issue using the rejection sampling
procedure (Forsythe, 1972), see our M4.2 for the additional details.

It is important to note that the learned plans should admit the new input samples, i.e., not necessarily
present in the training datasets. This setup is typically called continuous (Li et al., 2020; Kolesov
et al., 2024a; Korotin et al., 2022) and significantly differs from the discrete one (Peyré et al., 2019;
Cuturi & Doucet, 2014). The latter is aimed at solving the barycenter problem between the empirical
measures which makes the application to new data samples challenging.

3 RELATED WORKS

The first subsection below is devoted to continuous OT solvers with a specific focus on unbalanced
setup. In turn, the second subsection covers the most relevant OT barycenter solvers.

Neural OT/UOT solvers. Neural network-based continuous OT is a popular and fruitful area of
recent generative modelling research. Some keynote solvers include: (Makkuva et al., 2020; Korotin
et al., 2021a; Amos, 2023) (ICNN-based, quadratic cost); (Seguy et al., 2018; Daniels et al., 2021;
Mokrov et al., 2024) (Entropic OT); (Vargas et al., 2021; De Bortoli et al., 2021; Gushchin et al.,
2023; Tong et al., 2023; Shi et al., 2024; Gushchin et al., 2024) (Schrödinger bridge); (Liu et al., 2023;
Tong et al., 2024; Kornilov et al., 2024; Klein et al., 2024) (Flow matching). Of special importance for
our developed method are max-min (adversarial) OT solvers based on (semi-) dual OT formulation
(Rout et al., 2022; Korotin et al., 2023b;a; Fan et al., 2023). Recently, the adversarial methodology
has been extended to unbalanced setup (Choi et al., 2024a; Gazdieva et al., 2023b; Choi et al., 2024b),
opening up a new intriguing research direction in the field of robust continuous OT.

OT Barycenter Methods. Below, we start with a brief overview of continuous OT barycenter solvers
and then proceed to the current state of robust (unbalanced) barycenter research. The continuous
OT barycenter methods could be categorized as follows: (Fan et al., 2021; Korotin et al., 2021b)
stick to ICNN (Amos et al., 2017) parameterization and work only with quadratic Euclidean costs
(ℓ22); (Korotin et al., 2022) also deals with ℓ22 but utilizes fixed point algorithm (Álvarez-Esteban
et al., 2016); (Noble et al., 2023) builds upon Schrödinger bridge; (Li et al., 2020; Chi et al., 2023)
take the advantage of congruence condition; (Kolesov et al., 2024a;b) empower the congruence
condition with Neural OT (Korotin et al., 2023b) and Energy-guided Neural OT (Mokrov et al., 2024)
correspondingly. The latter works are the current SOTA in the continuous OT barycenter domain.

The area of robust barycenter computation is much less explored and, to the best of our knowledge,
limited exclusively by discrete (§2.3) solvers (Chizat et al., 2018; Le et al., 2021; Beier et al., 2023;
Séjourné et al., 2023; Wang et al., 2024; Manupriya et al., 2024; Yang & Ding, 2024) based on
different principles (MMD regularization/Sinkhorn algorithm/Sliced OT etc.). In contrast, we take
a significant step forward and propose the first continuous robust barycenter approach with proper
theoretical support and practical validation (§4).

4 PROPOSED METHOD

In M4.1, we derive and investigate our novel optimization objective for learning SUOT barycenters.
In M4.2, we propose the algorithm to solve this problem. The proofs for all theoretical results are
given in Appendix A.
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4.1 DERIVING THE OPTIMIZATION OBJECTIVE

To develop a procedure for estimating the barycenter, one may simply substitute the dual form of
SUOT problem (5) in the barycenter problem (7) and get a min-max problem. Actually, without
additional modifications, it will lead to the min-max-min problem since the c-transforms f ckk also
need to be optimized. In our Theorem 1 below, we present the way for solving the optimization
problem (7) in max-min manner and without the optimization over distributions Q ∈ P(Y).
Theorem 1 (Semi-dual form of SUOT barycenter problem). The dual form of SUOT barycenter
problem (7) is given by

L∗ = sup
m∈R,f[1:K]∈CK(Y)∑K

k=1 λkfk≡m

K∑
k=1

λk
[ ∫

Xk

−ψk(−f
ck
k (xk))dPk(xk) +m

]
. (8)

Hereafter, we say that the potentials f[1:K] are m-congruent or satisfy the m-congruence condition if∑K
k=1 λkfk ≡ m (for some m ∈ R). Substituting the definition of the c-transform in (8), we get our

final optimization objective.
Corollary 1 (Maximin reformulation for the semi-dual problem (8)). It holds:

L∗ = sup
m∈R,

f[1:K]∈CK(Y)∑K
k=1 λkfk≡m

inf
γ(·|xk)∈P(Y)

K∑
k=1

λk

[∫
Xk

−ψk
(
−
∫
Y

(
ck(xk, y)−fk(y)

)
dγk(y|xk)

)
dPk(xk)+m

]
︸ ︷︷ ︸

L̃(f[1:K],{γk(·|xk)}[1:K],m)
def
=

. (9)

where the sup is taken over m ∈ R and m-congruent potentials f[1:K] ∈ CK(Y), inf − over
conditional plans γk(·|xk).

Interestingly, in the special case when at least one of the SUOTck,ψk
terms in the right-hand-

side of (7) reduces into OTck , the m-congruence condition in (9) turns into congruence condition∑K
k=1 λkfk ≡ 0 which typically appears in balanced settings (Kolesov et al., 2024a;b).

Corollary 2 (Congruence Condition of the Special SUOT barycenter problem). Suppose that ψ1(t) =
t, i.e., SUOTc1,ψ1

= OTc1 in (7). Then, dual form (9) turns into the following dual formulation:

L∗ = sup
f[1:K]∈CK(Y)∑K

k=1 λkfk≡0

inf
γ(·|xk)∈P(Y)

K∑
k=1

λk

[∫
Xk

−ψk
(
−
∫
Y

(
ck(xk, y)−fk(y)

)
dγk(y|xk)

)
dPk(xk)

]
. (10)

The following Theorem demonstrates the two important properties of the true plans γ∗ solving the
SUOT barycenter problem (7). First, the left marginals of these plans (γ∗k)x can be characterized via
the optimal potentials f∗k which allows us to find a procedure for sampling from the marginal density
during the inference, see M4.2. Second, the Theorem guarantees that the family of optimal plans is
indeed one of the solutions to (9).
Theorem 2 (SUOT barycenter conditional plans are contained in optimal saddle points). Assume
that there exist m and {f∗k (y) ∈ C(Y)}Kk=1 which deliver maximum to the problem (9). Assume that
ck(x, y) are continuous cost functions and ψk are continuously differentiable functions. Let {γ∗k}Kk=1
be a family of optimal SUOT plans between Pk and some barycenter Q∗. Then for every plan γ∗k
(a) the marginal of the plan can be represented as:

(γ∗k)x(x) = ∇ψ(−(f∗k )c(x))Pk(x); (11)
(b) the corresponding conditional plan γ∗k(·|xk) satisfies

γ∗k(·|xk) ∈ argminγk(·|xk)L̃(f
∗
[1:K], {γk(·|xk))}[1:K],m). (12)

Theorem (2) shows that for some optimal saddle points {(f∗k , γ∗k)}Kk=1 of (9) it holds that {γ∗k}Kk=1 is
the family of true SUOT plans between P[1:K] and Q. Meanwhile, for any family of optimal f∗[1:K],
the argminγk(·|xk) sets might contain not only optimal SUOT plans {γ∗k}Kk=1 but other functions as
well which is a known fake solutions issue of neural OT solvers (Korotin et al., 2023a).

5
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Algorithm 1: SUOT Barycenter with Semi-Unbalanced Neural Optimal Transport
Input: Distributions P1:K ,S accessible by samples; transport costs ck : Xk × Y 7→ R; mappers
Tk,ω and m-congruent potentials fk,θ, k ∈ K; number NT of inner iterations; batch sizes.
Output: Trained (stochastic) maps T[1:K],ω∗ approximating conditional SUOT plans between Pk

and barycenter Q∗.
repeat

Sample batches Xk ∼ Pk, k ∈ K; For each xk ∈ Xk sample auxiliary batch S[xk] ∼ S;

L̂f ← −
∑
k∈K λk

[
1

|Xk|
∑

xk∈Xk

ψ

( ∑
sk∈S[xk]

f(Tk(xk,s))−c(xk,Tk(xk,s))
|S[xk]|

)
+m

]
;

Update θ by using ∂L̂f

∂θ to maximize L̂f ;
for nT = 1, 2, . . . , NT do

Sample batches Xk ∼ Pk; For each xk ∈ Xk:
sample auxiliary batch S[xk] ∼ S;

L̂Tk
← 1

|Xk|
∑

xk∈Xk

∑
sk∈S[xk]

f(Tk(xk,s))−c(xk,Tk(xk,s))
|S[xk]|

Update ω by using ∂L̂T

∂ω to minimize L̂T ;

until not converged;

4.2 PARAMETRIZATION AND PRACTICAL OPTIMIZATION PROCEDURE

Parametrization. To implement the optimization over distributions γ(·|xk) ∈ P(Y) (k ∈ K) in (9),
we consider parametrizing them with stochastic or deterministic functions, using the strategy defined
in (Kolesov et al., 2024a, M4.1) and (Korotin et al., 2023a, M4.1).

To realize the optimization over conditional plans γk(·|xk) in (9), we define an auxiliary space
S ∈ RDs , atomless distribution S ∈ P(S) and measurable maps Tk : Xk × S → Y . For every plan
γk, we consider the representation using the map Tk s.t. γk(·|x) = Tk(x, ·)#S. Using the stochastic
parametrization of the conditional plans, we can reformulate the optimization objective (9) as:

L∗ = sup
m∈R,

f[1:K]∈CK(Y)∑K
k=1 λkfk=m

inf
T[1:K]

K∑
k=1

λk

[∫
Xk

−ψ

(∫
S

(
f(Tk(xk, s))− c(xk, Tk(xk, s))

)
dS(s)

)
dPk(xk)+m︸ ︷︷ ︸

L(f[1:K],T[1:K],m)
def
=

]
. (13)

We denote the expression under sup inf in (13) as L(f[1:K], T[1:K],m). In some of the setups, the
stochasticity of the conditional plans γ(·|x) is not needed. Then we can consider a measurable map
Tk : Xk → Y which specifies the deterministic conditional plans as γk(·|x) = δTk(x)(·).

For solving (13), we parametrize the maps Tk and potentials fk (k ∈ K) as neural networks
Tk,ω :RDk × RDs 7→ RD and fk,θ :RDk 7→ R with weights ω def

= ω[1:K] ∈ Ω, θ def
= θ[1:K] ∈ Θ. Here

Ω = Ω1 × Ω2 × ...× ΩK and Θ = Θ1 ×Θ2 × ...×ΘK are the parameter spaces for the maps and
potentials respectively. Note that RDs denotes the stochastic dimension which should be omitted in
the case of deterministic maps. In order to ensure the m-congruence condition for the potentials, we
parametrize them as fk,θ = gk,θ −

∑
n ̸=k

λn

λk(K−1)gn,θ +
m
λk

where gk,θ denote the auxiliary neural
nets. Here we take inspiration from similar strategies in (Li et al., 2020; Kolesov et al., 2024b;a).

Training. Recall that we work in a continuous setup of barycenter problem, i.e., the distributions
P[1:K] are accessible only through the empirical samples of data. Thus, we opt to estimate the
objective (13) from samples using the Monte-Carlo method. Specifically, the objective is opti-
mized using stochastic gradient descent-ascent algorithm over random batches of samples from
the distributions Pk and auxiliary distribution S1. For simplicity, we replace the minimization of
the objective L(fθ,[1:K], Tω,[1:K]) w.r.t. Tω,[1:K] with the direct minimization of the c-transform

1Sampling from the stochastic distribution is omitted when we deal with the deterministic maps Tω,[1:K].

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

∫
Xk

∫
S

(
c(xk, Tk(xk, s))−f(Tk(xk, s))

)
dS(s)dPk(xk) which has the same set of minimizers. We

detail our optimization procedure in Algorithm 1.

Inference. Our approach for SUOT barycenter estimation relaxes the marginal constraints related to
the input distributions Pk. It means that during the inference, the input points xk should be sampled
not from the distributions Pk but from the left marginals of the learned plans (γk)x. However,
sampling from these marginals is not available explicitly and requires the usage of the established
techniques for sampling from the reweighted distributions, e.g., the rejection sampling technique. We
apply this technique in the following manner.

Thanks to our Theorem 2 (a), we are able to approximate the fraction of the densities of measures
(γ∗k)x and Pk: (dγ∗

k)x
dPk

(x) ≈ ∇ψ(−(f̂k)c(x)) where f̂k denotes the potential learned during training.
Thus, we can (1) generate new samples Xk ∼ Pk and samples of the same shape from the uniform
distribution uk ∼ U ; (2) calculate the constant c def

= max
(
∇ψ(−(f̂k)c(x))

)
; (3) accept the samples

X ′
k which satisfy the inequality uk ≤ ∇ψ(−(f̂k)c(X ′

k)) and reject the others.

5 EXPERIMENTS

In this section, we evaluate our model through various experiments. In M5.1, we compare the numerical
accuracy of our method against baseline methods. In M5.2, we investigate two key properties of our
U-NOTB method: robustness to class imbalance and robustness to outliers. Specifically, we show
that these properties can be controlled by adjusting the unbalanced parameter τ . In M5.3, we evaluate
our model for the general costs, leveraging shape and color-invariant cost on the image dataset,
other than the quadratic cost. We provide the details about settings and baselines in Appendix B. In
Appendices C.1, C.2, we test our solver in the balanced/semi-unbalanced OT barycenter problem
for Gaussian distributions with computable ground-truth solutions. Additionally, in Appendix C.3,
we illustrate another interesting application of U-NOTB in higher dimensions showing its ability to
manipulate images through interpolating its distributions on the image manifolds.

5.1 BARYCENTER EVALUATION ON SYNTHETIC DATASETS

Baselines. We aim to evaluate whether our model accurately estimates the optimal barycenter Q
and the corresponding transport maps T[1:K]. Because our work is the first attempt to address the
continuous SUOT barycenters, there are no existing baselines for direct comparison. Therefore, we
carefully designed two baseline models for comparison with our approach. These baseline models
are motivated by the equivalence between the OT barycenter of two distributions and the interpolation
between them (Villani et al., 2009). Each baseline model is derived from two approaches for learning
the unbalanced transport map Tuot between P1 and P2: (i) the semi-dual UOT model (UOTM) (Choi
et al., 2024a) and (ii) the OT Map model (OTM) (Rout et al., 2022) combined with the mini-batch
UOT sampling (Eyring et al., 2024). Because the UOT problem is equivalent to the OT problem
between the rescaled distributions, we conduct the displacement interpolation using this Tuot to
approximate the barycenter. Specifically, we consider the following SUOT barycenter problem:

inf
Q∈P(Y)

{λ1OTc1(P1,Q) + λ2UOTc2(P2,Q)}, (14)

where c1, c2 are standard quadratic cost function ci(x, y) = ∥x−y∥2

2 and λ1 = λ2 = 0.5. Let

T1
def
= λ1Id + λ2Tuot. Then, T1#P1 and T1 correspond to the barycenter distribution Q, and the

transport map from P1 to Q, respectively. Note that we should set the OTc1 distance for the first
distribution P1 to ensure that the estimated barycenter Q = T1#P1 has a unit mass in two baselines.
Since the OT problem is a specific case of the SUOT one, our method can be naturally applied to this
case. We test U-NOTB on the synthetic dataset of Spiral-to-Gaussian Mixture (S→GM) (Fig. 1a).

Experimental Results. Fig. 1 presents a qualitative visualization of the results from our model and
two baseline methods. Because there is no closed-form solution for the continuous SUOT barycenter
problems, we consider the SUOT barycenter between two discrete empirical distributions, obtained
from the POT (Flamary et al., 2021) library, as the ground truth solution Q⋆ and T ⋆ (Fig. 1b). In Fig.
1, for clarity, we visualized only the spiral distribution P1 and the corresponding barycenter Q. Note
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(a) Setup (b) Discrete UOT (c) UOTM (d) Mini-Batch UOT (e) U-NOTB (ours)

Figure 1: Conditional plan γ1(y|x1), x1 ∼ P0 and UOT barycenter distribution Q ≈ γ1#P1

obtained by Discrete UOT, UOTM, Mini-batch UOT, and our method in Spiral→ Gaussian Mixture.

Data Metric UOTM Mini-Batch UOT U-NOTB (ours)

Sprial → Gaussian Mixture L2 0.65 0.31 0.25
W2 0.29 0.15 0.12

Moon → Spiral L2 0.89 0.64 0.52
W2 0.59 0.93 0.81

Table 1: Comparison on Benchmarks on Toy datasets.

that, because we set OTc1 for P1 in Eq. 14, the rejection sampling is not applied in this case. Fig. 1
shows that our model and other baseline methods present decent results.

Table 1 provides a quantitative evaluation of our model for a more detailed assessment. The approxi-
mate barycenter Qθ and the transport map Tθ from each method are evaluated from two perspectives.
First, the distribution error between Qθ and Q⋆ is evaluated by measuring the Wasserstein-2 distance
W2

2(Q̃,Q⋆) (W2 metric). Second, the optimality error of the transport map is assessed by measuring
L2-norm between the transport maps ( L2 metric), i.e.,

∫
X1
∥T1(x1)− T ⋆(x1)∥22dP1(x1). As shown

in Table 1, our model achieves the most accurate barycenter estimation in three out of four scores,
evaluated using two metrics (W2 and L2) across two synthetic datasets.

5.2 ROBUST BARYCENTER ESTIMATION UNDER OUTLIER AND CLASS IMBALANCE

In this section, we examine two key properties of our U-NOTB model: (i) robustness to class
imbalancedness and (ii) robustness to outliers. The value of OT functional OTc(·, ·) is known to
be sensitive to outliers and class imbalance problems. Hence, the OT barycenter is also largely
affected by these factors. To address this sensitivity, the UOT problem extends the traditional OT
problem by relaxing the constraint on marginal densities. This relaxation introduces two notable
characteristics. First, even in the presence of class imbalances, the reweighting process allows the
model to appropriately align with the relevant modes in a reasonable manner (Eyring et al., 2024).
Second, the model exhibits robustness to outliers, maintaining reliable transport despite their presence
(Balaji et al., 2020; Choi et al., 2024a). The goal of this section is twofold: (1) to investigate whether
these two properties are also observed in our U-NOTB model by comparing it with the OT counterpart
of our model (Korotin et al., 2022) and (2) to demonstrate that this robustness can be controlled
through the unbalancedness parameter τ .

Robustness to Class Imbalance. The class imbalance issue refers to the case where each class has a
different proportion across Pi. This class imbalance problem can lead to undesirable behaviour in the
standard OT barycenter. For example, in Fig. 2, we consider the upper-modes and bottom-modes
for each distribution as class 1 and 2, respectively. In P1, 75% of the data is concentrated in class 1
(upper-left white dots) while only 25% is concentrated in class 1 for P1 (upper-right yellow dots).
Therefore, the balanced OT barycenter (NOTB, (Kolesov et al., 2024a)) generates a mode between
two majority modes of Pi, which can be an undesirable phenomenon for the barycenter (Fig. 2a).

As shown in Fig. 2, we evaluated our model for diverse unbalancedness parameter τ ∈ {1, 20, 100}
(Eq. 3). Additionally, for comparison, we conducted experiments under a balanced setting using the
OT counterpart. It is important to note that as τ increases, the UOT problem converges to the OT
problem, allowing for less flexibility in marginal distributions (Choi et al., 2024b). When τ = 1,
our unbalanced barycenter demonstrates robust results by generating barycenter modes between
the pair of the closest modes of the P1 and P2. Our model rejects contour samples from majority
modes, reweighting them to better align the corresponding modes. Moreover, our unbalanced
barycenter offers controllability of this robustness through τ . As τ increases, the flexibility on
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(a) NOTB (b) τ = 200 (c) τ = 20 (d) τ = 1

Figure 2: Conditional plans γk(y|x) and barycenter Q obtained by NOTB and our method in Gaussian
Mixture barycenter experiment. We evaluate on various unbalancedness parameter τ ∈ {1, 20, 200}.

(a) Marginal distributions (b) NOTB with outlier (c) NOTB without outlier

(d) τ = 200 (e) τ = 20 (f) τ = 1

Figure 3: Learned barycenter Q obtained from x ∼ P1 by NOTB and our method on Gaussian Mixture
with 5% outlier. The evaluation is conducted for various unbalancedness parameter τ ∈ {1, 20, 200}.
For comparison, we additionally trained NOTB without outliers, as shown in subfigure (c).

marginal distributions decreases in the UOT problem. Thus, when τ = 200, our model accepts
nearly all samples, making the UOT barycenter closely resemble the OT barycenter. We believe this
adaptability of the UOT barycenter offers practical benefits in real-world scenarios.

Robustness to Outliers. To evaluate the robustness to outliers, we conducted experiments on a
synthetic dataset that included a small proportion of outliers. As depicted in Fig. 3, the dataset
comprises three marginal distributions: P1 (beige dots), P2 (gray dots), and P3 (orange dots). Outliers,
constituting 5% of the marginal P1 and P2, were added to the outermost point of each marginal. We
evaluated our model for various unbalancedness parameters τ and compared it with the balanced OT
counterpart. Similar to the robustness to class imbalance experiments, we expect that smaller values
of τ will provide more robustness to outliers by allowing higher flexibility in marginal distributions.

We illustrate the results in Fig. 3. Note that for comparative analysis, we also tested the NOTB
(Korotin et al., 2022) approach for OT barycenter estimation under the data without outliers. This
experiment aims to demonstrate the desired behaviour of barycenter when there are no outliers in the
dataset. When τ = 1, our U-NOTB closely aligns with the OT barycenter in this outlier-free scenario.
This result shows that our model offers robustness to outliers by rejecting outlier samples at smaller
τ . As τ increases, our model accepts a higher proportion of outliers. Hence, the outliers on the left
and right begin to influence the barycenter, making the modes of barycenter lie between the majority
modes of distributions Pi. In summary, reducing τ enhances outlier robustness, while increasing τ
yields a more precise barycenter by incorporating all data points. We believe that the flexibility in
adjusting τ offers promising potential for broader applications, where different levels of tolerance to
outliers may be required.

9
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(a) In-distribution Samples from P1.
Acceptance Rate: 63%

(b) Outlier Samples from P1.
Acceptance Rate: 19%

(c) In-distribution Samples from P2.
Acceptance Rate: 71.25%

(d) Outlier Samples from P2.
Acceptance Rate: 5.5%

Figure 4: Examples of x1 ∼ P1 (grayscale digits) and x2 ∼ P2 (color images) and its corresponding
barycenter y ∼ Q samples (colored-digits) in shape-color experiment.

5.3 SHAPE-COLOR EXPERIMENT

In this section, we illustrate one interesting example demonstrating how the UOT barycenter problem
can be applied using a general cost. We designed the problem at general costs when there are some
undesirable outliers in the marginal distributions.

• Shape distribution P1. The first marginal distribution consists of grayscaled images of digits ‘2’
(49% of training dataset), ‘3’ (50%) and ‘7’(1% - outliers) of MNIST data.

• Color distribution P2. The second marginal distribution consists of three color points: red
(probability mass p0 = 0.495), green (p1 = 0.495), white (p2 = 0.01 - outliers).

• Manifold. We pretrained the StyleGAN (Karras et al., 2019) generator G : Z → R3×32×32 on the
colored MNIST dataset of digits ‘2’ and ‘3’. Let Eiθ be the network which encodes each marginal
Pi to the latent Z . Throughout the experiment, we transport xi ∼ Pi to the barycenter point yi by
yi=G ◦Eiθ(xi), thus confining the transformed images to the colored MNIST of digits ‘2’ and ‘3’.

• General Transport costs. For the first marginal sample x1 ∼ P1 and its corresponding barycenter
point y1, we use the following shape-preserving cost: c1(x1, y1) = 1

2∥x1−Hg(y1)∥2, whereHg is
a decolorization operator. Moreover, for the second marginal sample x2 ∼ P2 and the corresponding
barycenter point y2, we use the following color-preserving cost: c2(x2, y2) = 1

2∥x2 −Hc(y2)∥2,
where Hc is a color projection operator defined in (Kolesov et al., 2024a).

Our results for unbalancedness τ = 10 are presented in Figure 4. We demonstrate the examples of
learned mapping (xk, Tk(xk, s)) from in-distribution points xk, sub-figures 5a, 4c, and from outliers,
sub-figures 5b, 4d. Expectedly, the learned in-distribution mappings preserve the shape (P1 → Q∗)
and color (P2 → Q∗). In turn, the outlier mappings have no reasonable interpretation.

Along with the qualitative performance, we report the acceptance rates of input points xk, see the
explanation of our inference procedure in §4.2. Importantly, the acceptance of outliers is much
smaller compared to in-distribution samples. In particular, if x1 is a grayscaled digit ‘7’, it will be
accepted (and processed through the mapping T1) only with probability 0.19, while for grayscaled
digits ‘2’ and ‘3’ the same figure reads as 0.63. Thus, the experiment showcases the applicability of
our robust barycenter methodology for non-trivial cases with non-Euclidean OT costs.

6 DISCUSSION

Our work continues the recent and fruitful branch of OT barycenter research. We present the first
attempt to build robust OT barycenters under continuous setup based on unbalanced OT formulation.
From now on, the barycenter researchers have a new deep learning tool at their disposal that gives
them the ability to deal with imperfect data (with outliers/noise/class imbalance) at a large scale. We
believe that our proposed method will further expand the toolbox of deep learning practitioners. At
the same time, our method is not without certain limitations (see below). Resolving them paves a
way for future work. Another appealing direction for future research is to adopt alternative robust
OT/barycenter variants, e.g., (Nietert et al., 2022; Buze, 2024), for the continuous barycenter setup.
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Limitations. In practice, we found that the practical optimization procedure (Algorithm 1) may work
unstably. In particular, the training may diverge under improper hyper-parameters selection or the
resulting quality might depend on the random seed. We hypothesise that this behaviour is due to
the reliance on adversarial training and leave its thorough investigation to future research. From the
theoretical side, the recovered semi-unbalanced OT barycenter is not guaranteed to be unique (§2.2);
also, the convergence properties of our procedure (13) are not established.

Code of Ethics. This paper presents work whose goal is to advance the field of Machine Learn-
ing. There are many potential societal consequences of our work, none of which we feel must be
specifically highlighted here.

Reproducibility. For the clear reproducibility positioning, we submit our source code in the attached
supplementary archive. The code contains a README file with further instructions to reproduce our
experiments.
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A PROOFS

A.1 PROOF OF THEOREM 1 AND COROLLARY 1

Proof of Theorem 1. Substituting the dual form (5) into (13), we can formulate the barycenter prob-
lem as finding

L∗ = min
Q∈P(Y)

sup
f1,...,fK∈C(Y)

K∑
k=1

λk
[ ∫

Xk

−ψk(−f ck(x))dPk(xk) +
∫
Y
fk(y)dQ(y)︸ ︷︷ ︸

F(Q,f[1:K])
def
=

]
(15)

where we replace inf with min thanks to the existence of SUOT barycenter, see M2.2.

Note that the compactness of the space Y yields the weak compactness of P(Y). At the same time,
the functional Q 7→ F(Q, f[1:K]) is continuous and linear in Q. At the same time, it is concave in
f[1:K]. Indeed, the convex conjugate of the generator function ψ is convex and non-decreasing by
definition, the c-transform operation is convex, see (Kolesov et al., 2024b, Proposition A.1 (iii)).
Thus, the superposition of a concave, non-increasing function −ψk(·) and concave function −f ck(·),
i.e., −ψk(−f ck(·)) is a concave function as well (for every k ∈ K). Thus, we can apply the minimax
theorem (Terkelsen, 1972, Corollary 1) and swap min and sup in (15):

L∗ = sup
f1,...,fK∈C(Y)

min
Q∈P(Y)

K∑
k=1

λk
[ ∫

Xk

−ψk(−f ck(xk))dPk(xk) +
∫
Y
fk(y)dQ(y)

]
=

sup
f1,...,fK∈C(Y)

[ K∑
k=1

λk

∫
Xk

−ψk(−f ck(xk))dPk(xk) + min
Q∈P(Y)

∫
Y

K∑
k=1

λkfk(y)︸ ︷︷ ︸
f(y)

def
=

dQ(y)
]
=

sup
f1,...,fK∈C(Y)

[ K∑
k=1

λk

∫
Xk

−ψk(−f ck(xk))dPk(xk) + min
Q∈P(Y)

∫
Y
f(y)dQ(y)︸ ︷︷ ︸

G(f1,...fK)
def
=

]
. (16)

Now we use the following fact: infQ∈P(Y)

∫
Y f(y)dQ(y) = infy∈Y f(y). Assume that the true value

m
def
= infy∈Y f(y) is known. Then we can restrict sup in (16) to the potentials f[1:K] satisfying

the m-congruence condition:
∑K
k=1 λkfk ≡ m. Indeed, for each tuple (f1, ..., fK), let us consider

the tuple (f̃1, ..., f̃K)
def
= (f1, ..., fK + m−f

λk
) satisfying the congruence condition. For this tuple,

infy∈Y
∑K
k=1 λkf̃k = m. Besides, we get:

G(f̃1, ..., f̃K)−G(f1, ...fK) = λK

∫
XK

[−ψK(−f̃ cK(xK)) + ψK(−f cK(xK))]dPK(xK)+����m−m =

λK

∫
XK

[
ψK(−f cK(xK))− ψK(−(fK +

m− f
λk

)c(xK))
]
dPK(xK) ≥ 0. (17)

Here the inequality in line (17) follows from the properties of the c-transform function and convex
conjugate of the divergence’ generator function ψ. First, c-transform is a decreasing function of its
argument, see (Kolesov et al., 2024b, Proposition A.1 (i)). Thus,

fK +
m− f
λK

≤ fK +
�

�
��m−m

λK
= fK =⇒ (fK +

m− f
λK

)cK ≥ f cKK .

Second, the convex conjugate is a non-decreasing function which yields

−f cKK ≥ −(fK +
m− f
λK

)cK =⇒ ψK(−f cKK ) ≥ ψK(−(fK +
m− f
λK

)cK ).
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From this, the inequality (17) becomes obvious. It means that the transition to congruent tuple is fair
for the known value m. It is important to note that in practice this value is not given and should be
optimized. Thus, the final optimization objective can be formalized as

L∗ = sup
m∈R,f[1:K]∈CK(Y)∑K

k=1 λkfk≡m

G(f1, ..., fK) = sup
m∈R,f[1:K]∈CK(Y)∑K

k=1 λkfk≡m

[ K∑
k=1

λk

∫
Xk

−ψk(−f ck(xk))dPk(xk) +m
]

(18)

where (18) coincides with (9).

Proof of Corollary 1. By substituting the definition of the c-transform in (8), we get

L∗ = sup
m∈R,f[1:K]∈CK(Y)∑K

k=1 λkfk≡m

K∑
k=1

λk

[∫
Xk

−ψk
(
− inf
µ(y)∈P(Y)

∫
Y

(
ck(xk, y)− fk(y)

)
dµ(y)

)
dPk(xk) +m

]
= (19)

sup
m∈R,f[1:K]∈CK(Y)∑K

k=1 λkfk≡m

K∑
k=1

λk

[∫
Xk

inf
µ(y)∈P(Y)

{
− ψk

(
−
∫
Y

(
ck(xk, y)− fk(y)

)
dµ(y)

)}
dPk(xk) +m

]
(20)

In transition from (19) to (20), we interchange the operation of taking inf over µ(y) ∈ P(Y) and ψk.
This is possible since −ψk is monotone decreasing and infimum is attained.

Now we note that the map (xk, µ) 7→
{
− ψk

(
−
∫
Y
(
ck(xk, y) − fk(y)

)
dµ(y)

)}
is measurable

and bounded from below. Indeed, the spaces Xk and Y are compact, and P(Y) is weakly compact.
At the same time, the potentials fk(y), cost function ck(xk, y) are continuous and −ψk is lower
semi-continuous. It means that their superposition is also a lower semi-continuous function and, thus,
lower bounded on the compact space. Thanks to the properties of this map, we can use the rule of
interchange between integral and inf (Bertsekas & Shreve, 1996, Propositions 7.27 and 7.50) and get

(20) =

sup
m∈R,f[1:K]∈CK(Y)∑K

k=1 λkfk≡m

K∑
k=1

λk

[
inf

γk(·|xk):Xk 7→P(Y)

∫
Xk

−ψk
(
−
∫
Y

(
ck(xk, y)−fk(y)

)
dγk(y|xk)

)}
dPk(xk) +m

]
(21)

where the inf is taken over families of measurable maps {γk(·|xk)}[1:K]. Note that (21) is equal
to (9) after the trivial interchange between the summation and inf operations. This completes the
proof.

Proof of Corollary 2. Since SUOTc1 = OTc1 , ψ1 = Id by the definition of convex conjugate. By
substituting f̃1 := f1 − m

λ1
and ψ1 = Id into (9), we can obtain the congruence condition as follows:

L∗ = sup
m,f[1:K]∑K

k=1 λkfk≡m

inf
γk(·|xk)

K∑
k=1

λk

[∫
Xk

−ψk
(
−
∫
Y

(
ck(xk, y)− fk(y)

)
dγk(y|xk)

)
dPk(xk) +m

]
=

sup
m,f[1:K]

λ1f̃1+
∑K

k=2 λkfk≡0

inf
γk(·|xk)∈P(Y)

[
λ1

∫
X1

∫
Y

(
c1(x1, y)−

(
f̃1(y) +

�
��
m

λ1

))
dγ1(y|x1)dP1(x1)+

K∑
k=2

λk

∫
Xk

−ψk
(
−
∫
Y

(
ck(xk, y)− fk(y)

)
dγk(y|xk)

)
dPk(xk) +��m

]
=

sup
λ1f̃1+

∑K
k=2 λkfk≡0

inf
γk(·|xk)∈P(Y)

[
λ1

∫
X1

∫
Y
ψ1

(
−
∫
Y

(
c1(x1, y)− f̃1(y)

)
dγ1(y|x1)

)
dP1(x1)+

17
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K∑
k=2

λk

∫
Xk

−ψk
(
−
∫
Y

(
ck(xk, y)− fk(y)

)
dγk(y|xk)

)
dPk(xk)

]
.

A.2 PROOF OF THEOREM 2

Below we recall an auxiliary thereotical result which will be used in our proof of Theorem 2.
Theorem 3 (Connection between solutions of dual OT and UOT problems (Choi et al., 2024a)).
Assume that ψ is a continuously differentiable function. Then if the optimal potential f∗ delivering
maximum to the dual UOT problem exists, f∗ is a solution of the following objective

OTc(P̃, Q̃) = sup
f

∫
X
f c(x)dP̃(x) +

∫
Y
f(y)dQ̃(y)

where P̃(x) = ∇ψ(−(f∗)c(x))P(x) and Q̃(y) = ∇ψ2(−f∗(y))Q(y).

This Theorem highlights the intriguing connection between the solutions of the classic OT problem
and its unbalanced counterpart. Note that in the case of SUOT problem, ψ2(y) = y, thus, the measure
Q̃ reduces to Q. Now we are ready to prove our Theorem 2.

Proof of Theorem 2. Below we show that optimal potentials f∗[1:K] delivering maximum to the dual
SUOT barycenter problem (8) are also optimal for each of the underlying SUOT(Pk,Q) problems.
Recall that the SUOT barycenter problem (7) admits a minimizer which we denote as Q∗. Then:

K∑
k=1

λkSUOTck,ψk
(Pk,Q∗)

(8)
= sup

m∈R,f[1:K]∈CK(Y)∑K
k=1 λkfk≡m

K∑
k=1

λk
[ ∫

Xk

−ψk(−f
ck
k (xk))dPk(xk) +m

]
= (22)

sup
m∈R,f[1:K]∈CK(Y)∑K

k=1 λkfk≡m

K∑
k=1

λk

∫
Xk

−ψk(−f
ck
k (xk))dPk(xk) +

∫
Y

K∑
k=1

λkfk(y)︸ ︷︷ ︸
=m

dQ∗(y) ≤ (23)

sup
f[1:K]∈CK(Y)

K∑
k=1

λk

∫
Xk

−ψk(−f
ck
k (xk))dPk(xk)+

∫
Y

K∑
k=1

λkfk(y)dQ∗(y)=

K∑
k=1

λkSUOT(Pk,Q∗). (24)

Here the transition from line (22) to (23) follows from the fact that the optimization is performed
over m-congruence potentials. If we then remove this restriction on potentials, the value of sup can
become bigger which explains the transition between (23)-(24). Importantly, we get that the final
objective in line (24) is equal to the initial objective in line (22). Thus, the inequality in line (23)
turns into equality. At the same time, it justifies that the potentials f∗[1:K] delivering maximum to the
SUOT barycenter (8) problem coincide with the optimal potentials for each of the SUOT problems.

Then, thanks to Theorem 3, the SUOT barycenter problem (24) admits a reformulation:

L∗ =

K∑
k=1

λkSUOT(Pk,Q∗) =

K∑
k=1

λkOT(P̃k,Q∗) (25)

where each of the distributions P̃k (k ∈ K) is specified via the optimal potential f∗k delivering
maximum to the problem OT(P̃k,Q∗) in its dual form (2): dP̃k(xk) = ∇ψ(−(f∗k )c(xk))dPk(xk).
Thus, the optimal SUOT plans now correspond to the optimal OT plans γ∗k(x, y) belonging to
Π(P̃k,Q∗), i.e., having marginals (γ∗k)x = P̃k, (γ∗k)y = Q∗.

Now we fix k ∈ K. We aim to show that γ∗k(·|xk) ∈ arg infγk(·|xk))

∫
Y(ck(xk, y)− f

∗
k (y))dγ(·|xk)

where inf is taken over measurable maps γk(·|xk). Then by repeating the derivations of Corollary 1
we easily get that γ∗k(·|xk) ∈ arg infγk(·|xk)) L(f∗k , γk(·|xk))). To prove the former, we again use the
fact that γ∗k is a solution of the balanced OT problem between the rescaled marginal P̃k and Q∗. Note
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Experiment 2D Toy (§5.1) Class Imbalance (§5.2) Outlier (§5.2) Shape-Color (§5.3)
D 2 2 2 512
K 2 2 3 2
τ 5 1,20,200 1,20,200 10
batch size 1024 256 256 64
Epochs 10K 10K 20K 3K
NT 3 3 5 10
λ1 1/2 1/2 1/3 1/2
λ2 1/2 1/2 1/3 1/3
λ3 - - 1/3 -
Divergence ψ1 balanced KL KL Softplus
Divergence ψ2 KL KL KL Softplus
Divergence ψ3 - - KL -
fk,θ MLP MLP MLP ResNet
Tk,ϕ MLP MLP MLP ResNet
lrfk,θ

1e-3 1e-3 1e-3 1e-4
lrTk,ϕ

1e-3 1e-3 1e-3 1e-7
lrm 1e-3 1e-3 1e-3 1e-2

Table 2: Hyper-parameter settings of Algorithm 1 for various experiments.

that∇ψ is a continuous function since ψ is assumed to be a continuously differentiable function. This
yields the fact that P̃k is an absolutely continuous distribution. Thus, we can use (Villani et al., 2009,
Remark 5.13) which states that γ∗k(·|xk) ∈ arg infy∈Y

(
c(x, y)− f(y)

)
. The latter statement is

equivalent to γ∗k(·|xk) ∈ arg infγk(·|xk))

∫
Y(ck(xk, y)− f

∗
k (y))dγ(·|xk) which completes the proof.

Note that since the infimum is attained at least for one map γ∗k(·|xk), the arg infγk(·|xk)) in the latter
equation is actually argminγk(·|xk)).

B IMPLEMENTATION DETAILS

B.1 DESCRIPTION OF TOY EXPERIMENTS

Moon, Spiral, and 8-Gaussian Datasets. The datasets used in Section 5.1 were implemented by
following (Choi et al., 2024b).

Datasets for Class Imbalance Experiments. For the distribution P1 and P2, we employ the Gaussian
mixture of 1

4N ((−5, 4), 0.42) + 3
4N ((−5,−4), 0.42) and 3

4N ((5, 4), 0.42) + 1
4N ((5,−4), 0.42),

respectively.

Datasets for Outlier Experiments. We consider three marginal distributions, denoted as P1, P2, and
P3. For P1 and P2, we generate datasets consisting of 95% in-distribution data and 5% outliers. In
contrast, P3 consists solely of in-distribution data. The in-distribution data for each marginal follows
a Gaussian mixture model with four modes and uniform weights, i.e.,

∑4
i=1

1
4N (mi, σ

2I). The
means and variances for P1, P2, and P3 are defined as follows:

• P1: m1 = (−5,−1), m2 = (5, 1), m3 = (1,−5), m4 = (−1, 5), with σ = 0.1,
• P2: m1 = (−5, 1), m2 = (5,−1), m3 = (1, 5), m4 = (−1,−5), with σ = 0.1,
• P3: m1 = (−5, 0), m2 = (5, 0), m3 = (0, 5), m4 = (0,−5), with σ = 0.1,

respectively. For the outlier distributions of P1 and P2, we again use a Gaussian mixture model with
four modes,

∑4
i=1

1
4N (mi, σ

2I), with the means and variances defined as:

• P1 outliers: m1 = (10, 2), m2 = (10, 1), m3 = (10, 0), m4 = (10,−1), with σ = 0.02,
• P2 outliers: m1 = (−10, 1), m2 = (−10, 0), m3 = (10,−1), m4 = (10,−2), with
σ = 0.02,
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respectively.

Implementation Details. For the experiments in Section 5.1 and the class imbalanced experiments,
we use the number of iterations of 10K. For the outlier experiments in Section 5.2, we employ
the number of iterations of 20K. We use the batch size of 1024. We update m with the Adam
Optimizer with learning rate of 10−3 and (β1, β2) = (0, 0.9). For other hyperparameters, we follow
the experimental settings of (Kolesov et al., 2024a).

Evaluation metric. As discussed in Section 5.1, we utilize the W2 and L2 metrics, defined as
W 2

2 (T1#,Q⋆) and ∥T1 − T ⋆1 ∥22, respectively. Here, Q⋆ and T ⋆1 represent the true barycenter and
transport maps. To approximate (T ⋆1 ,Q⋆), we solve the discrete Unbalanced Barycenter problem.
Specifically, we sample 2000 points and solve the Unbalanced Optimal Transport (UOT) problem
from P1 to P2 using the Python Optimal Transport (POT) library (Flamary et al., 2021). The obtained
discrete UOT map T is then used to define T1 = λ1Id+λ2T , and Q⋆ = T1#P1. Using these discrete
samples and transport maps, we compute the approximation of the metrics.

Training/Inference Time. The training and inference times of our model, along with comparisons to
baseline methods, are presented in Table 3 and Table 4. In the case of toy experiments, the training
time of U-NOTB is comparable to that of NOTB (Kolesov et al., 2024a). The inference time of
U-NOTB is typically 2-10 times slower than NOTB. This gap is due to the additional computational
complexity introduced by rejection sampling, which requires calculating the c-transform of the
potential function f̂k, i.e., f̂ ck(x) ≈ c(x, Tk(x))− f(Tk(x)). Thus, this process involves a forward
pass through the learned potential function. Moreover, it requires to compute the cost functional,
which is an additional burden for StyleGAN experiments. However, we would like to highlight
that thanks to our proposed sampling method, our solver gains robustness to outliers and class
imbalancedness.

Experiment 2D Toy (§5.1) Class Imbalance (§5.2) Outlier (§5.2) Shape-Color (§5.3)
UOTM 4-5 mins - - -
Minibatch UOT 2h - - -
NOTB 6-7 mins 6-7 mins 42-45 mins -
U-NOTB 6-7 mins 6-7 mins 42-45 mins 3h 20 mins
GPU RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 3090Ti

Table 3: Training time for various experiments.

Experiment 2D Toy (§5.1) Class Imbalance (§5.2) Outlier (§5.2) Shape-Color (§5.3)
UOTM 0.001 sec - - -
Minibatch UOT 0.001 sec - - -
NOTB 0.001 sec 0.001 sec 0.001 sec 0.02 sec
U-NOTB 0.001 sec 0.003 sec 0.003 sec 0.18 sec
GPU RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 3090Ti

Table 4: Inference time for various experiments. We report the inference time of 1000 samples for
synthetic experiments (§5.1, §5.2). For StyleGAN experiment (§5.3), we evaluated with 220 samples.

B.2 STYLEGAN EXPERIMENTS

Unless otherwise stated, we follow the implementation of (Kolesov et al., 2024a). Note that we use
Adam Optimizers with (β1, β2) = (0, 0.9). The exact hyperparameter is described in Table 2.

C EXTENDED EXPERIMENTS

In this section, we provide additional experimental results. In Appendices C.1 and C.2, we demon-
strate the performance of our solver and baselines in OT/SUOT barycenter problem for Gaussian
distributions with computable ground-truth solutions. In Appendix C.3, we conduct high-dimensional
experiment demonstrating the practical advantages of our solver, i.e., its ability to manipulate images
through interpolating image distributions on the image manifolds.
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C.1 BALANCED OT BARYCENTERS FOR GAUSSIAN DISTRIBUTIONS

In the balanced OT barycenter problem for Gaussian distributions, the ground-truth barycenter is
known to be Gaussian and can be estimated using the fixed point iteration procedure (Álvarez-Esteban
et al., 2016). In this section, we tested our solver in this balanced setup keeping in mind that for large
unbalancedness parameters τ , it should provide a good approximation of balanced OT barycenter
problem solutions. Ultimately, we show that while our solver is designed to tackle an unbalanced
OT barycenter problem, its performance in the different balanced OT barycenter problem is
comparable to the current SOTA solvers.

We consider K = 3 Gaussian input distributions with weights λ1 = λ2 = 0.25, λ3 = 0.5, and
quadratic OT cost functions ck(x, y) =

∥xk−y∥2

2 following the experimental setup which was firstly
introduced in (Kolesov et al., 2024b) and also used in (Kolesov et al., 2024a, Appendix B.1). We
perform comparison with three recent approaches for continuous barycenter estimation − (Kolesov
et al., 2024a, NOTB), (Kolesov et al., 2024b, EgBary) and (Korotin et al., 2022, WIN). For EgBary
approach, which solves the Entropy-resugularized OT (EOT) barycenter problem, we consider small
entropy regularization parameter ε = 0.01. For completeness, we also tested the performance of the
classic approach (Cuturi & Doucet, 2014, FCWB) which approximates the barycenter by a discrete
distribution on a fixed number of free-support points.

For our U-NOTB solver, we consider KL divergencies and varying unbalancedness parameter
τ ∈ [1, 101, 102, 103, 104, 105] expecting that for large τ , our solver will provide good results in
solving the balanced problem. We assessed the performance of solvers using the weighted unexplained
variance percentage metrics L2-UVP(T̂ ) = 100 · [∥T̂−T∗∥2

P
var(Q∗) ]% where Q∗ is a given ground-truth OT

barycenter. For the continuous baseline solvers (NOTB, EgBary, WIN), we report the results given
in (Kolesov et al., 2024a, Table 3). Specifically, for our solver and EgBary which learn the optimal
plans, we consider their barycentric projections. For the assessment of FCWB, we first calculate the
discrete barycenter using large number of samples from input distributions Pk. Then we compute
the optimal plans between the input and this barycenter distributions (Flamary et al., 2021), and
consider their barycentric projections. Table 5 presents the weighted sum of L2-UVP values w.r.t. the
barycenter weights λk.

Method/Dim 2 4 8 16 64
Ours (τ = 1) 3.10 2.39 1.64 1.44 1.39

Ours (τ = 101) 0.03 0.09 0.06 0.08 0.09
Ours (τ = 102) 0.02 0.03 0.03 0.05 0.07
Ours (τ = 103) 0.02 0.03 0.04 0.05 0.08
Ours (τ = 104) 0.02 0.03 0.04 0.05 0.08

NOTB 0.01 0.02 0.04 0.04 0.08
EgBary 0.02 0.05 0.06 0.09 0.84

WIN 0.03 0.08 0.13 0.25 0.75
FCWB 2.17 6.51 18.68 35.80 100.47

Table 5: L2-UVP for our method, NOTB, EgBary (ϵ = 0.01),
WIN and FCWB, D = 2, 4, 8, 16, 64.

The Table shows that for τ = 102, our approach gives the results comparable with the current SOTA
solver for continuous balanced barycenter estimation − NOTB. Further increase of τ does not help
to improve the results which can be explained by related numerical instabilities. At the same time,
discrete OT barycenter solver provides the worst results and the L2-UVP metric increases drastically
with the increase of dimension D. It is an expected behaviour, since the discrete distributions poorly
approximate the continuous ones. This aspect was previously investigated and justified in (Korotin
et al., 2022, M5.1).

C.2 SEMI-UNBALANCED OT BARYCENTERS FOR GAUSSIAN DISTRIBUTIONS

A recent preprint (Nguyen et al., 2024) provides an iteration procedure for calculating unbalanced
SUOT barycenter for Gaussian distributions using the quadratic cost and KL divergences. We test
our solver in this unbalanced setup for different parameters τ and show that it consistently
outperforms the SOTA balanced solver (Kolesov et al., 2024a, NOTB).
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Method τ = 10−2 τ = 10−1 τ = 1 τ = 10 τ = 102 τ = 103 τ = 104

Ours 0.31 0.20 0.15 0.17 0.17 0.17 0.17
NOTB 1.71 1.22 0.47 0.21 0.20 0.19 0.19

Table 6: BW2
2-UVP between the learned and ground-truth unbalanced barycenters for our method

and NOTB. The results are given for varying parameters τ = 10−2, 10−1, 1, 10, 102, 103, 104.

We consider the same set of Gaussians distributions, weights and quadratic cost function as in the
experiment with balanced Gaussians, see Appendix C.1. As the baseline solver, we consider SOTA
balanced solver for continuous barycenter estimation (Kolesov et al., 2024a, NOTB). To calculate the
ground-truth barycenter, we run the Hybrid Bures-Wasserstein Gradient Descent algorithm (Nguyen
et al., 2024, M4.3) for computation of SUOT barycenter problem between Gaussians. The algorithm
is designed for the case of KL divergencies and is endowed with the unbalancedness parameter which
we denote as τ .

We consider parameters τ ∈ [10−2, 10−1, 1, 10, 102, 103, 104]. For each parameter, we calculate
the corresponding ground-truth SUOT barycenter and train our U-NOTB solver with KL diver-
gencies. Then we assess the performance of our solver and NOTB by measuring the weighted
Bures-Wasserstein unexplained variance percentage metric for an implicitly given barycenters Q̂:

BW2
2-UVP(Q̂)

def
= 100 ·

[BW2
2(Q̂,Q∗)

0.5 ∗ var(Q∗)

]
%

where W2
2(Q1,Q2) = W2

2(N (µQ1
,ΣQ1

),N (µQ2
,ΣQ2

)) is the Bures-Wasserstein metric, µQ, ΣQ
denote means and covariances of corresponding distribution Q, see (Korotin et al., 2021b). To get
the samples from learned barycenter Q̂, we first sample the input points xk either form the input
distributions Pk (for NOTB) or from the left marginals of the learned plans (for our U-NOTB). Here
sampling from the left marginals of the plans can be done using the rejection sampling procedure, see
M4.2. Then we sample new points from the learned barycenter by passing the points xk through the
learned stochastic or deterministic maps Tk which parametrize the learned plans. Table 6 presents the
weighted sum of BW2

2-UVP values w.r.t. the barycenter weights λk.

We see that our unbalanced U-NOTB solver outperforms NOTB for all considered unbalancedness
parameters τ . The difference is especially visible for small parameter τ . It is expected since for small
τ the solutions of the unbalanced barycenter problem significantly differ from the balanced one. For
large τ this difference is getting smaller, thus, balanced NOTB solver manages to approximate the
barycenter quite well but still worse than ours.

C.3 MANIPULATING IMAGES THROUGH INTERPOLATING IMAGE DISTRIBUTIONS ON THE
IMAGE MANIFOLD

In this section, we present a novel real-world application of U-NOTB for high-dimensional image
manipulation. Specifically, we address scenarios characterized by class imbalances in the marginal
distributions. Ultimately, our experiment highlights the potential of our approach to manipulate
images by learning barycenters between distinct image distributions, enabling controlled
transitions across semantic attributes. Moreover, our model also demonstrates robustness to
class imbalancedness in this practical task compared to other baselines.

Given multiple image distributions {Pk}Kk=1, we aim to simultaneously learn all UOT barycenters
Qλ1:K

for arbitrary tuple (λk)
K
k=1 satisfying

∑K
k=1 λk = 1, 0 ≤ λk ≤ 1. Specifically, we learn all

intermediate barycenters simultaneously by parametrizing the transport maps {Tk}Kk=1 as functions of
the condition variable λ1:K , expressed as Tk(λ1:K , ·). Note that a similar conditioning on barycenter
weights is also employed in Algorithm 2 of (Fan et al., 2021).

With the learned conditional transport plan, we perform image manipulation through transforming
given image x ∼ Pk to the barycenter point y ∼ Qλ1:K

. In particular, we consider P1 and P2 as
collections of images of young individuals (age between 5 to 20) and elderly individuals (age of
over 50), respectively, from the FFHQ (Karras et al., 2019) dataset. It is important to note that
the ratios of females to males in P1 and P2 are approximately 1:2 and 3:1, respectively. Thus,
the data inherently exhibits class imbalance across the marginals. Here, we provide the precise
experimental settings:
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• Marginal distributions P1,P2. The marginal distributions P1,P2 consist of FFHQ images
of young individuals (5 < age < 20) and elderly individuals (age > 50). We randomly
partition each distribution into 90% for the training set and 10% for the test set.

• StyleGAN Manifold. Let G : W+ → R3×256×256 be the pretrained StyleGAN2-ada
(Karras et al., 2020) generator that maps W+ space to 256-dimensional images. Let
E : R3×256×256 →W+ be the pretrained FFHQ e4e encoder (Tov et al., 2021). Note that
E maps image x ∈ R3×256×256 to the corresponding vector w ∈ W+, i.e. G(w) ≈ x. Note
thatW+ ⊂ R18×512. To restrict our transformed images to FFHQ images, we parametrize
our transport map by follows: T θk (x) := G ◦ Sθk ◦ E(x) where x ∈ R3×256×256 and
Sθk : R18×512 → R18×512.

• General Transport Cost. To guide image manipulation in a meaningful direction, we adopt
a quadratic cost function in theW+ latent space, defined as:

c(x, y) = α∥E(y)− E(x)∥2. (26)

Here, we set α = 10−2.

• Network Parametrization. Let (λ1, λ2) := (1− t, t). To generate Qλ1:2
from x ∼ Pk, we

condition the transport map T θk with t as follows:

T θk (t, x) = G
(
Sθk(t, E(x))

)
. (27)

We parametrize Sθ1(t, z) = z + tNNθ1(t, z) and Sθ2(t, z) = z + (1 − t)NNθ2(t, z). Note
that Sθ1 and Sθ2 transports the latent vector of young individuals to barycenter point, latent
vector of elderly individuals to barycenter, respectively. Thus, we selected this heuristic
parametrization of Sθk to ensure that Sθ1(t, x) ≈ x when t ≈ 0 and Sθ2(t, y) ≈ y when t ≈ 1.
Furthermore, the potential functions f1, f2 are also conditioned by variable t as follows:

fϕ1 (t, x) =
V ϕ(t, E(x))

1− t
+mϕ(t), fϕ2 (t, x) = −

V ϕ(t, E(x))

t
+mϕ(t), (28)

where V ϕ : R× R18×512 → R. Note that (1− t)fϕ1 + tfϕ2 = mϕ(t). Here, mϕ(t) can be
regarded as the parametrization of the congruence constant at time t. To avoid the numerical
instability of (28) with respect to the time variable t, we sample t from a uniform distribution
within the interval [0.05, 0.95].

Results. As discussed, the two marginals P1,P2 exhibit a class imbalance with respect to gender.
P1 contains more than 60% of female individuals, while P2 consists of less than 30% of female
individuals. Thus, we evaluate the quantitative performance of our transport map by measuring how
well the transport map preserves gender in such a class imbalanced case. Specifically, we measure
the gender preservation accuracy when transforming a young individual x to barycenter T1(t, x) at
t = 0.9. For our model, we report the gender preservation accuracy for the accepted images. As a
comparison, we include the results from the NOTB method applied to the entire test dataset. For the
baseline model, we precompute the global latent direction vglobal := Ey∼P2 [E(y)]− Ex∼P1 [E(x)],
and measure the accuracy of the gender alignment between x ∼ P1 and x+ tvglobal.

Method Baseline NOTB U-NOTB
Acceptance Rate - - 67.9% (592 / 872)

Accuracy 69.8% (609 / 872) 63.4% (553 / 872) 88.0% (521 / 592)

Table 7: Gender preservation accuracy for x ∼ P1 and T1(t, x) at t = 0.9. U-NOTB can perform
rejection sampling to address class imbalancedness.

As shown in Table 7, our model achieves a significantly high accuracy of 88%, highly outperforming
other methods, which achieve less than 70%. This demonstrates that our model performs robustly
under class-imbalanced conditions. Moreover, only 36.1% of the accepted samples were female.
Given that over 60% of the data in P1 consisted of female samples, this result indicates that a
significant proportion of female samples were rejected to address the class imbalance. For qualitative
examples, please refer to Figure 5 and Figure 6.

Evaluation Metric. To classify the gender of images, we use the open python library called OpenCV.
Specifically, we adjusted the code from the following github address:
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(a) Accepted samples from P1. (b) Corresponding barycenter samples.

Figure 5: Examples of randomly selected (a) accepted samples of x ∼ P1 and (b) its corresponding
barycenter at t = 0.9. Note that the acceptance rate of U-NOTB is 67.9%. Approximately, 36% of
the accepted samples are female individuals.

Figure 6: Examples of rejected samples of U-NOTB. Approximately 80% of rejected samples are
female images.

https://github.com/smahesh29/Gender-and-Age-Detection

Implementation Details. We set (ψ̄1, ψ̄2) = (Softplus,Softplus) and τ = 0.1. We employ the
learning rate of 10−5, batch size of 4, and the total number of iterations of 5K. For all the networks
NNθ1,NNθ2, V

ϕ we employ the same embedding approach: the time variable t is embedded into 512-
dimension vector temb ∈ R1×512 through sinusoidal embedding, and concatenated with z ∈ R18×512.
For NNθ1,NNθ2, these embeddings are processed through two transformer layers, each with four
attention heads. Then, we pass through the linear layer with both input and output channels of 512,
resulting the output of size R18×512. For the potential V ϕ, we use pass through four transformer
layers, each with four attention heads. Then, we aggregate features by taking mean of the tokens,
which is then passed through the final linear layer. Additionally, for the network mϕ(t), we embed t
by sinusoidal embedding, and then pass it through 2-layered MLP.
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