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Meta graphical lasso: uncovering 
hidden interactions among latent 
mechanisms
Koji Maruhashi 1*, Hisashi Kashima 2, Satoru Miyano 3 & Heewon Park 3,4*

In complex systems, it’s crucial to uncover latent mechanisms and their context-dependent 
relationships. This is especially true in medical research, where identifying unknown cancer 
mechanisms and their impact on phenomena like drug resistance is vital. Directly observing these 
mechanisms is challenging due to measurement complexities, leading to an approach that infers 
latent mechanisms from observed variable distributions. Despite machine learning advancements 
enabling sophisticated generative models, their black-box nature complicates the interpretation 
of complex latent mechanisms. A promising method for understanding these mechanisms involves 
estimating latent factors through linear projection, though there’s no assurance that inferences made 
under specific conditions will remain valid across contexts. We propose a novel solution, suggesting 
data, even from systems appearing complex, can often be explained by sparse dependencies among 
a few common latent factors, regardless of the situation. This simplification allows for modeling that 
yields significant insights across diverse fields. We demonstrate this with datasets from finance, where 
we capture societal trends from stock price movements, and medicine, where we uncover new insights 
into cancer drug resistance through gene expression analysis.
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In guiding scientific discovery, it is crucial to estimate the latent mechanisms behind the generative process of 
observed data. For instance, in the financial domain, understanding the overall movement of a vast array of 
stock prices, not just individual stocks, through societal trends can lead to strategies that guide better futures 
across various domains. In the medical field, comprehending the behavior of tens of thousands of genes through 
underlying biological latent mechanisms, such as pathways, can help understand the essence of complex cancer 
metastasis, invasion, and drug resistance, contributing to the establishment of unprecedented treatment methods.

One approach to estimating these latent mechanisms is through learning the data’s generative model. In the 
realm of machine learning research, numerous methods have been proposed for learning generative models 
from extensive observational  data1–3. While these methods often provide models that can accurately reconstruct 
data, their black-box nature makes it difficult for humans to understand what the latent mechanisms are. To 
address this, some methods have been proposed to learn models associated with known  mechanisms4,5, but find-
ing unknown mechanisms remains challenging, limiting the potential for new insights. Therefore, a method is 
needed that allows humans to intuitively understand and accurately explain the data’s generative process through 
latent mechanisms.

Extracting latent factors through linear projection is one promising method for deriving latent mechanisms 
from data with tens of thousands of variables. Principal Component Analysis (PCA)6 and Independent Compo-
nent Analysis (ICA)7 are typical methods in this regard. These methods can provide clues to the global structure 
behind the data, facilitating human comprehension. However, these methods assume that latent factors are 
orthogonal or independent, complicating the modeling of interactions between latent mechanisms. Addition-
ally, there is no guarantee that latent mechanisms identified under one situation will apply to datasets observed 
in another situation. Methods have also been proposed that estimate latent factors assuming they have sparse 
interactions among  themselves8,9, allowing some degree of modeling between hidden mechanisms’ interactions, 
but their applicability across different datasets is not guaranteed.
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An alternative approach involves estimating the dependencies among all observed variables first, and then 
inferring common latent mechanisms across datasets based on the structure of these dependencies. Assuming 
a Gaussian distribution for the data, the precision matrix represents the dependencies between variables. That 
is, for two variables that are conditionally independent, the corresponding value in the precision matrix is zero, 
whereas for variables that are dependent on each other, the value is non-zero. Graphical  Lasso10,11 assumes spar-
sity in these dependencies and employs an L1 regularization (LASSO) on the precision matrix for estimation. 
However, as the number of variables increases, the dependencies become more complex, making it challenging 
for humans to understand the overall picture and infer hidden mechanisms. Assuming in advance that there 
are common or similar structures across datasets, methods have been proposed to estimate the dependencies 
among observed variables across multiple datasets  simultaneously12,13. Some of these methods involve clustering 
the observed variables into common groups across datasets and then estimating the dependencies within each 
cluster, assuming sparsity in these  dependencies14. The groups of variables identified using these methods can 
be considered as common hidden mechanisms across datasets. However, the dependencies among these hidden 
mechanisms still need to be understood in terms of individual variable dependencies, making it challenging for 
humans to comprehend. Furthermore, methods that rigorously estimate these individual variable dependencies 
require computational resources proportional to at least the number of variable combinations, making it difficult 
to compute for data with tens of thousands of variables.

To solve these problems, we propose a new method named Meta Graphical Lasso (MGLASSO), which enables 
the estimation of easily understandable latent mechanisms (Fig. 1). We assume that even data generated based 
on seemingly complex systems can be explained by a few latent factors. A key difference from traditional latent 
factor methods is that our latent factors are common across multiple datasets, and we assume that there are sparse 
dependencies between a few latent factors within each dataset, whereas the remaining latent factors are white 
noise. Based on this assumption, we propose a Gaussian distribution-based graphical modeling that assumes 
common latent factors and sparse dependencies between them across multiple datasets. This model is learned 
using an algorithm that combines the well-known Graphical  Lasso11 with gradient descent on Stiefel  Manifolds15. 
It should be noted that calculating the dependencies among a small number of latent factors is significantly faster 
compared to the conventional methods that compute the dependencies among all variables. We demonstrate 

Figure 1.  Overview of the proposed method. (a) There are multiple datasets observed under different contexts, 
each containing a large number of variables (here, 100). It is important to note that this plot visualizes only the 
dimensions corresponding to three observed variables (X0, X1, X2). The red line represents the projection in 
the three-dimensional space of latent factors (Y0, Y1, Y2) identified by the proposed method, Meta Graphical 
Lasso (MGLASSO), which discovers common latent factors across different contexts. (b) Based on the variance-
covariance structure among the variables ( X0,X1, . . . ,X99 ), it is possible to estimate sparse dependencies 
between variables using Graphical Lasso (GLASSO). However, even with 100 variables, the dependencies 
are too complex to identify latent mechanisms common across all datasets. (c) MGLASSO identifies a few 
latent factors (Y0, Y1, Y2) with sparse dependencies across any dataset, and treats the remaining latent factors 
( Y3,Y4, . . . ,Y99 ) as white noise with uniform variance. This facilitates the easy understanding of common 
latent mechanisms and their variations in dependencies across all datasets by humans.
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through experiments with synthetic data that traditional latent factor estimation methods cannot accurately 
estimate sparse dependencies between latent factors, whereas our method can generally accurately estimate them.

While this modeling based on very simple assumptions does not precisely represent the reality of genera-
tive mechanisms, we empirically demonstrate that it can lead to surprisingly rich insights using real-world data 
from diverse domains. One example is in the financial domain, where we report the results applied to several 
years’ worth of movements of thousands of stocks in the US market. We show that the overall movement of 
stock prices across the entire US market can be explained by a few key societal trends, going beyond traditional 
local analysis focused on individual stock movements to open new possibilities for comprehensive analysis from 
massive amounts of stocks. Another example is in the medical domain, where we report the application results 
to a dataset of gene expression levels related to drug resistance in lung cancer. We show that several stages of 
drug resistance can be understood through variations in interactions between a few common latent factors. 
This allows us to capture comprehensive interactions between biological processes that could not be discovered 
through individual gene interaction analysis, marking a significant advancement in understanding the essence 
of cancer drug resistance mechanisms and paving the way for developing more fundamental cancer treatments.

Our contributions can be summarized as follows:

• We propose a new graphical model, Meta Graphical Lasso (MGLASSO), that allows for understanding the 
generative process of datasets observed in various situations through a very simple assumption, namely, the 
sparse interactions between common latent mechanisms.

• We provide an algorithm that combines the well-known Graphical Lasso with gradient descent on Stiefel 
Manifolds to learn our proposed model. We demonstrate through synthetic data that our method can model 
more accurately than traditional methods.

• We empirically demonstrate the universal effectiveness of our method using datasets from two entirely dif-
ferent domains, namely finance and medicine. These results open the possibility of global analysis that can 
comprehensively understand all observed variables, moving beyond traditional local analysis based on a few 
specific observed variables.

Following, we define the problem we address in “Preliminaries”, and propose our method in “Proposed method”. 
We then evaluate performance using synthetic data in “Empirical results”, and demonstrate how our method 
brings rich insights from large data in two different real-world domains: finance and medicine. Finally, we 
conclude in “Conclusion”.

Preliminaries
Notations
Scalar quantities are represented by lowercase letters (e.g., a), vectors are indicated by boldface lowercase letters 
(e.g., a ), and matrices are signified by boldface uppercase letters (e.g., A ). The ith element of a vector a is denoted 
as ai . The transpose of a matrix A is represented as AT . tr(A) denotes the trace of A , |A| represents the determinant 
of A , and |A|1 is the L1 norm of A , i.e., the sum of the absolute values of the element of A . sign(A) represents a 
matrix that indicates the sign of each element in A , i.e., positive elements are marked with +1 , negative elements 
with −1 , and zero elements are assigned another value. The identity matrix is denoted by I , while 1 and 0 represent 
vectors or matrices filled with ones and zeros, respectively. The notation �·, ·� is used to denote the inner product. 
Element-wise operations, specifically multiplication and division, are represented by ∗ and ⊘ , respectively. The 
derivatives of a function E with respect to the elements of A are expressed as ∂E

∂A
.

Problem definition
In this work, we tackle the problem of estimating latent mechanisms through latent factors represented as linear 
projections of variables, based on data observed in multiple distinct contexts. We hypothesize that the dependen-
cies among latent mechanisms are sparse in each context. Consider that we are given K datasets, each observed 
under different conditions, with V variables. The kth dataset is represented by a matrix Xk of size V × Nk , 
containing observational data from Nk samples. Our problem is to represent the generative mechanism of the 
variables across these K datasets using an interpretable model that captures the sparse dependencies between 
a small number of latent factors, M, represented through the linear projection of variables, and to provide an 
efficient method for learning this model.

Sparse Gaussian graphical models
In the domain of high-dimensional data analysis, particularly when dealing with datasets that comprise N obser-
vations across V variables, represented as a matrix X of dimensions V × N , the estimation of a sparse inverse 
covariance matrix, or precision matrix, �−1 , becomes paramount. The Graphical Lasso algorithm, as delineated 
by Friedman et al.11, offers a robust solution to this challenge. This algorithm operates by optimizing an objec-
tive function designed to estimate �−1 in a manner that encourages sparsity, which is particularly beneficial 
in understanding the conditional independence structure among the variables. The objective function E to be 
minimized is the Gaussian log-likelihood of data given by:

where |�−1|1 enforces sparsity. The parameter ρ is a regularization coefficient that plays a crucial role in con-
trolling the degree of sparsity in �−1 , enabling the extraction of meaningful insights regarding the underlying 

(1)E =
1

N
tr(�−1

XX
T
)− log |�−1| + ρ|�−1|1,
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network of variable interactions. The optimal �−1 is obtained by solving ∂E
∂�

−1 = 0 , where the derivative of the 
objective function with respect to �−1 is given by

Solutions to this problem are known through the use of the Coordinate Descent  method11 and the Alternating 
Direction Method of Multipliers (ADMM)16.

Proposed method
In this section, we introduce a novel graphical model designed to estimate latent mechanisms common across 
datasets. Subsequently, we present a learning algorithm that combines the Graphical Lasso with gradient descent 
on Stiefel Manifolds, facilitating the efficient discovery of these latent factors.

Objective function
We propose a new graphical model, the Meta Graphical Lasso (MGLASSO). Our model projects observational 
data, which includes V variables, into a space formed by distinct basis vectors and applies a graphical model 
based on the Gaussian distribution within this projected space (Fig. 1). We assume the following: 

1. Latent factors represented through projection into an M-dimensional subspace possess arbitrary variances 
and exhibit sparse dependencies among themselves.

2. The remaining V −M dimensional subspace consists of white noise, meaning it contains only independent 
latent factors with a common variance.

Based on these assumptions, by searching for basis vectors that best explain the observed data, we expect to 
uncover M-dimensional subspaces with significant variance and sparse interdependencies across many datasets. 
As demonstrated in subsequent sections, modeling based on these remarkably simple assumptions can lead to 
astonishingly rich insights.

We define D as the V ×M projection matrix for projecting into the M-dimensional subspace and D̃ as the 
V × (V −M) projection matrix for the remaining subspace. The column vectors of D and D̃ , being basis vec-
tors, fulfill the orthonormal condition; that is, DT

D = I , D̃T
D̃ = I , and DT

D̃ = 0 . Under our assumptions, the 
projection of the kth dataset’s observed data, xk , adheres to a Gaussian distribution as shown by:

where �k is an M ×M matrix, and εk represents the common variance for latent factors in the V −M dimen-

sional subspace. 
(
DD̃

)
 and 

(
�k 0

0 εkI

)
 are block matrices of size V × V  . This equivalently means xk is distributed 

according to:

Given D̃D̃
T = I−DD

T , we can further express this as:

Consequently, the precision matrix is �−1
k = D�

−1
k DT + ε

−1
k (I− DDT

) . To enforce sparsity in the precision 
matrix of the M-dimensional latent factors, �−1

k  , we apply L1 regularization similar to the Graphical Lasso 
method. Hence, we define the Gaussian log-likelihood of data penalized by L1 regularization as:

and aim to minimize E =
∑

k Lk . This process estimates parameters εk , �−1
k  , and D , consistent with our model’s 

assumptions.

Learning algorithm
Given the objective function is non-convex, we propose a methodology for seeking local optima. As will be dem-
onstrated, εk and �−1

k  can compute the optimal solution that minimizes E when D is held fixed. Consequently, we 
propose an approach that iteratively updates εk and �−1

k  to their optimal solutions with D fixed, while optimizing 
D via stochastic gradient descent (SGD)17. The comprehensive algorithm is delineated in Algorithm 1.

Optimizing projection matrix on Stiefel manifolds
Firstly, we present a methodology for optimizing the projection matrix D via SGD. Since D satisfies the ortho-
normal condition DT

D = I , this optimization occurs on Stiefel Manifolds, a type of Riemannian  manifold15. 
Consequently, we adopt the simplified formulation introduced by Maruhashi et al.18 Specifically, we introduce a 
latent variable Z on the tangent space and utilize its Singular Value Decomposition (SVD)19,

(2)
∂E

∂�
−1

=
1

N
XXT − � + ρsign(�−1

).

(3)
(
DD̃

)T
xk ∼ N

(
0,

(
�k 0

0 εkI

))
,

(4)xk ∼ N

(
0,
(
DD̃

)(
�k 0

0 εkI

)(
DD̃

)T)
.

(5)xk ∼ N (0,�k), where�k = D�kD
T + εk(I− DDT

).

(6)Lk =
1

Nk
tr(�−1

k XkX
T
k )− log(

∣∣∣�−1
k

∣∣∣)+ ρ

∣∣∣�−1
k

∣∣∣
1
,
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to calculate D to pull back from the tangent space to the manifold as

subsequently optimizing Z using SGD. Here, PTP = I and QTQ = I , with S being a diagonal matrix with non-
diagonal elements set to zero.

Theorem 1 The gradient of the objective function E with respect to Z on the tangent space can be calculated as 
follows:

where

Proof According to Maruhashi et al.18, when Eqs. 7 and 8 are satisfied,

Assuming the previous D as Z implies that P = D and S = Q = I , thus,

By transforming this expression, we can derive Eq. (9). Furthermore, by differentiating Eq. (6) with respect to 
each element of D , we obtain Eq. (10).   �

We update Z on the tangent space using the gradient ∂E
∂Z

 , computed via Eq. (9). Subsequently, a new D is 
calculated to pull back from the tangent space to the manifold employing Eqs. (7) and (8). By iterating this 
process, we can optimize D.

Precision matrix for latent factors
Here, we address the optimal solution for �−1

k  when D is held fixed. The gradient of the objective function E 
with respect to �−1

k  is

The optimal solution for �−1
k  is obtained by solving ∂Lk

∂�
−1
k

= 0 , which aligns with the Graphical Lasso approach 
(Eq. 2) when the precision matrix is 1Nk

DTXkX
T
k D.

Common variance for remaining subspace
Furthermore, we describe the optimal solution for εk when D is held fixed. Considering

we derive

By setting ∂E
∂εk

= 0 , we compute

This formula allows for the computation of εk.

(7)Z = PSQT ,

(8)D = PQT ,

(9)
∂E

∂Z
=

∂E

∂D
−

1

2
D

(
DT ∂E

∂D
+

∂E

∂DT
D

)
,

(10)
∂E

∂D
=

∑

k

2

Nk
XkX

T
k D

(
�

−1
k − ε

−1
k I

)
.

(11)
∂E

∂Z
= P

[(
PT ∂E

∂D
Q − QT ∂E

∂DT
P

)
⊘ (S1+ 1S)

]
QT + (I − PPT

)

∂E

∂D
QS−1QT .

(12)
∂E

∂Z
=

1

2
D

(
DT ∂E

∂D
−

∂E

∂DT
D

)
+ (I − DDT

)

∂E

∂D
.

(13)
∂E

∂�
−1
k

=
1

Nk
DTXkX

T
k D −�k + ρsign(�−1

k ).

(14)log(|�−1
k |) = log(|�−1

k |)− (V −M) log(εk),

(15)
∂E

∂εk
= −

1

Nk

(
tr(XkX

T
k )− tr(DTXkX

T
k D)

)
ε
−2
k + (V −M)ε

−1
k .

(16)εk = (V −M)
−1 1

Nk

(
tr(XkX

T
k )− tr(DTXkX

T
k D)

)
.
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Algorithm 1.  Meta graphical Lasso (MGLASSO)

Convergence and initialization
While �−1

k  and εk can be optimized if D is fixed, D does not necessarily converge to an optimal solution. However, 
setting appropriate initial values for D can somewhat mitigate solution instability. We propose using the top M 
principal components obtained by applying PCA to the combined data of all datasets as the initial values for D. 
Adopting this initialization allows for stable solutions unaffected by the randomness of SGD due to mini-batches, 
as confirmed across all datasets used in the next section. Additionally, we demonstrate that for at least the two 
real-world datasets we handled, namely the Stock Price dataset and the Gene Expression dataset, similar conclu-
sions can be drawn even when D is randomly initialized (Supplementary Information).

Computational complexity
We discuss the time complexity of the proposed method. Here, noting that M < V , we describe the computational 
complexity per epoch. The computational complexity for εk , ∂E

∂D
 , and ∂E

∂Z
 is O(V(M

∑
k Nk +

∑
k Nk

2 +M2
)) . 

Additionally, the computational complexity for the graphical lasso, assuming the number of iterations is I, is 
at most O(IM3

) . Furthermore, performing SVD to obtain only the top M singular vectors of a matrix Z of size 
V ×M can be efficiently done in O(VM2

) using the well-known Lanczos  method20. Summarizing the above, the 
overall time complexity of the proposed method per epoch is O(V(M

∑
k Nk +

∑
k Nk

2 +M2
)+ IM3

) . This 
shows that the computational complexity is proportional to the number of variables even when V is very large, 
such as in gene expression data with tens of thousands of variables. For such data, methods that rigorously esti-
mate dependencies at the level of individual  variables14, which require computational complexity proportional 
to at least the number of variable combinations, are difficult to apply.

Parameter selection
We propose using the Bayesian Information Criterion (BIC)21 as a guideline for selecting the hyperparameters 
M and ρ in the proposed method. BIC is calculated as

where L is the likelihood function, n is the number of observations, and k is the number of independent vari-
ables. In the proposed method, L is given by E =

∑
k Lk , and n is 

∑
k Nk . The number of independent variables 

k is the sum of the number of non-zero elements in �−1
k  across all k (i.e., 

∑
k NNZ(�

−1
k ) ), the number of εk 

parameters (i.e., K), and the size of D , which is V ×M . Note that the degrees of freedom for D are reduced by 
M(M + 1)/2 due to the orthogonality constraint. Therefore, the number of independent variables k is given by ∑

k NNZ(�
−1
k )+ K + V ×M −M(M + 1)/2.

Empirical results
Synthesized dataset
Here, we utilize synthetic data generated based on latent factors with sparse dependencies to validate whether 
these sparse dependencies can be accurately estimated.

Data generation
We generate K datasets consisting of N samples, each containing V observed variables. These datasets share 
M common latent factors, among which we assume sparse dependencies. The procedure for generating these 
datasets is outlined below:

Creating latent factor To generate a matrix D that satisfies the orthonormal condition DTD = I , we first cre-
ate a matrix Z of the same size as D with random values sampled from a uniform distribution over [0, 1). Then, 
using P and Q obtained from SVD Z = PSQT , we generate D = PQT . Here, PTP = I and QTQ = I , where S is 
a square matrix with non-diagonal elements being zero.

(17)BIC = −2 ln (L)+ k ln(n),
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Generating precision matrix For each of the K datasets, we generate the precision matrix of latent factors, �−1
k  . 

Specifically, we first generate 20 M-dimensional vectors with random values sampled from a normal distribution 
with mean 0 and standard deviation 1. The precision matrix for these samples is then estimated using Graphical 
Lasso with an L1 regularization weight of 0.3, and this estimated matrix is designated as �−1

k .
Generating white noise The common variance εk for the remaining V −M dimensions of latent factors 

is generated as the absolute value of random values sampled from a normal distribution with mean 0 and 
standard deviation 0.1. This assumes that the variance of the remaining latent factors is smaller than that of the 
M-dimensional latent factors.

Synthesizing samples The covariance matrix �k is defined as �k = D�kD
T + εk(I − DDT

) , and N samples 
are drawn from a Gaussian distribution represented by N (0,�k).

In this experiment, the number of latent factors M is set to 10, and the number of datasets K is 10. The number 
of observed variables V is tested in variations of 100, 1000, and 10, 000. Additionally, the number of samples 
N is tested for 200 and 1000. The MGLASSO model is trained using SGD for 5000 epochs, ensuring sufficient 
convergence. The L1 regularization weight ρ is selected for each V and N to achieve sparsity levels comparable 
to the ground truth. The resultant latent factors are reordered to closely match the ground truth latent factors. 
Specifically, we first select the latent factor closest in Euclidean distance to any of the ground truth latent factors 
as its corresponding latent factor and subsequently match the remaining factors based on the closest Euclidean 
distance. We report the average results obtained from repeating this verification process 10 times.

Comparison methods
Our goal is to propose a method using latent factors derived through linear projection, which is one of the effec-
tive ways to infer latent mechanisms in a form easily understandable by humans. Therefore, we compare our pro-
posed method with the main traditional methods using latent factors through linear projection, such as PCA and 
ICA, to demonstrate that our approach can appropriately estimate the sparse dependencies among latent factors.

We apply traditional methods to the same synthetic data used in the evaluation of MGLASSO for our assess-
ment. However, since PCA and ICA can only consider a single dataset, we apply PCA and ICA to a concatenated 
dataset comprising all individual datasets to estimate latent factors. It was observed that directly concatenating 
leads to an inability to estimate the dependencies among latent factors of datasets other than those with signifi-
cant variance. Thus, we normalize the variance of the variables in each dataset to 1 before concatenation. For 
PCA, the major M principal components are regarded as latent factors. In the case of ICA, the M independent 
components extracted using the  FastICA7 algorithm are considered latent factors. Furthermore, similar to the 
procedure with MGLASSO, the estimated latent factors are reordered according to their correspondence with 
the ground truth. The estimated latent factors are then projected into an M-dimensional space using a projec-
tion matrix D′ , comprising column vectors of the latent factors, and a precision matrix is obtained by applying 
Graphical Lasso to each dataset.

Results on synthesized datasets
The results of the evaluation experiments using synthetic data are displayed in Table 1. Table 1 initially shows 
that a larger sample size N facilitates better alignment with the ground truth, however, increasing the number of 
observed variables V complicates this alignment. The proposed method consistently shows better results across 
all evaluation metrics compared to PCA or ICA. Notably, although the alignment of space projected by M latent 
factors (Space) is relatively good in PCA and ICA, the inner product of matched latent factors (Dist) and the 
Kullback-Leibler divergence of the Gaussian distributions (KLD) significantly outperform those in PCA or ICA. 
This indicates that, while PCA and ICA capture subspaces with a significant variance of latent factors, MGLASSO 
significantly excels in identifying latent factors from those subspaces with sparse dependencies across all datasets. 
It can also be confirmed that the KL divergence between the learned multivariate Gaussian distribution and the 
ground truth multivariate Gaussian distribution is smallest when M = 10 (Table 2).

An example of sparse dependencies in the estimated latent space is shown in Fig. 2, illustrating the case when 
V = 10, 000,N = 1000 . Here, the partial correlation coefficients, commonly used to understand dependencies 
between variables, are displayed. When the precision matrix is � , the partial correlation coefficient between the 
ith and jth variables is given by − �ij√

�ii
√

�jj
 . It is observed that PCA and ICA are largely unsuccessful in accurately 

estimating the ground truth dependencies. In contrast, MGLASSO is almost entirely successful in accurately 
estimating the ground truth dependencies.

In MGLASSO, the weight ρ for L1 regularization is confirmed to generally provide optimal BIC for each V 
and N (Table 3). Additionally, the number of latent factors M generally shows optimal BIC when M = 10 , which 
corresponds to the ground truth (Table 4). However, for V = 10, 000 , the smallest BIC is obtained with M = 5 , 
with M = 10 resulting in the next smallest BIC. Overall, these findings suggest that BIC serves as a reasonably 
good criterion for selecting ρ and M when the dataset adheres to the assumption of being generated based on a 
multivariate Gaussian distribution.

Experiments with synthetic data strongly suggest that accurately estimating sparse dependencies among latent 
factors across numerous datasets is extremely challenging with traditional methods of extracting latent factors, 
yet the proposed method is a potent solution to this challenge.

Stock price dataset
We demonstrate that our proposed method can unveil significant societal trends behind the movements of 
numerous stocks by applying it to data on the movements of a large number of stocks. We apply our method to 
stock price data from the US market from 2009 to 2015 downloaded from the corresponding URL (https:// github. 

https://github.com/eliangcs/pystock-data
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com/ elian gcs/ pysto ck- data), selecting V = 4, 234 stocks with data available on the same days. We use this data 
as datasets divided by year. Specifically, we create one dataset for each year from 2009 to 2015, each containing 
N0 = 252 , N1 = 252 , N2 = 252 , N3 = 250 , N4 = 252 , N5 = 252 , and N6 = 54 days, respectively. The stock prices 
are converted to logarithmic values and standardized so that the mean is 0 for each year. We use M = 10 as the 
number of latent factors, a number that is manageable for human analysis. For the L1 regularization weight, 
we adopt ρ = 3 , indicating moderate sparsity. It can be observed that the BIC shows better values compared to 
when using different ρ (Table 5). On the other hand, although the number of latent factors M does not always 
yield the best BIC, it provides relatively reasonable BIC values compared to poorly fitting models such as M = 2 
(see Supplementary Information). Considering that real-world data is not as simple as being represented by a 

Table 1.  Evaluation using synthetic data. Space: the degree of alignment with the ground truth of the space 
spanned by M latent factors. The mean and standard deviation of 10 trials are reported. The degree of space 
alignment is calculated as the sum of the singular values of the square matrix DTD′ , where D is the ground 
truth projection matrix and D′ is the estimated projection matrix. This represents the sum of inner products of 
corresponding basis vectors when D and D′ are rotated to maximize the sum of inner products of basis vectors, 
with a higher value indicating better alignment, and the maximum value of M = 10 taken when perfectly 
aligned. It’s noted that in ICA, latent factors are not necessarily orthogonal, hence the left singular vectors of D′ 
are computed and used for the basis vectors. Eps: the average difference of εk from the ground truth across all 
datasets. The mean and standard deviation of 10 trials are presented. Dist: the average inner product between 
M latent factors aligned according to the ground truth and the latent factors of the ground truth, averaged 
over M latent factors, and further averaged over K datasets. A value close to 1 signifies good correspondence 
between the ground truth and the latent factors. The mean and standard deviation of 10 trials are reported. 
KLD: the average Kullback–Leibler divergence of the Gaussian distributions N (0,�k) followed by M latent 
factors from the ground truth, averaged over K datasets. A value close to 0 indicates that the distribution of 
latent factors of the ground truth has been well estimated. The mean and standard deviation of 10 trials are 
reported. Significant values are in bold.

method V N ρ Space Eps Dist KLD

PCA 100 200 0.09 9.919 ± 0.013 0.00823 ± 0.01018 0.630 ± 0.051 0.121 ± 0.027

ICA 100 200 0.09 9.919 ± 0.013 0.00823 ± 0.01019 0.674 ± 0.058 0.098 ± 0.017

MGLASSO 100 200 0.09 9.963  ± 0.009 0.00681  ± 0.00618 0.958  ± 0.014 0.039  ± 0.008

PCA 100 1000 0.09 9.956 ± 0.005 0.00450 ± 0.00548 0.695 ± 0.043 0.094 ± 0.023

ICA 100 1000 0.09 9.956 ± 0.005 0.00450 ± 0.00548 0.773 ± 0.089 0.070 ± 0.015

MGLASSO 100 1000 0.06 9.993  ± 0.002 0.00438  ± 0.00602 0.992 ± 0.004 0.015  ± 0.003

PCA 1000 200 0.09 9.543 ± 0.124 0.00731 ± 0.01563 0.643 ± 0.040 0.136 ± 0.024

ICA 1000 200 0.09 9.543 ± 0.125 0.00731 ± 0.01563 0.647 ± 0.052 0.121 ± 0.028

MGLASSO 1000 200 0.09 9.576 ± 0.095 0.00216 ± 0.00174 0.912 ± 0.036 0.048 ± 0.019

PCA 1000 1000 0.09 9.920 ± 0.012 0.00107 ± 0.00109 0.729 ± 0.070 0.085 ± 0.029

ICA 1000 1000 0.09 9.920 ± 0.012 0.00107 ± 0.00109 0.778 ± 0.096 0.068 ± 0.021

MGLASSO 1000 1000 0.06 9.927 ± 0.012 0.00126 ± 0.00139 0.985 ± 0.005 0.016 ± 0.005

PCA 10,000 200 0.09 7.279 ± 0.517 0.00127 ± 0.00088 0.459 ± 0.040 0.152 ± 0.020

ICA 10,000 200 0.09 7.278 ± 0.517 0.00127 ± 0.00089 0.480 ± 0.059 0.155 ± 0.026

MGLASSO 10,000 200 0.09 7.363 ± 0.473 0.00080 ± 0.00032 0.649 ± 0.096 0.133 ± 0.081

PCA 10,000 1000 0.09 9.312 ± 0.116 0.00025 ± 0.00018 0.679 ± 0.071 0.098 ± 0.021

ICA 10,000 1000 0.09 9.312 ± 0.116 0.00025 ± 0.00018 0.737 ± 0.066 0.079 ± 0.014

MGLASSO 10,000 1000 0.06 9.331 ± 0.105 0.00025 ± 0.00015 0.925 ± 0.012 0.016 ± 0.006

Table 2.  KL divergence between the multivariate Gaussian distribution N (0,�k) with different M obtained 
using MGLASSO and that of the ground truth for synthetic data. The table shows the average values over five 
trials and indicates that the KL divergence is smallest when M = 10 , which corresponds to the ground truth 
(bold).

V N ρ M = 5 M = 10 M = 20

100 200 0.09 3.3590× 102 3.2840× 10
2 3.3770× 102

100 1000 0.06 3.8278× 102 3.7131× 10
2 3.8055× 102

1000 200 0.09 3.6268× 103 3.6169× 10
3 3.6302× 103

1000 1000 0.06 4.3129× 103 4.3112× 10
3 4.3205× 103

10,000 200 0.09 4.4532× 104 4.4521× 10
4 4.4539× 104

10,000 1000 0.06 4.1279× 104 4.1267× 10
4 4.1274× 104

https://github.com/eliangcs/pystock-data
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Table 3.  BIC values for MGLASSO applied to synthetic data using different ρ. The table shows the average 
values over five trials. The ρ values that yield sparsity levels similar to the ground truth are in italics. It can be 
observed that BIC is generally optimal when ρ is chosen in this manner. Significant values are in bold.

V N ρ = 0.03 ρ = 0.06 ρ = 0.09

100 200 2.9708× 105 2.9643× 105 2.9614 × 105

100 1000 1.1667× 106 1.1661 × 106
1.1661× 106

1000 200 2.2391× 106 2.2385× 106 2.2381 ×106

1000 1000 1.1539× 107 1.1536 × 107 1.1537× 107

10,000 200 1.8425× 107 1.8426× 107 1.8424 × 107

10,000 1000 1.0128× 108 1.0128 × 108
1.0128× 10

8

Table 4.  BIC values when applying MGLASSO with different M on synthetic data. The table shows the 
average values over five trials. It is observed that BIC is generally optimal for the ground truth M = 10 (italics). 
However, for V = 10, 000 , M = 5 is optimal, with M = 10 showing the next smallest value. Significant values 
are in bold.

V N ρ M = 5 M = 10 M = 20

100 200 0.09 3.1822× 105 2.9614 × 105 2.9995× 105

100 1000 0.06 1.3371× 106 1.1661 × 106
1.1727× 106

1000 200 0.09 2.2434× 106 2.2381 × 106
2.2822× 106

1000 1000 0.06 1.1607× 107 1.1536 × 107 1.1541× 107

10,000 200 0.09 1.8145× 10
7 1.8424 × 107 1.9042× 107

10,000 1000 0.06 1.0110× 10
8 1.0128 × 108

1.0202× 108

Figure 2.  Graphical representation of the dependencies between latent factors estimated from synthetic data. 
Edges represent non-zero partial correlation coefficients between latent factors, with blue edges indicating 
positive partial correlations and red edges indicating negative ones. The thickness of an edge corresponds to the 
magnitude of the absolute value of the partial correlation coefficient. Additionally, the size of a node reflects the 
variance of the latent factor, that is, the magnitude of the diagonal elements in the covariance matrix. PCA and 
ICA fail to accurately capture the ground truth dependencies, whereas MGLASSO successfully approximates 
them with high fidelity. GT ground truth, MGLASSO, PCA, ICA dependencies between latent factors estimated 
using MGLASSO, PCA, and ICA, respectively.

Table 5.  BIC values for MGLASSO applied to U.S. stock price data and gene expression data using different ρ
. The table shows that the BIC is optimal for the ρ values selected in this evaluation experiment, as indicated by 
the bold entries.

Dataset ρ = 3 ρ = 30 ρ = 300

Stock price −1.2629× 10
7 −1.2625× 107 −1.2624× 107

Gene expression 3.1412× 107 3.1410× 10
7 3.141× 107



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:18105  | https://doi.org/10.1038/s41598-024-68959-7

www.nature.com/scientificreports/

single multivariate Gaussian distribution, it can be said that striving for the best BIC and other criteria is not 
very meaningful. Therefore, from the perspective of interpretability, we provide an analysis using M = 10 in this 
case. The model is learned over 5,000 steps using stochastic gradient descent.

Figure 3 shows the daily magnitude of latent factors estimated using the projection matrix derived by MGL-
ASSO. Latent factors with clear trends and those without can be observed each year, with factors showing clear 
trends likely having dependencies on that year. This suggests that our method proactively extracts latent factors 
that become sparsely dependent annually. Indeed, years with significant variance in latent factors can be seen 
from Fig. 4. Moreover, the sparsity of dependencies between latent factors can be confirmed from Fig. 5. Thus, 
our method successfully extracts latent factors that show significant movements each year and demonstrate 
sparse dependencies annually.

Table 6 presents the characteristics of stocks that significantly contribute to each latent factor. In this data, 
all stocks are classified by sector, and stocks within each sector are further categorized by industry. Analyzing 
the behavior of latent factors shown in Fig. 3,  4, and  5 based on these characteristics leads to the following 
interpretations: 

1. Latent factor #1 is associated with the “Other Precious Metals & Mining Silver” industry, and latent factor 
#3 is linked to the “Electronic Components” industry. In 2010, these industries showed a dependency rela-
tionship, which reversed by 2012. This could reflect the impact of significant international contexts, such 
as China’s export restrictions on rare metals in 2010 and the tensions over rare metals between the US and 
Europe in  201222.

2. Latent factor #8 is strongly related to the energy sector, particularly the “Oil & Gas Drilling” industry, showing 
significant movements in 2012 and 2014. This period marked a crucial phase for the U.S. oil and gas drilling 

Table 6.  Sectors and industries significantly associated with the 10 latent factors identified by MGLASSO 
from US stock price data. Initially, stocks with linear projection weights deviating more than two standard 
deviations from their mean are classified as characteristic stock groups for each latent factor, based on the 
sign (positive or negative) of their linear projection weights. A log-likelihood ratio test is then conducted 
between these characteristic groups of stocks and all sectors, identifying sectors with a p-value less than 0.05. 
Additionally, within these sectors, a log-likelihood ratio test is performed between the characteristic groups 
of stocks and industries, marking industries with a p-value less than 0.05. Sectors or industries without any 
associated p-values less than 0.05 are denoted by ’–’.

Latent factors p/n Sector p-value Industry p-value

0
pos Basic materials 0.006 –

neg – –

1

pos Healthcare <0.001 Biotechnology 0.002

neg Basic materials 0.005 Other precious metals & Mining <0.001

Communication services 0.036 –

2

pos Basic materials <0.001 Gold <0.001

Healthcare <0.001 Biotechnology <0.001

neg Healthcare <0.001 Biotechnology 0.049

Communication services 0.043 - -

3

pos Healthcare <0.001 Biotechnology 0.012

neg Technology <0.001 Electronic components <0.001

Healthcare 0.026 –

4
pos Basic materials <0.001 Gold 0.011

neg Healthcare <0.001 –

5

pos Consumer cyclical <0.001 –

Healthcare 0.008 –

neg – –

6

pos Healthcare <0.001 Biotechnology 0.049

Technology 0.035 Communication Equipment 0.029

neg - -

7

pos Healthcare <0.001 Biotechnology 0.007

neg Communication services <0.001 Entertainment 0.024

Publishing <0.001

8

pos Energy <0.001 Oil & gas drilling 0.020

Basic Materials 0.003 Other Precious Metals & Mining <0.001

neg Healthcare 0.004 Biotechnology <0.001

9
pos Healthcare <0.001 Biotechnology 0.006

neg Healthcare 0.001 –



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:18105  | https://doi.org/10.1038/s41598-024-68959-7

www.nature.com/scientificreports/

industry, notably due to the “Shale Revolution,” which garnered significant attention for its rapid production 
increases, economic benefits, and environmental  impacts23. Additionally, latent variable #9, moving in strong 
correlation with #8 in the same years, is closely associated with healthcare, suggesting potential insights from 
companies related to both sectors.

3. Latent factor #2 is strongly associated with the “Gold” industry and exhibited significant variation in 2013. 
While gold prices are influenced by various factors and are difficult to attribute to any single cause, 2013 was 
marked by significant government interventions in gold prices, potentially reflecting these actions’ strong 
impact.

Figure 3.  Daily plots of the values of latent factors extracted by MGLASSO. Horizontal axis: Days arranged in 
chronological order. Vertical axis: Values of the latent factors.

Figure 4.  The variances of the latent factors estimated from US stock price data. (A) The variance of latent 
factors, i.e., the diagonal components of the covariance matrix �k of latent factors, plotted annually. (B) The 
common variance εk of the remaining latent factors plotted annually.

Figure 5.  Graph representation of the dependency among latent factors estimated from the stock price data 
of the United States. Edges represent the nonzero partial correlation coefficients between latent factors. Blue 
edges indicate positive, and red edges indicate negative partial correlation coefficients, with the thickness of the 
edges representing the magnitude of the absolute value of the partial correlation coefficients. Additionally, the 
size of the nodes reflects the variance of the latent factors, i.e., the magnitude of the diagonal components of the 
covariance matrix.
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4. Latent variables #0 and #5 experienced significant fluctuations with a strong dependency relationship 
between them in 2009 and 2011. Since no closely related industry could be identified for these latent vari-
ables, the analysis presents challenges. However, examining related companies from different perspectives 
may yield intriguing insights.

Such insights could never be obtained from traditional analyses focused solely on the movements of a few repre-
sentative stocks. Additionally, while stock price movements are strongly influenced by major societal situations 
occurring each year, it is challenging to understand stock price movements over several years with a consist-
ent societal situation by identifying major latent factors annually. Our proposed method provides a consistent 
explanation for all stock price movements over a certain period, including several years, and objectively estimates 
major societal situations affecting stock prices through characteristic interactions each year, without being hin-
dered by experts’ preconceptions.

Gene expression dataset
We demonstrate that applying our proposed method to gene expression data of cancer cells observed in actual 
drug resistance of cancer yields surprisingly profound insights.

Pathway network analysis for uncovering mechanisms of acquired 5-FU resistance
We apply our method to analyze pathway networks varying depending 5-Fluorouracil (5-FU) sensitivities of cell 
lines for uncovering the mechanisms of acquired 5-FU resistance of cancer cell lines. We use dataset from the 
“Sanger Genomics of Drug Sensitivity in Cancer (GDSC) dataset from the Cancer Genome Project (downloaded 
from “https:// www. cance rrxge ne. org/ downl oads/ bulk download”), i.e., expression levels of V = 17, 737 genes 
for 1018 cell lines and IC50 values of anti-cancer drugs. We focus on the 5-FU that is a chemotherapeutic drug 
commonly used for solid  cancers24. The dataset is divided into four bins according to the value of IC50 of 5-FU, 
i.e., samples with IC50 of (−∞,−σ) (B1), [−σ , 0) (B2), [0, σ) (B3), [σ ,∞) (B4), where σ is the standard devia-
tion of IC50 values. The datasets B1, B2, B3, and B4 include N0 = 160 , N1 = 266 , N2 = 305 , and N3 = 160 cell 
lines, respectively. We try M = 20 as the feasible number of latent factors for humans to analyze the dependen-
cies between the factors, and extract the 20 latent factors by using the MGLASSO. We choose ρ = 30 so that 
the graph of dependencies between the latent factors is sparse enough but not completely independent of each 
other. As with the Stock Price dataset, it can be observed that the BIC shows better values compared to when 
using different ρ (Table 5). On the other hand, although the number of latent factors M does not always yield 
the best BIC (see Supplementary Information), from the perspective of interpretability, we provide an analysis 
using M = 20 in this case, similar to the approach taken with the Stock Price dataset. The model is trained by 
SGD with 20, 000 epochs. Note that we observe that the loss function seems almost completely converged at the 
15, 000 epoch and few dependencies are added or removed after that. Additionally, the resulting D , εk and �−1

k  
are almost the same for three trials.

We perform the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to reveal biological 
pathways behind the latent factors. For the 100 genes having the largest scores of each latent factor, KEGG path-
way analysis is performed. Table 7 shows the most enriched pathways of each latent factor (i.e., each pathway 
shows the smallest p.value). That is, the latent factors can be interpreted as the corresponding biological pathways, 
and the 20 pathways in Table 7 may be crucial to understand molecular mechanisms of 5-FU resistance of cancer 
cell lines. In order to uncover molecular mechanism of the 5-FU resistance of cancer cell lines hidden behind the 
molecular interplays between thousands of genes, we construct the networks of the extracted 20 latent factors 
(i.e., pathway networks). Figure 7 shows the estimated pathway networks varying depending on 5-FU sensitivity. 
The variances of these factors in each bin are shown in Fig. 6.

We focus on the following interactions between the latent factors.

Figure 6.  The variances of the latent factors estimated from gene expression data. (A) The variance of latent 
factors, i.e., the diagonal components of the covariance matrix �k of latent factors, plotted annually. (B) The 
common variance εk of the remaining latent factors plotted annually.

https://www.cancerrxgene.org/downloads/bulk
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Table 7.  The most enriched pathways of 20 latent factors.

Latent factor The most enriched pathway

0 hsa04512:ECM-receptor interaction

1 hsa04510:Focal adhesion

2 hsa04145:Phagosome

3 hsa04915:Estrogen signaling pathway

4 hsa04110:Cell cycle

5 hsa04916:Melanogenesis

6 hsa05202:Transcriptional misregulation in cancer

7 hsa05202:Transcriptional misregulation in cancer

8 hsa05222:Small cell lung cancer

9 hsa05202:Transcriptional misregulation in cancer

10 hsa04610:Complement and coagulation cascades

11 hsa04974:Protein digestion and absorption

12 hsa04612:Antigen processing and presentation

13 hsa05146:Amoebiasis

14 hsa04110:Cell cycle

15 hsa04350:TGF-beta signaling pathway

16 hsa05204:Chemical carcinogenesis—DNA adducts

17 hsa03250:Viral life cycle—HIV-1

18 hsa04064:NF-kappa B signaling pathway

19 hsa05416:Viral myocarditis

Figure 7.  Networks of latent factors of expression levels of genes corresponding from 5-FU sensitive to 
resistance cell lines (i.e., B1 → B2 → B3 → B4), where each edge indicates the partial correlation, the element of 
the precision matrix divided by the square root of the corresponding diagonal element. Blue edges indicate the 
positive partial correlations and red edges indicate the negative. The size of the nodes indicates the variances of 
the latent factors, the diagonal elements of the covariance matrix.
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• 0 (hsa04512: ECM-receptor interaction) and 2 (hsa04145: phagosome)
• 2 (hsa04145: phagosome) and 6 (hsa05202: transcriptional misregulation in cancer)
• 2 (hsa04145: phagosome) and 12 (hsa04612: antigen processing and presentation)
• 1 (hsa04510: focal adhesion) and 11 (hsa04974: protein digestion and absorption)

The positive interaction between the latent factors “0 (hsa04512: ECM-receptor interaction) and 2 (hsa04145: 
phagosome)” can be considered as 5-FU sensitive specific characteristic. The strong positive interaction becomes 
weaker from 5-FU-sensitive to non-sensitive cell lines, and the interaction disappeared in 5-FU resistant cell lines 
( i.e., B4). Furthermore, the interaction between the latent factors “2 (hsa04145: phagosome) and 6 (hsa05202: 
transcriptional misregulation in cancer)” and “2 (hsa04145: phagosome) and 12 (hsa04612: antigen processing 
and presentation)” are also considered as the 5-FU sensitive specific interplays. We also consider the interaction 
between the latent factors “1 (hsa04510: focal adhesion) and 11 (hsa04974: protein digestion and absorption)” 
as a crucial interplay for uncovering the mechanisms of 5-FU sensitivity in cancer cell lines, because the nega-
tive interaction in 5-FU sensitive cell lines ( i.e., B1) disappeared in B2, and becomes the positive interaction in 
5-FU resistance cell lines (B3 and B4).

In the gene regulatory network, the hub genes connected with many other genes are considered as crucial 
markers that play vital roles in biological process and gene  regulation25. Thus, the hub-pathway can be also 
considered a crucial marker in the pathway networks. The hubness of the pathways “hsa04145: phagosome”, 
“hsa05202: transcriptional misregulation in cancer” and “hsa04612: antigen processing and presentation” are 
considered as 5-FU sensitive specific characteristic, while the their hubnesses disappeared in 5-FU resistance 
cell lines. It implies that their activities are 5-FU sensitive specific characteristics.

Table 8 shows the enriched genes in the identified pathways, where the column “Evidences” indicates previ-
ous studies that recovered the pathways as key components to understand the mechanisms of gastric cancer 
and/or 5-FU.

• hsa04145: Phagosome
  Guo et al.26 demonstrated that TPM4 expression is related to 5-FU drug sensitivity and TPM4 is a target 

to predict the 5-FU sensitivity in gastric cancer. The positively co-expressed genes with TPM4 are enriched 
in “hsa04145: Phagosome” and “hsa05202: Transcriptional misregulation in cancer”. Differentially expres-
sion genes (DEGs) between fluorouracil-resistant and -sensitive gastric cell lines are enriched in the pathway 
“hsa04145: Phagosome”28.

• hsa05202: Transcriptional misregulation in cancer
  This pathway was identified as one of biological process of DEGs between multi-drug resistance cell (i.e., 

5-FU, paclitaxel, mitomycin, vinorelbine tartrate, cisplatin and gemcitabine) and cisplatin resistance  cell29.
• hsa04612: Antigen processing and presentation
  The putative targets of DEGs between control and treatment with 5-FU involve in “hsa04612: Antigen 

processing and presentation”27.

It can be seen through the Table 8 that the identified pathways have strong evidences as crucial pathways to 
understand the 5-FU sensitivity. It implies that the proposed MGLASSO provides biologically reliable results 
for identifying crucial pathways to understand the complex mechanisms of 5-FU resistance of cancer cell lines.

Figure 8 shows expression levels of the genes enriched in the 5-FU sensitive-specific pathways, where red and 
blue boxes indicate expression levels in 5-FU sensitive and resistance cell lines, respectively. The enriched genes in 
drug sensitive-specific pathways show relatively high expression levels in 5-FU sensitive cell lines compared with 

Table 8.  The enriched genes of the pathways and evidences related to 5-FU sensitivity, where ∗ indicates the 
5-FU sensitive-specific pathways (ı.e., their strong interactions and hubness are observed in the networks of 
5-FU sensitive cell lines).

KEGG pathway Genes Evidences

 ECM-receptor interaction
SDC4, LAMB3, ITGA2,

26

LAMA3, LAMC2, CD44

 Focal adhesion
COL1A2, CAV1, TNC,

26,27

FN1, VEGFC, COL6A3, MYLK

 ∗Phagosome

TUBB2B, NCF4, ITGB2,
26,28HLA-B, HLA-DRA, CYBA,

CORO1A, CTSS, HLA-DPA1

 ∗Transcriptional misregulation in cancer
LYL1, CCNA1, HOXA9, HHEX,

29,30

BCL11B, FLT3, LMO2, MPO, ELANE

 Protein digestion and absorption
COL17A1, COL16A1, COL1A2,

26

COL4A2, COL5A1, COL7A1, COL6A3

 ∗Antigen processing and presentation
CD74, HLA-DRA, IFI30,

27

HSPA1A, HLA-DPA1
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resistance cell lines. Furthermore, high expression variances of the genes can be also observed in drug sensitive 
cell lines. In short, the enriched genes in 5-FU sensitive-specific pathways show high activities and diversity in 
drug sensitive cell lines. It implies that the identified pathways and enriched genes may have key information to 
uncover 5-FU sensitive/resistance mechanisms of cancer cell lines.

We suggest though our results and literature that catalyzing the identified 5-FU-specific sensitive pathways 
(hsa04145: Phagosome, hsa05202: Transcriptional misregulation in cancer, hsa04612: Antigen processing and 
presentation) and expressions of the enriched genes in the pathways may play crucial roles to prevent acquisition 
of 5-FU resistance of cancer cells.

To the best of our knowledge, this is the first computational study on biological pathways network for uncov-
ering mechanisms of acquired drug resistance of cancer cell lines. We expect that our method will be a useful tool 
to reveal complex biological mechanisms hidden behind molecular interplays between giant number of genes.

Conclusion
Even when a multitude of variables appear to interact in complex and seemingly distinct ways across various 
situations, it is possible to comprehend the essential generative mechanisms of a complex system by identifying 
common mechanisms underlying these situations and interpreting each situation through the interactions among 
these common mechanisms. We proposed a novel method for extracting latent factors through linear projection, 
which is one of the primary methods for estimating generative mechanisms that are comprehensible to humans. 
Our approach assumes that the generative mechanisms of multiple datasets can be broadly explained by sparse 
dependencies among a few common latent factors. It models the data distribution as a Gaussian distribution, 
hypothesizing common latent factors across datasets, with dataset-specific sparse dependencies among these 
latent factors, learned through an algorithm that combines Graphical Lasso with gradient descent on Stiefel 
Manifolds. Experiments with synthetic data demonstrated that, whereas traditional latent factor extraction 
methods based on linear projection fail to estimate dependencies among latent factors, our proposed method 
can accurately do so. Although our assumption is simplistic and not capable of detailed explanations of complex 
systems, we showed with data from two vastly different domains-finance and healthcare-that this simple assump-
tion could lead to surprisingly rich insights. In the financial domain, we discovered from the data of thousands 
of stock prices over several years that these prices were strongly influenced by notable societal trends during 
that period. In the healthcare domain, we demonstrated that gene expression data from cancer cells with varying 
degrees of drug resistance could provide comprehensive insights and new findings on the molecular mechanisms 
of drug resistance acquisition. However, the proposed method has several limitations. For instance, there is no 
guarantee of convergence to the optimal solution. Additionally, the assumption behind setting the same ρ for all 
datasets is that factors influencing sparsity estimation, such as the number of samples and the variance of each 
variable, are approximately equal across all datasets. Furthermore, like some previous  works12–14, the proposed 
method could potentially be improved by assuming similarity in the dependencies between variables across 
datasets. Addressing these issues remains a topic for future work. We are continuing efforts to enhance the 

Figure 8.  Expression levels of genes in 5-FU sensitive-specific pathways, where red and blue boxes indicate 
5-FU sensitive (ST) and resistance (RS) cell lines, respectively.
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flexibility and scalability of our proposed method and expect that its application across a broad range of fields 
will open pathways from local analyses of relationships among a few variables to global analyses of interactions 
across all variables.

Data availability
 The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request. The source code for the proposed algorithm is available at https:// github. com/ maruc ozy/ 
mglas so.
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