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ABSTRACT

Parallel LLM inference scaling involves sampling a set of N > 1 responses for
a single input prompt. However, these [V parallel responses tend to be generated
independently from each other, partitioning compute resources and leaving poten-
tially useful information in one generation untapped by others. This is in contrast
to response length scaling where past computation is used in all future steps. For
higher quality responses and response sets, we propose Bridge to generate inter-
dependent responses in parallel by rethinking batched LLM hidden states as holis-
tic tensors rather than independent slices. With only a small amount (2.8%-5.1%)
of new parameters, Bridge improves the relative mean accuracy gains from re-
inforcement learning with verifiable rewards by up to 39% and boosts consistency
of correct responses. Trained once, Bridge scales to any generation width, all
with greater performance than independent generations, unlocking a more general
mode of parallel scaling that effectively leverages information between sequences,

compatible with any post-generation aggregation technique.

1 INTRODUCTION

Scaling inference-time compute has given large
language models (LLMs) substantial leaps in
performance on difficult tasks. Many scal-
ing methods concentrate resources to gener-
ate a single high-quality response such as with
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substeps (Rodionov et al.| [2025; |[Yang et al.|
2025b). However, there are also instances
where a high-quality ser of responses for each
input is needed, such as in the case of output
synthesis, best-of-N selection, and synthetic
data generation. Scaling this in a parallel man-
ner is traditionally done by Monte Carlo sam-
pling independent generations. Consequently,
each generation is ignorant of the other rollouts,
despite answering the same prompt. Indepen-
dent generations for the same prompt leave po-
tentially useful information derived from other
responses unutilized, limiting the performance
ceiling. In contrast, sequentially scaling CoTs
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Figure 1: LLM hidden states are 3-D tensors,
where attention and feedforward blocks explicitly
transfer information between tokens and features,
respectively. By instead treating parallel scaling
generations as a single tensor rather than indepen-
dent slices, our method, Bridge, operates along
the batch axis, so that tokens from all sequences
that share the same prompt can share information
throughout generation.

ensures each sampled token can play a role in the final output. Motivated by the potential of shared
information across parallel generations stemming from the same prompt, we aim to leverage these
interactions to enhance and generalize parallel inference scaling.

*Work done during an internship at Meta
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There has been progress in integrating parallel dependence for inference, such as breaking down
reasoning steps into parallel paths (Rodionov et al., 2025} |[Pan et al.| [2025a} Jin et al.| 2025} [Yang
et al., [2025b)). There, parallel computation is funneled into a single output, useful for generating
one response but not a set of responses. Even so, they highlight the potential of mid-generation
interactions between sequences. We seek to extend parallel scaling with interdependence, which
allows all IV output sequences for one prompt to use all the compute and information available, not
just a single isolated partition. Thus, the challenge is finding a totally parallel method that uses N
simultaneous threads to generate N responses with interdependence without extensive post-training.

Looking at LLM hidden states operations reveals a clue to overcome these challenges (Figure [I).
For batch size B, sequence length .S, and hidden dimension D, the hidden states per forward pass
has 3-D shape B x S x D. Attention and feedforward blocks blend information throughout each
S x D slice with the batch axis kept independent. Even minor inter-sample interactions like Batch
Normalizations (Ioffe & Szegedy, 2015) were substituted with Layer Normalizations (Ba et al.,
2016). While this is natural for heterogeneous batches where samples with wildly different inputs
can be fed together without interference, parallel scaling, which draws many responses from a single
input, exhibits uniquely homogeneous structure as each output stems from the same input. Hence,
there is the potential for useful information transfer during the generation process which we exploit.

We introduce Bridge (Batch reasoning with interdependent generations), a method that shares
information across tokens that stem from the same prompt in a batch for parallel scaling with in-
terdependent generations. With a minor architectural change to LLMs, each token generated in a
batch can depend on tokens in other generation threads with the same prompt. In turn, our method
improves reasoning performance evaluated both at the individual response level (accuracy) and re-
sponse set level (coverage and G-Pass@k. (Liu et al.l 2025)). Furthermore, our method focuses
on generation, so any post-generation aggregation technique can be used. We push the following
advancements for parallel scaling:

1. Parallelism with Dependence: Instead of generating in isolated silos, Bridge allows
information to flow between sequences while maintaining complete generation parallelism.
Thus, inference compute is pooled together for all tokens, rather than being partitioned.
Bridge significantly increases the final performance after reinforcement learning with
verifiable rewards (RLVR) on 12 benchmarks using multiple reasoning models.

2. Low Cost: By adding only 2.8% to 5.1% additional parameters, and warming up on a small
supervised fine tuning (SFT) dataset (e.g. GSM8K (Cobbe et al., 2021)), Bridge already
significantly improves the effectiveness of RLVR.

3. Versatility: Bridge has no restriction on the width of parallelism and is robust to train-
time and test-time width discrepancies. Trained once, all tested widths outperform indepen-
dent generations in terms of accuracy, coverage, and consistency. Furthermore, Bridge
does not rely on any heuristics or interventions at any point in the generation process.

Our extensive experiments on multiple models and tasks show that Bridge effectively shares in-
formation across multiple generations for the same input. For example, our method improves the
relative benefit of RLVR on DeepSeek-R1-Distill-Qwen-7B by 39% averaged over 7 math tasks,
compared to the next best method. With the same model, Bridge also increases the rate at which
all responses to a single competition math problem are correct from 15.0% to 17.8%.

Paper Organization. In Section [2] we cover relevant background on test-time scaling with an
emphasis on parallel scaling. Then, we introduce Bridge in Section[3] detailing the algorithm, the
training pipeline, and its implications. We demonstrate Bridge’s efficacy on a variety of reasoning
datasets, evaluated both on sample-wise accuracy and on global response set quality in Section [4]
We go further and provide a thorough investigation of our method including varying the generation
width, sequence length extrapolation, learned features, and output analysis in Section @.3]

2 BACKGROUND & RELATED WORKS

We start with an overview of test-time scaling methods for LLMs, emphasizing parallel methods.
Although some methods combine parallel generations into one response, the problem of generating
a high-quality set of interdependent responses, which we aim to tackle, remains understudied.
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Test-time Scaling. In part due to the success of scaling LLM training (Kaplan et al., 2020; [Hott-
mann et al.,[2022)), there has been a growing interest in quantifying how far scaling LLM inference-
time compute can push performance, especially on difficult reasoning tasks. The main axes of infer-
ence scaling are generation length and the number of generations. To scale generation length, LLMs
are encouraged to produce long CoTs before arriving at a final answer (Guo et al.|[2025} |Yang et al.,
2025a; Muennighoff et al., 2025) which is usually of higher quality than shorter CoTs. In the case of
extreme generation lengths, there appears to be diminishing or even negative returns, suggesting a
limitation of current models to scale indefinitely along this axis (Gema et al., [2025)). To scale along
the number of generations axis, LLMs can output multiple responses for a single query, increasing
the probability of a high quality response being generated (Brown et al., 2024} Snell et al.| [2024; [Wu
et al.| 2024; [Manvi et al., 2024; Sun et al., [2024} Dong et al.l [2025). However, independent gener-
ations divide computational resources among themselves, oblivious to each other’s progress, which
leads to less significant performance gain with additional compute than length scaling (Mirtaheri
et al.,2025)). To promote parallel exploration during training, training with a Pass@¥k objective has
shown promise which could be an interesting extension to our method (Chen et al.,|2025b).

Post-generation Synthesis. Instead of selecting one response from a pool of candidate responses,
some works investigate ways to synthesize multiple responses together. One way is to take an
unweighted or weighted majority vote across responses (Wang et al., 2022; |Uesato et al., 2022;
Lightman et al.| 2023} |Li et al.,[2023)), but this is geared mainly for discrete answers, and an effective
synthesis of reasoning traces remains unclear. There are also approaches where multiple responses
are concatenated and fed into an LLM to extract or combine information (Chen et al.| 2023} Q1
et al., 2025 [Zhao et al., 2025). Our work’s focus is on the generation phase, so many of these
post-generation aggregation techniques can be seamlessly integrated.

Mid-generation Synthesis/Pruning. There has also been some work in developing techniques to
share information across outputs mid-generation. For instance, Hogwild! Inference (Rodionov et al.,
2025)) and Group Think (Hsu et al., |2025) share key-value caches across generation runs to collab-
orate and decompose tasks into subtasks. Similarly, some methods concatenate outputs of parallel
processes to aid in the main decoding thread (Pan et al.| 2025a; Jin et al., [2025;|Yang et al., 2025bj
Macfarlane et al., [2025). Training from scratch, ParScale (Chen et al.l [2025a) fans outs an input
into multiple paths within the model architecture then aggregates them to predict the next token.
Whereas these previous methods funnel resources of N parallel processes to produce one output,
our method uses N parallel processes to simultaneously generate N high quality outputs. This way,
our design integrates inter-output dependency mid-generation while producing different responses
simultaneously, flexibly suitable for post-generation synthesis, RLVR training, and synthetic data
generation. Another line of work involves stopping unpromising outputs mid-generation to devote
more resources to other parallel generations (Fu et al., 2025 |Sun et al., [2024). These works show
excellent reductions in compute, and composing them with our method is of interest for future work.

High Order Tensors. Multiple works that have observed richer representations in tensors than
their flattened matrix counterparts (Kolda & Bader, 2009} Papalexakis et al., 2016)). Converting this
observation into tractable algorithms remains a major area of research in theory (Tong et al.| 2022;
Dong et al., 2023c}; |[Luo & Zhang| [2023; |Qin et al., 2025) and practice (Ho et al., [2019; [Dong et al.,
2023b). We take inspiration from these works to diffuse information throughout the entire LLM
hidden states tensor instead of being constrained to matrix slices.

3 BRIDGE: CONNECTING GENERATION PATHS

Sharing information between samples mid-generation in the latent space gives rise to a couple tech-
nical challenges. One is finding an effective and efficient way to achieve this. Attention and feedfor-
ward blocks already pose serious static and dynamic memory bottlenecks, which we want to avoid
accentuating while still improving accuracy. Second, we also need versatility to allow for any num-
ber of parallel generations at test-time. Bridge overcomes these challenges with small attention-
like blocks that fit into any LLM. We begin with a description of Bridge, its connections, and its
implications in Section[3.1] followed by SFT warm up (Section[3.2) and RLVR (Section[3.3) details.
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Figure 2: Our method design. (Left) A Bridge block and input normalization layer are added after
each feedforward block. (Right) A timestep’s tokens stemming from the same input prompt attend
to each other in Bridge blocks, denoted by the arrows. Dotted arrows illustrate all the locations
of information transfer to different sequences in a Markovian fashion (token features only at the
current timestep are shared to predict the next timestep’s tokens). Attention is masked for tokens
from different prompts and from completed generations. White squares are masked cells.

3.1 BrRIDGE ARCHITECTURE

We introduce Bridge, a new transformer (Vaswani et al., [2017) block that introduces dependence
between samples in a batch. At a high level, Bridge performs attention between tokens, which
share the same prompt and do not come from completed generations, in a batch at each timestep.
We summarize our method in Figure [2]and Algorithm [T}

To start, we first describe self-attention layers. Define hidden states X' & RB*SXD for batch size B,
sequence length S, and hidden dimension D. Let [X];,. . and [X]. ;. be the b-th and s-th 2-D slices
along the batch and sequence axes, respectively. Self-attention, parameterized by Wy o, Wak €
RP*Dok and Wy v, WAT o € RP*Dvo g calculated independently for each sample b:

Qrp = [X]p,. . Wi, Ky, = [X]p,. . Wak, Vay = [Xp,. . Way,
[Atin(X)]s,... = Softmax(Maska (Qa s K4 ;) VapWa 0. (1)

cRSxS

Bridge blocks are similar, but attention between samples is calculated independently for each
token index s. Letting Wy o, Wg x € RP*Po< and Wy v, Wy, € RP*Pvo,

QB,S - [X]-,s,-WB,Qv KB,S - [X]-,s,-WB,Ka ‘/B,s = [X]-,s,-WB,Vv
[Bridge(X)]. s, = Softmax(Masks(Qp K3 ,)) Vi, W0 2)

GRB X B
There are 3 key differences between usual self-attention and Bridge beyond a transposition of X':

* Instead of a decoder mask, Bridge applies an attention mask that omits attention to to-
kens from sequences stemming from different prompts and sequences that have completed
generation. See Figure [2]for an example.

* No positional encoding is used to preserve sample position invariance.

* Without attention to previous tokens, Bridge’s Markovian design does not maintain a
key-value cache.

We place a Bridge block after each feedforward block with a residual stream and input normaliza-
tion layer that mimics existing blocks, shown in Figure 2] Bridge is active during the prefill stage
too, but since all hidden states for the same input are identical, Bridge blocks act as linear layers.
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Figure 3: Warm up procedure. The original LLM generates candidate traces which are filtered by
correctness and compiled into a dataset. SFT on this generated dataset only updates new parameters.
The P-Match baseline substitutes Bridge blocks with MLPs matched in parameter count.
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Connection to Efficient Attention for Tensors. Bridge unlocks the ability for an LLM to treat
a batch of LLM hidden states as a 3-D (B x S x D) structure rather than a stack of independent
2-D slices. In this way, the inputs are analogous to images, and the decoding process is like au-
toregressively generating additional columns. With this interpretation, Bridge applying attention
operations on different axes of an input is similar to axial attention (Ho et al., |2019) which was
introduced first in computer vision to accelerate encoder attention but has since seen wide success in
various applications such as in medicine (Azad et al., [2024), materials science (Dong et al.| 2023a),
and algorithm discovery (Fawzi et al., 2022).

Generation Interdependence. For B independent rollouts we sample the next token oy, 511 from

p(ob,s—i-l |Q7 Ob,l:s)

for sample b, timestep s, input prompt g, and previously generated tokens 0 1.s. With Bridge, the
next token distribution becomes

p<0b,s+1 Iq, {Ob’71:s}l§:1)

for each sample b. Conditioned on past tokens, Bridge preserves independence between tokens at
the same timestep, which allows next token sampling to still be performed in parallel:

(0by,s41 AL 0b,,541) {0 15 Y=y TOr by # bo.

3.2 SFT WARM UP

While RLVR can be immediately applied with Bridge since these new blocks are initialized to
have no contribution, we can also optionally warm them up with SFT for more sufficient training
and better downstream performance. A desirable SFT dataset would include many reasoning traces
to one prompt. To stay close to the original LLM’s generation distribution, we create SFT datasets by
first responding to prompts from an existing math dataset. Then, traces are filtered for correctness.
During training, these correct traces are fed together in the same batch to warm up Bridge blocks
with SFT. All other parameters are frozen. Figure [3]illustrates the warm up procedure, and Table ]
explores more in-depth on the benefits of warm up.

3.3 RLVR OBIJECTIVE

We train LLMs with Bridge using GRPO (Shao et al 2024). We use a variant specified by [Yu
et al.| (2025) which performs token-level normalization to reduce length bias. Letting the group size

be G, the advantage of the i-th output o; to input ¢ with reward r; is A; % Then,

for clipping threshold ¢, hyperparameter 3, and policy my parameterized by 6, the objective is

G oil

J(0) = Zz{mm[ (6) Ay, clip(Ri,5(0),1 = €1+ €)Ai] — BDg(mol|mo,,) }

z 1|01 i=1 s=1
3)

where

79(0i,s4, {0j,1:5-1}51)

T 001 (Oi,s |qv {Ojﬁllsfl}]c‘;:l) ’

Ri,s (9) =
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The key differences from the GRPO objective (and its variants) and our objective are not formulaic
but rather inherently induced from the architecture of Bridge. Namely, the ratio and KL diver-
gence terms now contain inter-sample dependence between relevant samples, breaking the original
assumption of independent trajectories. By linking the advantages and logits in a group, the loss
and gradients per output are intertwined with other outputs’ that share the same prompt. In other
words, gradients from all sequences, containing both positive and negative advantages, are back-
propagated through each sequence because of Bridge blocks. Further considerations with this
setup are discussed in Appendix [C] Since Bridge is just an architectural change, training is not
just limited to SFT and RLVR for reasoning problems. For instance, Bridge may also be applied
for reinforcement learning from human feedback (RLHF) which is an interesting future direction.

-1

4 EXPERIMENTS

We now showcase the benefit of Bridge across multiple models and math reasoning benchmarks.
After describing our setup in Section 4.1 we first show that applying RLVR with Bridge blocks
improves accuracy more than other methods. For instance, DeepSeek-R1-Distill-Qwen-7B with
Bridge blocks observes a relative 39% further improvement with RLVR than the next best method
(Section F.2.T)). Then, in Section [#.2.2] we demonstrate that Bridge also improves the output set
quality across several metrics in terms of coverage and correctness consistency. Finally, in Sec-
tion[4.3] we highlight some important characteristics of our method including the versatility of gen-
eration width, length extrapolation, benefit of warm up, feature contributions, and output stability.

4.1 EXPERIMENTAL SETTINGS

Models and Baselines. We test Bridge on DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-
Distill-Qwen-7B, and DeepSeek-R 1-Distill-Llama-8B, which we abbreviate to DS-Qwen-1.5B, DS-
Qwen-7B, and DS-Llama-8B, respectively (Dubey et al.,|2024; |Yang et al.| 2024; |Guo et al.| [2025)).
We use 4 query and key-value attention heads for Bridge, each with the same dimension as the
original model’s head dimension. This only adds 5.1%, 2.8%, and 3.4% extra parameters on top
of the original DS-Qwen-1.5B, DS-Qwen-7B, and DS-Llama-8B models, respectively. Table [/|in
Appendix [B] lists the exact parameter counts. Our parameter-matched baseline which we call “P-
Match” adds 2-layer MLPs of the same size in the same positions as Bridge blocks which serves
to show the limited effect of just adding parameters. Matched in parameter count, P-Match and
Bridge are also trained with the same warm up and RLVR pipeline. Both methods are initialized
to have zero contribution.

Training. For the SFT warm up stage, we first use the original LLM to generate 8 response for
each GSMSK (Cobbe et al.l[2021)) problem and then filter out incorrect responses and problems with
one or fewer correct responses. We train only the additional parameters with Bridge and P-Match
on this custom dataset for 5 epochs and keeping the best checkpoint according to the perplexity on
500 validation problems (and their corresponding set of correct reasoning traces). This checkpoint
is inserted in the model for RLVR where we train the full model on DeepScaleR-Preview-Dataset
(Luo et al.| 2025)) for 1000 gradient steps. DS-Qwen-1.5B is trained with generation width 8 while
the others were trained with 4. The only reward is correctness of the generation. Our training
hyperparameters are listed in Appendix [A]

Evaluation. We evaluate Bridge on 7 math benchmarks (MATH-500 (Hendrycks et al., 2021}
Lightman et al. [2023), AIME24, AIME25 (AIME, [2025), AMC23 (AMC, [2023), BRUMO25
(BRUMO, 2025)), CMIMC25 (CMIMC}, 2025)), and HMMT_FEB25 (HMMT]}, 2025))) and 5 chal-
lenging non-math benchmarks (XSum (Narayan et al) [2018), CNN/DailyMail (Hermann et al.,
2015} [See et al., |2017), GPQA (Rein et al., 2024)), ZebraLogic (Lin et al., 2025)), and Countdown
(Pan et al.| |2025b)). Evaluating MATH-500 on every 100 training steps, the checkpoint with the
highest validation accuracy is used to test on the remaining benchmarks. We evaluate across 4 re-
sponses per MATH-500 sample and 32 responses per sample from the other benchmarks. Sampling
temperature and top-p are set to 0.6 and 0.95, respectively. We set the generation width of Bridge
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Table 1: Accuracy comparison across math benchmarks. In each section, the 4 rows from top to
bottom are the performance of the original model, RLVR applied on the original model, P-Match
(extra MLPs) with SFT warm up and RLVR, and Bridge with SFT warm up and RLVR. The 2
rightmost columns show the average across all benchmarks and the average improvement over the
original model. MATH-500, AMC23, BRUMO25, CMIMC25, and HMMT_FEB?25 are abbreviated
to MATH, AMC, BRU, CMI, and HMMT, respectively.

Model MATH AIME24/25 AMC BRU CMI HMMT Avg TA
DS-Qwen-1.5B  73.65 13.75/13.44 50.00 18.12 4.30 8.23 25.93 0.00
RLVR only 78.75 17.40/18.44 6055 18.54 3.83 7.50 29.29 3.36
P-Match 78.65 18.12/19.17 60.62 2094 5.08 8.54 30.16 4.23
Bridge 81.30 20.11/20.00 60.55 21.36 5.63 9.79 31.25 5.32
DS-Qwen-7B 82.15 23.44/21.88 66.02 23.75 5.63 11.98  33.55 0.00
RLVR only 88.15 29.06/23.85 7430 2833 797 12.60 3775 4.20
P-Match 86.80 28.85/25.73 70.47 26.77 6.25 11.87 36.68 3.13
Bridge 88.15 32.19/2541 177.65 3021 9.77 1240 39.40 5.85
DS-Llama-8B 7340 1542/13.12 5797 15.62 273 8.23 26.64 0.00
RLVR only 76.70  18.12/18.12 63.44 1583 5.47 10.52  29.74 3.10
P-Match 78.00 22.29/20.21 61.80 17.81 5.08 11.67 3098 4.34
Bridge 80.15 24.76/18.18 6636 1991 6.02 1193 3247 583

to 8 for all tasks except MATH-500, which we set to 4 since we only evaluate on 4 responses per
sample. We adapt our evaluations from the Lighteval framework (Habib et al., 2023)).

4.2 REASONING PERFORMANCE

Here, we show the performance improvements of our method Br i dge which leverages inter-sample
information sharing for high quality generations. We evaluate performance both on per-output accu-
racy (Section4.2.1)) and macroscopically, on the set of outputs generated per prompt (Section4.2.2]).

4.2.1 ACCURACY

Beginning with standard accuracy (Pass@1), we compare the performance of the original model,
original model with RLVR, P-Match with SFT and RLVR, and Bridge with SFT and RLVR on
several math benchmarks. Results in Table [I|show that in nearly all cases and on average, Bridge
obtains the highest accuracy compared to all other methods. In particular, the average performance
improvements of our method on the original model is 26%, 39%, and 34% relatively more than that
of the next best method on DS-Qwen-1.5B, DS-Qwen-7B, and DS-Llama-8B models, respectively.
P-Match with parameter counts pegged to Bridge improves accuracy from just pure RLVR most
of the time but is much more inconsistent, such as in the case of DS-Qwen-7B. This indicates that
the superior performance of Bridge is not solely attributed to additional parameters. Furthermore,
even though DS-Qwen-7B and DS-Llama-8B were trained with generation width 4, the evaluation
results with width 8 are still stronger than the other independent sampling methods, showing the
robustness of Bridge. In addition, the improvement by Bridge is greater for larger models, and
scaling up to even larger ones remains of interest for future work. Although we train Bridge solely
on math, we observe no degradation and sometimes improvement on non-math tasks (Table E])

4.2.2 SET EVALUATIONS

Zooming out, we show Bridge also improves the consistency and coverage (i.e., the percentage
of questions that have at least 1 correct response in the response set) across multiple generation
attempts. To evaluate the set of responses to a single input, we use the G-Pass@Fk, (Liu et al.}
2025)) metric, which paints a more holistic picture of model potential (coverage) and consistency.
Whereas Pass@F is the probability of a correct output in k responses, G-Pass@Fk. is the probability
of 0 < 7 < 1 fraction of k responses being correct. More formally, for n responses and ¢ correct
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Table 2: Evaluations on non-math tasks. Note that our training procedure only used math samples.
Rouge-1 2004) scores are reported for summarization (XSum and CNN/DailyMail). Average
accuracies are reported for GPQA, ZebralLogic, and Countdown.

Model XSum CNN/DailyMail GPQA ZebralLogic Countdown
DS-Qwen-1.5B  15.72 22.11 33.14 30.90 28.77
RLVR only 14.81 22.79 3245 30.90 28.15
P-Match 15.90 22.78 32.51 32.55 31.36
Bridge 17.17 24.07 33.90 33.15 34.84
DS-Qwen-7B 18.03 24.19 43.94 40.00 49.55
RLVR only 17.24 23.52 43.56 41.25 49.93
P-Match 18.13 23.76 43.75 42.95 46.91
Bridge 18.16 24.55 45.77 42.60 52.70
DS-Llama-8B 18.23 23.84 35.80 41.25 14.04
RLVR only 2.25 1.65 39.46 43.25 29.23
P-Match 19.67 23.01 38.83 43.50 32.32
Bridge 18.04 22.64 39.65 44.70 32.51

1 Correct out of 8 2 Correct out of 8 4 Correct out of 8 8 Correct out of 8

il IIH IR Ili i ’ =§f€€‘fglyﬂ-i
- 1 B 11 1 1 i
. H ] I

0- 0- 0- 0-
DS-Qwen-1.58 DS-Qwen-7B  DS-Llama-88 DS-Qwen-1.58 DS-Qwen-7B  DS-Llama-88 DS-Qwen-1.58 DS-Qwen-7B  DS-Llama-8B DS-Qwen-1.58 DS-Qwen-7B  DS-Llama-8B

Figure 4: G-Pass@8, averaged across AIME24, AIME25, AMC23, BRUMO25, CMIMC?25, and
HMMT_FEB25. Each chart measures the minimum number of correct answers (7 - k) out of £ = 8
simultaneous responses. Bridge has the greatest coverage (7 - kK = 1) and answers correctly most
consistently (7 - £ > 1) in the vast majority of cases. Higher is better.

responses,
- (nf—Lc)
(%)

As 7 — 0, G-Pass @k is simply the coverage. On the other extreme, G-Pass@F£; is the probability
that all k responses are correct.

Pass@k = E

1 ) G-Pass@k, = E zc: w

W

From Figure ] Bridge achieves higher G-Pass@8 values for nearly all values of 7 and models.
This demonstrates that Bridge can achieve greater coverage without spreading out its responses to
many incorrect answers. In other words, not only do Bridge blocks increase the probability of a
correct response in the response set more than the other methods, they also increase the frequency
at which they occur. Again, we note that Qwen-7B and DS-Llama-8B were trained with generation
width 4 yet they generalize well to evaluation width 8.

4.3 ABLATIONS AND ANALYSIS

Generation Width. The design of Bridge allows complete flexibility in the number of parallel
generations, or generation width w, due to the removal of positional encoding. Here, we show its
generalizability to other widths on DS-Qwen-7B which was trained on a width of 4 with RLVR.
In Table [3] in all cases where w > 1, Bridge outperforms P-Match in terms of task-wise and
global average accuracy. We also investigate the effect of w on set quality in Figure 5] Again,
we generally see a vast improvement upon the original model and P-Match with w > 1 for all
G-Pass @8, settings. These results show not only the benefit of sharing information via Bridge
but also the generalizability to widths wider and thinner than its training width. At the extreme of
w = 1, equivalent to independent generations, results in average accuracy that falls between RLVR
only and P-Match, indicating that Bridge blocks do not harm independent reasoning.
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Table 3: Accuracy across 32 samples of varying Bridge generation widths, w, with DS-Qwen-
7B which was trained at width 4 with RLVR. A Bridge width of 1 is equivalent to independent
generation. Tasks are abbreviated as described in Tablem

Method AIME24 AIME25 AMC BRU CMI HMMT Avg TA
DS-Qwen-7B 23.44 21.88 66.02 2375 5.63 11.98 2545 0.00
RLVR only 29.06 23.85 7430 2833 797 12.60  29.35 3.90
P-Match 28.85 25.73 7047 26777  6.25 11.87 2832 287

Bridge (w =1) 28.13 24.48 7485 28.02 9.07 11.77 2939 3.94
Bridge (w =4) 31.57 25.63 76.93 28.65 10.16 13.13 31.01 5.56
Bridge (w = 8) 32.19 2541 77.65 3021 9.77 1240  31.28 5.82
Bridge (w = 16) 32.92 25.11 75.70 30.63 8.21 12.50  30.85 5.40

P-Match

Bridge (w = 1)
B Bridge (w = 4)

8 W Bridge (w = 8)
[ |

Bridge (w = 16)
0 I. I. I. I. Il
1 2 4 6 8

Correct out of 8

10

G-Pass@8 Improvement
I

Figure 5: G-Pass@8, improvement upon the original DS-Qwen-7B model averaged across
AIME24, AIME25, AMC23, BRUMO25, CMIMC25, and HMMT_FEB25 with relation to the eval-
uation generation width w of Bridge. The x-axis (7 - k) indicates the number of responses out of
k = 8 that must be correct.

Generation Length. Bridge also shows strong generalizability along the length axis. We
demonstrate its performance as we extrapolate beyond its training length of 4096, again measur-
ing both individual and set performance. From Figure [6] our method scales smoothly and better
than the other baselines in most cases. At the individual response level, our method achieves the
highest accuracy across all generation lengths. At the set level, Bridge blocks increase the number
of sets that only had correct answers by 6.0% compared to the next best at 16K generation length,
illustrating our method’s consistency to generate correct answers.

Cold Start vs. Warm up. Warming up Bridge blocks with SFT prior to RLVR outlined in
Section [3.2] leads to improvements in performance, shown in Table @] The slight improvement
implies that although it is prefered to warm up these new layers, it is not catastrophic if RLVR is
applied directly from initialization.

Table 4: Accuracy comparison between cold start RLVR and RLVR with SFT warmed up Bridge
blocks in DS-Qwen-7B. Tasks are abbreviated as described in Table[I] 16 responses were collected
per task except MATH-500 in which 4 were collected.

MATH AIME24/25 AMC BRU CMI HMMT Avg

Cold Start 88.70  33.13/26.67 77.19 29.80 7.04 12.09  39.23
Warmedup  88.15 33.75/25.63 7797 30.21 10.00 13.13 39.83

Feature Contribution. Having shown the improved performance brought by Bridge, we now
briefly peer into the effect that it has on LLM hidden states. We measure this by finding the ratio
between the output norm of each block with the corresponding residual norm of each token, with
lower values suggesting relatively little effect on the residual features (Figure [7). Surprisingly,
we find Bridge blocks contribute little compared to its counterpart in P-Match, despite having a
significant impact on the performance.
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Output Stability. We additionally measure the effect of Bridge on the output tokens in Table[5]
First, we find the average pair-wise BERTScores (Zhang et al.,[2019) between MATH-500 responses,
where higher scores indicate more similar output sequences. Our method has a slightly higher
BERTScore, meaning Br i dge marginally increases output similarity but crucially does not collapse
the distribution of outputs. Second, we measure the variance in the evaluation results for different
responses to the same prompt. For this, we turn to summarization tasks where the evaluation metric
(Rouge) of a single response is more fine-grained than the binary nature of math tasks. With the
lowest variance, Bridge produces outputs with the most consistent quality.

Table 5: DS-Qwen-7B BERTScores (F1) for MATH-500 and Rouge-1 variances of summarization
tasks. Higher BERTScores indicate greater similarity of outputs.

MATH-500 BERTScore CNN/DailyMail Variance ~XSum Variance

DS-Owen-7B 89.93 16.14 21.21
RLVR only 90.06 27.96 33.15
P-Match 89.89 16.09 22.29
Bridge 90.41 14.44 20.23

5 CONCLUSION

To generalize and enhance parallel inference scaling for LLMs, we introduce Bridge, a novel
and inexpensive architectural addition to LLMs that allows parallel generations for the same in-
put to share information with each other throughout the decoding process. We demonstrate that
our method improves both single sample accuracy and set-wise quality across multiple models and
several reasoning tasks. We achieve this by rethinking hidden states in parallel scaling as higher
order tensors rather than disjoint slices. With this interpretation, this also plants the seeds for many
exciting future directions such as observing the the effect of Bridge blocks during pretraining
or mid-training, post-training with a Pass@Fk (Chen et al., [2025b)) or another global objective, and
quantifying the benefit on other modalities and tasks which can exhibit different levels of output

homogeneity (Jain et al.| 2025)). Such directions will push parallel scaling as a much more effective
axis of LLM inference scaling.
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A TRAINING HYPERPARAMETERS

Table[6]lists the hyperparameters used for RLVR and SFT.

Table 6: Training hyperparameters.

Hyperparameter RLVR  SFT & Warmup Data Generation
Mixed precision BF16 BF16
Optimizer AdamW AdamW
KL penalty le-3 N/A
Learning rate le-6 2e-5
LR scheduler constant linear
LR warmup 10% 10%
Training steps 1000 varies
Batch size (rollouts x samples) 448 32
Rollouts per sample 8 [2,8]
Total samples 7000 varies
Max length 4096 2048
Steps per rollout 8 N/A
Temperature 0.6 0.6
Heads 4 4
Generation width 4or8 [2,4]

B PARAMETER COUNT BREAKDOWN

Bridge has a low memory cost, adding relatively very few parameters (2.8% to 5.1%) to LLMs.
Table[7|shows the exact parameter counts for each model.

Table 7: Distribution of parameters (B) across embedding/head, attention (Attn), feedforward (FF),
and Bridge blocks.

Model Embed & Head Attn FF Bridge Orig. Total New Total
DS-Qwen-1.5B 0.47 0.15 1.16 0.09 1.78 1.86
DS-Qwen-7B 1.09 0.82 5.70 0.21 7.62 7.82
DS-Llama-8B 1.05 1.34 5.64 0.27 8.03 8.30

C FURTHER GRPO CONSIDERATIONS

While our method inserts dependence between sequence and therefore their corresponding rewards,
the sample permutation invariance of Bridge blocks means the unconditional rewards are still
identically distributed. This implies

re— 1 G s ) 1 .
E(A) =F [ - new=tU ) g ( L w i)
std(r1,...,7q) std(r1,...,7¢)
preserving unbiasedness of the advantage. To preserve some notion of independence between roll-
outs for GRPO, one can generate multiple groups per prompt with Br i dge and compute advantages

between groups. Though this deserves exploration in future work, we do not do this here as it would
be computationally expensive, and our single group setup is already empirically performative.

D BrRIDGE PLACEMENT

Here, we examine in the architectural placement of Bridge blocks. In Table [§] we compare the
resulting MATHS00 accuracy after applying RLVR on DS-Qwen-1.5B with Bridge blocks added
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after attention blocks or after feedforward blocks, our chosen architecture for the experiments. Since
there is not a significant difference, this implies flexibility in placement, though we choose to stick
with the one with the higher warmed up performance for our experiments.

Table 8: Effect on MATH-500 accuracy when inserting Bridge blocks after attention blocks vs.
after feedforward blocks (chosen architecture) in DS-Qwen-1.5B.

Placement Cold Start  Warmed up
After Attention 80.20 80.20
After Feedforward 80.15 81.30

E SELF-CONSISTENCY

Since Bridge solely focuses on generation, we can use any post-generation method to synthe-
size or choose the final output. As an example, Table 9] demonstrates Bridge coupled with self-
consistency (Wang et al.| [2022)).

Table 9: Self-consistency accuracy across 32 samples. Tasks are abbreviated as described in Table

Model AIME24 AIME25 AMC BRU CMI HMMT Avg
DS-Owen-1.5B 20.83 19.17 66.87 30.83 13.75 10.83  27.05
RLVR only 28.33 25.00 71.25 24.17 750 13.33  28.26
P-Match 25.00 26.67 72.50 2833 875 15.00  29.38
Bridge 30.83 2417 75.00 2833 11.25 15.00 30.76
DS-Qwen-7B 30.00 26.67 78.12 3333  8.75 20.83 3295
RLVR only 36.67 27.50 83.75 3833 1437 1750 36.35
P-Match 37.50 29.17 81.87 36.67 13.13 15.00 35.56
Bridge 40.00 30.00 86.25 41.67 17.50 16.67 38.68
DS-Llama-8B 25.00 16.67 73.12 2333  8.13 13.33  26.60
RLVR only 25.83 25.00 76.25 2583 1250 1750  30.49
P-Match 25.83 25.00 70.63 25.83 1437 19.17 30.14
Bridge 31.67 22.50 78775 24.17 10.00  15.00  30.35

F BriDGE PSEUDOCODE

Algorithm|[T]sketches the pseudocode for Bridge blocks, following (2)). Like normal self-attention,
this can easily be extended to multiple heads.

Algorithm 1 Bridge Block

Input: X € RB*SxD

Parameters: Wo, W € RP*Pox; Wy W € RP*Dvo
Output: Y € RBExS*D

Qs «+ [X]. Wofors=1,...,8

K+ [X]. s Wgfors=1,...,8

Vs« [X]. s Wyfors=1,...,8

Construct mask M, € REXB fors=1,...,5S:
[M]p, b, = 0 if generations by, bo have the same prompt and are incomplete at token s.
[M]p, b, = —o0 otherwise.
QK. —
[Y]..s,. < Softmax (\/DT)K + Ms) ViWofors=1,...,8
Return: y
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