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Abstract

Probabilistic circuits (PCs) have emerged as a powerful framework to compactly
represent probability distributions for efficient and exact probabilistic inference. It
has been shown that PCs with a general directed acyclic graph (DAG) structure can
be understood as a mixture of exponentially (in its height) many components, each
of which is a product distribution over univariate marginals. However, existing
structure learning algorithms for PCs often generate tree-structured circuits or
use tree-structured circuits as intermediate steps to compress them into DAG-
structured circuits. This leads to the intriguing question of whether there exists
an exponential gap between DAGs and trees for the PC structure. In this paper,
we provide a negative answer to this conjecture by proving that, for n variables,
there exists a quasi-polynomial upper bound nO(logn) on the size of an equivalent
tree computing the same probability distribution. On the other hand, we also show
that given a depth restriction on the tree, there is a super-polynomial separation
between tree and DAG-structured PCs. Our work takes an important step towards
understanding the expressive power of tree-structured PCs, and our techniques may
be of independent interest in the study of structure learning algorithms for PCs.

1 Introduction

Probabilistic circuits (PCs) [7, 29], also commonly known as sum product networks (SPNs) [24],
are a type of deep graphical model that allow exact probabilistic inference efficiently in linear time
with respect to the size of the circuit. Like other deep models, the parameters of a PC can be learned
from data samples [38]. Because of these desirable properties, they have been increasingly applied
in various contexts, including generative modeling [35], image processing [2, 34], robotics [30],
planning [25] and sequential data including both textual and audio signals [6, 23]. Compared with
deep neural networks, the sum and product nodes in PCs admit clear probabilistic interpretation [36]
of marginalization and context-specific statistical independence [3], which opens the venue of design-
ing efficient parameter learning algorithms for PCs, including the expectation-maximization (EM)
algorithm [12], the convex-concave procedure (CCCP) [38], and the variational EM algorithm [37].

Perhaps one of the most important properties of PCs is that they can be understood as a mixture of
exponentially (in its height) many components, each of which is a product distribution over univariate
marginals [38]. Intuitively, each sum node in PC can be viewed as a hidden variable that encodes
a mixture model [36] and thus a hierarchy of sum nodes corresponds to an exponential number of
components. This probabilistic interpretation of PCs has led to a number of interesting structure
learning algorithms [1, 9, 13, 17, 22, 27]. However, almost all of the existing structure learning
algorithms for PCs output tree-structured circuits, or use tree-structured circuits as intermediates
to compress them into DAG-structured circuits. Because of the restricted structure of trees, such
algorithms do not fully exploit the expressive power of PCs with general DAG structures, and often
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output tree-structured PCs with exceedingly large sizes [13]. Yet, from a theoretical perspective,
it remains open whether there truly exists an exponential gap between DAGs and trees for the PC
structure. Being able to answer this question is important for understanding the expressive power of
tree-structured PCs, and may also lead to new insights in structure learning algorithms for PCs.

1.1 Our Contributions

In this work we attempt to answer the question above by leveraging recent results in complexity
theory [11, 26, 33]. Our contributions are two-folds: an upper and lower bound for the gap between
tree and DAG-structured PCs. In what follows we will first briefly state our main results and then
introduce the necessary concepts and tools to tackle this problem.

An Upper Bound In Section 3, inspired by earlier works in Valiant et al. [33] and Raz and
Yehudayoff [26], we show that, for a network polynomial that can be computed efficiently with a
DAG-structured PC, there always exists a tree-structured PC of a quasi-polynomial size to represent
it. An informal version of our main result for this part is stated below.
Theorem 1.1 (Informal). Given a network polynomial of n variables, if this polynomial can be
computed efficiently by a PC of size poly(n), then there exists an equivalent tree-structured PC of
depth O(log n) and of size nO(logn) that computes the same network polynomial.

We prove this result by adapting the proof in Raz and Yehudayoff [26]. Our construction involves two
phases: Phase one applies the notion of partial derivatives for general arithmetic circuits to represent
intermediate network polynomials alternatively, and construct another DAG-structured PC using
those alternative representations; we will provide fine-grained analysis on the new DAG, such that its
depth is O(log n) and its size is still poly(n). Phase two applies the standard duplicating strategy for
all nodes with more than one parent to convert the new DAG into a tree. This strategy will lead to an
exponential blowup for an arbitrary DAG with depth D, since the size of the constructed tree will be
nO(D). However, note that the DAG constructed in the first phase has depth O(log n). Combining it
with the duplicating strategy, we will be able to construct an equivalent tree-structured PC of size
upper bounded by nO(logn), as desired.

The original algorithm in Raz and Yehudayoff [26] only reduces the depth to O(log2 n) due to their
restriction on the graph of using nodes with at most two children. This restriction is not necessary
for PCs, and by avoiding it, we show that the depth can be further reduced to O(log n) with a slight
modification of the original proof in Raz and Yehudayoff [26].

A Lower Bound In Section 4, we show that under a restriction on the depth of the trees, there
exists a network polynomial that can be computed efficiently with a DAG-structured PC, but if a
tree-structured PC computes it, then the tree must have a super-polynomial size. The following
informal theorem states our main result for this part, which will be formally addressed in Section 4.
Theorem 1.2 (Informal). Given n random variables, there exists a network polynomial on those n
variables, such that it can be efficiently computed by a PC of size O(n log n) and depth O(log n), but
any tree-structured PC with depth o(log n) computing this polynomial must have size at least nω(1).

Our result is obtained by finding a reduction to Fournier et al. [11]. We first fix an integer k and a
network polynomial of degree n = 22k. To show that the polynomial is not intrinsically difficult
to represent, i.e., the minimum circuit representing it shall be efficient, we explicitly construct a
PC of depth O(log n) and size O(n log n). Next, suppose via a black box, we have a minimum
tree-structured PC of depth o(log n) computing this polynomial. After removing some leaves from
that minimum tree but maintaining its depth, we recover a regular arithmetic tree that computes a
network polynomial of degree

√
n = 2k. Moreover, as shown in [11], if an arithmetic tree with depth

o(log n) computes this low-degree polynomial, then the size of the tree must be at least nω(1). Our
operations on the minimum tree PC must reduce its size; therefore, the original tree must have a
larger size than nω(1), and this fact concludes our proof.

1.2 More Related Work

There is an extensive literature on expressive efficiency of network structures for PCs and probabilistic
generating circuits (PGCs) [35], another probabilistic graphic model. Very recently, it was shown in
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Broadrick et al. [4] that PCs with negative weights are as expressive as PGCs. The investigation on
PCs has started as early as in Delalleau and Bengio [8] and later in Martens and Medabalimi [19]. In
neural networks and variants, this topic, along with the relationship between expressive efficiency
and depth/width, has attracted many interests as well [10, 16, 18, 20, 21, 28, 31, 32]. In particular,
Martens and Medabalimi [19, Theorem 34] has shown that there exists a network polynomial with a
super-polynomial minimum tree expression, but it is unclear whether the same polynomial can be
computed by a polynomial-sized DAG. Our work provides a positive answer to this question. For
arbitrary network polynomials, finding a minimum DAG-structured PC is reducible to a special case
of the minimum circuit size problem for arithmetic circuits, which remains to be a longstanding open
problem in circuit complexity.

2 Preliminaries

We first introduce the setup of probabilistic circuits and relevant notation used in this paper.
Notation A rooted directed acyclic (DAG) graph consists a set of nodes and directed edges. For
such an edge u→ v, we say that u is a parent of v, and v is a child of u. We use Ch(u) to denote the
set of children of the node u. We say there is a directed path from a to b if there is an edge a→ b
or there are nodes u1, · · · , uk and edges a→ u1 → · · · → uk → b; in this case, we say that a is an
ancestor of b and that b is a descendant of a. If two vertices v and w are connected via a directed
path, we call the number of edges in a shortest path between them as the distance between them,
denoted by dist(v, w). A directed graph is rooted if one and only one of its nodes has no incoming
edges. A leaf in a DAG is a node without outgoing edges. A cycle in a directed graph is a directed
path from a node to itself, and a directed graph without directed cycles is a DAG. For two disjoint
sets A and B, we will denote their disjoint union by A ⊔B to emphasize their disjointedness.

Clearly, each directed graph has an underlying undirected graph obtained by removing arrows on all
edges. Although by definition, a DAG cannot have a directed cycle, but its underlying undirected
graph may have an undirected cycle. If the underlying undirected graph of a DAG is also acyclic,
then that DAG is called a directed tree. Every node in a directed tree has at most one parent. If two
nodes share a parent, one is said to be a sibling of the other.

Complexity Classes In what follows we introduce the necessary complexity classes that will be
used throughout the paper. Let f(n) be the runtime of an algorithm with input size n.

• A function f(n) is in the polynomial class poly(n) if f(n) ∈ O(nk) for a constant k ∈ N.
• A function f(n) is in the super-polynomial class if f(n) is not asymptotically bounded

above by any polynomial. Formally, this requires f(n) ∈ ω(nc) for any constant c > 0, i.e.
limn→∞

f(n)
nc =∞ for any c > 0.

• A function f(n) is in the quasi-polynomial class if it can be expressed in the form
2poly(logn).

• A function f(n) is in the exponential class if it can be expressed in the form 2O(poly(n)).

Probabilistic Circuits A probabilistic circuit (PC) is a probabilistic model based on a rooted DAG.
Without loss of generality, in our work, we focus on PCs over Boolean random variables. We first
introduce the notion of network polynomial. For each Boolean variable X , we use the corresponding
lower case alphabet x to denote the indicator of X , which is either 0 or 1; for the same variable, x̄
represents the negation. In many cases, we use 1 : N to denote the index set [N ]. A PC over Boolean
variables {X1, · · · , Xn} computes a polynomial over the set of indicators {x1, · · ·xn, x̄1, · · · , x̄n};
we will refer this polynomial as the network polynomial. In the network, the leaves are indicators of
variables, and all other nodes are either sum or product nodes; a node that is not a leaf may also be
called an internal node. Each internal node computes a polynomial already: a sum node computes
a weighted sum of the polynomials computed by its children, and a product node computes the
product of the polynomials computed by its children. A PC is said to be normalized if the weights
of the outgoing edges from a sum node sum to one. It was shown in Zhao et al. [36] that, every
unnormalized PC can be transformed into an equivalent normalized PC within linear time.

To represent valid probability distributions, a PC must satisfy two structural properties: decompos-
ability and smoothness. To define them, we need to define the scope of a node, which is the set of
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Figure 1: Partial derivatives of sum nodes.

variables whose indicators are descendants of that node. For a node v, if the indicator x of the variable
X is one of descendants of v, then X ∈ scope(v); more generally, scope(v) = ∪v′∈Ch(v) scope(v

′).

Definition 2.1 (Decomposability and Smoothness). A PC is decomposable if and only if for every
product node v and any pair of its children v1 and v2, we have scope(v1) ∩ scope(v2) = ∅. A PC is
smooth if and only if for each sum node, all of its children have the same scope.

In this paper we restrict our attention to PCs that are both decomposable and smooth, since otherwise
we can always transform a PC into an equivalent one that is both decomposable and smooth in
quadratic time [36]. The degree of a monomial is the sum of the exponents of all its variables, and the
degree of a polynomial f , denoted by deg(f) is the highest degree among its constituent monomials.
A polynomial is said to be homogeneous if all of its monomials have the same degree. A PC is said
to be homogeneous if all of its sum and product nodes compute a homogeneous polynomial. Later,
we will show that decomposability and smoothness imply homogeneity, and vice versa with mild
conditions. For a node v in a PC, we use deg(v) to denote deg(fv). As emphasized earlier, this paper
investigates the quantitative relationship between a DAG and a tree, which are both PCs and represent
the same probability distribution. To make the terminology uncluttered, we will call the former a
DAG-structured PC, and the latter a tree PC. If a tree PC computes the same network polynomial
as a DAG-structured PC, then the tree PC is said to be an equivalent tree PC with respect to that
DAG-structured PC.

Unless specified otherwise, we will use Φ to denote the entire PC in consideration and f the network
polynomial computed by the root. For each node v, the sub-network rooted at v is denoted by Φv

and the polynomial computed by v is fv. The set of variables in fv is Xv, which is a subset of
{X1, · · · , Xn}. The size of the network Φ, denoted by |Φ|, is the number of nodes and edges in the
network. The depth of Φ, denoted by D(Φ), is its maximum length of a directed path.

Partial Derivatives In the process of proving the upper bound, a key notion named partial derivative
is frequently used and formally defined below.

Definition 2.2 (Partial Derivative). For two nodes v and w in a network Φ, the partial derivative of
the polynomial fv with respect to the node w, denoted by ∂wfv , is constructed by the following steps:

1. Substitute the polynomial fw by a new variable y.
2. Compute the polynomial computed by v with the variable y; denote the new polynomial by

f̄v . Due to decomposability, f̄v is linear in y.
3. Define the partial derivative ∂wfv = ∂f̄v

∂y .

Observe that the chain rule in calculus also holds for our notion here, and therefore leads to the two
following facts.

• Let v be a sum node with children v1 and v2, and the edges have weight a1 and a2,
respectively, then by definition fv = a1fv1 + a2fv2 . For any other node w, the partial
derivative is ∂wfv = a1 · ∂wfv1 + a2 · ∂wfv2 .

• Similarly, let v be a product node with children v1 and v2, then fv = fv1 · fv2 . For any other
node w, we have ∂wfv = fv1 · ∂wfv2 + fv2 · ∂wfv1 .
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The partial derivative has been proven to be a powerful tool in the field of complexity theory and
combinatorial geometry [14, 15]. Readers are welcome to refer Chen et al. [5] for more details and
extensive background. An illustration is provided in Figure 1.

Arithmetic Circuits An arithmetic circuit, aka algebraic circuit, is a generalization of a probabilistic
circuit. Such a circuit shares the same structure as a PC and also computes a network polynomial. If
an arithmetic/algebraic circuit is a directed tree, then we call it an arithmetic/algebraic formula. In
the proof of the lower bound, the notion of monotonicity of a formula is essential, whose definition
relies on the concept parse tree.
Definition 2.3 (Parse Tree). A parse tree of a formula Φ is a sub-formula of Φ which corresponds to
a monomial of f , the network polynomial computed by Φ. Parse trees of Φ is defined inductively by
the following process:

• If the root of Φ is a sum node, a parse tree of Φ is obtained by taking a parse tree of one of
its children together with the edge between the root and that child.

• If the root of Φ is a product node, a parse tree of Φ is obtained by taking a parse tree of
each of its children together with all outgoing edges from the root.

• The only parse tree of a leaf is itself.
Definition 2.4 (Monotonicity). An algebraic formula is monotone if the monomial computed by any
of its parse trees has a non-negative coefficient in the network polynomial.

3 A Universal Upper Bound

In this section, we present our first main result, which provides a universal upper bound on the size of
an equivalent tree versus a DAG-structured PC.
Theorem 3.1. For any given DAG-structured PC over n variables and of size poly(n), there exists
an equivalent tree-structured PC of size nO(logn) nodes and of depth O(log n), computing the same
polynomial.

As discussed earlier, our constructive proof heavily relies on deeper properties of partial derivatives,
and applying them to represent sub-network polynomials. Our strategy, inspired by Raz and Yehuday-
off [26], will be efficient if the circuit being considered is a binary circuit, i.e. every node has at most
two children. While such structure is rare for natural networks, we make the following observation,
that an arbitrary PC can always be transformed to a binary one with a polynomial increase in size and
depth. The proof and an illustrating figure will appear in Appendix A.
Lemma 3.2. Given a DAG-structured PC Φ, we may transform it into another DAG Φ′ that computes
the same network polynomial and every node in Φ′ has at most two children. Moreover, the differences
between the sizes and depths of Φ′ and Φ are only in polynomial size.

Therefore, for the remaining discussion in this section, we will assume without loss of generality,
that a given PC is binary. During the conversion process towards a binary circuit, some intermediate
nodes may be created to ensure no sum node is connected to another sum node and no product node
is connected to another product node. The set of those intermediate nodes is denoted by Φ1, and will
be present in our later discussions. Next, we present a key property of partial derivatives, which holds
for any (including non-binary) PC.
Lemma 3.3. Given a PC Φ, if v and w are two nodes in Φ such that ∂wfv ̸= 0, then ∂wfv is a
homogeneous polynomial over the set of variables Xv \Xw of degree deg(v)− deg(w).

The next lemma tells that, given a product node, its partial derivative with another node with a
restriction on degree can be expressed using its children.
Lemma 3.4. Let v be a product node and w be any other node in a PC Φ, and deg(v) < 2 deg(w).
The children of v are v1 and v2 such that deg(v1) ≥ deg(v2). Then ∂wfv = fv2 · ∂wfv1 .

To construct the quasi-polynomial tree, the key is to compress many nodes with partial derivatives.
Fundamentally, we will use the following results to show that such compression works because each
node, and each partial derivative of any node with any other, can be more concisely represented using
partial derivatives. The key question is to find eligible nodes, so that taking partial derivatives with
respect to them will lead to compact expressions. Inspired by the observation in Raz and Yehudayoff
[26], we define the following set Gm, which will be critical in our later process.
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Algorithm 1: Construction of Ψ
Data: The original DAG-structured PC Φ with n variables of size poly(n), and the set of its

nodes V
Result: Another DAG-structured PC Ψ of size poly(n) and depth O(log n)
i← 0; V ← ∅; P ← ∅.
for i = 0, 1, ⌈log n⌉ − 1 do

Fix m1 ← 2i;
Find all nodes v such that 2i < deg(v) ≤ 2i+1, and place them in V;
Find all pairs of nodes (u,w) such that 2i < deg(u)− deg(w) ≤ 2i+1 and
deg(u) < 2 deg(w), and place them in P;

for every v ∈ V do
Find all nodes in Gm1 and compute fv using Equation 15;

end
for every pair of nodes (u,w) ∈ P do

Fix m2,(u,w) ← 2i + deg(w);
Find all nodes in Gm2,(u,w)

and compute ∂wfv using Equation 17;
end
V ← ∅; P ← ∅.

end

Definition 3.5. Given a PC Φ and an integer m ∈ N, the set Gm is the collection of product nodes t
in Φ with children t1 and t2 such that m < deg(t) and max {deg(t1),deg(t2)} ≤ m.

With this set, we may choose a set of nodes as variables for partial derivatives for any node in a PC,
and the following two lemmas respectively illustrate: 1) the compact expression of the sub-network
polynomial fv for any node v in a PC; 2) the compact expression of ∂wfv given two nodes v and w
with a degree restriction. It is easy to observe that Φ1 ∩Gm = ∅.
We now present two key lemmas that will be central to the proof for the upper bound. Specifically,
they spell out the alternative representations for the network polynomial of any node, and the partial
derivative of any pair of nodes.

Lemma 3.6 ([26]). Let m ∈ N and a node v such that m < deg(v) ≤ 2m, then fv =
∑

t∈Gm
ft ·

∂tfv .

Lemma 3.7 ([26]). Let m ∈ N, and v and w be two nodes such that deg(w) ≤ m < deg(v) <
2 deg(w), then ∂wfv =

∑
t∈Gm

∂wft · ∂tfv .

3.1 Construction of Ψ, another DAG-structured PC with restriction on depth

Given a binary DAG-structured PC Φ with n variables and poly(n) nodes, we explicitly construct a
tree PC with size nO(logn) and depth O(log n). Specifically, the construction takes two main steps:

1. Transform Φ to another DAG-structured PC Ψ with size poly(n) and depth O(log n).
2. Apply a simple duplicating strategy to further convert Ψ to a tree with size nO(logn) and the

same depth of Ψ.

We will later show that step two can be simply done. Step one, however, needs much more careful
operations. Each iteration, starting from i = 0, again needs two steps:

1. Compute fv for each node v such that 2i−1 < deg(v) ≤ 2i using the compact expression
illustrated earlier. We will show that, computing one such polynomial adds poly(n) nodes
and increases the depth by at most two on Ψ. This new node representing fv will be a node
in Ψ, denoted by v′.

2. Compute all partial derivatives ∂wfu for two non-variable nodes u and w in Φ, such that u
is an ancestor of w and 2i−1 < deg(u)− deg(w) ≤ 2i and deg(u) < 2 deg(w). Like those
new nodes representing sub-network polynomials from Φ, this new node representing a
partial derivative will also be a node in Ψ, denoted by (u,w). We will show that computing
a partial derivative with respect to each pair adds poly(n) nodes and increases the depth by
at most two on Ψ.
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Algorithm 2: Transforming a rooted DAG to a tree
Data: A rooted DAG of size S and depth D, and the set of its nodes V
Result: A tree of size O(SD) and depth D
for every node v in V do

if InDeg(v) > 1 then
Duplicate the tree rooted at v for InDeg(v)− 1 times;
Construct an outgoing edge from each parent of v to itself.

end
end

The process is summarized in Algorithm 1. Before presenting the construction, we first confirm
the quantitative information of Ψ, the output of the algorithm. The first observation is the number
of iterations: The degree of the root of Φ is n, so at most log n iterations are needed for the entire
process. Each iteration only increases the size of the updated circuit by poly(n) and the depth by a
constant number. Consequently, the final form of Ψ has size poly(n) and depth O(log n).

We now provide an inductive construction of Ψ starting from i = 0. After each step, it is necessary to
verify the validity of the updated Ψ. Although decomposability is easy to verify, smoothness is less
straightforward. To tackle this, we argue that the final state of Ψ is homogeneous, i.e. every node in
Ψ computes a homogeneous polynomial, and consequently Ψ is smooth due to the following lemma.

Lemma 3.8. If a decomposable PC contains n variables and computes a polynomial of degree n,
then it is homogeneous if and only if it is smooth.

Iteration zero (i = 0): During this iteration, for the first step, we only need to consider nodes v
such that 0.5 < deg(v) ≤ 1; the degree of any node must be an integer, so we must have deg(v) = 1,
i.e. v represents an affine polynomial. Without loss of generality, we may assume all such affine
nodes are sum nodes with strictly more than one child. Indeed, if a product node represents an affine
polynomial, then it must only have exactly one child, which must be a leaf node; in this case, we may
remove this product node and connect that leaf to the parents of the original product node. Similarly,
if a sum node represents an affine polynomial and has exactly one child, then that child must also
be a leaf node, hence we may again remove the sum node and connect that leaf to the parents of the
original sum node. Due to smoothness, such an affine node v must represent a polynomial in the form
ax+ (1− a)x̄, where x is the indicator of a variable, and 0 < a < 1. Therefore, the depth of each
sub-network Φv is only one. By duplicating all such affine nodes onto Ψ, we add at most poly(n)
nodes and increase the depth by one only.

Next, for step two, we only need to consider pairs of nodes (u,w) such that deg(u)− deg(w) ≤ 1.
Thanks to Lemma 3.3, we know that ∂wfu is affine. For each pair satisfying the restriction, we create
a sum node (u,w) whose sub-network Φ(u,w) has size three and depth one. By moving all such
sub-networks to Ψ for each eligible pair, we again add at most poly(n) nodes and increase the depth
by one to Ψ.

Iteration i+ 1: Suppose, after all previous iterations, we have already computed all sub-network
polynomials fv for nodes v such that deg(v) ≤ 2i, and all partial derivatives ∂wfu for pairs of nodes
(u,w) such that deg(u) − deg(w) ≤ 2i and deg(u) ≤ 2 deg(w). Like the base case, step i + 1
takes two steps: The first step computes fv for eligible nodes, and the second step concerns partial
derivatives for eligible pairs of nodes. Because the analysis of the two steps during this iteration is
highly involved, we will discussion the construction in details in Appendix A.7.

3.2 Construction of the Quasi-polynomial Tree

We conclude the proof of Theorem 3.1 in this section by transforming the newly constructed Ψ into a
quasi-polynomial tree. The transformation is a simple application of the naive duplication strategy,
which will be illustrated below. In summary, given a poly(n)-sized DAG, the size of the transformed
tree directly depends on the depth of the original DAG. The process of the duplication is briefly
summarized in Algorithm 2, and the detailed process of the entire transformation from the original Φ
to the final tree is described in Algorithm 5.
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Duplication Strategy Given a DAG-structured PC of size V and depth D, a natural algorithm to a
tree is that, if a node v has k > 1 parents, then duplicate the sub-tree rooted at v for k − 1 times, and
connect each duplicated sub-tree to a parent of v. Indeed this algorithm generates a tree computing
the same function as the original DAG does, but in the worst case we have to duplicate the entire
graph O(V ) times and such iterative duplication may be executed for every layer from the first to
layer D. Therefore, in the worst case, the final tree has size O(V D).

The construction of Ψ shows that its size is O(n3) and depth is O(log n). Using the naive duplication,
we obtain that the size of the final tree is nO(logn).

4 A Conditional Lower Bound

In this section, we present our second main result, which provides a lower bound on the tree
complexity of a network polynomial given a restriction on the depth of the tree. Obtaining a lower
bound for the problem of circuit complexity is in general a more difficult problem than obtaining
an upper bound because one cannot achieve this goal by showing the failure of a single algorithm.
Instead, one must construct a specific polynomial, and confirm that no algorithm can produce an
equivalent tree of size lower than the desired lower bound. However, thanks to some recent results
in circuit complexity theory, such a separation is ensured if the tree PC has a bounded depth. The
main result in this section is presented below, stating that, there is a concrete network polynomial that
cannot be represented by a polynomial-sized tree-structured PC if the depth of the tree is restricted.

Theorem 4.1. Given an integer k ≥ 1 and n = 22k, there exists a network polynomial P ∈
R[x1, · · · , xn, x̄1, · · · , x̄n] of degree n = 22k, such that any probabilistic tree of depth o(log n) =
o(k) computing P must have size nω(1).

Note that if the polynomial P is innately difficult to be represented by PCs, i.e., if it cannot even be
represented efficiently by DAG-structured PCs, then separation is not shown. To show separation, P
should be efficiently computed by a DAG-structured PC, but any tree-structured PC representing P
must have a strictly larger size. Our next construction, described with more details in Algorithm 3,
confirms a separation by constructing an efficient DAG-structured PC P ∗ that computes P . This PC
has size O(n log n) and depth 2k = 2 log n, where k is the integer given in Theorem 4.1. The next
proposition confirms the validity of P ∗, and the proof is in Appendix B.

Proposition 4.2. The tree PC P ∗ is decomposable and smooth.

It is easy to check that P ∗ has the correct size and depth as described earlier. Before adding leaf
nodes, the algorithm in total constructs

∑2k
r=0 2

r = 22k+1 − 1 = 2n− 1 nodes. Finally, observe that
during the construction of leaf nodes, each negation indicator is added exactly k times: At a layer
containing only product nodes, if a negation indicator is added to a product node v at this layer, then
it will next be added to the sibling of the grandparent of v. Because each product node has exactly
one sibling, the negation indicator for a random variable is duplicated exactly k times, and finally
the total size is 2n − 1 + kn = O(kn) = O(n log n). The depth O(k) is also apparent from the
algorithm. We therefore conclude that P can be efficiently computed by a polynomial sized tree PC
for an unrestricted depth.

However, the efficiency would be less optimal if we restrict the depth to o(k). To show this, we
design a reduction from our problem for PCs to a well-studied problem on arithmetic circuits. Our
proof essentially argues that, for any minimum-sized tree-structured PC that computes P , we can
obtain its sub-tree that computes a polynomial, and that polynomial has been recently proven to not
be able to be represented by a polynomial-sized tree-structured PC. This recent result is stated below.

Theorem 4.3 ([11]). Let n and d = d(n) be growing parameters such that d(n) ≤ √n. Then there
is a monotone algebraic formula F of size at most n and depth O(log d) computing a polynomial
Q ∈ F[x1, · · · , xn] of degree at most d such that any monotone formula F ′ of depth o(log d)
computing Q must have size nω(1).

The proof of the lower bound for PCs in Theorem 4.1 is to show that, for any Π, a minimum tree-
structured PC with depth o(k) that computes P , the polynomial in the statement of Theorem 4.1,
we can always obtain a smaller-sized arithmetic formula Π′ with the same depth that computes
the polynomial Q in the statement of Theorem 4.3. The size of Π′ is super-polynomial due to
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Algorithm 3: Construction of P ∗, an efficient PC for P without a depth constraint

Data: A positive integer k, the number 22k, a set {x1, · · · , x22k , x̄1, · · · , x̄22k} of 22k+1

indicators
Result: A tree PC of size O(n log n) and depth 2k = 2 log n
j ← 0
Place all non-negation indicators x1, · · · , x22k at the bottom layer;
Label them as L0,1, · · · , L0,22k .
for i = 1, · · · , 2 log n do

if i is odd then
while j < 22k−i do

Construct a product node labelled by Li,(j/2) and two outgoing edges from the new
node to Li−1,j−1 and Li−1,j ;

j ← j + 2;
end
for every odd integer q = 1, 3, · · · , 22k−i − 1 do

Add the leaves representing negation indicators {xz} for all z ∈ scope(Li,q+1) as
children of Li,q;

Add the leaves representing negation indicators {xz} for all z ∈ scope(Li,q) as
children of Li,q+1;

end
end
if i is even then

while j < 22k−i do
Construct a sum node labelled by Li,(j/2) and two outgoing edges from the new node

to Li−1,j−1 and Li−1,j ;
j ← j + 2;

end
end

end

Theorem 4.3, and as a result, the size of Π cannot be smaller. In other words, our proof involves a
reduction from the PC problem to the AC problem. Before introducing the reduction, we first present
the polynomial Q in the statement of Theorem 4.3. The original construction in Fournier et al. [11] is
for the general class, but over here, we only present a specific case with r = 2, which is sufficient for
our purpose.

The Construction of the Polynomial Q We denote the polynomial Q by H(k,2), which is defined
over 22k variables {

xσ,τ : σ, τ ∈ [2]k
}
. (1)

The polynomial H(k,2) is recursively defined over intermediate polynomials Hu,v for all (u, v) ∈
[2]≤k × [2]≤k and |u| = |v|. Specifically, if |u| = |v| = k, then Hu,v = xu,v; otherwise, Hu,v =∑r

a=1 Hu1,vaHu2,va. The final polynomial H(k,2) is defined to be H∅,∅. Observe that the degree of
H(k,2) is 2k, and it contains 22

k−1 monomials.

Given a minimum tree-structured PC Π, which computes P and is of depth o(k), we remove all of its
leaves that represent negation variables and call this pruned network Π′; without leaves representing
negation variables, Π′ is just a standard arithmetic formula. Clearly, |Π′| ≤ |Π|, and the next
proposition reveals the polynomial computed by Π′, and its proof is in Appendix B.

Proposition 4.4. The arithmetic formula Π′ computes H(k,2).

Having all the necessary ingredients, we are now ready to conclude this section by proving Theo-
rem 4.1, the main result of this section.

Proof of Theorem 4.1. The proof of Theorem 4.3 in Fournier et al. [11] uses the polynomial class
H(k,r) as the hard polynomial Q in the statement, in particular, with r = 2, n = 22k and d(n) =
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√
n = 2k. Note that the depth of Π′ is o(log d) = o(k), and the degree of H(k,2) is d = 2k, so the

conditions in the statement of Theorem 4.1 are indeed satisfied. Since Π′ is obtained from Π by
removing leaves, we obtain the following inequality that concludes the proof:

|Π| ≥ |Π′| ≥ nω(1). ■

5 Conclusion

In this paper we have shown that given a network polynomial with n variables that can be efficiently
computed by a DAG-structured PC, we can construct a tree PC with at most quasi-polynomial size
and is no deeper than O(log n). On the flip side, we have also shown that there indeed exists a
polynomial that can be efficiently computed by a poly(n)-sized PC without a depth restriction, but
there is a super-polynomial separation if we restrict the depth of the tree to be o(log n). Our results
make an important step towards understanding the expressive power of tree-structured PCs and show
that a quasi-polynomial upper bound is possible. However, the lower bound is still largely open, and
we have only shown a separation under a specific depth restriction. One potential direction for the
future work are discussed below: although the upper bound nO(logn) is quasi-polynomial, it is still
prohibitively large as n grows. The construction outputs a tree of depth O(log n), which would be
considered as a shallow tree. Is it possible to further reduce the size of the tree, possibly in the cost of
a larger depth?
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Figure 2: The process of transforming a non-binary DAG-structured PC to a binary one that computes
the identical network polynomial. We omit the edge weights for simplicity.

A Missing proofs in Section 3

In this section we provide the proofs of the lemmas and theorems that are not included in the main
text. For better readability, we first restate the statements and then provide the proofs.

A.1 Proof of Lemma 3.2

Given a depth-D network with V nodes and E edges, we scan over all its nodes. If a sum node has
more than two children, say M1, · · · ,Mk, then keep M1 and create a product node, whose only child
is an intermediate sum node. The intermediate sum node has two children: M2 and another just
created intermediate sum node. Keep going and until an intermediate sum node has Mk as the only
child.

The operation is the same if a product node has more than two children by just exchanging sum and
product. Note that for one operation for a node with k children, the depth increases by 2(k − 1), and
2(k − 1) nodes and edges are added. Once we do the same for all nodes, the number of increased
depth, nodes, and edges are upper bounded by

2×
(∑

N∈V

out-degree of node N if N has more than two children

)
− 2V ≤ 2E − 2V ∈ O(E).

In fact, for depth, this upper bound is very conservative because, for example, if a node has three
children, one of its children again has three children. After we operate on both of them, the depth
increases by four only. A better upper bound is O(M) ≤ O(V ), where M is the maximum out-degree
in the original network. It is easy to check that each child of the root computes the same polynomial
as before, and so does the new network. Clearly, the new network is still decomposable and smooth
if the original network is.

A.2 Proof of Lemma 3.3

Lemma 3.3. Given a PC Φ, if v and w are two nodes in Φ such that ∂wfv ̸= 0, then ∂wfv is a
homogeneous polynomial over the set of variables Xv \Xw of degree deg(v)− deg(w).
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Proof. Clearly, ∂wfv ̸= 0 implies that w is a descendant of v. We prove the statement by induction
on L, the length of the longest directed path from v to w. If L = 0, i.e. w = v, then ∂wfv = 1 and
the statement trivially holds. Suppose the statement is true for all L and now the longest distance
from v to w is L+1. We prove the statement by discussing two cases, whether w is a sum or product
node.

Case I: w is a sum node. We first assume w is a sum node, and its parent inside this particular path
v ⇝ w is u, whose children are w and w′. We write fv as the polynomial if we substitute w with
y, and f̂v as the polynomial if we substitute u with y. Note that if we write them as functions with
respect to y, then fv(y) = f̂v(y · fw′), and hence

∂wfv =
∂fv(y)

∂y
=

∂f̂v(y · fw′)

∂y
=

∂f̂v(y · fw′)

∂(y · fw′)
· fw′ = ∂ufv · fw′ . (2)

By the inductive hypothesis, ∂ufv is a homogeneous polynomial over the set of variables Xv \Xu of
total degree deg(v) − deg(u), so ∂wfv must also be homogeneous, and its degree is deg(∂ufv) +
deg(w′) = deg(v)−deg(u)+deg(w′) = deg(v)−deg(w)−deg(w′)+deg(w′) = deg(v)−deg(w),
and it is over variables (Xv \Xu) ∪Xw′ = (Xv \ (Xw ⊔Xw′)) ∪Xw′ = Xv \Xw.

Case II: w is a product node. Next, assume w is a product node. In this case, u is a sum node and
deg(u) = deg(w) = deg(w′), and Xu = Xw = Xw′ . Let the weight of the edge u→ w be a, and
the weight for u→ w′ be b. Then, fv(y) = f̂v(ay + bfw′), and

∂wfv =
∂fv(y)

∂y
=

∂f̂v(ay + bfw′)

∂y
= a · ∂f̂v(ay + bfw′)

∂(ay + bfw′))
= a · ∂ufv. (3)

Clearly, by the inductive hypothesis, both ∂ufv and ∂wfv are homogeneous, and they have the
same degree and set of variables. Specifically, deg(∂wfv) = deg(∂ufv) = deg(v) − deg(u) =
deg(v)− deg(w), and Xw,v = Xu,v = Xv \Xu = Xv \Xw. ■

A.3 Proof of Lemma 3.4

Lemma 3.4. Let v be a product node and w be any other node in a PC Φ, and deg(v) < 2 deg(w).
The children of v are v1 and v2 such that deg(v1) ≥ deg(v2). Then ∂wfv = fv2 · ∂wfv1

.

Proof. Clearly, deg(v) = deg(v1) + deg(v2). Therefore, since deg(v) < 2 deg(w), we have
deg(v2) < deg(w); by Lemma 3.3, we have ∂wfv2 = 0, and the conclusion follows directly because
of the chain rule. ■

A.4 Proof of Lemma 3.6

First, observe that with such choice of m, we have Gm ∩ Φv ̸= ∅. Write v1 and v2 as the children of
v. If deg(v1) ≤ m and deg(v2) ≤ m, then v ∈ Gm. Otherwise, assume without loss of generality
that deg(v1) ≥ deg(v2) and deg(v1) > m. Keep reducing and there will be a position such that the
condition of being a member in Gm holds.

We now prove the statement by induction on L, the length of the longest directed path from v to Gm,
i.e. L = maxv′∈Gm dist(v, v′). If L = 0, then v ∈ Gm and all other nodes in Gm (if any) are not
descendants of v. Therefore, if t ∈ Gm and t ̸= v, we have ∂tfv = 0. Clearly, ∂vfv = 1, so

fv = fv · ∂vfv︸︷︷︸
=1

+
∑

t∈Gm:t ̸=v

ft · ∂tfv︸︷︷︸
=0

=
∑

t∈Gm

ft · ∂tfv. (4)

Now suppose the statement is true for all L, and now the longest directed path from v to Gm has
length L+ 1.

Case I: v is a sum node. First, assume v is a sum node and fv = a1fv1 + a2fv2 . Recall that, since
v is a sum node, we have m < deg(v1) = deg(v2) = deg(v) ≤ 2m, so we may apply the inductive
hypothesis on v1 and v2. Therefore,

fv1 =
∑

t∈Gm

ft · ∂tfv1 ; fv2 =
∑

t∈Gm

ft · ∂tfv2 . (5)
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Hence, using the chain rule of the partial derivative, we have

fv = a1fv1 + a2fv2 =
∑

t∈Gm

a1 · ft · ∂tfv1 +
∑

t∈Gm

a2 · ft · ∂tfv2 (6)

=
∑

t∈Gm

ft · (a1 · ∂tfv1 + a2 · ∂tfv2) =
∑

t∈Gm

ft · ∂tfv. (7)

Case II: v is a product node. Next, assume v is a product node and deg(v1) ≥ deg(v2). If
v ∈ Gm, then the statement trivially holds like the base case, so we assume v /∈ Gm, and therefore
m < deg(v1) ≤ 2m and the longest directed path from v1 to Gm has length L, while such a path
does not exist from v2 to Gm. So, by the inductive hypothesis,

fv1 =
∑

t∈Gm

ft · ∂tfv1 . (8)

By definition, if t ∈ Gm, then we must have 2 deg(t) > 2m ≥ deg(v), and by Lemma 3.4,

fv = fv1 · fv2 =
∑

t∈Gm

ft · (fv2 · ∂tfv1) =
∑

t∈Gm

ft · ∂tfv. (9)

A.5 Proof of Lemma 3.7

We again write v1 and v2 as the children of v, and again induct on L, the length of the longest directed
path from v to Gm in the network. If L = 0, then v ∈ Gm, and same as the previous case, every
other node t in Gm is not a descendant of v, which implies ∂tfv = 0. So,

∂wfv = ∂wfv · ∂vfv︸︷︷︸
=1

+
∑

t∈Gm:t ̸=v

∂wfv · ∂tfv︸︷︷︸
=0

=
∑

t∈Gm

∂wft · ∂tfv. (10)

Suppose the statement is true for all L, and now the longest directed path from v to Gm has length
L+ 1.

Case I: v is a sum node. First, assume v is a sum node and fv = a1fv1
+ a2fv2 . Again, since v is

a sum node we may apply the inductive hypothesis on v1 and v2:

∂wfv1 =
∑

t∈Gm

∂wft · ∂tfv1 ; ∂wfv2
=
∑

t∈Gm

∂wft · ∂tfv2 . (11)

Again, by the chain rule, we have

∂wfv = a1∂wfv1 + a2∂wfv2 =
∑

t∈Gm

∂wft · (a1∂tfv1 + a2∂tfv2) =
∑

t∈Gm

∂wft · ∂tfv. (12)

Case II: v is a product node. Now assume v is a product node and deg(v1) ≥ deg(v2). If
v ∈ Gm, then the statement trivially holds like the base case, so we assume v /∈ Gm, and therefore
m < deg(v1) < 2 deg(w) and the longest directed path from v1 to Gm has length L, while such a
path does not exist from v2 to Gm. So, by the inductive hypothesis,

∂wfv1 =
∑

t∈Gm

∂wft · ∂tfv1 . (13)

Since deg(v) < 2 deg(w), and for all nodes t ∈ Gm, we have 2 deg(t) > 2m > deg(v), so by
applying Lemma 3.4 twice, we have

∂wfv = fv2 · ∂wfv1 =
∑

t∈Gm

∂wft · (fv2 · ∂tfv1) =
∑

t∈Gm

∂wft · ∂tfv. (14)
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Figure 3: The process of converting an arbitrary DAG to a DAG with depth restriction. The red nodes
are those in G2 and their relationships imply the computational procedure.

A.6 Proof of Lemma 3.8

Suppose the network is smooth. Recall that if the root of a probabilistic circuit contains n variables,
then the network computes a multi-linear polynomial of degree n. If the root is a sum node, then its
children must be homogeneous with degree n. If the root is a product node, then its children must
also be homogeneous, otherwise the product node will not be homogeneous.

Conversely, suppose such network is homogeneous. We prove by induction on the depth d of the
network. If d = 1 and the root is a sum node, then the polynomial must be linear and therefore
there can only be one variable x and x̄; as a result, this simple network is smooth. Now suppose the
statement is true for any d, and we have a probabilistic circuit with depth d+1. If the root is a product
node, we are done because if any sum node had two children with different scopes, the inductive
hypothesis would be violated. If the root is a sum node, then every sum node other than the root
cannot have two children with different scopes, because each sum node is in the induced sub-network
rooted at a grandchild of the root of depth at most d− 1 so the inductive hypothesis must hold. So,
we only need to show XR = XR1

= · · · = XRk
, where R1, . . . , Rk are children of R. Since the

sub-networks rooted at R1, · · · , Rk are decomposable and homogeneous, those sub-networks must
be smooth by the inductive hypothesis. Hence, each Ri computes a polynomial of degree |XRi |. If
|XRi | < n, then the polynomial computed by R is not homogeneous of degree n and we obtain a
contradiction. Therefore, each Ri must contain all of n variables to compute a polynomial of degree
n and as a result, we prove XR = XR1 = · · · = XRk

and the smoothness of the entire network.

A.7 Construction of Ψ

A.7.1 Step one: computing fv for eligible nodes

During iteration i + 1, a polynomial fv is in consideration if and only if 2i < deg(v) ≤ 2i+1.
Naturally we shall apply Lemma 3.6, and therefore choosing an appropriate m and the corresponding
Gm is essential. Here we choose m = 2i. Moreover, we define a set T = Gm ∩Φv for each v being
considered; for every t ∈ T , we use t1 and t2 to denote its children. By Lemma 3.6 and the definition
that all nodes in Gm are product nodes, we have

fv =
∑
t∈T

ft · ∂tfv =
∑
t∈T

ft1 · ft2 · ∂tfv. (15)

Since t ∈ T , we must have max {deg(t1),deg(t2)} ≤ m = 2i, and therefore

2i = m < deg(t) = deg(t1) + deg(t2) ≤ 2m = 2i+1. (16)

Therefore, deg(v) − deg(t) < 2i+1 − 2i = 2i and deg(v) < 2i + deg(t) < 2 deg(t). Hence, ft1 ,
ft2 and ∂tfv have all been computed already during earlier iterations. If deg(v) = deg(t), then t is a
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child of v and ∂tfv is the weight of the edge v → t. Therefore, to compute such a fv , we need to add
|T | product nodes and one sum node, whose children are those |T | product nodes; apparently, the
depth increases by two. If a subset of the three terms {ft1 , ft2 , ∂tfv} is a constant, then their product
will be the weight of the edge connecting the product node ft1 · ft2 and the new sum node.

We now verify the validity of this updated circuit. Because Φ is decomposable and t is a product
node, we conclude Xt1 ∩Xt2 = ∅ and Xt = Xt1 ⊔Xt2 . By Lemma 3.3, we have Xt,v = Xv \Xt =
Xv \ (Xt1 ⊔Xt2). Therefore, every summand in Equation (15) is a product node whose children are
sum nodes with pairwise disjoint scopes, and thus, the updated circuit must be decomposable as well.
Also, since fv is a homogeneous polynomial, so must be every summand for each t. As a result, the
updated circuit is also homogeneous. Thanks to Lemma 3.8, the updated circuit is valid.

A.7.2 Step two: computing ∂wfu for eligible pairs of nodes

As discussed earlier, during iteration i + 1, a pair of nodes u and w are chosen if and only if
2i < deg(u)− deg(w) ≤ 2i+1 and deg(u) < 2 deg(w). In this case, we fix m = 2i + deg(w), and
define T = Gm ∩ Φu. Clearly, deg(w) < m < deg(u) < 2 deg(w), so by Lemma 3.7, we have
∂wfu =

∑
t∈T ∂wft ·∂tfu. For each t ∈ T , by definition t must be a product node, and since t ∈ Φu,

we have deg(w) < deg(t) ≤ deg(u) < 2 deg(w). Recall that the children of t are denoted by t1 and
t2, and we may assume without loss of generality that deg(t1) ≥ deg(t2). Hence, by Lemma 3.4, we
have

∂wfu =
∑
t∈T

ft2 · ∂wft1 · ∂tfu. (17)

Furthermore, we may safely assume deg(w) ≤ deg(t1), otherwise w is not a descendant of t1 nor t
and therefore ∂wft1 = ∂wft = 0. Next, by analyzing their degrees and differences in degrees, we
show that for each t, the terms ft2 , ∂wft1 , and ∂tfu in that summand have all been computed by
earlier iterations or the step one during this iteration i+ 1.

Term ft2 : Since

deg(u) ≤ deg(w) + 2i+1 ≤ 2i+1 + deg(t1) = 2i+1 + deg(t)− deg(t2), (18)

we have
deg(t2) ≤ 2i+1 + deg(t)− deg(u) ≤ 2i+1. (19)

Hence, ft2 has already been computed during the first step of this current iteration or even earlier.

Term ∂wft1: Recall that deg(t1) ≤ m = 2i + deg(w), so deg(t1) − deg(w) ≤ 2i. Moreover,
deg(t1) ≤ deg(t) ≤ deg(u) < 2 deg(w). Therefore, the pair (t1, w) satisfies both requirements to
be computed during iteration i or earlier.

Term ∂tfu: Recall that deg(t) > m = 2i + deg(w), so

deg(u)− deg(t) < deg(u)− deg(w)− 2i ≤ 2i+1 − 2i = 2i, (20)

where the second inequality follows from deg(u)− deg(w) ≤ 2i+1, the requirement of choosing u
and w for iteration i+ 1. Finally,

deg(u) ≤ 2i+1 + deg(w) < 2 · (2i + deg(w))︸ ︷︷ ︸
=m<deg(t)

< 2 deg(t). (21)

These two facts together ensure that ∂tfu must have been computed during iteration i or earlier.

Finally, we verify the validity of the updated circuit after this step. The new objects introduced in this
step are only |T | product nodes whose children are ft2 , ∂wft1 , and ∂tfu for each t ∈ T , and one sum
node whose children are those |T | product nodes. It is easy to see that the sets Xt2 , Xt1 \Xw and
Xu \Xt are pairwise disjoint since Xw ⊆ Xt1 and Xt1 ∩Xt2 = ∅; therefore, the updated circuit
is indeed decomposable. By Lemma 3.3, all three terms in each summand are homogeneous, and
therefore the new circuit is also homogeneous, and consequently, it is valid again by Lemma 3.8.
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B Missing proofs in Section 4

B.1 Proof of Proposition 4.2

Before writing the rigorous proof, we first fix some terminologies. In this proof, we refer the layer of
all indicators constructed in step one as layer zero, and each set of nodes constructed in one of steps
three, four, and five as one layer above. A negation indicator added in step six does not belong to any
layer. Therefore, when we consider a layer of sum nodes, the negation indicator leaves whose parents
are product nodes on the next layer are not in consideration. Step six augments the scope of every
product node; for any product node v, we use v′ to denote the same vertex before being augmented
during step six. To prove this statement, we first prove an equivalent condition for P ∗ to be valid, and
then show P ∗ satisfies the equivalent property.
Lemma B.1. Validity of P ∗ is equivalent with the following statement:

In P ∗, every product node and its sibling have the same scope. If two product nodes are on the same
layer but not siblings, then they have disjoint scopes.

Proof. Suppose the statement holds, then for any sum node, its two children are product nodes and
siblings, so they have the same scope; for any product node v, denote its children by w and w′, and
their children by {w1, w2} and {w′

1, w
′
2}, respectively. Clearly, wi and w′

i are siblings and have
the same scope for any i ∈ {1, 2}, but if j ̸= i, then wi and w′

j have disjoint scopes. Therefore,
scope(w) = scope(w1) = scope(w2) and scope(w′) = scope(w′

1) = scope(w′
2) are disjoint, as

desired.

Conversely, suppose P ∗ is decomposable and smooth. For any pair of product nodes which are
siblings, they share a unique parent and thus have the same scope due to smoothness. Now suppose
we have two product nodes v and w, which are on the same layer but not siblings. We prove
a useful fact: If two product nodes are on the same layer 2j + 1 for some 1 ≤ j ≤ k, then
deg(v) = deg(w) = 22j+2. When j = 1, we know that initially every product node on layer one has
two leaf children, so adding two negation indicators enforce that every product node on that layer
has degree four. Assume the statement is true for all j, and we now consider those product nodes
on layer 2(j + 1) − 1 = 2j + 1. By the inductive hypothesis, every product node on layer 2j − 1
has degree 22j , and therefore every sum node on layer 2j also has degree 22j . If u is a product node
on layer 2j + 1 with the sibling u∗, we have deg(u′) = deg((u∗)′) = 22j+1. Step six ensures that
deg(u) = deg(u∗) = deg(u′) + deg((u∗)′) = 22j+2.

If they share an ancestor that is a product node, then their scopes are disjoint due to decomposability.
On the other hand, suppose their only common ancestor is the root, whose children are denoted by
a1 and a2, then without loss of generality, we may assume that v is a descendant of a1 and w is a
descendant of a2. Because P ∗ is valid, it must be homogeneous and we have deg(a1) = deg(a2).
The fact we proved in the previous paragraph implies that deg(a′1) = deg(a′2) = 22k−3+2 = 22k−1.
In other words, step six increases the degree of a′1 and a′2 by 22k−1 each. Because the whole tree
P ∗ is decomposable, the increase in deg(a′1) is exactly 22k−1 = | scope(a′2)|, and vice versa. Due
to smoothness, {X1, · · · , X22k} = scope(a′1) ∪ scope(a′2), and thus scope(a′1) ∩ scope(a′2) =
∅. Finally, since scope(v) ⊆ scope(a′1) and scope(w) ⊆ scope(a′2), we must have scope(v) ∩
scope(w) = ∅. ■

Now we prove Proposition 4.2 by showing that P ∗ indeed satisfies the equivalent property.
Proposition 4.2. The tree PC P ∗ is decomposable and smooth.

Proof. Now we prove that P ∗ satisfies the equivalent statement by induction on the index of the
layer containing product nodes only. Using the index above, only the layers with odd indices from
{2i − 1}ki=1 are concerned. For the base case, consider those 22k−1 product nodes constructed in
step two, denoted by v1, · · · , v22k−1 . For each 1 ≤ j ≤ 22k−1, if j is odd, then following steps two
and six, the children of vj are {x2j−1, x2j , x̄2j+1, x̄2j+2}. Its only sibling is vj+1, whose children
are {x2j+2, x2j+1, x̄2j , x̄2j−1}. Thus, scope(vj) = scope(vj+1) = {X2j−1, X2j , X2j+1, X2j+2}.
The argument is identical if j is even.

On the other hand, suppose 1 ≤ r < s ≤ 22k−1 and two product nodes vr and vs are not siblings, i.e.
either s− r > 1, or s− r = 1 and r is even.
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Case I: s − r > 1. In this case, the set scope(vr) is {X2r−1, X2r, X2r+1, X2r+2} if r is odd,
{X2r−3, X2r−2, X2r−1, X2r} if it is even; similarly, the set scope(vs) depends on the parity of
s. If s − r = 2, then they have an identical parity. If they are both odd, then scope(vs) ={
X2(r+2)−1, X2(r+2), X2(r+2)+1, X2(r+2)+2

}
= {X2r+3, X2r+4, X2r+5, X2r+6}, and is disjoint

with scope(vr). The argument is identical if they are both even. If s− r > 2, then the largest index
among the elements in scope(vr) is 2r + 2, and the smallest index among the elements in scope(vs)
is 2s− 3 ≥ 2(r + 3)− 3 = 2r + 3; hence, scope(vr) ∩ scope(vs) = ∅.

Case II: s − r = 1 and r is even. In this case, scope(vr) = {X2r−3, X2r−2, X2r−1, X2r} and
scope(vs) = {X2s−1, X2s, X2s+1, X2s+2} = {X2r+1, X2r+2, X2r+3, X2r+4} because s = r + 1
is odd. Clearly, scope(vr) ∩ scope(vs) = ∅.
The argument above proves the base case. Suppose the statement holds until the layer 2i − 1 for
some i < k, and we now consider layer 2(i + 1) − 1 = 2i + 1, which contains 22k−2i−1 product
nodes, denoted by v1, · · · , v22k−2i−1 . They must have non-leaf children, and we denote these nodes
without their leaf nodes by v′1, · · · , v′22k−2i−1 . By construction, the layer 2i below contains 22k−2i

sum nodes, denoted by w1, · · · , w22k−2i ; and the layer 2i − 1 contains 22k−2i+1 product nodes,
denoted by z1, · · · , z22k−2i+1 . For each 1 ≤ r ≤ 22k−2i−1, the product node vr has children w2r−1

and w2r, and is their unique parent. Similarly, w2r has children z4r−1 and z4r and is their unique
parent; w2r−1 has children z4r−3 and z4r−2, and is their unique parent.

We prove a simple fact that will simplify the induction step. We claim that, given two integers r, s ∈
{1, · · · , 22k−2i−1} and r ̸= s, the scopes scope(v′r) and scope(v′s) are disjoint. Without loss of gener-
ality, we assume r < s. By construction, Ch(v′r) = {w2r−1, w2r} and Ch(v′s) = {w2s−1, w2s}; fur-
thermore, Ch(w2r−1) = {z4r−3, z4r−2}, Ch(w2r) = {z4r−1, z4r}, Ch(w2s−1) = {z4s−3, z4s−2},
Ch(w2s) = {z4s−1, z4s}. Observe that, if a pair of product nodes belong to one of the four
sets above, then they are siblings and have the same scope; if they belong to distinct sets, then
they are not siblings and have disjoint scopes. We know that the scope of a node is the union
of the scopes of their children, so the four scopes scope(w2r−1), scope(w2r), scope(w2s−1), and
scope(w2s) are pairwise disjoint. As a result, the scopes scope(v′r) = scope(w2r−1) ⊔ scope(w2r)
and scope(v′s) = scope(w2s−1) ⊔ scope(w2s) are disjoint.

Now we prove the induction step. In the first case, suppose vr and vr+1 are sibling, i.e. r is odd so
vr+1 is the only sibling of vr. We have shown that scope(v′r) ∩ scope(v′r+1) = ∅. However, step six
enforces that scope(vr) = scope(v′r) ⊔ scope(v′r+1) = scope(vr+1), as desired.

Next, suppose 1 ≤ r < s ≤ 22k−2i−1 and vr and vs are not siblings. Denote the siblings of vr and
vs by vr′ and vs′ , respectively; by definition, r′ ∈ {r− 1, r+ 1} and s′ ∈ {s− 1, s+ 1}, depending
on the parity of r and s. Clearly, the four nodes vr, vr′ , vs, vs′ are distinct, and consequently the four
sets scope(vr), scope(vr′), scope(vs), and scope(vs′) are pairwise disjoint. Step six enforces that
scope(vr) = scope(v′r) ⊔ scope(v′r′) and scope(vs) = scope(v′s) ⊔ scope(v′s′), which are disjoint
as desired. ■

B.2 Proof of Proposition 4.4

We first realize the polynomial P returned by Algorithm 3 without adding those leaves represent-
ing negation variables. Recall that layer one contains 22k−1 product nodes, and before adding
negation variables, the bottom layer (layer zero) contains 22k leaves. If for every odd integer
i ∈ {1, 3, 5, . . . , 22k − 1}, we denote the monomial by fi,i+1 = xixi+1, then without adding
negation variables, the polynomial can be constructed by the following recursion with 2k + 1 steps:

• Construct 22k−1 monomials x1x2, . . . , x22k−1x22k .

• Sum up 22k−2 pairs of consecutive monomials, and return 22k−2 polynomials with two
monomials x1x2 + x3x4, . . . , x22k−3x22k−2 + x22k−1x22k .

• Multiply 22k−3 pairs of consecutive polynomials, and return 22k−3 polynomials.

• Repeat the operation until only one polynomial is returned.

Observe that this polynomial is exactly H(k,2) defined in Section 4 with an alternative set of indices
for the variables ([2]k × [2]k versus [22k]). To prove Proposition 4.4, it is sufficient to show that for
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every minimum tree-structured probabilistic circuit Π of depth o(k) that computes P , the removal of
those leaves representing negation variables returns an arithmetic formula that has the same depth
and computes H(k,2). To show this, we need the following lemma.
Lemma B.2. In any tree-structured probabilistic circuit Π that computes P , no sum node has a
negation indicator as a child, and no product node has only negation indicators as its children.

The proof of Lemma B.2 relies on the following lemma on monotone arithmetic formulas.
Lemma B.3. A monotone arithmetic formula computing a homogeneous polynomial must be homo-
geneous.

Proof. If a formula is rooted at a sum node, then clearly every child of its must be homogeneous.
If the root is a product node with k children, then denote the polynomials computed by them as
f1, · · · , fk and write f =

∏k
i=1 fi. Furthermore, for each i ∈ [k], further assume fi contains qi

monomials, and write it as
fi = fi,1 + · · ·+ fi,qi . (22)

Without loss of generality, assume f1 is not homogeneous and deg(f1,1) ̸= deg(f1,2). Then at least
two of the monomials of f , namely f1,1×

∏k
j=2 fj,1 and f1,2×

∏k
j=2 fj,1, must have distinct degrees

and therefore destroy the homogeneity of the root. ■

Proof of Lemma B.2. First, observe that in a PC, if a sum node has a leaf as a child, then due to
smoothness, it can only have two children, which are negation and non-negation indicators for a same
variable.

Suppose Π does have a sum node u that has a negation indicator x̄i as a child. Observe that, if we
replace all negation indicators with the constant one, then the resulting tree is still monotone and
computes F , which is a homogeneous polynomial. The replacement will cause that sum node to
compute exactly xi + 1, which is not homogeneous.

Similarly, if a product node v has only negation indicators as its children, then the replacements
above force v to compute one. Smoothness enforces that its siblings have the same scope as v does,
and without loss of generality we may assume none of its siblings computes the same polynomial as
v does, so their degrees are higher than one. As a result, the replacements of all negation indicators
to one will force the parent of v to compute a non-homogeneous polynomial, which contradicts
Lemma B.3. ■

Now Proposition 4.4 can be confirmed, because the removal strategy will indeed produce a tree that
computes H(k,2), and no internal nodes will be affected, because Lemma B.2 ensures that, no internal
node in Π′ computes a constant one and can be removed.
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C Pseudocodes

Algorithm 4: Construction of G
Data: a binary DAG-structured PC Φ with V nodes and n variables
Result: For each i = 1, · · · , log n, a set of nodes G2i and for selected w, a set of nodes G2i,w.
T ← ∅; Pi ← ∅, Qi ← ∅, G2i ← ∅, G2i,w ← ∅ for i ∈ {1, · · · , log n} and w ∈ Φ; Φv ← ∅ for
v ∈ Φ. Scan all nodes from the bottom and calculate the degree of each fv .

During the scanning, extract all weights of edges from a sum node to a product node.
for nodes v in Φ do

Φu ← Φu ∪ {v} if u is a parent of v. for i = 1 to log n do
if 2i < deg(v) ≤ 2i+1 then

Pi ← Pi ∪ {v}.
end
if v is a product node and deg(v) > 2i and deg(v1) ≤ 2i and deg(v2) ≤ 2i then

G2i ← G2i ∪ {v}.
end
for other nodes w in Φ do

if 2i < deg(v)− deg(w) ≤ 2i+1 and deg(v) < 2 deg(w) then
Qi ← Qi ∪ {(v, w)}

end
if v is a product node and deg(v) > 2i + deg(w) and deg(v1) ≤ 2i + deg(w) and
deg(v2) ≤ 2i + deg(w) then

G2i,w ← G2i,w ∪ {v}.
end

end
end

end
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Algorithm 5: Construction of the tree
Data: a binary DAG-structured PC Φ with V nodes and n variables
Result: a tree-structurd PC with size 2O(log2 n)

T ← ∅; Pi ← ∅, Qi ← ∅, G2i ← ∅, G2i,w ← ∅ for i ∈ {1, · · · , log n} and w ∈ Φ; Φv ← ∅ for
v ∈ Φ; m ∈ N is not defined yet

Operate Algorithm 4 and return G2i and G2i,w for all i ∈ {1, · · · , log n} and those w ∈ Φ that
were selected for computing partial derivatives.

for i = 1 to log n do
m← 2i. for v ∈ Pi do

T ← G2i ∩ Φv;
for t ∈ T do

Create a product node ⊗t computing ft1 · ft2 · ∂tfv .
end
Create a sum node ⊕v that sums over all ⊗t; for t ∈ T such that ∂tfv is a
non-zero-or-one constant, the edge ⊕v → ⊗t has weight ∂tfv .

end
for (v, w) ∈ Qi do

m← 2i + deg(w), T ← G2i,w ∩ Φv;
for t ∈ T do

Create a product node ⊗t computing ft2 · ∂wft1 · ∂tfv .
end
Create a sum node ⊕(v,w) that sums over all ⊗t; for t ∈ T such that ⊗t contains a
constant multiplier, the edge ⊕(v,w) → ⊗t has weight of that constant.

end
end
Apply the naive duplication to convert the DAG into a tree. Apply Algorithm 2 in [36] to

normalize the tree.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: Our paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: Our paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Our paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper studies a long-standing theoretical conjecture, and therefore shall
not have direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not include experiments and is not relevant with any data or
models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The license is CC-BY 4.0.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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