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Abstract
Probabilistic verification problems of neural net-
works are concerned with formally analysing
the output distribution of a neural network un-
der a probability distribution of the inputs. Ex-
amples of probabilistic verification problems in-
clude verifying the demographic parity fairness
notion or quantifying the safety of a neural net-
work. We present a new algorithm for solving
probabilistic verification problems of neural net-
works based on an algorithm for computing and
iteratively refining lower and upper bounds on
probabilities over the outputs of a neural net-
work. By applying state-of-the-art bound propaga-
tion and branch and bound techniques from non-
probabilistic neural network verification, our al-
gorithm significantly outpaces existing probab-
ilistic verification algorithms, reducing solving
times for various benchmarks from the literature
from tens of minutes to tens of seconds. Further-
more, our algorithm compares favourably even to
dedicated algorithms for restricted probabilistic
verification problems. We complement our empir-
ical evaluation with a theoretical analysis, proving
that our algorithm is sound and, under mildly re-
strictive conditions, also complete when using a
suitable set of heuristics.

1. Introduction
As deep learning spreads through society, it becomes in-
creasingly important to ensure the reliability of artificial
neural networks, including aspects of fairness and safety.
However, manually introspecting neural networks is infeas-
ible due to their non-transparent nature. Furthermore, em-
pirical assessments of neural networks are challenged by
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neural networks being fragile with respect to various types
of input perturbations (Szegedy et al., 2014; Hosseini et al.,
2017; Bibi et al., 2018; Ebrahimi et al., 2018; Hendrycks
et al., 2021). In contrast, neural network verification ana-
lyses neural networks with mathematical rigour, facilitating
the faithful auditing of neural networks.

In this paper, we consider probabilistic verification prob-
lems of neural networks, which are concerned with proving
statements about the output distribution of a neural network
given a distribution of the inputs. We refer to solving probab-
ilistic verification problems as probabilistic verification. An
example of probabilistic verification is proving that a neural
network net making a binary decision affecting a person
(for example, hire/do not hire, credit approved/denied) satis-
fies the demographic parity fairness notion (Barocas et al.,
2023) under a probability distribution Px of the network
inputs x representing the person

Px [net(x) = yes | x is disadvantaged]
Px [net(x) = yes | x is advantaged]

≥ γ, (1)

where ‘x is disadvantaged’ could, for example, refer to a
person not being male and γ ∈ [0, 1] with γ = 0.8 being a
common choice (Feldman et al., 2015). A closely related
problem to probabilistic verification is computing bounds
on probabilities over a neural network. An example of this
is quantifying the safety of a neural network by bounding

Px[net(x) is unsafe]. (2)

In this paper, we introduce a novel algorithm for comput-
ing bounds on probabilities such as Equation (2) using a
branch and bound framework (Land & Doig, 2010; Mor-
rison et al., 2016; Bunel et al., 2020). These bounds allow
us to verify probabilistic statements like Equation (1) using
bound propagation (Moore et al., 2009; Albarghouthi et al.,
2017). Our algorithm PROBABILISTICVERIFICATION (PV)
is a fast and generally applicable probabilistic verification
algorithm for neural networks based on massively parallel
branch and bound neural network verification (Xu et al.,
2021) using linear relaxations of neural networks (Weng
et al., 2018; Zhang et al., 2018; Singh et al., 2019). Our the-
oretical analysis shows that PV is sound and, under mildly
restrictive conditions, complete when using suitable branch-
ing and splitting heuristics.
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Our experimental evaluation reveals that PV significantly
outpaces the probabilistic verification algorithms FAIR-
SQUARE (Albarghouthi et al., 2017) and SPACESCAN-
NER (Converse et al., 2020). In particular, PV solves
benchmark instances that FAIRSQUARE can not solve
within 15 minutes in less than one minute and solves the
ACAS Xu (Katz et al., 2017b) probabilistic robustness case
study of Converse et al. (2020) in a mean runtime of 22
seconds, compared to 33 minutes for SPACESCANNER.

Applying PV to #DNN verification (Marzari et al., 2023a),
a subset of probabilistic verification, reveals that PV also
compares favourably to specialized algorithms, such as
PROVE SLR (Marzari et al., 2023b). It even compares
favourably to ε-PROVE (Marzari et al., 2024) that relaxes
#DNN verification to computing a confidence interval on
the solution and PREIMGAPPROX (Zhang et al., 2024) that
only computes sampling approximations. In contrast to this,
PV computes lower and upper bounds on probabilities like
Equation (2) that are guaranteed to hold with absolute cer-
tainty. Such bounds are preferable to confidence intervals
in high-risk machine-learning applications, such as medical
applications or autonomous driving and flight.

To test the limits of PV, we introduce a significantly more
challenging probabilistic verification benchmark: The Mini-
ACSIncome benchmark is based on the ACSIncome data-
set (Ding et al., 2021) and is concerned with verifying the
demographic parity of neural networks for datasets of in-
creasing input dimensionality. MiniACSIncome provides
more complex input distributions of higher dimensionality
than earlier probabilistic verification benchmarks. Our main
contributions are

• the PV algorithm for the probabilistic verification of
neural networks,

• a theoretical analysis proving the soundness and com-
pleteness of PV,

• a thorough experimental comparison of PV with ex-
isting probabilistic verifiers for neural networks and
tools dedicated to restricted subsets of probabilistic
verification, and

• MiniACSIncome: a new, challenging probabilistic veri-
fication benchmark.

Our code is available at https://github.com/
sen-uni-kn/probspecs. MiniACSIncome is avail-
able as a Python package at https://pypi.org/
project/miniacsincome/.

2. Related Work
Approaches for non-probabilistic neural network verific-
ation include Satisfiability Modulo Theories (SMT) solv-

ing (Katz et al., 2017b), Mixed Integer Linear Program-
ming (MILP) (Tjeng et al., 2019; Cheng et al., 2017),
and reachability analysis (Bak et al., 2020; Tran et al.,
2020a;b). Many of these approaches can be understood as
branch and bound algorithms (Bunel et al., 2020). Branch
and bound (Land & Doig, 2010; Morrison et al., 2016)
also powers the α,β-CROWN (Zhou et al., 2024) verifier
that leads the table in recent international neural network
verifier competitions (Brix et al., 2023; 2024). A critical
component of a branch and bound verification algorithm
is computing bounds on the output of a neural network.
Approaches for bounding neural network outputs include
interval arithmetic (Pulina & Tacchella, 2010), dual ap-
proaches (Wong & Kolter, 2018), and linear bound propaga-
tion techniques (Weng et al., 2018; Singh et al., 2019; Xu
et al., 2021), such as CROWN (Zhang et al., 2018).

Probabilistic verification algorithms can be divided into
sound algorithms that provide valid proofs, probably sound
algorithms that provide valid proofs only with a certain
predefined probability, and unsound algorithms that do not
quantify their probability of providing invalid proofs. Prob-
ably sound algorithms provide similar guarantees as prob-
ably approximately correct (PAC) learning (Bishop, 2007).
Fairness verification is a subset of probabilistic verification
that studies problems such as Equation (1). Another subset
of probabilistic verification is #DNN verification (Marzari
et al., 2023a), corresponding to probabilistic verification
under uniformly distributed inputs. Table 1 provides an
overview of approaches for neural network verification.

By sacrificing soundness, probably sound verification al-
gorithms (Bastani et al., 2019; Baluta et al., 2019; Weng
et al., 2019; Marzari et al., 2023a; 2024) obtain efficiency.
One example is ε-PROVE (Marzari et al., 2024), a prob-
ably sound #DNN verification algorithm. Bastani et al.
(2019), Converse et al. (2020), and Marzari et al. (2023b)
compare sound and probably sound approaches for probabil-
istic verification. We study sound algorithms since certainly
valid results are preferable in high-risk applications.

Concerning sound approaches, FAIRSQUARE (Albarghouthi
et al., 2017) is a sound fairness verification algorithm that
partitions the input space into disjoint hyperrectangles and
iteratively refines the input space partitioning using SMT
solving. PROVE SLR (Marzari et al., 2023b) is a sound
#DNN verifier based on a massively parallel branch and
bound algorithm. Converse et al. (2020) (SPACESCANNER)
and Borca-Tasciuc et al. (2023) divide the input space
into disjoint polytopes using concolic execution and reach-
able set verification, respectively. Both approaches are un-
sound for fairness verification due to approximating con-
tinuous probability distributions using histograms. SPACES-
CANNER is sound for #DNN verification. PREIMGAP-
PROX (Zhang et al., 2024) divides the input space into dis-
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Table 1. Comparison of Related Approaches. Sound approaches provide definite guarantees. Probably sound approaches only provide
PAC-type guarantees. Approaches marked ‘unsound∗’ are sound in specific settings but neither sound nor probably sound in general.

Verification Problem

Approach Non-
Probabilistic #DNN Group

Fairness
General

Probabilistic
Verifier

Guarantee

Zhou et al. (2024); Tran et al. (2020b) ✓ × × × sound
Weng et al. (2019) ✓ × × × probably sound

Borca-Tasciuc et al. (2023) × ✓ × × unsound
Zhang et al. (2024) × ✓ × × unsound∗

Converse et al. (2020) × ✓ ✓ ✓ unsound∗

Baluta et al. (2019); Marzari et al. (2023a; 2024) × ✓ × × probably sound
Bastani et al. (2019) × × ✓ × probably sound
Marzari et al. (2023b) × ✓ × × sound
Albarghouthi et al. (2017) × × ✓ × sound
Morettin et al. (2024) × ✓ ✓ ✓ sound
Ours (PV) × ✓ ✓ ✓ sound

joint polytopes using ReLU branching (Bunel et al., 2020),
but is unsound due to using sampling to approximate prob-
abilities. However, it offers a post-verification soundness
check for low-dimensional verification problems. Tran et al.
(2023) provide a sound verifier based on reachability ana-
lysis that is only applicable for truncated Gaussian input
distributions. Morettin et al. (2024) use weighted model
integration (Belle et al., 2015) to obtain a general sound
probabilistic verification algorithm but neither provide code
nor report runtimes.

From the above approaches, FAIRSQUARE and
PROVE SLR are most closely related to our algorithm
PV. However, PV is more general than FAIRSQUARE and
PROVE SLR, which are restricted to fairness verification
and #DNN verification, respectively. Like FAIRSQUARE,
PV iteratively refines bounds on probabilities to verify
probabilistic statements like Equation (1). However, while
FAIRSQUARE uses expensive SMT solving for refining
the input space, we use computationally inexpensive
input splitting and bound propagation techniques from
non-probabilistic neural network verification. PROVE SLR
builds on similar techniques but computes probabilities
exactly instead of iteratively refining bounds. These differ-
ences allow PV to significantly outpace both FAIRSQUARE
and PROVE SLR, as demonstrated in Section 6.

A related problem to probabilistic verification of neural net-
works is verifying Bayesian Neural Networks (BNNs) (Car-
delli et al., 2019a;b; Wicker et al., 2020; 2024; Berrada et al.,
2021; Adams et al., 2023; Batten et al., 2024). In BNNs, the
network parameters follow a probability distribution (Neal,
1996). Since neural networks typically have vastly more
parameters than inputs, BNN verification is concerned with

much higher dimensional probability distributions than we
consider in this paper. Our restriction to deterministic neural
networks allows us to provide a sound and complete yet
practically scalable probabilistic verification algorithm.

Dependency fairness (Galhotra et al., 2017; Urban
et al., 2020) is a non-probabilistic individual fairness no-
tion (Dwork et al., 2012). Approaches for verifying depend-
ency fairness include (Ruoss et al., 2020; Urban et al., 2020;
Biswas & Rajan, 2023; Mohammadi et al., 2023; Kim et al.,
2024). We are concerned with probabilistic fairness notions.

3. Preliminaries and Problem Statement
Throughout this paper, we are concerned with computing
(provable) lower and upper bounds.
Definition 3.1 (Bounds). For f : Rn → Rm, we call ℓ, u ∈
Rm a lower, respectively, upper bound on f for X ′ ⊆ Rn

if ℓ ≤ f(x) ≤ u, for all x ∈ X ′.

Neural Networks. In particular, we are concerned with
computing bounds on neural networks net : X → Rm,
where X ⊆ Rn is the input space of the neural network. A
neural network is a composition of linear functions and
a predefined set of non-linear functions, such as ReLU
and max pooling. We only study Lipschitz continuous
neural networks, which includes many common architec-
tures (Szegedy et al., 2014; Ruan et al., 2018). Besides this,
we refrain from defining neural networks further, as our
approach is not specific to any particular architecture.

Notation and Terminology. We use [x,x] = {x ∈ Rn |
x ≤ x ≤ x} to denote hyperrectangles and write [n] =
{1, . . . , n} for n ∈ N. The term bounds generally refers
to a pair of a lower and an upper bound in this paper. We
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assume that all random objects are defined on the same
abstract probability space (Ω,F ,P) and that all continuous
random variables admit a probability density function.

3.1. Probabilistic Verification of Neural Networks

Let X ⊆ Rn be a (potentially unbounded) hyperrectangle
and let v ∈ N. We are concerned with proving or disproving
whether a neural network net : X → Rm is feasible for the
probabilistic verification problem{

fSat(p1, . . . , pv) ≥ 0,

pi = P
x(i) [g

(i)
Sat(x

(i), net(x(i))) ≥ 0] ∀i ∈ [v],
(3)

where x(i), i ∈ [v], is an X -valued random variable with
distribution P

x(i) and fSat : Rv → R, g(i)Sat : Rn × Rm →
R, i ∈ [v] are satisfaction functions that are compositions
of linear functions, multiplication, division, and monotone
functions. Appendix A expresses Equation (1) in the form
of Equation (3) as a concrete example.

Probabilistic verification with a single uniformly distributed
random variable corresponds to #DNN verification (Marz-
ari et al., 2023a). As Marzari et al. (2023a) prove, #DNN
verification is #P complete, implying that probabilistic veri-
fication is #P hard. However, this does not determine which
probabilistic verification problems are practically solvable.

3.2. Non-Probabilistic Neural Network Verification

Non-probabilistic neural network verification determines
whether net : X → Rm is feasible for

gSat(x, net(x)) ≥ 0 ∀x ∈ X ′, (4)

where X ′ ⊆ X is a bounded hyperrectangle, and gSat :
Rn × Rm → R is a satisfaction function that indicates
whether the output of net is desirable (gSat(·, net(·)) ≥
0) or undesirable (gSat(·, net(·)) < 0). In neural net-
work verification, gSat can generally be considered a part
of net (Bunel et al., 2020; Xu et al., 2020). Neural network
verifiers are algorithms for proving or disproving Equa-
tion (4). Two desirable properties of neural network verifiers
are soundness and completeness.

Definition 3.2 (Soundness and Completeness). A verifica-
tion algorithm is sound if it only produces genuine counter-
examples and valid proofs for Equation (4). It is complete if
it produces a counterexample or proof for Equation (4) for
any neural network in a finite amount of time.

Analogous notions of soundness and completeness also ap-
ply to probabilistic verification. Section 2 discusses prob-
ably sound verification.

Interval Arithmetic. Interval arithmetic (Moore et al.,
2009) is a bound propagation technique that derives bounds

on the output of a neural network from bounds on the
network input. Assume x ≤ x ≤ x are bounds on the
network input x. We apply interval arithmetic to com-
pute ℓ ≤ gSat(x, net(x)) ≤ u, ∀x ∈ [x,x]. If the
lower bound is large enough or the upper bound small
enough, we can prove or disprove Equation (4) using ℓ ≥
0 =⇒ gSat(x, net(x)) ≥ 0, respectively, u < 0 =⇒
gSat(x, net(x)) < 0. However, if the bounds are inconclus-
ive, that is ℓ < 0 ≤ u, we can neither prove nor disprove
Equation (4). Therefore, interval arithmetic is incomplete
according to Definition 3.2.

Let f : Rn → R be a function that we want to bound
for inputs x ∈ [x,x]. Interval arithmetic and other bound
propagation techniques rely on f = f (K) ◦ · · · ◦ f (1) be-
ing a composition of more fundamental functions f (k) :
Rnk → Rnk+1 for which we can already compute ℓ(k) ≤
f (k)(z) ≤ u(k) given z ≤ z ≤ z. Examples of such
functions include monotone non-decreasing functions, for
which f (k)(z) ≤ f (k)(z) ≤ f (k)(z). This bounding rule
already allows us to bound addition, min, max, and ReLU,
among others. Appendix D contains further bounding rules.
Given a bounding rule F (k) : Rnk×Rnk → Rnk+1×Rnk+1

for each f (k), interval arithmetic computes bounds on f by
computing (F (K) ◦ · · · ◦ F (1))(x,x).

Branch and Bound. Bound propagation approaches, such
as interval arithmetic and CROWN (Zhang et al., 2018),
are incomplete according to Definition 3.2. To obtain a
complete verifier, bound propagation can be combined with
branching to gain completeness. This algorithmic frame-
work is called branch and bound (Land & Doig, 2010;
Morrison et al., 2016). In branch and bound, the search
space is split (branching) when the computed bounds are
inconclusive (ℓ < 0 ≤ u). The idea is that splitting im-
proves the precision of the bounds for each part of the split
(each branch). Bunel et al. (2020) provide an introduction to
branch and bound for non-probabilistic neural network veri-
fication. The next section introduces our branch and bound
algorithm for probabilistic neural network verification.

4. Algorithm
This section introduces PROBABILISTICVERIFICATION
(PV), our algorithm for probabilistic verification of neural
networks as defined in Equation (3). The overall approach
of PV is to iteratively refine bounds on each pi from Equa-
tion (3) until a bound propagation approach allows us to
prove or disprove fSat(p1, . . . , pv) ≥ 0. For computing
the bounds on pi, PV partitions the input space into hy-
perrectangles since this allows for computing probabilities
efficiently (Albarghouthi et al., 2017). To compute tighter
bounds on pi, PV uses a branch and bound algorithm that
uses computationally inexpensive input splitting and bound
propagation techniques from non-probabilistic neural net-
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Figure 1. Computing bounds on probabilities. This figure illustrates the steps for computing bounds on p = Px [gSat(x, net(x)) ≥ 0].
Our algorithm successively splits the input space to find regions that do not intersect the satisfaction boundary gSat(x, net(x)) ≥ 0

(orange/green line ). Green, orange, and grey rectangles ( / / ) denote regions for which we could prove gSat(x, net(x)) ≥ 0
(satisfaction) , gSat(x, net(x)) < 0 (violation) , or neither , respectively. By integrating the probability density fx in (c) (darker
means higher density) over the green rectangles , we obtain a lower bound on p. Similarly, we can integrate over the orange rectangles
to construct an upper bound on p. Refining the input splitting from (a) to (b) tightens the bounds on p.

work verification for refining the input splitting.

Algorithm 1 describes the PV algorithm. The centrepiece
of PV is the procedure PROBBOUNDS for computing
bounds ℓ

(t)
i ≤ pi ≤ u

(t)
i on a probability pi from Equa-

tion (3). Given ℓ
(t)
i ≤ pi ≤ u

(t)
i , we apply a bound propaga-

tion technique to prove or disprove fSat(p1, . . . , pv), as
described in Section 3.2. If this analysis is inconclus-
ive, PROBBOUNDS refines ℓ(t)i , u

(t)
i to obtain ℓ

(t+1)
i , u

(t+1)
i

with ℓ
(t)
i ≤ ℓ

(t+1)
i ≤ pi ≤ u

(t+1)
i ≤ u

(t)
i . We again ap-

ply bound propagation to fSat(p1, . . . , pv), this time us-
ing ℓ

(t+1)
i , u

(t+1)
i . If the result remains inconclusive, we

iterate refining the bounds on each pi until we obtain a con-
clusive result. PV applies PROBBOUNDS for each pi in par-
allel, making use of several CPU cores or several GPUs. Our
main contribution is the PROBBOUNDS algorithm for com-
puting a converging sequence of lower and upper bounds
on pi.

Algorithm 1 PV

Require: Probabilistic Verification Problem as in Equa-
tion (3), Batch Size N

1: for i ∈ [v] do // Launch v parallel instances
2: PBi ← Launch PROBBOUNDS(pi, N)
3: end for
4: for t ∈ N do
5: for i ∈ [v] do Gather b(t)i = (ℓ

(t)
i , u

(t)
i ) from PBi

6: (ℓ(t),u(t))←COMPUTEBOUNDS(fSat, b
(t)
1, . . . , b

(t)
v )

7: if ℓ(t) ≥ 0 then return Satisfied
8: if u(t) < 0 then return Violated
9: end for

Algorithm 2 PROBBOUNDS

Require: Probability Px [gSat(x, net(x)) ≥ 0], Batch
Size N

1: branches← {X}
2: ℓ(0) ← 0, u(0) ← 1
3: for t ∈ N do
4: batch← SELECT(branches, N)
5: (y,y)←COMPUTEBOUNDS(gSat(·, net(·)),batch)
6: (batch,X (t)

sat,X
(t)
viol)← PRUNE(batch,y,y)

7: ℓ(t) ← ℓ(t−1) + Px [X
(t)
sat]

8: u(t) ← u(t−1) − Px [X
(t)
viol]

9: yield (ℓ(t), u(t)) // Report new bounds to PV
10: new← SPLIT(batch)
11: branches← (branches \ batch) ∪ new
12: end for

4.1. Bounding Probabilities

Our PROBBOUNDS algorithm for deriving and refining
bounds on a probability is described in detail in Algorithm 2
and illustrated in Figure 1. PROBBOUNDS is a massively
parallel input-splitting branch and bound algorithm (Bunel
et al., 2020; Wang et al., 2018; Xu et al., 2020) that lever-
ages a bound propagation algorithm for non-probabilistic
neural network verification (COMPUTEBOUNDS). Since we
only consider a single probability in this section, we denote
this probability as p = Px [gSat(x, net(x)) ≥ 0].

PROBBOUNDS receives p and a batch size N ∈ N as input.
The algorithm iteratively computes ℓ(t), u(t) ∈ [0, 1], such
that ℓ(t) ≤ ℓ(t

′) ≤ p ≤ u(t′) ≤ u(t), ∀t, t′ ∈ N, t′ ≥ t. The
following sections describe each step of PROBBOUNDS in
detail.
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Initialisation. Initially, we consider a single branch encom-
passing net’s entire input space X . As in Section 3, we
assume X to be a (potentially unbounded) hyperrectangle.
We use the trivial bounds ℓ(0) = 0 ≤ p ≤ 1 = u(0) as initial
bounds on p.

Selecting Branches. First, we select a batch of N ∈ N
branches. In the spirit of Xu et al. (2021), we leverage the
data parallelism of modern CPUs and GPUs to process sev-
eral branches at once. In iteration t = 1, the batch only
contains the branch X . Which branches we select determ-
ines how fast we obtain tight bounds on p. We propose the
SELECTPROB heuristic for selecting branches. Inspired by
FAIRSQUARE (Albarghouthi et al., 2017), SELECTPROB
selects the N branches Bi with the largest Px [Bi]. This
heuristic is motivated by the observation that pruning these
branches would lead to the largest improvement of ℓ(t), u(t).

Pruning. The next step is to prune those branches Bj ∈
batch, for which we can determine that y =
gSat(x, net(x)) ≥ 0 is either certainly satisfied or certainly
violated. For this, we first compute y ≤ gSat(·, net(·)) ≤ y
for the entire batch using a bound propagation algorithm
for neural networks, such as CROWN (Zhang et al., 2018).
If y

j
≥ 0 (yj ≥ 0 is certainly satisfied) or yj < 0

(yj ≥ 0 is certainly violated), we can prune Bj , meaning
that we remove it from branches. We collect the branches
with y

j
≥ 0 in the set X (t)

sat and the branches with yj < 0

in the set X (t)
viol, where t ∈ N is the current iteration.

Updating Bounds. Let X̂ (t)
sat =

⋃t
t′=1 X

(t′)
sat and X̂ (t)

viol =⋃t
t′=1 X

(t′)
viol, where t ∈ N is the current iteration.

Then, ℓ(t) = Px [X̂
(t)
sat] ≤ p. Similarly, k(t) = Px [X̂

(t)
viol] ≤

Px [gSat(x, net(x)) < 0] = 1 − p. Therefore, 1 − k(t) =
u(t) ≥ p. Practically, we only have to maintain the current
bounds ℓ(t) and u(t) instead of the sets X̂ (t)

sat and X̂ (t)
viol.

Because X̂ (t)
sat and X̂ (t)

viol are a union of disjoint hyperrect-
angles, exactly computing Px [X̂

(t)
sat] and Px [X̂

(t)
viol] is feas-

ible for a large class of probability distributions, including
most univariate distributions, Mixture Models, and Bayesian
Networks. The precise class of supported probability dis-
tributions is discussed in Section 4.2. While we do not
account for floating point errors in this paper, our approach
can readily be extended to this end.

Splitting. Splitting refines a branch B = [x,x] by select-
ing a dimension d ∈ [n] to split. We split based on the
type of variable that is encoded in d. For bounded con-
tinuous variables, we split by bisecting [x,x] along d. For
unbounded variables, we split at zero if −xd = xd = ∞,
at max(2xd, 1) if −xd < xd = ∞, and at min(2xd,−1)
if −∞ = xd < −xd. For integer variables, we additionally
round the split points to the next smaller, respectively, larger
integer. For dimensions containing a binary indicator of a

one-hot encoded categorical variable A, we jointly split all
indicators of A such that A takes on the value encoded in d
in one branch and does not take on this value in the other
branch. Appendix B.1 defines these splitting rules formally.

Split Selection. We present three heuristics for selecting
the dimension d for splitting. We generally select dimen-
sions encoding unbounded variables first in order to ob-
tain bounded branches, since COMPUTEBOUNDS usually
computes vacuous bounds for unbounded branches. For
bounded variables, the well-known LONGESTEDGE heur-
istic (Bunel et al., 2020) selects the dimension with the
largest edge length xd − xd. Alternatively, we use a vari-
ant of the BABSB heuristic (Bunel et al., 2020). BABSB
estimates the improvement in bounds that splitting dimen-
sion d yields by using a yet less expensive technique than
COMPUTEBOUNDS. Our variant of BABSB uses INTER-
VALARITHMETIC, assuming that we use CROWN for
COMPUTEBOUNDS. Appendix B.2 describes our BABSB
variant in detail. While LONGESTEDGE is more theoret-
ically accessible, BABSB is practically advantageous, as
discussed in Appendix G. Combining the advantages of
both approaches, we introduce BABSB-LONGESTEDGE-k.
This heuristic alternates using BABSB and LONGESTEDGE,
using LONGESTEDGE for every k-th split. If we visualise
branches and their descendants from splitting in a branching
tree, the splits at level k, 2k, 3k, . . . use LONGESTEDGE
while the splits at all other levels use BABSB.

4.2. Input Spaces and Input Distributions

This section discusses the concrete requirements that the in-
put space X and the input distributions P

x(i) in Equation (3)
need to satisfy for applying PV. Appendix A.5 discusses
how some of these requirements can be mitigated, for ex-
ample, for using polytopes as input spaces.

PV requires X ⊆ Rn to be a hyperrectangle, which can
be unbounded. The dimensions of X may encode discrete
random variables. For each probability distribution P

x(i) ,
we require a terminating algorithm that computes the ex-
act probability of a hyperrectangle. This requirement is
satisfied by a large class of probability distributions, in-
cluding discrete distributions with a closed-form probability
mass function and univariate continuous distributions with a
closed-form cumulative density function, as well as Mixture
Models and probabilistic graphical models (Bishop, 2007),
such as Bayesian Networks, of such distributions.

5. Theoretical Analysis
In this section, we prove that PV is a sound probabilistic
verification algorithm when instantiated with a suitable
COMPUTEBOUNDS procedure. We also prove that PV
is complete under mild assumptions on the probabilistic
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verification problem when instantiated with suitable SPLIT,
COMPUTEBOUNDS, and SELECT procedures. Soundness
and completeness are defined in Definition 3.2. As in Sec-
tion 4.1, we omit indices and superscripts when considering
only a single probability p = Px [gSat(x, net(x)) ≥ 0]. We
defer all proofs to Appendix C. Our first result concerns the
soundness of PROBBOUNDS.

Theorem 5.1 (Sound Bounds). Let N ∈ N be a
batch size and assume COMPUTEBOUNDS produces
valid bounds. Let

{
(ℓ(t), u(t))

}
t∈N be the iterates

of PROBBOUNDS(Px [gSat(x, net(x)) ≥ 0], N). It holds
that ℓ(t) ≤ Px [gSat(x, net(x)) ≥ 0] ≤ u(t) for all t ∈ N.

Corollary 5.2 (Soundness). PV is sound when using COM-
PUTEBOUNDS procedures that compute valid bounds.

Our remaining theoretical results are concerned with
the completeness of PV. Concretely, we prove that
PV instantiated with SELECTPROB, LONGESTEDGE or
BABSB-LONGESTEDGE-k, and INTERVALARITHMETIC
or CROWN is complete under a mildly restrictive condition
on Equation (3). Appendix C.2 defines a more general class
of pruning and splitting heuristics for which PV is complete.

Assumption 5.3. Let v, fSat, g
(i)
Sat, and x(i) be as in Equa-

tion (3). Assume fSat(p1, . . . , pv) ̸= 0 and ∀i ∈ [v] :

P
x(i) [g

(i)
Sat(x

(i), net(x(i))) = 0] = 0.

Assumption 5.3 is only mildly restrictive, since for every
verification problem that does not satisfy Assumption 5.3,
there are similar problems that satisfy the assumption.
Consider the case that fSat(p1, . . . , pn) = 0. In this
case, Equation (3) does not satisfy Assumption 5.3. How-
ever, a slightly stronger verification problem concerned
with f ′

Sat(p1, . . . , pn) = fSat(p1, . . . , pn)− ε for an arbit-
rarily small ε > 0 satisfies Assumption 5.3. Appendix C.2
discusses Assumption 5.3 in more detail.

To prove the completeness of PV, we first establish that
PROBBOUNDS produces a sequence of lower and upper
bounds that converge towards each other.

Lemma 5.4 (Converging Probability Bounds). Let N ∈
N be a batch size. Let

{
(ℓ(t), u(t))

}
t∈N be the

iterates of PROBBOUNDS(Px [gSat(x, net(x)) ≥ 0], N)
instantiated with SELECTPROB, LONGESTEDGE or
BABSB-LONGESTEDGE-k, and INTERVALARITHMETIC
or CROWN. Assume Px [gSat(x, net(x)) = 0] = 0 as in
Assumption 5.3. Then,

lim
t→∞

ℓ(t) = lim
t→∞

u(t) = Px [gSat(x, net(x)) ≥ 0].

Theorem 5.5 (Completeness). When instantiated with
PROBBOUNDS as in Lemma 5.4 and INTERVALARITH-
METIC or CROWN for COMPUTEBOUNDS, PV is com-
plete for verification problems satisfying Assumption 5.3.

Unfortunately, our completeness result does not apply to
the BABSB heuristic, which provides the best empirical
performance when used in PV. However, our result applies
to BABSB-LONGESTEDGE-k, which yields comparable
performance as BABSB, as we show in Appendix G.1.

6. Experiments
We apply our algorithms to verify the demographic parity
fairness notion, count the number of safety violations of
neural network controllers in safety-critical systems, and
quantify the robustness of a neural network. Table 2 gives
an overview of our benchmarks. All verification problems
are defined formally in Appendix A. For all benchmarks,
PROBBOUNDS use the SELECTPROB and BABSB heur-
istics and CROWN (Zhang et al., 2018) for COMPUTE-
BOUNDS, while PV uses INTERVALARITHMETIC.

As our results show, PV (Algorithm 1) outpaces the probab-
ilistic verification algorithms FAIRSQUARE (Albarghouthi
et al., 2017) and SPACESCANNER (Converse et al., 2020).
Additionally, we show that PROBBOUNDS (Algorithm 2)
compares favourably to the PROVE SLR (Marzari et al.,
2023b), ε-PROVE (Marzari et al., 2024), and PREIMGAP-
PROX (Zhang et al., 2024) algorithms for #DNN verifica-
tion (Marzari et al., 2023a), which corresponds to probabil-
istic verification with uniformly distributed inputs.

While no code is publicly available for SPACESCANNER,
running PROVE SLR is very computationally expensive.
To enable a faithful comparison, we run our experiments on
less powerful hardware (HW1) compared to the hardware
used by Converse et al. (2020) and Marzari et al. (2023b)
and compare the runtime of our algorithms to the runtimes
reported by these authors. All other results reported in
this paper were obtained on HW1, including the results for
FAIRSQUARE, ε-PROVE, and PREIMGAPPROX.

To test the limits of PV, we introduce a new, challenging
benchmark: MiniACSIncome is based on the ACSIncome
dataset (Ding et al., 2021). It consists of datasets of vary-
ing input dimensionality, probability distributions for these
datasets, and neural networks trained on these datasets. Be-
ing based on real-world US census data, MiniACSIncome
offers more complex input distributions with higher input
dimensionality than existing probabilistic verification bench-
marks. PV solves seven of eight instances in MiniACS-
Income within an hour.

Hardware and Implementation. We implement PV in
Python, leveraging PyTorch (Paszke et al., 2019) and
auto LiRPA (Xu et al., 2020). We run all experiments
on a Ubuntu 22.04 desktop with an Intel i7–4820K CPU, 32
GB of memory, and no GPU (HW1). Appendix F.1 com-
pares our hardware to the hardware used by Converse et al.
(2020) and Marzari et al. (2023b).
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Table 2. Our benchmarks. Network size is the size of the neural network given as #layers×layer size.

Benchmark Input Dimension Input Distributions Network Size Source

FairSquare 2–3 independent 1×1, 1×2 (Albarghouthi et al., 2017)2 Bayesian Networks
ACAS Xu 5 uniform 6×50 (Katz et al., 2017b)
VCAS 4 uniform 1×21 (Zhang et al., 2024)

MiniACSIncome 1–8 Bayesian Network 1×10–10000 Own1×10 – 10×10

2 4 6 8 10 12 14 16 18
100

101

102

TO

# Solved Instances

R
un

tim
e

(s
)

FAIRSQUARE∗

PV (Ours)

Figure 2. FairSquare benchmark results. The timeout (TO) is
15min. ∗Albarghouthi et al. (2017)

6.1. FairSquare Benchmark

Albarghouthi et al. (2017) evaluate their FAIRSQUARE al-
gorithm on an application derived from the Adult data-
set (Adult, 1996). In particular, they verify whether three
small neural networks satisfy two fairness notions with re-
spect to a person’s sex under three different distributions of
the network input: a distribution of entirely independent uni-
variate variables and two Bayesian Networks. Appendix F.2
describes the FairSquare benchmark in more detail.

Figure 2 compares the runtimes of PV and FAIRSQUARE
on the FairSquare benchmark. PV significantly outperforms
FAIRSQUARE. In particular, PV solves four more instances
than FAIRSQUARE within the timeout of 15 minutes. For
the instances that both tools solve, the median runtime of
PV is 4s (mean: 5s, max: 17s) compared to 44s for FAIR-
SQUARE (mean: 109s, max: 657s). Appendix F.2 contains
the detailed results of this experiment.

6.2. Aircraft Collision Avoidance

The ACAS Xu networks (Katz et al., 2017b) are a suite of
45 networks, together forming a collision avoidance system
for crewless aircraft. Each ACAS Xu network predicts a
horizontal turning direction to avoid collision with another
aircraft. VCAS (Julian & Kochenderfer, 2019) is a similar
system that predicts vertical steering directions for avoiding

collisions. We reproduce the ACAS Xu safety experiments
of Marzari et al. (2023b), the ACAS Xu robustness experi-
ments of Converse et al. (2020), and the VCAS correctness
experiment of Zhang et al. (2024).

ACAS Xu Safety. In this experiment, we seek to
quantify the number of violations (violation rate) of sev-
eral ACAS Xu networks (Katz et al., 2017b). This cor-
responds to computing bounds on Equation (2) under a
uniform distribution of x. We compare PROBBOUNDS to
the PROVE SLR and ε-PROVE algorithms for #DNN veri-
fication. PROVE SLR computes the violation rate exactly,
while ε-PROVE computes an upper bound on the violation
rate that is sound with a certain predefined probability. In
contrast, PROBBOUNDS provides sound bounds on the viol-
ation rate at any time during its execution.

Table 3 compares PROBBOUNDS to PROVE SLR and ε-
PROVE for the ACAS Xu networks investigated by Marzari
et al. (2023b). For all three networks, PROBBOUNDS can
tighten the bounds to a margin of less than 0.7% within one
hour, while PROVE SLR requires at least four hours to com-
pute the exact violation rate. In comparison to ε-PROVE,
PROBBOUNDS produces tighter sound bounds within 10
seconds in two of three cases, while ε-PROVE requires at
least 57 seconds to derive a probably sound upper bound
for these cases. The extended comparison in Appendix F.3
reveals that in 12 from a total of 36 cases, PROBBOUNDS
computes a tighter sound bound faster than ε-PROVE com-
putes a probably sound upper bound.

ACAS Xu Robustness. We replicate the experiments
of Converse et al. (2020) who apply SPACESCANNER to
quantify the robustness of ACAS Xu network N1,1 (Katz
et al., 2017b) under adversarial perturbations. Overall, the
experiment consists of 125 verification problems that con-
cern the probability of obtaining a particular class for uni-
formly distributed perturbed inputs close to one of 25 refer-
ence input points.

The mean runtime of PROBBOUNDS for these 125 instances
is 22 seconds (median: 6s, maximum: 213s). In contrast,
Converse et al. (2020) report a mean runtime of 33 minutes
per instance for SPACESCANNER while running their exper-
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Table 3. Comparison of PROBBOUNDS, PROVE SLR, and ε-PROVE. We run PROBBOUNDS with different time budgets (10s, 1m,
1h) and report the lower and upper bounds (ℓ, u) computed within this time budget. In contrast, PROVE SLR computes the exact
probabilities (VR), and ε-PROVE computes a 99.9% confidence (confid.) upper bound. The probabilities and probability bounds are given
as percentages. The runtimes (Rt) of PROVE SLR are taken from Marzari et al. (2023b).

PROBBOUNDS (Ours) PROVE SLR† ε-PROVE‡

10s 1m 1h Exact 99.9% confid.
net ℓ, u ℓ, u ℓ, u VR Rt u Rt

N4,3 0.17%, 2.92% 0.61%, 2.27% 1.12%, 1.75% 1.43% 8h 46m 3.61% 65s
N4,9 0.00%, 3.36% 0.00%, 1.55% 0.08%, 0.29% 0.15% 12h 21m 0.73% 20s
N5,8 0.89%, 4.16% 1.55%, 3.10% 1.97%, 2.57% 2.20% 4h 35m 4.52% 57s

†Marzari et al. (2023b) ‡Marzari et al. (2024)

iments on superior hardware. Appendix F.4 contains more
details on this experiment.

VCAS Correctness. Zhang et al. (2024) study whether
a VCAS network correctly predicts to maintain course in
a scenario where there is no risk of collision. Concretely,
they verify whether the VCAS network provides the correct
output at least 90% of the time. PV is able to prove this
within 0.13s. In contrast, PREIMGAPPROX requires 16.42s
for computing an unsound empirical lower bound on the
probability of obtaining correct outputs.

6.3. MiniACSIncome

To test the limits of PV, we introduce the MiniACSIncome
benchmark. MiniACSIncome is derived from the ACSIn-
come dataset (Ding et al., 2021), a replacement of the Adult
dataset (Adult, 1996) that is better suited for fair machine
learning research. The task is to predict whether a person’s
yearly income exceeds $50 000 using features such as the
person’s age, sex, and education. Our benchmark provides
probabilistic verification problems of various degrees of dif-
ficulty. We apply PV to MiniACSIncome and compare it to
a baseline approach for solving MiniACSIncome.

Benchmark. To create probabilistic verification problems
of increasing difficulty, we consider an increasing number
of input variables from ACSIncome. The smallest instance,
MiniACSIncome-1, only contains the binary ‘SEX’ variable.
In contrast, the largest instance, MiniACSIncome-8, con-
tains ‘SEX’ and seven more variables from ACSIncome,
including age, education, and working hours per week.
Our benchmark’s task is to verify the demographic parity
of neural networks with varying input dimension under a
Bayesian Network as input distribution. These Bayesian
Networks provide complex multi-modal input distributions,
as they fit the real-world US census data in ACSIncome.
Appendix F.5 describes MiniACSIncome in detail.

Results. Since all variables in MiniACSIncome are discrete,

1 2 3 4 5 6 7 8
1

10
20
30
40
50

TO

# Input Variables

R
un

tim
e

(m
in

) Enumerate
PV (Ours)

Figure 3. MiniACSIncome results. The timeout (TO) is one hour.

a baseline approach for verifying the demographic parity
of a MiniACSIncome network is to enumerate all values in
the input space. Figure 3 displays the runtime of PV and
the baseline enumeration approach for shallow 10-neuron
neural networks with increasing input size. While enumer-
ation is faster than PV when the network can be evaluated
for all discrete values in one batch, enumeration falls behind
PV as soon as this becomes infeasible. PV can solve Mini-
ACSIncome for up to seven input variables in less than 30
minutes, only exceeding the timeout of one hour for eight
input variables. While we only consider a small network
here, the runtime of PV is largely unaffected by network
size on this benchmark. This unexpected result can be at-
tributed to both large and small networks learning similar
decision boundaries for MiniACSIncome. Appendix F.5.5
discusses this result in more detail.

7. Conclusion
Our PV algorithm for the probabilistic verification of neural
networks significantly outpaces existing algorithms for prob-
abilistic verification. We achieve this speedup by applying
a massively parallel branch and bound algorithm based on
bound propagation algorithms for neural networks. Our
MiniACSIncome benchmark provides a challenging testbed
for future probabilistic verification algorithms.
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Impact Statement
This work is concerned with providing mathematical guar-
antees on the output distribution of a neural network given
a distribution of the inputs. Since mathematical guarantees
enhance the transparency of neural networks and facilit-
ate their faithful auditing, we anticipate that our work will
have a predominantly positive societal impact. However,
obtaining an input distribution for probabilistic verification
requires significant domain expertise and careful design.
For example, a poorly designed input distribution may lead
to certifying an unfair classifier as fair. Therefore, verifica-
tion results are only meaningful if the concrete probabilistic
verification problem that was solved is reported and made
available alongside the verification result, including the in-
put distribution. Ideally, verification should be conducted
by a separate certification body for critical applications.
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DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala, S.
PyTorch: An imperative style, high-performance deep
learning library. In NeurIPS, pp. 8024–8035, 2019.
URL https://proceedings.neurips.cc/pap
er/2019/hash/bdbca288fee7f92f2bfa9f
7012727740-Abstract.html.

Pulina, L. and Tacchella, A. An abstraction-refinement
approach to verification of artificial neural networks. In
CAV, volume 6174 of Lecture Notes in Computer Science,
pp. 243–257. Springer, 2010. URL https://doi.org
/10.1007/978-3-642-14295-6 24.

Ruan, W., Huang, X., and Kwiatkowska, M. Reachability
analysis of deep neural networks with provable guaran-
tees. In IJCAI, pp. 2651–2659. ijcai.org, 2018. URL
https://doi.org/10.24963/ijcai.2018/368.

Ruoss, A., Balunovic, M., Fischer, M., and Vechev, M. T.
Learning certified individually fair representations. In
NeurIPS, 2020. URL https://proceedings.neu
rips.cc/paper/2020/hash/55d491cf951b1b
920900684d71419282-Abstract.html.
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A. Probabilistic Verification Problems
This section contains the formal definitions of all probabilistic verification problems in this paper.

Example A.1. We express the demographic parity fairness notion from Equation (1) as a probabilistic verification problem.
Let X ⊆ Rn be an input space that encodes information about a person, including a categorical protected attribute, such as
gender, race, or disability status that is one-hot encoded at the indices A ⊂ [n]. We assume a single historically advantaged
category encoded at the index a ∈ A. Consider a neural network net : Rn → R2 that acts as a binary classifier making
a decision affecting a person, such as hiring or credit approval. The neural network produces a score for each class and
assigns the class with the higher score to an input. We rewrite Equation (1) as

Px[net(x) = yes | x is disadvantaged]
Px[net(x) = yes | x is advantaged]

≥ γ

⇐⇒
Px [net(x)1 − net(x)2 ≥ 0 | xa ≤ 0]

Px [net(x)1 − net(x)2 ≥ 0 | xa ≥ 1]
≥ γ

⇐⇒
Px [net(x)1 − net(x)2 ≥ 0 ∧ xa ≤ 0]/Px [xa ≤ 0]

Px [net(x)1 − net(x)2 ≥ 0 ∧ xa ≥ 1]/Px [xa ≥ 1]
≥ γ

⇐⇒
Px [min(net(x)1 − net(x)2,−xa) ≥ 0]/Px [−xa ≥ 0]

Px [min(net(x)1 − net(x)2,xa − 1) ≥ 0]/Px [xa − 1 ≥ 0]
≥ γ

⇐⇒
Px [g

(1)
Sat(x, net(x)) ≥ 0]/Px [g

(2)
Sat(x, net(x)) ≥ 0]

Px [g
(3)
Sat(x, net(x)) ≥ 0]/Px [g

(4)
Sat(x, net(x)) ≥ 0]

− γ ≥ 0

⇐⇒ fSat

(
Px

[
g
(1)
Sat(x, net(x)) ≥ 0

]
, . . . ,Px

[
g
(4)
Sat(x, net(x)) ≥ 0

])
≥ 0

where, fSat(p1, p2, p3, p4) = (p1p4)/(p2p3) − γ, g(1)Sat(x, net(x)) = min(net(x)1 − net(x)2,−xa), g
(2)
Sat(x, net(x)) =

−xa, g(3)Sat(x, net(x)) = min(net(x)1 − net(x)2,xa − 1), and g
(4)
Sat(x, net(x)) = xa − 1.

A.1. Parity of Qualified Persons

The following probabilistic verification problem concerns verifying the parity of qualified persons, a variant of demographic
parity that only considers the subpopulation of persons qualified for, for example, hiring (Albarghouthi et al., 2017).
Let X ⊆ Rn, A ⊂ [n], a ∈ A, and net : Rn → R2 be as in Example A.1. Additionally, let q ∈ [n] \A and q̂ ∈ R, such that
persons with xq ≥ q̂ are considered to be qualified. In their extended set of experiments, Albarghouthi et al. (2017) consider
a q that encodes age and q̂ = 18 so that only persons who are at least 18 years old are considered to be qualified. The parity
of qualified persons fairness notion is

Px[net(x) = yes | x is disadvantaged ∧ x is qualified]
Px[net(x) = yes | x is advantaged ∧ x is qualified]

≥ γ

⇐⇒
Px [net(x)1 − net(x)2 ≥ 0 | xa ≤ 0 ∧ xq ≥ q̂]

Px [net(x)1 − net(x)2 ≥ 0 | xa ≥ 1 ∧ xq ≥ q̂]
≥ γ

⇐⇒
Px [net(x)1 − net(x)2 ≥ 0 | min(−xa,xq − q̂) ≥ 0]

Px [net(x)1 − net(x)2 ≥ 0 | min(xa − 1,xq − q̂) ≥ 0]
≥ γ

⇐⇒ fSat

(
Px

[
g
(1)
Sat(x, net(x)) ≥ 0

]
, . . . ,Px

[
g
(4)
Sat(x, net(x)) ≥ 0

])
≥ 0

where γ ∈ [0, 1], fSat(p1, p2, p3, p4) = (p1p4)/(p2p3) − γ, g(1)Sat(x, net(x)) = min(net(x)1 − net(x)2,−xa,xq − q̂),

g
(2)
Sat(x, net(x)) = min(−xa,xq− q̂), g(3)Sat(x, net(x)) = min(net(x)1−net(x)2,xa−1,xq− q̂), and g

(4)
Sat(x, net(x)) =

min(xa − 1,xq − q̂).

A.2. ACAS Xu Safety

Next, we consider Equation (2) for an ACAS Xu network, where to be safe means satisfying property ϕ2 of Katz et al. (2017b).
For quantifying the number of violations, we first define what it means for an ACAS Xu neural network net : R5 → R5 to
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violate ϕ2. Using the satisfaction functions of Bauer-Marquart et al. (2022), violating ϕ2 means

gSat(x, net(x)) =
5

max
i=2

net(x)i − net(x)1 < 0 ∀x ∈ Xϕ2 ∩ X , (5)

where X is the bounded hyperrectangular input space of net and

Xϕ2
= [55947.961,∞]× R2 × [1145,∞]× [−∞, 60].

We refer to Katz et al. (2017b) for an interpretation of ϕ2 in the application context. Quantifying the number of violations
with respect to ϕ2 corresponds to computing

ℓ ≤ Px [gSat(x, net(x)) < 0] = Px [−gSat(x, net(x)) ≥ 0] ≤ u,

where gSat is as in Equation (5) and x is uniformly distributed on Xϕ2
∩ X with all points outside Xϕ2

∩ X having zero
probability.

A.3. ACAS Xu Robustness

For the ACAS Xu robustness experiment in Section 6.2, we solve five probabilistic verification problems for each reference
input x — one for each of the five classes. Our goal is to bound the probability of net classifying an input x′ as class i ∈ [5],
where x′ is close to the reference input x in the first two dimensions and identical to x in the remaining dimensions.

Let net be the ACAS Xu network N1,1 of Katz et al. (2017b) with input space X = [x,x]. Let x be a reference input. Note
that the ACAS Xu networks assign the class with the minimal score to an input instead of using the maximal score. For
bounding the probability of obtaining class i ∈ [5] for inputs close to x, we compute bounds on

Px′ [gSat(x
′, net(x′)) ≥ 0],

gSat(x
′, net(x′)) =

5
min
j=1
j ̸=i

net(x′)j − net(x′)i

where x′ is uniformly distributed on the set X ∩ ([x1:2 − 0.05 ·w1:2,x1:2 + 0.05 ·w1:2]× {x3:5}) , where w = x − x
and zi:j is the vector containing the elements i, . . . , j of a vector z.

A.4. VCAS Correctness

In the VCAS correctness experiment in Section 6.2, the goal is to prove whether the VCAS network net : R4 → R9

of Zhang et al. (2024) satisfies
Px[gSat(x, net(x)) ≥ 0] ≥ 0.9,

where gSat(x, net(x)) = net(x)1 −min9j=2 net(x)j , which encodes that the network predicts ‘Clear Of Conflict’, and x is
uniformly distributed on the set [−8000, 0]× [0, 100]×{−30}× [0, 40]. We refer to Zhang et al. (2024) for an interpretation
of this specification in the application context.

A.5. Useful Modelling Techniques

As discussed in Section 4.2, PV requires the input space X to be a hyperectangle. Further, it requires that each input
distribution Px allows for computing the probability of a hyperrectangle in closed form. This section shows how some of
these restrictions can be mitigated. Concretely, we show how to use multivariate normal distributions as input distributions
and polytopes as input spaces.

We first show how we can apply PV to multivariate normal distributions by transforming the input distribution and the
network to verify. Consider a multivariate normal distribution Pz with mean µ and covariance Σ = AAT. If Σ is diagonal,
the probability of a hyperrectangle has a closed-form solution, so that we can compute it efficiently. Here, we are interested
in the case where Σ is not diagonal, so that we can not compute the probability of a hyperrectangle directly. In this case,
let Px be a standard multivariate normal distribution. Now, z = Ax + µ is distributed according to Pz. Therefore, by
prepending the linear transformation Ax + µ to net, we can apply PV to general multivariate normal distributions, since
the probability of a hyperrectangle under a standard multivariate normal distribution has a closed-form solution.
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Second, we show how to apply PV to polytopal input spaces, even though they can not be used as input space directly.
Let P = {x ∈ Rn | Ax ≤ b} be a polytope and let X ⊇ P be a hyperrectangle enclosing P . By using X as the input space
and using

Px[gSat(x, net(x)) ≥ 0 | Ax ≤ b] =
Px [gSat(x, net(x)) ≥ 0 ∧Ax ≤ b]

Px [Ax ≤ b]

we can apply PV to polytopes as input spaces. However, before applying PV, we should check whether Px [Ax ≤ b] > 0,
since, otherwise, the verification problem is ill-defined. We can apply PROBBOUNDS for this purpose by computing bounds
on Px [Ax ≤ b].

B. Additional Details on PROBBOUNDS

This section contains additional details on PROBBOUNDS (Algorithm 2). It includes a detailed description of our procedure
for splitting dimensions and a motivation and additional details on our BABSB SPLIT heuristic.

B.1. Splitting

Section 4.1 describes how to split a dimension d ∈ [n] to refine a branch. This section formally defines the splitting
procedure that PROBBOUNDS applies. A dimension can encode several types of variables. We consider continuous variables,
such as normalised pixel values, integer variables, such as age, and dimensions containing one indicator of a one-hot encoded
categorical variable like gender. The type of variable encoded in d determines how we split d.

• For continuous variables, we further differentiate whether B is bounded, unbounded in one direction, or unbounded in
both directions in dimension d.

– If B is bounded in dimension d, we bisect B along d resulting in two new branches [x′,x′] and [x′′,x′′].
Concretely, x′

d′ = x′′
d′ = xd′ and x′

d′ = x′′
d′ = xd′ for all d′ ∈ [n]\{d}while x′

d = x′′
d = (xd+xd)/2, x′

d = xd,
and x′′

d = xd.
– If B is unbounded in both directions in d, we split d at zero, so that x′

d = x′′
d = 0. The remaining bounds of the

new branches [x′,x′] and [x′′,x′′] are as in the bounded case.
– If B is bounded from below but unbounded from above in d, that is−∞ < xd < xd =∞, we split at x′

d = x′′
d =

max(2xd, 1), all else being as above. Effectively, this split rule performs an exponential search over unbounded
dimensions until the remaining unbounded branches are no longer selected by SELECT, for example, because they
have diminishing probability in the case of SELECTPROB. We handle the case where d is bounded from above but
unbounded from below analogously.

• For integer variables, we split d as for a continuous variable to obtain [x′,x′], [x′′,x′′] and round x′
d to the next smaller

integer while rounding x′′
d to the next larger integer.

• For a one-hot encoded categorical variable V encoded in the dimensions A ⊆ [n] with d ∈ A, we create one split
where V is equal to the category represented by d and one where V is different from this category. Formally, x′

d =
x′
d = 1 and x′

d′ = x′
d′ = 0 for d′ ∈ A\{d} defines [x′,x′]. For [x′′,x′′], we set x′′

d = x′′
d = 0 and leave the remaining

values are they are in x and x. This splitting procedure eventually creates a new branch where all dimensions are set to
zero. This branch has zero probability and can be discarded immediately.

In any case, we need to ensure not to select d if xd = xd.

B.2. BABSB

Our BABSB split selection heuristic is a variation of the BABSB heuristic for non-probabilistic neural network verification
of Bunel et al. (2020). One difference is that Bunel et al. (2020) use the method of Wong & Kolter (2018) for estim-
ating the improvement in bounds, while we use INTERVALARITHMETIC. Another difference is that while Bunel et al.
(2020) are mainly interested in lower bounds, we are equally interested in lower and upper bounds. Let [x(d,1),x(d,1)]
and [x(d,2),x(d,2)] be the two new branches originating from splitting dimension d ∈ [n] and let y(d,1), y(d,1), y(d,2), y(d,2)

be the bounds that INTERVALARITHMETIC computes on gSat(·, net(·)) for these branches. Our BABSB heuristic se-
lects d = argmaxd∈[n] ỹ

(d), where ỹ(d) = max(max(y(d,1), y(d,2)),−min(y(d,1), y(d,2))). In other words, we select the
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dimension d that yields the largest lower bound or smallest upper bound in any of the new branches, while Bunel et al.
(2020) select the dimension d with the largest lower bound among the smaller lower bound for the two branches originating
from splitting d. We found this variant to be the most successful for our application. Bunel et al. (2020) discuss further
variants.

Implementation. We round all bounds to four decimal places to mitigate floating point issues. If several dimensions yield
equal improvements in bounds, we randomly select one of these dimensions. Without this random tie-breaking, we might
split a single dimension repeatedly if the INTERVALARITHMETIC bounds are very loose. We use a separate pseudo-random
number generator with a fixed seed for this tie-breaking so that BABSB remains entirely deterministic.

C. Extended Theoretical Analysis
This section contains the proofs of the theorems in Section 5. We also give a more general completeness analysis of PV than
presented in Section 5.

C.1. Soundness

This section contains the proofs for our soundness results from Section 5.

Proof of Theorem 5.1. Let t ∈ N and let X (t)
sat and X (t)

viol be as in Algorithm 2. PROBBOUNDS computes ℓ(t) as the total
probability of all previously pruned satisfied branches X̂ (t)

sat =
⋃t

t′=1 X
(t′)
sat . Similarly, u(t) = 1− k(t) where k(t) is the total

probability of all previously pruned violated branches X̂ (t)
viol =

⋃t
t′=1 X

(t′)
viol. Since we assumed that COMPUTEBOUNDS

produces valid bounds, PRUNE only prunes branches that are actually satisfied or violated. Therefore, X̂ (t)
sat ⊆ {x ∈ X |

gSat(x, net(x)) ≥ 0} and X̂ (t)
viol ⊆ {x ∈ X | gSat(x, net(x)) < 0}. From this, it follows directly that

ℓ(t) = Px

[
X̂ (t)

sat

]
≤ Px [gSat(x, net(x)) ≥ 0]

k(t) = Px

[
X̂ (t)

viol

]
≤ Px [gSat(x, net(x)) < 0],

which implies u(t) = 1− k(t) ≥ 1−Px [gSat(x, net(x)) < 0] = Px [gSat(x, net(x)) ≥ 0]. This shows that PROBBOUNDS
is sound.

Proof of Corollary 5.2. Corollary 5.2 follows from Theorem 5.1 and the soundness of the COMPUTEBOUNDS procedure
applied by PV.

C.2. Completeness

This section is concerned with proving our completeness result from Section 5. We first discuss in more detail why Assump-
tion 5.3 is only mildly restrictive. Next, we define conditions on the SPLIT, SELECT, and COMPUTEBOUNDS procedures
that ensure the completeness of PV. We then prove that the SELECTPROB, LONGESTEDGE, BABSB-LONGESTEDGE-k
heuristics and INTERVALARITHMETIC, as well as CROWN satisfy these conditions. Finally, we prove the completeness of
PV.

Discussion of Assumption 5.3. The proof of Theorem 5.5 is based on Lemma 5.4 that states that PROBBOUNDS
produces a sequence of lower and upper bounds that converge towards each other. Intuitively, we require Assumption 5.3
since converging bounds on fSat(p1, . . . , pn) are insufficient for proving fSat(p1, . . . , pn) ≥ 0 if fSat(p1, . . . , pn) =
0 (Albarghouthi et al., 2017). Note that p1, . . . , pv and fSat(p1, . . . , pv) are unknown but fixed values in Equation (3).

For illustration, assume we want to show y ≥ 0, where y ∈ R is an unknown constant. We are provided with converging
sequences of bounds (ℓt)t∈N and (ut)t∈N with ℓt ≤ y ≤ ut for each t ∈ N and limt→∞ ℓt = limt→∞ ut = y. If y = 0, the
sequences of bounds that only converge in the limit do not suffice to prove y ≥ 0, since there may not be a T ∈ N with
ℓT = 0. However, if the y ̸= 0, obtaining a finite number of iterates of (ℓt)t∈N and (ut)t∈N always suffices for proving
or disproving y ≥ 0. Concretely, there will be a T ∈ N, such that either ℓT > 0 or uT < 0, that proves, respectively,
disproves y ≥ 0. The assumption that fSat(p1, . . . , pv) ̸= 0 corresponds to assuming y ̸= 0 in this example.
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In Section 5, we describe studying f ′
Sat(p1, . . . , pn) = fSat(p1, . . . , pn) − ε for some ε > 0, if we suspect

that fSat(p1, . . . , pn) = 0. If fSat(p1, . . . , pn) = 0, the probabilistic verification problem with f ′
Sat in place of fSat

satisfies Assumption 5.3 and is only marginally stronger than the original verification problem.

The motivation for requiring P
x(i) [g

(i)
Sat(x

(i), net(x(i))) = 0] = 0, ∀i ∈ [v] is similar as for requiring fSat(p1, . . . , pn) ̸= 0.

If P
x(i) [g

(i)
Sat(x

(i), net(x(i))) = 0] ̸= 0, there can be a region of the input space with positive probability that we can
never prune, since the bounds computed by interval arithmetic or CROWN may only converge in the limit for this region.
However, if this is the case, we can tighten g

(i)
Sat(x

(i), net(x(i))) ≥ 0 to g
(i)
Sat(x

(i), net(x(i))) ≥ ε for some ε > 0 such
that P

x(i) [g
(i)
Sat(x

(i), net(x(i))) = ε] = 0. Such an ε > 0 exists because Px [gSat(x, net(x)) = 0] = 0 means that the
satisfaction boundary has positive volume but any neural network has only finitely many flat regions that can produce
a satisfaction boundary of positive volume. We now define conditions on the COMPUTEBOUNDS, SPLIT, and SELECT
procedures that ensure the completeness of PV.

Definition C.1 (Convergent Bounds). Let f : Rn → Rm. We call a COMPUTEBOUNDS procedure that computes y ≤
f(x) ≤ y for x ∈ [x,x] convergent if ∥y − y∥ → 0 as ∥x − x∥ → 0 and ∥y − y∥ = 0 if ∥x − x∥ = 0.

Definition C.2 (Dimension Alternation). Let [x,x] ⊆ Rn. A splitting procedure SPLIT is dimension-alternating if for
every d ∈ [n] with xd ̸= xd

∃t ∈ N : ∃[x′,x′] ∈ branches(t) : x′
d − x′

d < xd − xd,

where branches(t) = SPLIT(branches(t−1)) for t ∈ N and branches(0) = [x,x].

Definition C.3 (Branch Alternation). A branch selection procedure SELECT is branch-alternating if

∀t ∈ N : ∀B ∈ branches(t) : Px [B] > 0 =⇒ ∃t′ ≥ t : B ∈ SELECT(branches(t
′), N),

where N ∈ N and branches(t) is the value of the branches variable of PROBBOUNDS in iteration t where PROBBOUNDS
is instantiated with SELECT and a COMPUTEBOUNDS procedure satisfying Definition C.1.

In the following, we prove that SELECTPROB, LONGESTEDGE, and BABSB-LONGESTEDGE-k as introduced in Section 4.1
are branch alternating and dimensional alternating, respectively. It is well-known that INTERVALARITHMETIC satisfies
Definition C.1 (Moore et al., 2009). We provide a proof in Appendix D.2. We show that CROWN satisfies Definition C.1 in
Appendix E.

Proposition C.4. LONGESTEDGE satisfies Definition C.2.

Proof. Let [x,x] ⊆ Rn, d ∈ [n] with xd ̸= xd, and let branches(t) for t ∈ N0 be as in Definition C.2. We call xd − xd the
edge length of d in [x,x].

If xd − xd > maxd′ ̸=d xd′ − xd′ , the dimension d is selected for splitting immediately. In the following, we not only show
that xd − xd decreases when split but also that xd − xd → 0 in at least one branch when we split d repeatedly. This result
is required for the second part of this proof. We differentiate several cases based on the variable encoded in d.

• Bounded Continuous Variable. Let d encode a continuous variable with xd − xd <∞. As described in Section 4.1 we
split such dimensions by bisecting [x,x] along d. Bisecting decreases the edge length of d in the resulting branches so
that we have x′

d − x′
d < xd − xd for all [x′,x′] ∈ branches(1) = SPLIT([x,x]). Furthermore, the edge length of d

converges towards zero if we bisect along d repeatedly.

• Continuous Variable Bounded from Below but Unbounded from Above. Let d encode a continuous variable with −∞ <
xd < xd =∞. Since splitting such a dimension creates one branch where d is bounded, we have x′

d − x′
d < xd − xd

for the bounded branch [x′,x′] ∈ branches(1). Furthermore, repeatedly splitting the bounded branch along d lets the
edge length of d converge towards zero, as discussed above.

• Continuous Variable Bounded from Above but Unbounded from Below. This case proceeds analogously to the previous
case.
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• Continuous Variable Unbounded from Both Sides. Splitting along such variables creates two branches that are bounded
from one side. Therefore, after two splits, we obtain two bounded branches, such that x′

d − x′
d < xd − xd for

two [x′,x′] ∈ branches(2) = SPLIT(branches(1)). Similarly, repeatedly splitting the bounded branches along d lets
the edge length of d converge towards zero.

• Integer Variable. Let d encode an integer variable. Splitting d proceeds as for a continuous variable, except for excluding
non-integer values from the new branches. This decreases the edge length of d at least as much as if we were splitting
a continuous variable. Therefore, we have that x′

d − x′
d < xd − xd for at least one branch [x′,x′] ∈ branches(1).

Furthermore, the edge length of d reaches zero after finitely many splits in all bounded branches since we exclude
non-integer values.

• One-Hot Encoded Categorical Variable. Let d contain an indicator of a one-hot encoded categorical variable. Splitting d
decreases the edge length of d to zero, so that we have x′

d − x′
d = 0 < xd − xd for all [x′,x′] ∈ branches(1).

Overall, Definition C.2 is satisfied if dimension d is selected for splitting immediately.

Now consider the case that d is not selected for splitting immediately. In this case, a different dimension d′ ∈ [n], d′ ̸= d
with xd′ −xd′ ≥ xd−xd, is selected for splitting by LONGESTEDGE. As we have argued above, repeatedly splitting d′ lets
the edge length of d′ decrease towards zero in at least one branch. Therefore, we eventually obtain [x′,x′] ∈ branches(t)

with x′
d′ − x′

d′ < xd − xd. Since this holds for all d′′ ∈ [n], d′′ ̸= d with xd′′ − xd′′ ≥ xd − xd, we eventually obtain a
branch where LONGESTEDGE splits d. Therefore, Definition C.2 is also satisfied if dimension d is not selected for splitting
immediately. Overall, LONGESTEDGE satisfies Definition C.2.

Corollary C.5. BABSB-LONGESTEDGE-k satisfies Definition C.2.

Proposition C.6. SELECTPROB satisfies Definition C.3.

Proof. Let branches(t) be the value of the branches variable of PROBBOUNDS (Algorithm 2) in iteration t ∈ N, where
PROBBOUNDS is instantiated with SELECTPROB and a COMPUTEBOUNDS procedure satisfying Definition C.1. Let N, t ∈
N and B ∈ branches(t) with Px [B] > 0. Our goal is to show

∃t′ ≥ t : B ∈ SELECTPROB(branches(t
′), N). (6)

If B ∈ SELECTPROB(branches(t), N), Equation (6) holds immediately. Otherwise, there are at least N branches B′t in
iteration t with Px [B′t] ≥ Px [B]. We show

∃t′ > t : ∀B′t,Px [B′t] ≥ Px [B] : ∀B′t′ ,B′t ⇝ B′t′ : Px [B′t′ ] < Px [B]︸ ︷︷ ︸
(∗)

, (7)

where B′t ⇝ B′t′ if B′t′ is a branch in iteration t′ ∈ N that originates from splitting B′t, meaning that B′t′ ⊂ B′t.

Let B′t be a branch in iteration t with Px [B′t] ≥ Px [Bt]. First of all, if B′t is pruned by PROBBOUNDS in iteration t, then
there are no new branches originating from B′t, so that (∗) holds vacuously. Otherwise, PROBBOUNDS splits B′t.

We first consider the special case where the input space only contains categorical and bounded integer variables. Dimen-
sions encoding such variables can only be split finitely often. Therefore, splitting B′t eventually produces a finite set of
branches [x,x] with x = x. Since we assumed COMPUTEBOUNDS to satisfy Definition C.1, COMPUTEBOUNDS computes
the bounds y = y for branches with x = x. Branches with y = y are certainly pruned by PROBBOUNDS. Therefore, if we
choose t′ > t large enough, Equation (7) holds with (∗) holding vacuously, since all branches originating from B′t have been
pruned.

Otherwise, let the input space contain at least one continuous or unbounded integer variable. We show that there is an
iteration t′ > t such that (∗) holds for B′t. Without loss of generality, assume that the dimension selected for splitting
encodes a continuous variable or an unbounded integer variable. This does not harm generality since categorical variables
and bounded integer variables can only be split finitely often and, therefore, will eventually become unavailable for splitting.

First, consider splitting along a dimension d encoding a bounded continuous variable. Since we split continuous variables
by bisection, the volume of all branches B′t′ originating from B′t decreases towards zero as we split d repeatedly. As stated

19



Solving Probabilistic Verification Problems of Neural Networks using Branch and Bound

in Section 3, we assume that all continuous random variables admit a probability density function. This implies that the
probability in all branches B′t′ originating from splitting B′t decreases towards zero as the volume decreases towards zero.

Now, consider splitting along a dimension d encoding an unbounded variable. Without loss of generality, assume that B′t is
bounded in d in at least one direction. This does not harm generality since dimensions unbounded in both directions are split
into two parts, each bounded in one direction. Given this, splitting along d creates a bounded and an unbounded part. If d
encodes an integer variable, the bounded part contains only finitely many discrete values. Therefore, as argued above, all
branches originating from this bounded part are eventually pruned. If d encodes a continuous variable, the bounded part
behaves as described above with the probability of all branches B′t′ originating from B′t decreasing towards zero. Therefore,
we only have to show that the probability remaining in the unbounded part decreases towards zero as we continue splitting
to show (∗). In fact, this follows from the properties of a probability measure.

Above, we have shown that splitting repeatedly either leads to pruning the resulting branches or the probability of all
resulting branches decreases towards zero. Therefore, there is a t′, such that (∗) is satisfied for B′t. Since there are only
finitely many branches in any iteration of PROBBOUNDS, the above implies that Equation (7) is satisfied. In turn, this
directly implies that B is eventually selected by PROBBOUNDS, proving Proposition C.6.

Next, we prove a generalised version of Lemma 5.4.

Lemma C.7 (Converging Probability Bounds). Let N ∈ N be a batch size. Let
{
(ℓ(t), u(t))

}
t∈N be the iter-

ates of PROBBOUNDS(Px [gSat(x, net(x)) ≥ 0], N) instantiated with a SELECT procedure satisfying Definition C.2, a
sound COMPUTEBOUNDS procedure satisfying Definition C.1 and a SPLIT procedure satisfying Definition C.3. As-
sume Px [gSat(x, net(x)) = 0] = 0 as in Assumption 5.3. Then,

lim
t→∞

ℓ(t) = lim
t→∞

u(t) = Px [gSat(x, net(x)) ≥ 0].

Proof. We first prove that limt→∞ ℓ(t) = Px [gSat(x, net(x)) ≥ 0]. The convergence of the upper bound, limt→∞ u(t) =
Px [gSat(x, net(x)) ≥ 0] follows analogously.

Let X ∗
sat = {x ∈ X | gSat(x, net(x)) > 0}, where X is the input space of net. Note that Px [X ∗

sat] =

Px [{x ∈ X | gSat(x, net(x)) ≥ 0}] due to Assumption 5.3. Further, let X̂ (t)
sat be as in the proof of Theorem 5.1 and

recall ℓ(t) = Px [X̂
(t)
sat].

First, we give an argument why the limit limt→∞ ℓ(t) exists. Due to Theorem 5.1, the sequence {ℓ(t)}t∈N is bounded
from above. Furthermore, {ℓ(t)}t∈N is non-decreasing in t since PROBBOUNDS only adds elements to X̂ (t)

sat. There-
fore, limt→∞ ℓ(t) exists. Now, we can equivalently rewrite

ℓ(t) −−−→
t→∞

Px [gSat(x, net(x)) ≥ 0]

⇐⇒ Px

[
X̂ (t)

sat

]
−−−→
t→∞

Px [X ∗
sat]

⇐⇒ Px

[
X̂ (t)

sat

]
− Px [X ∗

sat] −−−→
t→∞

0

⇐⇒ Px

[
X ∗

sat \ X̂
(t)
sat

]
−−−→
t→∞

0. (8)

We now argue why (8) holds. Consider the case that the input space does not contain a continuous variable. Let Bt be
a bounded branch in iteration t ∈ N for an input space containing only discrete variables. As discussed in the proof of
Proposition C.6, there is an iteration t′ > t so that all branches Bt′ that originate from splitting Bt are pruned. Due to
the properties of a probability measure, the probability of the unbounded branches Bt that remain decreases towards zero
as t→∞. Therefore, (8) holds if the input space does not contain a continuous variable.

Now, assume the input space contains at least one continuous variable. Let X̃ (t)
sat = X ∗

sat \ X̂
(t)
sat. With the goal of

obtaining a contradiction, assume limt→∞ Px [X̃
(t)
sat] > 0. Since we assumed in Section 3 that every continuous probability

distribution admits a density function, vol(X̃ (t)
sat) > 0, where vol denotes the volume. Let t ∈ N. Since the branches

maintained by PROBBOUNDS form a partition of the input space, there is a branch Bt in iteration t of PROBBOUNDS such
that vol(X̃sat ∩ Bt) > 0.
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Due to SPLIT satisfying Definition C.2 and SELECT satisfying Definition C.3, we eventually obtain Bt′ in iteration t′ > t
with Bt′ ⊆ X̃sat ∩ Bt. Additionally, since SPLIT satisfies Definition C.2, we have that ∥x − x∥ → 0 for all not yet
pruned branches [x,x] as t → ∞. Since COMPUTEBOUNDS satisfies Definition C.1, we have that the bounds y ≤
gSat(x, net(x)) ≤ y produced by COMPUTEBOUNDS converge towards gSat(x, net(x)). Note that gSat(x, net(x)) > 0
for all x ∈ [x,x] since [x,x] ⊆ Bt′ ⊆ X ∗

sat. This implies that there is an iteration t′′ > t′ in which PROBBOUNDS considers
a branch Bt′′ ⊂ X̃sat for which y > 0, which means that PROBBOUNDS prunes Bt′′ . This contradicts the construction

of X̃ (t)
sat. With this contradiction, we have shown limt→∞ ℓ(t) = Px [gSat(x, net(x)) ≥ 0] when the input space contains a

continuous variable.

Overall, we have shown limt→∞ ℓ(t) = Px [gSat(x, net(x)) ≥ 0] for all possible compositions of the input space. The
convergence of the upper bound u(t) follows from an analogous argument on k(t) as in the proof of Theorem 5.1 where u(t) =
1− k(t). This establishes Lemma C.7.

Lemma 5.4 follows from Lemma C.7 by inserting SELECTPROB for SELECT, LONGESTEDGE or BABSB-LONGESTEDGE-k
for SPLIT, and INTERVALARITHMETIC or CROWN for COMPUTEBOUNDS. SELECTPROB, LONGESTEDGE, and BABSB-
LONGESTEDGE-k satisfy the requirements of Lemma C.7 due to Proposition C.6, Proposition C.4 and Corollary C.5,
respectively. We show that INTERVALARITHMETIC and CROWN satisfy the requirements of Lemma C.7 in Appendix D
and Appendix E, respectively. We now prove a generalised version of Theorem 5.5.

Theorem C.8 (Completeness). When instantiated with PROBBOUNDS as in Lemma C.7 and a COMPUTEBOUNDS procedure
that satisfies Definition C.1, PV is complete for verification problems satisfying Assumption 5.3.

Proof. Let net, fSat, g
(1)
Sat, . . . , g

(v)
Sat be as in Equation (3). First, consider fSat(p1, . . . , pv) > 0. As a consequence of

Lemma C.7, the bounds ℓ ≤ fSat(p1, . . . , pv) ≤ u produced by COMPUTEBOUNDS converge towards fSat(p1, . . . , pv),
since COMPUTEBOUNDS satisfies Definition C.1. This implies that eventually ℓ > 0, meaning that PV eventually
proves fSat(p1, . . . , pv) ≥ 0.

If fSat(p1, . . . , pv) < 0 we eventually obtain u < 0 with the same argument as above. Since u < 0 dis-
proves fSat(p1, . . . , pv) ≥ 0, PV is complete for probabilistic verification problems satisfying Assumption 5.3.

Similarly to Lemma 5.4 and Lemma C.7, Theorem 5.5 follows from Theorem C.8 by inserting INTERVALARITHMETIC or
CROWN for COMPUTEBOUNDS.

D. Interval Arithmetic
This section introduces additional interval arithmetic bounding rules for linear functions, multiplication, and division, com-
plementing the interval arithmetic bounding rules for monotone functions in Section 3.2. Furthermore, we provide Theorems
5.1 and 6.1 Moore et al. (2009) for reference and provide a proof that INTERVALARITHMETIC satisfies Definition C.1.
These results provide the foundation for the theoretical analysis of CROWN in Appendix E.

D.1. Bounding Rules

Let f (k) be as in Section 3.2. First, consider the multiplication of two scalars, that is, f (k)(z, w) = zw where z ≤ z ≤ z
and w ≤ w ≤ w. We have

min(zw, zw, zw, zw) ≤ z1z2 ≤ max(zw, zw, zw, zw).

For the element-wise multiplication of vectors, we apply the above rule to each element separately. Multiplication of several
arguments can be rewritten as several multiplications of two arguments.

Now, consider computing bounds of the reciprocal f (k)(z) = 1
z with z ≤ z ≤ z. We differentiate the following cases

1

z
≤ 1

z
if 0 /∈ (z, z]

1

z
≤ 1

z
if 0 /∈ [z, z)

−∞ ≤ 1

z
if 0 ∈ (z, z]

1

z
≤ ∞ if 0 ∈ [z, z).
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Using bounds on the reciprocal, we can compute bounds on a division by rewriting division as multiplication by the
reciprocal. Lastly, for an affine function f (k)(z) = Wz+ b where z ≤ z ≤ z, we have

[W]
+
z+ [W]

−
z+ b ≤Wz+ b ≤ [W]

+
z+ [W]

−
z+ b, (9)

where [W]
+
i,j = max(0,Wi,j) and [W]

−
i,j = min(0,Wi,j).

D.2. Theoretical Properties

We include Theorems 5.1 and 6.1 of Moore et al. (2009) and relevant definitions for reference. Let Hn = {[x,x] | x,x ∈
Rn,x ≤ x} be the set of hyperrectangles in Rn. Let w : 2R

n → R≥0 with

w(X ) = max
i∈[n]

(max
x∈X

xi −min
x∈X

xi) = max
x,x′∈X

∥x − x′∥∞

be the width of the set X ⊆ Rn. We denote the image of a hyperrectangle [x,x] under f : Rn → Rm as f([x,x]) =
{f(x) | x ∈ [x,x]}.

D.2.1. DEFINITIONS

Theorem 5.1 of Moore et al. (2009) applies to inclusion isotonic interval extensions as defined below.

Definition D.1. Let F : Hn → Hm and f : Rn → Rm.

• F is an interval extensions of f if ∀x ∈ Rn : F ([x,x]) = [f(x), f(x)].

• F is inclusion isotonic if ∀[x,x], [x′,x′] ∈ Hn, [x′,x′] ⊆ [x,x] : F ([x′,x′]) ⊆ F ([x,x]).

Theorem 6.1 of Moore et al. (2009) requires an inclusion isotonic Lipschitz interval extension.

Definition D.2. Let F : Hn → Hm be an interval extension of f : Rn → Rm. F is Lipschitz if there exists an L ∈ R such
that ∀[x,x] ∈ Hn : w(F ([x,x])) ≤ Lw([x,x]).

INTERVALARITHMETIC, as introduced in Section 3.2, corresponds to natural interval extensions in Moore et al. (2009).
As Moore et al. (2009) show, natural interval extensions — and, therefore, INTERVALARITHMETIC — satisfy Definitions D.1
and D.2.

D.2.2. THEOREMS AND PROPOSITIONS

Theorem 5.1 of Moore et al. (2009) is known as the fundamental theorem of interval analysis. It proves that INTER-
VALARITHMETIC is sound. We also provide a proof for the well-known property that INTERVALARITHMETIC satisfies
Definition C.1. This result is closely related to Theorem 6.1 of Moore et al. (2009), which we also include for reference.

Theorem D.3 (Theorem 5.1 of Moore et al. (2009)). If F : Hn → Hm is an inclusion isotonic interval extension
of f : Rn → Rm, we have f([x,x]) ⊆ F ([x,x]) for every [x,x] ∈ Hn.

Theorem D.4 (Theorem 6.1 of Moore et al. (2009)). Let F : Hn → Hm be an inclusion isotonic Lipschitz interval extension
of f : Rn → Rm. Let X = [x,x] ∈ Hn. We define the M -step uniform subdivision of [x,x] with M ∈ N as

Xi,j =

[
xi + (j − 1)

w([xi,xi])

M
,xi + j

w([xi,xi])

M

]
, j ∈ [M ].

Further, let

F (M)([x,x]) =

M⋃
ji=1

F (X1,j1 × · · · × Xn,jn).

It holds that

w(F (M)([x,x]))− w(f([x,x])) ≤ 2L
w(X )
M

,

where L is the Lipschitz constant of F .

22



Solving Probabilistic Verification Problems of Neural Networks using Branch and Bound

Proposition D.5. Every Lipschitz interval extension satisfies Definition C.1.

Proof. Let F : Hn → Hm be a Lipschitz interval extension with Lipschitz constant L. We write [y
[x,x]

,y[x,x]] = F ([x,x])

for [x,x] ∈ Hn. Using that F is Lipschitz, we obtain

lim
∥x−x∥→0

∥y[x,x] − y
[x,x]
∥ = lim

∥x−x∥→0
w(F ([x,x])) ≤ lim

∥x−x∥→0
Lw([x,x]) = 0.

Further, since F is an interval extension, we have ∥y[x,x] − y
[x,x]
∥ = 0 for any x ∈ Rn. This proves that F satisfies

Definition C.1.

Corollary D.6. INTERVALARITHMETIC satisfies Definition C.1.

E. Theoretical Analysis of CROWN
In this section, we prove that CROWN (Zhang et al., 2018) satisfies Definition C.1. In fact, we provide a slightly stronger
result showing that CROWN possesses the properties of INTERVALARITHMETIC that follow from Theorem 5.1 and 6.1
of Moore et al. (2009). Concretely, we prove that the bounds computed by CROWN are always contained in the bounds
computed by an inclusion isotonic Lipschitz interval extension, such that Proposition D.5 and Theorems D.3 and D.4 apply.
Since the bounds computed by this interval extension converge and they contain the bounds computed by CROWN, the
bounds computed by CROWN also need to converge, establishing that CROWN satisfies Definition C.1. We first revisit
CROWN, discuss why CROWN itself is not inclusion isotonic, and finally provide the inclusion isotonic Lipschitz interval
extension that is guaranteed to compute looser bounds than CROWN.

In the following, we restrict our attention to ReLU-activated fully-connected neural networks since these are the most
relevant for this paper. However, similar arguments to the arguments we make below can also be made for other architectures
and activation functions.

E.1. CROWN

We revisit CROWN for ReLU-activated fully-connected neural networks. Applying CROWN for other activation functions
and architectures is described by Zhang et al. (2018); Xu et al. (2020). Let net : X → Rm be a ReLU-activated fully-
connected neural network with K ∈ N layers, that is, net = f (K) ◦ . . . ◦ f (1), where f (k) : Rnk → Rnk+1 is either an affine
function or ReLU. We use f (:k) = f (k) ◦ · · · ◦ f (1) and f (k:) = f (K) ◦ · · · ◦ f (k) to denote partial evaluation of net. Further,
let [x,x] ⊆ X . CROWN computes a linear lower bound and a linear upper bound on net

Ax + d ≤ net(x) ≤ Ax + d, ∀x ∈ [x,x].

These linear bounds can be concretised into constant bounds as

y
CROWN

= [A]
+
x + [A]

−
x + d ≤ net(x) ≤

[
A
]+

x +
[
A
]−

x + d = yCROWN,

where x,x are bounds on the input, x ∈ [x,x], [A]
+
i,j = max(0,Ai,j), and [A]

−
i,j = min(0,Ai,j).

CROWN computes the linear bounds by a backwards walk over the network net, starting from f (K) and propagating linear
bounds backwards until reaching f (1). Algorithm 3 defines CROWN for feed-forward neural networks, such as net. The
algorithm iteratively computes linear bounds

A(k)z(k) + d(k) ≤ f (k+1:)(z(k)) ≤ A
(k)

z(k) + d
(k)

, ∀z(k) ∈ [z(k), z(k)],

where [z(k), z(k)] are bounds on f (:k)(x) for x ∈ [x,x] that are computed before invoking CROWN, for example, using
INTERVALARITHMETIC (Zhang et al., 2020). The bounds z(k), z(k) are sometimes known as pre-activation bounds. Altern-
atively to using INTERVALARITHMETIC, we can compute z(k), z(k) by invoking Algorithm 3 iteratively for f (:1), . . . , f (:K)

and use the concretised bounds on f (:1), . . . , f (:k−1) as the layer bounds for the k-th invocation of Algorithm 3 (Zhang
et al., 2018). Algorithm 4 describes this approach in more detail. Applying Algorithm 3 with the layer bounds computed by
INTERVALARITHMETIC is known as CROWN-IBP (Zhang et al., 2020), while using Algorithm 4 is referred to as just
CROWN. To avoid confusion, in this section, we use CROWN to only refer to Algorithm 3.
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Algorithm 3 CROWN

Require: Neural Network net = f (K) ◦ · · · ◦ f (1), Input Bounds [x,x], Layer Bounds [z(1), z(1)], . . . , [z(K−1), z(K−1)]

1: A(K) ← I, A
(K) ← I // I ∈ Rm×m is the identity matrix

2: d(K) ← 0, d
(K) ← 0 // 0 ∈ Rm is the all-zero vector

3: z(0) ← x, z(0) ← x
4: for k ∈ {K, . . . , 1} do
5: (A(k−1),A

(k−1)
,∆,∆)← CROWNRULE(f (k),A(k),A

(k)
, z(k−1), z(k−1))

6: d(k−1) ← d(k) +∆

7: d
(k−1) ← d

(k)
+∆

8: end for
9: return (A(0),A

(0)
,d(0),d

(0)
)

Algorithm 4 CROWN with CROWN Layer Bounds

Require: Neural Network net = f (K) ◦ · · · ◦ f (1), Input Bounds [x,x]
1: for k ∈ [K] do // Below, CROWN refers to Algorithm 3
2: [z(k), z(k)]← CONCRETISE(CROWN(f (:k), [x,x], [z(1), z(1)], . . . , [zk−1, zk−1]))
3: end for
4: return CROWN(net, [x,x], [z(1), z(1)], . . . , [zK−1, zK−1])

Similarly to INTERVALARITHMETIC, Algorithm 3 uses CROWNRULEs to propagate linear bounds through more
fundamental functions, such as affine layers or ReLU layers. Specifically, the CROWNRULE for an affine func-
tion f (k)(z) = Wz+ b computes

A(k−1) = A(k)W, A
(k−1)

= A
(k)

W, ∆(k−1) = A(k)b, ∆
(k−1)

= A
(k)

b. (10)

The CROWNRULE for a ReLU layer f (k)(z) = [z]
+ is

A(k−1) =
[
A(k)

]+
diag(α) +

[
A(k)

]−
diag(α), ∆(k−1) =

[
A(k)

]−
β,

A
(k−1)

=
[
A

(k)
]+

diag(α) +
[
A

(k)
]−

diag(α), ∆
(k−1)

=
[
A

(k)
]+

β,

(11)

where diag(α) is a diagonal matrix with the vector α on its diagonal and α,α,β ∈ Rnk have

αi =


0 z

(k−1)
i ≤ 0

1 z
(k−1)
i ≥ 0

z
(k−1)
i

z
(k−1)
i −z

(k−1)
i

otherwise,
βi =

{
0 0 /∈ (z

(k−1)
i , z

(k−1)
i )

−z(k−1)
i αi otherwise,

αi =


0 z

(k−1)
i ≤ 0

1 z
(k−1)
i ≥ 0

0 z
(k−1)
i < 0 < z

(k−1)
i and |z(k−1)

i | ≥ |z(k−1)
i |

1 otherwise,

for every i ∈ [nk]. Instead of the last two cases for αi, we can also optimise each αi using gradient descent to improve the
linear bounds on the network (Xu et al., 2021), as long as we maintain αi ∈ [0, 1].

CROWN is not Inclusion-Isotonic. We demonstrate that CROWN is not inclusion-isotonic according to Definition D.1
using an example. Consider a single ReLU neuron [x]

+ with input bounds [x, x] = [−3, 2]. The CROWN bounds
are 0 ≤ [x]

+ ≤ 2
5x+ 6

5 so that the concretised lower bound y
CROWN

= 0. However, the CROWN bounds for [x′, x′] =

[−1, 2] ⊂ [x, x] are x ≤ [x]
+ ≤ 2

3x+
2
3 which yields the concretised lower bound y′

CROWN
= −1. Since y′

CROWN
< y

CROWN
although [x′, x′] ⊂ [x, x], CROWN is not inclusion-isotonic.
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E.2. CROWN Interval Extension

In this section, we introduce the CROWN INTERVAL EXTENSION (CIE). CIE is a theoretical device that we use to prove
that the width of the concretised CROWN bounds linearly converges to zero as the width of the input bounds converges
to zero, analogously to Theorem D.4. Concretely, CIE is an inclusion-isotonic Lipschitz interval extension according to
Definition D.1 and Definition D.2 that is guaranteed to contain the concretised CROWN bounds. Since Theorem D.4
applies to CIE and the concretised CROWN bounds are always contained in the CIE bounds, the convergence properties of
Theorem D.4 also apply to CROWN. In the following, we first define CIE, show that it is an inclusion-isotonic Lipschitz
interval extension, show that the bounds computed by INTERVALARITHMETIC are contained in the bounds computed by
CIE, and finally prove that the concretised CROWN bounds are contained in the bounds computed by CIE.

CIE Algorithm. To define CIE, we define a bounding rule for ReLU. We use the same bounding rule for affine functions
as INTERVALARITHMETIC, as introduced in Appendix D.1. Similarly to INTERVALARITHMETIC, CIE then computes
bounds on a ReLU-activated feed-forward neural network net = f (K) ◦ · · · ◦ f (1) by computing (F

(K)
CIE ◦ · · · ◦ F

(1)
CIE)(x,x),

where [x,x] ⊆ X and F
(k)
CIE : Rnk × Rnk → Rnk × Rnk is the CIE bounding rule for f (k). The CIE bounding rule for

ReLU layers f (k)(v) = [v]
+ is F (k)([v,v]) = [w,w], where

wi =

{
0 vi ≤ 0

vi otherwise,
wi =

{
0 vi ≤ 0

vi otherwise,
(12)

where i ∈ [nk]. Comparing this bounding rule to the CROWNRULE for ReLU, we can see that the bounds computed by
CIE always contain the concretised CROWN bounds for a ReLU neuron. The remainder of this section aims to show that
this is also the case for a complete neural network.

Proposition E.1. Let net = f (K) ◦ · · · ◦ f (1) be a ReLU-activated fully-connected neural network. The CIE interval
function F

(K)
CIE ◦ · · · ◦ F

(1)
CIE is a inclusion-isotonic Lipschitz interval extension of net.

Proof. We first show that the CIE bounding rule for ReLU is an inclusion-isotonic Lipschitz interval extension of ReLU.
Let F (k) be the CIE bounding rule for the ReLU layer f (k) : R(nk) → R(nk) according to Equation (12).

• Interval extension. Let v ∈ Rnk and [w,w] = F (k)([v,v]). Let i ∈ [nk]. If vi ≤ 0, we have wi = w = 0 = [v]
+
i .

Otherwise, if vi > 0, we have wi = wi = vi = [v]
+
i .

• Inclusion-isotonic. Let [v′,v′] ⊆ [v,v] ⊆ Rnk , [w′,w′] = F (k)([v′,v′]) and [w,w] = F (k)([v,v]). Let i ∈ [nk].
If vi ≤ 0, we have [wi,wi] = [0, 0] = [w′

i,w
′
i] since v′

i ≤ vi. On the other hand, if vi > 0, we have [wi,wi] =
[vi,vi]. If v′

i ≤ 0, [w′
i,w

′
i] = [0, 0] ⊆ [wi,wi] since vi ≤ v′

i < v. Otherwise, [w′
i,w

′
i] = [v′

i,v
′
i] ⊆ [wi,wi].

Therefore, F (k) is inclusion-isotonic.

• Lipschitz. Let [v,v] ⊆ Rnk and [w,w] = F (k)([v,v]). For all i ∈ [nk] with wi ≤ 0 we have w([wi,wi]) =
0 and, therefore, trivially w([wi,wi]) ≤ w([v,v]). For i ∈ [nk] with wi > 0, we have [wi,wi] = [vi,vi].
Overall, w([w,w]) = maxi∈[nk] wi − wi ≤ maxi∈[nk] vi − vi = w([v,v]). Therefore, F (k) is Lipschitz with
Lipschitz constant 1.

For affine functions, CIE uses the same bounding rule as INTERVALARITHMETIC that is an inclusion-isotonic Lipschitz
interval extension (Moore et al., 2009). Lemma 6.3 of Moore et al. (2009) now gives us that the composition F

(K)
CIE ◦· · ·◦F

(1)
CIE

of inclusion-isotonic Lipschitz interval extensions is also inclusion inclusion-isotonic and Lipschitz. Clearly, a composition
of interval extensions is also an interval extension.

Proposition E.2. Let net = f (K) ◦ · · · ◦ f (1) be a ReLU-activated fully-connected neural network. Let [y,y] and [w,w]
be the bounds on net(x) for x ∈ [x,x] computed by INTERVALARITHMETIC and CIE, respectively. It holds that [y,y] ⊆
[w,w].

Proof. Let net = f (K) ◦ · · · ◦ f (1) and [x,x] be as in Proposition E.2. We prove Proposition E.2 by finite induction
over k ∈ {0, . . . ,K}. Let [y(k),y(k)] and [v(k),v(k)] be the bounds that INTERVALARITHMETIC and CIE respectively
compute on f (:k)(x) for x ∈ [x,x].
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Induction start. For k = 0, we consider the identity function net(x) = x, for which both CIE and INTERVALARITHMETIC
compute [y(0),y(0)] = [v(0),v(0)] = [x,x].

Induction step. Now, let k ∈ [K] and assume [y(k−1),y(k−1)] ⊆ [v(k−1),v(k−1)]. We show [y(k),y(k)] ⊆ [v(k),v(k)]. We
differentiate two cases:

• If f (k) is an affine function, both INTERVALARITHMETIC and CIE use the INTERVALARITHMETIC bounding rule
for affine functions from Appendix D.1 to compute [y(k),y(k)] and [v(k),v(k)]. Since this bounding rule is inclusion-
isotonic (Moore et al., 2009), we have [y(k),y(k)] ⊆ [v(k),v(k)].

• Otherwise, f (k) is ReLU. The INTERVALARITHMETIC bounding rule for ReLU computes [y(k),y(k)] =[
[y(k−1)]

+
, [y(k−1)]

+
]
. Since the CIE rule for ReLU is an inclusion-isotonic interval extension (Proposition E.1), it

follows that
[
[y(k−1)]

+
, [y(k−1)]

+
]
⊆ [v(k),v(k)].

Overall, this shows that [y,y] = [y(K),y(K)] ⊆ [v(K),v(K)] = [v,v].

Proposition E.3. Let net = f (K) ◦ · · · ◦ f (1) be a ReLU-activated fully-connected neural network, let [x,x] ⊆ Rn and
let [v(k),v(k)] be the CIE bounds on f (:k)(x) for x ∈ [x,x], ∀k ∈ [K]. Further, let [z(k), z(k)] also be bounds on f (:k)(x)
for x ∈ [x,x] with [z(k), z(k)] ⊆ [v(k),v(k)], ∀k ∈ [K]. It holds that

v(K) ≤ Ax + d and Ax + d ≤ v(K), ∀x ∈ [x,x],

where Ax + d and Ax + d are the bounds on net(x) for x ∈ [x,x] computed by CROWN (Algorithm 3) using the layer
bounds [z(1), z(1)], . . . , [z(K−1), z(K−1)].

Proof. Let net = f (K) ◦ · · · ◦ f (1), [x,x], [z(k), z(k)], and [v(k),v(k)] for all k ∈ [K] be as in Proposi-

tion E.3. Let A(k),A
(k)

,d(k),d
(k)

for all k ∈ {0, . . . ,K} be as in Algorithm 3 for the inputs net, [x,x]
and [z(1), z(1)], . . . , [z(K), z(K)]. Further, let [z(0), z(0)] = [v(0),v(0)] = [x,x]. In the following, we prove

A(k)z(k) + d(k) ≥ v(K) and A
(k)

z(k) + d
(k) ≤ v(K), ∀z(k) ∈ [v(k),v(k)], (13)

for every k ∈ {0, . . . ,K}. Note that [z(k), z(k)] ⊆ [v(k),v(k)] by assumption in Proposition E.3. Proving Equation (13)
also proves Proposition E.3 when k = 0. We proceed by finite induction over k from K to 0, following the backwards walk
performed by Algorithm 3.

Induction start. We consider k = K. In this case, A(K) = A
(K)

= I and d(K) = d
(K)

= 0, where I ∈ RnK×nK is the
identity matrix and 0 ∈ RnK is the all-zero vector. Therefore, we have

A(K)z(K) + d(K) = Iz(K) + 0 ≥ v(K)

A
(K)

z(K) + d
(K)

= Iz(K) + 0 ≤ v(K),

for z(K) ∈ [v(K),v(K)]. This proves Equation (13) for k = K.

Induction step. Let k ∈ [K] and assume Equation (13) holds for k. We show that it also holds for k − 1. We differentiate
two cases, based on whether f (k) is a affine function or ReLU.

• Affine function. If f (k)(z) = Wz+ b, CROWNRULE computes the linear bounds on f (k:) as in Equation (10), so that
we obtain

A(k−1)z+ d(k−1) = A(k)Wz+A(k)b+ d(k) = A(k)(Wz+ b) + d(k) ≥ v(K),

where z ∈ [v(k−1),v(k−1)]. The final inequality is due to the induction assumption that Equation (13) holds for k,
which we can apply since Wz + b ∈ [v(k),v(k)], since CIE computes [v(k),v(k)] from [v(k−1),v(k−1)] using
Equation (9). Similarly, we obtain

A
(k−1)

z+ d
(k−1)

= A
(k)

Wz+A
(k)

b+ d
(k)

= A
(k)

(Wz+ b) + d
(k) ≤ v(K),

again by using the induction assumption.
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• ReLU. Let z ∈ [v(k−1),v(k−1)] and i ∈ [nk]. CROWN computes the linear bounds on f (k:) according to Equation (11),
which yields

A
(k−1)
:,i zi + d

(k−1)
i =

([
A

(k)
:,i

]+
αi +

[
A

(k)
:,i

]−
αi

)
zi +

[
A

(k)
:,i

]−
βi + d

(k)
i

A
(k−1)

:,i zi + d
(k−1)

i =

([
A

(k)

:,i

]+
αi +

[
A

(k)

:,i

]−
αi

)
zi +

[
A

(k)

:,i

]+
βi + d

(k)

i ,

where A :,i denotes the i-th column of matrix A. We now differentiate three cases based on the signs of z(k−1)
i

and z
(k−1)
i .

(i) Consider z(k−1)
i ≤ 0. We have αi = αi = βi = 0. Therefore,

A
(k−1)
:,i zi + d

(k−1)
i = d

(k)
i ≥ v(K)

A
(k−1)

:,i zi + d
(k−1)

i = d
(k)

i ≤ v(K),

where both inequalities are due to the induction assumption with z
(k)
i = 0 in Equation (13). We can apply the

induction assumption since 0 = [z
(k−1)
i ]

+
∈ [z(k), z(k)] and, therefore, 0 ∈ [v(k),v(k)] since [z(k), z(k)] ⊆

[v(k),v(k)].

(ii) Consider z(k−1)
i > 0 and z

(k−1)
i ≥ 0. First, we find that [v(k)

i ,v
(k)
i ] = [v

(k−1)
i ,v

(k−1)
i ] according to Equa-

tion (12) since v
(k−1)
i ≥ z

(k−1)
i > 0. Regarding CROWN, we have αi = αi = 1 and βi = 0. Therefore,

A
(k−1)
:,i zi + d

(k−1)
i =

([
A

(k)
:,i

]+
+

[
A

(k)
:,i

]−)
zi + d

(k)
i = A

(k)
:,i zi + d

(k)
i ≥ v(K)

A
(k−1)

:,i zi + d
(k−1)

i =

([
A

(k)

:,i

]+
+

[
A

(k)

:,i

]−)
zi + d

(k)

i = A
(k)

:,i zi + d
(k)

i ≤ v(K),

where the inequalities are due to the induction assumption that we can apply since zi ∈ [v
(k−1)
i ,v

(k−1)
i ] =

[v
(k)
i ,v

(k)
i ].

(iii) Finally, consider z(k−1)
i < 0 < z

(k−1)
i . With the same argument as in the previous case, we have [v

(k)
i ,v

(k)
i ] =

[v
(k−1)
i ,v

(k−1)
i ]. We have

αi =
z
(k−1)
i

z
(k−1)
i − z

(k−1)
i

, βi = −z
(k−1)
i αi =

−z(k−1)
i z

(k−1)
i

z
(k−1)
i − z

(k−1)
i

and αi ∈ [0, 1]. Now,

A
(k−1)
:,i zi + d

(k−1)
i

=

([
A

(k)
:,i

]+
αi +

[
A

(k)
:,i

]−
αi

)
zi +

[
A

(k)
:,i

]−
βi + d

(k)
i (14a)

≥
[
A

(k)
:,i

]+
αiv

(k−1)
i +

[
A

(k)
:,i

]−
αiv

(k−1)
i +

[
A

(k)
:,i

]−
βi + d

(k)
i (14b)
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where 1
A

(k)
:,i ≥0

∈ {0, 1}nk with (
1
A

(k)
:,i ≥0

)
j
=

{
1 A

(k)
j,i ≥ 0

0 otherwise

for j ∈ [nk] and 1
A

(k)
:,i <0

is defined equivalently. Above, the inequality in Equation (14b) is by choosing zi ∈

[v(k−1),v(k−1)] as the minimiser of Equation (14a). The inequality in Equation (14c) is by choosing αi = 1

which minimises Equation (14b) since v
(k−1)
i ≤ z

(k−1)
i < 0. To justify the inequality in Equation (14d) we note

that −z(k−1)
i [A

(k)
:,i ]

−
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the induction assumption that we can apply since(
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For the upper bound, we apply similar steps to obtain
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By this induction, we have shown Equation (13). Proposition E.3 now follows for k = 0, where A(0) = A, A
(0)

=

A, d(0) = d, d
(0)

= d and [v(0),v(0)] = [x,x].

Proposition E.3 requires layer bounds [z(1), z(1)], . . . , [z(K−1), z(K−1)] which may not be looser than the CIE bounds. As
we have shown in Proposition E.2, this applies for INTERVALARITHMETIC. A consequence of Proposition E.3 is that this
also applies to Algorithm 4.

Corollary E.4. Let net, [x,x] and [v(K),v(K)] be as in Proposition E.3. It holds that

v(K) ≤ Ax + d and Ax + d ≤ v(K), ∀x ∈ [x,x],

where Ax + d and Ax + d are the bounds on net(x) for x ∈ [x,x] computed by Algorithm 4.

Proof. Corollary E.4 follows from Proposition E.3 by an inductive argument over k ∈ [K]. Let net = f (K)◦· · ·◦f (1), [x,x]
and [v(1),v(1)], . . . , [v(K),v(K)] be as in Proposition E.3.

Induction start. Applying Algorithm 3 to f (:1) = f (1) does not require layer bounds, so that Proposition E.3 holds for the
(concretised) CROWN bounds on f (:1).

Induction step. Let k ∈ {2, . . . ,K}. Assume the concretised CROWN bounds [z(1), z(1)], . . . , [z(k−1), z(k−1)]
on f (:1), . . . , f (:k−1) satisfy Proposition E.3, that is, [z(k), z(k)] ⊆ [v(k),v(k)] for every k ∈ [k − 1]. Since we only
require layer bounds on f (:1), . . . , f (:k−1) to apply CROWN to f (:k), Proposition E.3 applies to the (concretised) CROWN
bounds we obtain for f (:k).

We are now able to prove that CROWN satisfies Definition C.1 as a corollary of Proposition D.5 and Proposition E.3.
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(a) HW1 vs. Converse et al. (2020) (b) HW1 vs. Marzari et al. (2023b)

Figure 4. Hardware comparison from versus.com. The figures are taken from https://
versus.com/en/amd-epyc-7401p-vs-intel-core-i7-6700 and https://versus.com/en/
intel-core-i5-13600kf-vs-intel-core-i7-4820k, respectively. Accessed on the 17th of May 2024.

Corollary E.5. CROWN satisfies Definition C.1.

Proof. Since CIE is a Lipschitz interval extension according to Proposition E.1, Proposition D.5 applies. Therefore, CIE
satisfies Definition C.1. Now, due to Proposition E.3, CROWN also satisfies Definition C.1.

F. Experiments
This section contains additional details on the experiments from Section 6 and additional experimental results. A reproducib-
ility package containing all datasets, networks, and raw data from our experiments is available at https://doi.org/10.
5281/zenodo.15521583. Our code is also available at https://github.com/sen-uni-kn/probspecs.

F.1. Hardware

We run all our experiments on a workstation running Ubuntu 22.04 with an Intel i7–4820K CPU, 32 GB of memory and no
GPU (HW1). This CPU model is ten years old (introduced in late 2013) and has four cores and eight threads.

In comparison, Converse et al. (2020) use an AMD EPYC 7401P CPU for their ACAS Xu robustness experiments, limiting
their tool to use 46 threads and at most 4GB of memory. AMD EPYC 7401P was introduced in mid-2017, targeting servers.
Marzari et al. (2023b) use a Ubuntu 22.04 workstation with an Intel i5–13600KF CPU and an Nvidia GeForce RTX 4070 Ti
GPU. This CPU was introduced in end-2022 and has 14 cores with 20 threads.

Figure 4 contains the CPU comparison from versus.com. As the figure shows, our HW1 is less performant when
considering both the theoretical performance according to the hardware specification and the actual performance on a series
of computational benchmarks. Therefore, HW1 is inferior in computation power to the hardware used by Converse et al.
(2020) and Marzari et al. (2023b).

F.2. FairSquare Benchmark

We provide additional details on the FairSquare benchmark and present additional results.
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sex

cg

age edu

Figure 5. FairSquare Bayes Net 1. The network structure of the Bayesian Network from the FairSquare benchmark. In this figure, ‘cg’
denotes the capital gain variable and ‘edu’ denotes the number of years of education.

F.2.1. EXTENDED DESCRIPTION OF THE BENCHMARK

The input space in the FairSquare benchmark consists of three unbounded continuous variables for the age, the years of
education (‘edu’), and the yearly gain in capital of a person (‘capital gain’), respectively, as well as an additional discrete
protected variable indicating a person’s (assumed binary) sex. The neural networks use ‘age’ and ‘edu’ or ‘age’, ‘edu’ and
‘capital gain’, depending on the network architecture, to predict whether a person has a high salary (higher than $50 000).
The three input distributions used by the FairSquare benchmark are

1. the combination of three independent normal distributions for the continuous variables and a Bernoulli distribution for
the person’s sex,

2. a Bayesian Network with the structure in Figure 5 introducing correlations between the variables that are similarly
distributed as for the independent input distribution (‘Bayes Net 1’), and

3. the same Bayesian Network augmented with a constraint that the years of education may not exceed a person’s age
(‘Bayes Net 2’).

The integrity constraint is implemented by Albarghouthi et al. (2017) as a post-processing of the samples from the Bayesian
Network. In particular, a person’s years of education are set to the person’s age if the sampled years of education are larger
than the sampled age. We introduce a pre-processing layer before the neural network we want to verify to implement this
integrity constraint in our setting. This pre-processing layer computes edu′ = min(edu, age) and leaves the remaining
inputs unchanged.

Besides experiments on the demographic parity fairness notion, the extended FairSquare benchmarks also include experi-
ments on the parity of qualified persons fairness notion as defined in Appendix A.1. For both fairness notions, the FairSquare
benchmark uses a fairness threshold of γ = 0.85.

F.2.2. EXTENDED RESULTS

Table 4 contains the comparison of PV and FAIRSQUARE on the extended set of FairSquare benchmarks from Albarghouthi
et al. (2017). The runtime from this table is visualised in Figure 2.

F.3. ACAS Xu Safety

We provide a comparison of PROBBOUNDS with ε-PROVE (Marzari et al., 2024) on all 36 ACAS Xu networks to which
property ϕ2 of Katz et al. (2017b) applies. These results are contained in Table 5, revealing that the networks in Table 3
are outliers. However, PROBBOUNDS still computes tighter sound bounds faster than ε-PROVE computes probably sound
bounds for 12 of the 36 networks.

Table 6 contains additional results for running PROBBOUNDS with a finer grid of time budgets on the networks from Table 3
and two additional challenging instances from Katz et al. (2017b).
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Table 4. FairSquare benchmark results. The first two columns indicate the neural network net that is verified and the input probability
distribution Px , respectively. We verify two fairness notions: demographic parity and parity of qualified persons. For each fairness notion,
the first two columns contain the runtime of PV and FAIRSQUARE in seconds. Here, ‘TO’ indices timeout (900s). The last column
contains the result of the verification with PV.

Parity of
Demographic Parity Qualified Persons

Benchmark Instance Runtime (s) Runtime (s)
net Px PV FairSquare Fair? PV FairSquare Fair?

NN2,1 independent 2 2 ✓ 2 3 ✓
NN2,1 Bayes Net 1 4 76 ✓ 8 38 ✓
NN2,1 Bayes Net 2 5 51 ✓ 12 26 ✓
NN2,2 independent 2 4 ✓ 2 7 ✓
NN2,2 Bayes Net 1 4 33 ✓ 11 60 ✓
NN2,2 Bayes Net 2 6 59 ✓ 17 61 ✓
NN3,2 independent 2 451 ✓ 1 657 ✓
NN3,2 Bayes Net 1 4 TO ✓ 40 TO ✓
NN3,2 Bayes Net 2 5 TO ✓ 57 TO ✓

F.4. ACAS Xu Robustness

We first provide a more detailed description of the ACAS Xu robustness benchmark. As Converse et al. (2020), we consider
25 reference inputs — five for each class — and allow these reference inputs to be perturbed in the first two dimensions by
at most 5% of the diameter of the input space in the respective dimension. To compute bounds on the output distribution, we
bound the probability of each of the five ACAS Xu classes for each of the 25 inputs. Since the ACAS Xu training data is not
publicly available, we sample the reference inputs randomly.

Table 7 contains the bounds computed by PROBBOUNDS for each reference input and each output class: COC (Clear-of-
Conflict), WL (steer Weak Left), WR (steer Weak Right), SL (steer Strong Left), and SR (steer Strong Right). The table
reveals that the ACAS Xu network N1,1 could tend to classify inputs as Clear-of-Conflict (COC), regardless of the class
assigned to the reference input. This insight does not agree with the insight drawn by Converse et al. (2020). However,
both results are based on a tiny sample of the input space of only 25 points. Obtaining valid results requires considering a
significantly larger sample of the input space or quantifying global robustness (Katz et al., 2017a).

F.5. MiniACSIncome

We provide additional details on the MiniACSIncome benchmark, including how we construct the dataset and train the
networks.

F.5.1. BENCHMARK

To create probabilistic verification problems of increasing difficulty, we consider an increasing number of input variables
from ACSIncome. The smallest instance, MiniACSIncome-1, only contains the binary ‘SEX’ variable. In contrast, the
largest instance, MiniACSIncome-8, contains ‘SEX’ and seven more variables from ACSIncome, including age, education,
and working hours per week. We train a neural network with a single layer of ten neurons for each MiniACSIncome-i, i ∈ [8].
For MiniACSIncome-4, we additionally train deeper and wider networks to investigate the scalability of PV with respect to
the network size. We fit a Bayesian Network to the MiniACSIncome-8 dataset to obtain an input distribution. The process is
described in detail in Appendix F.5.3. We use this distribution for all MiniACSIncome-i instances by taking the variables
not contained in MiniACSIncome-i as latent variables. The verification problem is then to verify the demographic parity of
a neural network with respect to ‘SEX’ under this input distribution.
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Table 5. Comparison of PROBBOUNDS and ε-PROVE for ACAS Xu safety. A PROBBOUNDS column is marked with an arrow (←) if
PROBBOUNDS computes a tighter upper bound than ε-PROVE within a certain time budget. If this is not the case for any time budget, the
ε-PROVE entry is marked with an arrow (←). In total, PROBBOUNDS computes tighter upper bounds within 60s in 16 cases. In 12 cases,
it even computes a tighter bound faster than ε-PROVE.

PROBBOUNDS ε-PROVE

10s 30s 60s 99.9% confid.
ϕ net ℓ, u ℓ, u ℓ, u u Rt

φ2 N2,1 0.03%, 3.19% 0.09%, 2.50%← 0.16%, 2.09% 2.58% 64s
N2,2 0.00%, 3.86% 0.08%, 2.93% 0.24%, 2.64% 2.49%← 44s
N2,3 0.51%, 3.46%← 0.85%, 2.98% 1.00%, 2.68% 3.58% 55s
N2,4 0.00%, 2.72%← 0.03%, 2.13% 0.04%, 2.06% 2.78% 66s
N2,5 0.03%, 4.23% 0.12%, 3.69% 0.34%, 3.14% 3.06%← 47s
N2,6 0.01%, 3.67% 0.16%, 2.89% 0.30%, 2.50% 2.32%← 45s
N2,7 0.28%, 5.56% 0.84%, 4.87% 1.26%, 4.32% 4.04%← 47s
N2,8 0.96%, 3.75% 1.23%, 3.00%← 1.37%, 2.79% 3.28% 53s
N2,9 0.01%, 2.85% 0.08%, 1.65% 0.10%, 1.39% 0.58%← 11s
N3,1 0.23%, 4.25% 0.46%, 3.41% 0.88%, 2.74%← 2.84% 40s
N3,2 0.00%, 3.57% 0.00%, 1.49% 0.00%, 1.15% 0.00%← 1s
N3,3 0.00%, 2.94% 0.00%, 1.91% 0.00%, 0.87% 0.00%← 1s
N3,4 0.00%, 3.27% 0.09%, 2.07% 0.13%, 1.53% 1.36%← 31s
N3,5 0.31%, 2.90% 0.53%, 2.29%← 0.63%, 2.02% 2.67% 42s
N3,6 0.00%, 6.23% 0.00%, 5.42% 0.01%, 5.19% 2.69%← 32s
N3,7 0.00%, 5.76% 0.00%, 4.59% 0.00%, 3.36% 0.91%← 30s
N3,8 0.15%, 5.45% 0.21%, 4.43% 0.32%, 3.48% 2.79%← 61s
N3,9 0.28%, 4.83% 1.06%, 4.00% 1.39%, 3.72% 3.52%← 32s
N4,1 0.00%, 3.02% 0.01%, 1.96% 0.04%, 1.57% 1.16%← 26s
N4,2 0.00%, 2.62% 0.00%, 1.69% 0.00%, 1.36% 0.00%← 1s
N4,3 0.17%, 2.92% 0.34%, 2.65% 0.61%, 2.27%← 2.43% 41s
N4,4 0.05%, 2.47% 0.17%, 2.22% 0.27%, 1.98% 1.94%← 40s
N4,5 0.00%, 4.52% 0.14%, 3.50% 0.46%, 3.04% 2.85%← 41s
N4,6 0.32%, 4.54% 0.89%, 3.54% 1.16%, 3.27% 3.22%← 39s
N4,7 0.09%, 4.17% 0.31%, 3.32% 0.55%, 2.92% 2.58%← 30s
N4,8 0.15%, 3.91% 0.56%, 3.20%← 0.85%, 2.84% 3.51% 52s
N4,9 0.00%, 3.36% 0.00%, 1.96% 0.00%, 1.55% 0.39%← 11s
N5,1 0.02%, 2.60% 0.30%, 2.13%← 0.42%, 1.99% 2.14% 35s
N5,2 0.17%, 2.66%← 0.47%, 2.03% 0.52%, 1.92% 3.22% 67s
N5,3 0.00%, 1.72% 0.00%, 0.73% 0.00%, 0.56% 0.00%← 1s
N5,4 0.01%, 2.94% 0.14%, 2.34% 0.22%, 2.08%← 2.31% 54s
N5,5 0.74%, 3.29% 1.32%, 2.68%← 1.37%, 2.62% 2.77% 33s
N5,6 0.18%, 4.46%← 0.78%, 3.19% 0.98%, 3.02% 4.82% 74s
N5,7 1.19%, 4.63% 1.74%, 4.02%← 1.99%, 3.75% 4.27% 45s
N5,8 0.89%, 4.16% 1.31%, 3.39% 1.55%, 3.10%← 3.38% 42s
N5,9 0.62%, 3.75% 1.24%, 3.06%← 1.41%, 2.89% 3.06% 36s

#← 4 8 5 20
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Table 6. Extended PROBBOUNDS results for ACAS Xu safety.

Timeout

10s 30s 1m

ϕ net ℓ, u u− ℓ ℓ, u u− ℓ ℓ, u u− ℓ

ϕ2 N4,3 0.17%, 2.92% 2.74% 0.34%, 2.62% 2.30% 0.61%, 2.27% 1.66%
N4,9 0.00%, 3.36% 3.36% 0.00%, 1.96% 1.96% 0.00%, 1.55% 1.55%
N5,8 0.89%, 4.16% 3.26% 1.31%, 3.39% 2.08% 1.55%, 3.10% 1.55%

ϕ7 N1,9 0.00%, 98.71% 98.71% 0.00%, 94.18% 94.18% 0.00%, 87.62% 87.62%
ϕ8 N2,9 0.00%, 76.39% 76.39% 0.00%, 65.83% 65.83% 0.00%, 58.11% 58.11%

10m 1h

ϕ net ℓ, u u− ℓ ℓ, u u− ℓ

ϕ2 N4,3 0.95%, 1.93% 0.98% 1.12%, 1.75% 0.63%
N4,9 0.03%, 0.52% 0.48% 0.08%, 0.29% 0.21%
N5,8 1.90%, 2.66% 0.76% 1.97%, 2.57% 0.60%

ϕ7 N1,9 0.00%, 51.93% 51.93% 0.00%, 30.71% 30.71%
ϕ8 N2,9 0.00%, 34.60% 34.60% 0.00%, 15.33% 15.33%

F.5.2. DATASET

The MiniACSIncome benchmarks are built by sampling about 100 000 entries from the ACS PUMPS 1-Year horizon
data for all states of the USA for the year 2018 using the folktables Python package (Ding et al., 2021). In line with
ACSIncome (Ding et al., 2021), we only sample individuals older than 16 years, with a yearly income of at least $100,
reported working hours per week of at least 1, and a ‘PWGTP’ (more details in Ding et al. (2021)) of at least 1. In total, our
dataset contains 102 621 samples.

Variable Order. For obtaining the benchmark MiniACSIncome-i, i ∈ [8], we select i input variables in the following
order: ‘SEX’, ‘COW’, ‘SCHL’, ‘WKHP’, ‘MAR’, ‘RAC1P’, ‘RELP’, ‘AGEP’. We choose ‘SEX’ as the first variable so
that we can verify the fairness with respect to ‘SEX’ on every benchmark instance. The order of the remaining variables is
chosen based on each variable’s expected predictive value and the number of discrete values. In particular, we select ‘COW’
(class of work), ‘SCHL’ (level of education), and ‘WKHP’ (work hours per week) first, as we consider these variables to be
more predictive than ‘MAR’ (marital status), ‘RAC1P’ (races of a person), ‘RELP’ (relationship), and ‘AGEP’ (age of a
person). The variables are ordered by their number of discrete values within these groups of expected predictive value. For
example, ‘COW’ has nine categories, while ‘WKHP’ has 99 possible integer values.

Table 8 contains the number of input dimensions and the total number of discrete values in each MiniACSIncome-i input
space. The input space contains more dimensions than input variables due to the one-hot encoding of all categorical
variables.

F.5.3. INPUT DISTRIBUTION

The Bayesian Network input distribution of MiniACSIncome has the network structure depicted in Figure 6. For using
‘AGEP’ as a parent node, we summarised the age groups 17–34, 35–59, and 60–95. This means that the conditional
probability table of ‘MAR’ does not have 78 entries for ‘AGEP’, but three, corresponding to the ranges 17–34, 35–59, and
60–95.

To fit the Bayesian Network, we walk the network from sources to sinks and fit each conditional distribution to match
the empirical distribution of the data subset that matches the current condition. For example, for fitting the conditional
distribution of ‘SCHL’ given ‘SEX=1’, ‘RAC1P=1’, we select the samples in the dataset having ‘SEX=1’ and ‘RAC1P=1’
and fit the conditional distribution of ‘SCHL’ to match the empirical distribution of these samples. We use categorical
distributions for all categorical variables and ‘WKHP’. For ‘AGEP’, we fit a mixture model of four truncated normal
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Table 8. MiniACSIncome details and PV verification results.

#Input Variables
1 2 3 4 5 6 7 8

#Input Dimensions 2 10 34 35 40 49 67 68
#Discrete Values 2 16 382 38K 190K 1.7M 31M 2B

PV Runtime 16s 44s 127s 231s 374s 699s 1383s TO
10-Neuron Network Fair? × × × × × × × ?

RAC1PSEX

AGEPSCHL

MAR

RELPCOWWKHP

Figure 6. MiniACSIncome Bayesian network structure.
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distributions that we discretise to integer values.

Figure 7 depict the marginal distributions of 10 000 samples from the fitted Bayesian Network and the empirical marginal
distributions of the MiniACSIncome-8 dataset. Figure 8 contains the correlation matrix of the same sample compared to the
correlation matrix of MiniACSIncome-8. The Bayesian Network approximates the empirical marginal distribution and the
correlation structure of MiniACSIncome-8 reasonably well.

Note that for real-world fairness verification, the input distribution should not be fitted to the same dataset on which the
neural network to verify is trained on. Instead, the input distribution needs to be carefully constructed by domain experts.
For fairness audits, the input distribution could also be designed adversarially by a fairness auditing entity.

F.5.4. TRAINING

All MiniACSIncome neural networks are trained on a 56%/14%/30% split of the MiniACSIncome-i dataset into training,
validation, and testing data. This split is identical for all MiniACSIncome-i datasets. All networks are trained using: the
Adam optimiser (Kingma & Ba, 2015), cross entropy as loss function, no L2 regularisation (weight decay), β1 = 0.9, β2 =
0.999, ε = 10−8 as suggested by Kingma & Ba (2015), and a learning rate decay by 0.1 after 2000 and 4000 iterations. The
learning rate and the number of training epochs are contained in Table 9. We perform five random restarts for each network
and select the network with the lowest cross-entropy on the validation data.

Table 10 contains the accuracy, precision, and recall for the overall test set, the persons with female sex in the test set, and
the persons with male sex in the test set. Additionally, the table contains whether a network satisfies the demographic parity
fairness notion according to PV.

We used OPTUNA (Akiba et al., 2019) for an initial exploration of the hyperparameter space but did not apply automatic
hyperparameter optimisation to obtain the final training hyperparameters.

F.5.5. EXTENDED RESULTS

We provide concrete results on the effect of the network size on the runtime of PV on the MiniACSIncome benchmark.
Figure 9 displays the runtime of PV for MiniACSIncome-4 networks of various sizes. The studied networks include
wide single-layer networks of up to 10 000 neurons and deep networks of up to 10 layers of 10 neurons. As the figure
shows, PV is largely unaffected by the size of the MiniACSIncome-4 networks. This is unexpected since the network size
indirectly determines the performance of PV through the complexity of the decision boundary. However, larger networks
need not necessarily have a more complex decision boundary, and large networks do not provide a performance benefit for
MiniACSIncome-4, as apparent from Table 10. Thoroughly exploring the impacts of network size requires more intricate
datasets for which larger networks actually provide a benefit.

G. Heuristics for PROBBOUNDS

In this section, we experimentally compare the LONGESTEDGE, BABSB, and BABSB-LONGESTEDGE-k heuristics, as
well as INTERVALARITHMETIC and CROWN to justify our decision to use BABSB and CROWN in Section 6.

G.1. Experiments

We experimentally compare the LONGESTEDGE, BABSB and BABSB-LONGESTEDGE-k heuristics to justify our selection
in Section 6. Concretely, we study BABSB-LONGESTEDGE-10. Additionally, we compare INTERVALARITHMETIC to
CROWN when used as COMPUTEBOUNDS procedure of PROBBOUNDS. To perform the comparison, we run the different
variants of PV on the FairSquare benchmark, as described in Section 6.1.

Figure 10 compares the LONGESTEDGE, BABSB and BABSB-LONGESTEDGE-10 heuristics. It contains the runtime of
PV when using SELECTPROB, CROWN and either LONGESTEDGE, BABSB, or BABSB-LONGESTEDGE-10 as SPLIT
heuristic. While using LONGESTEDGE is faster for four easy-to-solve benchmark instances, using it only allows solving
eight instances from the FairSquare benchmark, while using BABSB allows solving all 18 instances. Using BABSB-
LONGESTEDGE-10 also allows us to solve all benchmark instances while requiring slightly more time per benchmark
instance than using BABSB.

Figure 11 contains the runtime of PV when using SELECTPROB, BABSB and either INTERVALARITHMETIC or CROWN
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Figure 7. MiniACSIncome Bayesian network — marginal distributions. The ‘generated’ data is sampled from the Bayesian Network,
while the ‘original’ data is the MiniACSIncome-8 dataset.
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Figure 8. MiniACSIncome Bayesian network — correlation matrix. ‘Population Model’ denotes the fitted Bayesian Network, while
‘Training Data’ stands for the full MiniACSIncome-8 dataset.

Table 9. MiniACSIncome training hyperparameters.

Dataset Architecture Learning Rate # Epochs

MiniACSIncome-1 1×10 0.0001 1
MiniACSIncome-2 1×10 0.001 2
MiniACSIncome-3 1×10 0.001 3
MiniACSIncome-4 1×10 0.001 4
MiniACSIncome-5 1×10 0.001 5
MiniACSIncome-6 1×10 0.001 3
MiniACSIncome-7 1×10 0.001 3
MiniACSIncome-8 1×10 0.001 3
MiniACSIncome-4 1×1000 0.001 2
MiniACSIncome-4 1×2000 0.001 2
MiniACSIncome-4 1×3000 0.001 2
MiniACSIncome-4 1×4000 0.001 2
MiniACSIncome-4 1×5000 0.001 2
MiniACSIncome-4 1×6000 0.001 2
MiniACSIncome-4 1×7000 0.001 2
MiniACSIncome-4 1×8000 0.001 2
MiniACSIncome-4 1×9000 0.001 2
MiniACSIncome-4 1×10 000 0.001 2
MiniACSIncome-4 2×10 0.001 2
MiniACSIncome-4 3×10 0.001 2
MiniACSIncome-4 4×10 0.001 2
MiniACSIncome-4 5×10 0.001 2
MiniACSIncome-4 6×10 0.001 2
MiniACSIncome-4 7×10 0.001 2
MiniACSIncome-4 8×10 0.001 2
MiniACSIncome-4 9×10 0.001 2
MiniACSIncome-4 10×10 0.001 2
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Table 10. MiniACSIncome neural networks. The abbreviation ‘mACSI-i’ stands for MiniACSIncome-i. We report the accuracy (A),
precision (P), and recall (R) of each trained network (Net) for the whole test dataset (Overall), the persons with ‘SEX=2’ in the test set
(Female), and the persons with ‘SEX=1’ in the test set (Male). Additionally, we report whether the network satisfies the demographic
parity fairness notion according to PV (Fair?).

Overall Female Male

Dataset Net A P R A P R A P R Fair?

mACSI-1 1×10 57% 44% 63% 72% – 0% 44% 44% 100% ×
mACSI-2 1×10 65% 55% 14% 71% – 0% 58% 55% 23% ×
mACSI-3 1×10 73% 67% 48% 76% 65% 35% 69% 68% 55% ×
mACSI-4 1×10 75% 68% 60% 78% 66% 48% 72% 69% 66% ×
mACSI-5 1×10 76% 69% 63% 79% 65% 53% 74% 71% 69% ×
mACSI-6 1×10 77% 69% 63% 79% 65% 55% 74% 72% 68% ×
mACSI-7 1×10 77% 71% 64% 79% 67% 50% 76% 72% 72% ×
mACSI-8 1×10 78% 70% 68% 80% 67% 56% 76% 71% 75% ?

mACSI-4 1×1000 75% 71% 54% 79% 70% 44% 72% 71% 61% ×
mACSI-4 1×2000 75% 65% 67% 78% 61% 60% 72% 67% 71% ✓
mACSI-4 1×3000 74% 63% 71% 77% 58% 67% 72% 66% 73% ✓
mACSI-4 1×4000 75% 71% 55% 79% 69% 44% 72% 71% 61% ×
mACSI-4 1×5000 75% 69% 58% 78% 71% 39% 73% 68% 69% ×
mACSI-4 1×6000 75% 69% 59% 79% 69% 44% 72% 68% 67% ×
mACSI-4 1×7000 75% 66% 64% 78% 62% 55% 72% 68% 68% ×
mACSI-4 1×8000 75% 66% 64% 78% 63% 55% 72% 68% 69% ×
mACSI-4 1×9000 75% 70% 53% 78% 66% 47% 71% 72% 56% ×
mACSI-4 1×10 000 75% 67% 63% 79% 69% 45% 72% 66% 73% ×
mACSI-4 2×10 75% 67% 59% 78% 65% 48% 72% 69% 65% ×
mACSI-4 3×10 75% 68% 58% 79% 67% 47% 72% 69% 65% ×
mACSI-4 4×10 75% 68% 58% 78% 66% 46% 72% 69% 66% ×
mACSI-4 5×10 75% 68% 59% 78% 67% 47% 72% 69% 66% ×
mACSI-4 6×10 75% 67% 61% 78% 67% 46% 72% 67% 70% ×
mACSI-4 7×10 75% 65% 66% 78% 63% 52% 72% 65% 74% ×
mACSI-4 7×10 75% 67% 59% 78% 65% 46% 72% 68% 67% ×
mACSI-4 9×10 75% 67% 59% 78% 65% 47% 72% 68% 67% ×
mACSI-4 19×10 75% 67% 61% 78% 64% 49% 72% 68% 68% ×
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Figure 9. MiniACSIncome network size results. The plot depicts the runtime of PV for MiniACSIncome-4 networks of varying sizes.
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Figure 10. SPLIT heuristic comparison on the FairSquare benchmark. The timeout for the FairSquare benchmark is 15min.
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Figure 11. COMPUTEBOUNDS procedure comparison on the FairSquare benchmark. The timeout for the FairSquare benchmark is 15min.

as COMPUTEBOUNDS procedure in PROBBOUNDS. As the figure reveals, using CROWN allows PV to terminate faster on
all benchmark instances from the FairSquare benchmark. Furthermore, using INTERVALARITHMETIC only allows PV to
solve 14 benchmark instances, while CROWN enables PV to solve all 18 benchmark instances.
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