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Abstract

Diversity in demonstration selection is critical
for enhancing model generalization by enabling
broader coverage of structures and concepts. Con-
structing appropriate demonstration sets remains a
key research challenge. This paper introduces the
Relevance-Diversity Enhanced Selection (RDES),
an innovative approach that leverages reinforce-
ment learning (RL) frameworks to optimize the
selection of diverse reference demonstrations for
tasks amenable to in-context learning (ICL), par-
ticularly text classification and reasoning, in few-
shot prompting scenarios. RDES employs frame-
works like Q-learning and a PPO-based variant
to dynamically identify demonstrations that maxi-
mize both diversity (quantified by label distribu-
tion) and relevance to the task objective. This
strategy ensures a balanced representation of ref-
erence data, leading to improved accuracy and
generalization. Through extensive experiments
on multiple benchmark datasets, including di-
verse reasoning tasks, and involving 14 closed-
source and open-source LLMs, we demonstrate
that RDES significantly enhances performance
compared to ten established baselines. Our eval-
uation includes analysis of performance across
varying numbers of demonstrations on selected
datasets. Furthermore, we investigate incorpo-
rating Chain-of-Thought (CoT) reasoning, which
further boosts predictive performance. The results
highlight the potential of RL for adaptive demon-
stration selection and addressing challenges in
ICL.
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Figure 1. An example shows how a diversity-based demonstration
method works. In this example, the diversity-based method helps
the model recognize that the input text expresses a sentiment that is
neither strongly positive nor negative, while the no diversity-based
method may lead to an inaccurate positive classification due to its
lack of varied demonstrations.

1. Introduction
LLMs have demonstrated exceptional capabilities across
a wide array of NLP tasks, including text annotation (Wu
et al., 2025), question answering (Shao et al., 2023), and di-
alogue generation (Hu et al., 2023). These models leverage
extensive corpora of textual data to learn rich representa-
tions, which empower them to perform reasoning with high
accuracy (Devlin et al., 2018; Radford et al., 2019; Brown
et al., 2020). However, as the size and complexity of these
models continue to expand, enhancing their reasoning capa-
bilities becomes increasingly crucial. Effective reasoning is
essential for tasks that demand logical reasoning, common-
sense understanding, and contextual awareness (Marcus,
2020; Bender et al., 2021). The ability to reason effectively
not only improves the performance of LLMs in existing
applications but also expands their potential for novel use
cases that demand a deeper understanding of language and
context.

In the realm of few-shot learning, in-context learning (ICL)
has emerged as a promising approach to enhance reasoning
in LLMs (Dong et al., 2024). ICL utilizes LLMs, such as
those based on the GPT architecture, to perform reasoning
by providing a carefully curated set of demonstrations as
context, rather than relying solely on extensive model re-
training (Brown et al., 2020; Gao et al., 2021; Zhang et al.,
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2022). This methodology allows LLMs to leverage their
inherent capabilities for understanding and processing text,
making them particularly suitable for tasks with limited la-
beled data. However, the effectiveness of ICL is contingent
upon the selection of appropriate and representative demon-
strations from the knowledge base to serve as contextual
references during reasoning on test data. This critical aspect
of few-shot learning is often overlooked in existing literature
(Wang et al., 2020; Song et al., 2023). The careful selec-
tion of demonstrations is essential, as it directly influences
the model’s ability to generalize and perform accurately in
novel situations.

Despite the promise of ICL, a significant challenge persists
in selecting the most relevant and diverse demonstrations
from the knowledge base to optimize reasoning performance.
Traditional methods of demonstration selection often pri-
oritize similarity, which can inadvertently overlook the im-
portance of diversity in capturing the full spectrum of the
data distribution (Song et al., 2023). This oversight may
lead to biased representations that do not generalize well to
unseen data, ultimately hindering the predictive accuracy
of LLMs (Wang et al., 2020; Liu & Lapata, 2019). Further-
more, conventional selection techniques typically employ
fixed strategies that fail to dynamically adapt to the spe-
cific requirements of the reasoning task at hand (Wang et al.,
2020; Song et al., 2023). This rigidity can limit the effective-
ness of ICL, as the selected demonstrations may not align
optimally with the context or nuances of the task, further
exacerbating the challenges in achieving robust reasoning
performance.

The core motivation behind Relevance-Diversity Enhanced
Selection (RDES) is to enhance performance in tasks
amenable to ICL, particularly text classification and rea-
soning. This is achieved by selecting demonstrations
that maximize relevance while ensuring diversity. While
similarity-based selection improves accuracy, it risks over-
fitting, whereas diversity promotes generalization, particu-
larly in few-shot learning. By framing demonstration selec-
tion as a sequential decision-making problem, RDES effec-
tively leverages reinforcement learning (RL) frameworks,
including Q-learning and a Proximal Policy Optimization
(PPO)-based variant, to balance exploration and exploita-
tion, improving model robustness and adaptability. RDES
is evaluated and compared against two baseline categories:
prompt engineering and demonstration selection. Prompt
engineering focuses on crafting effective prompts, while
demonstration selection aims to identify the most informa-
tive references. Our main contributions are as follows:

• We introduce RDES, a RL-based framework that dy-
namically selects demonstrations to enhance perfor-
mance and model robustness for tasks amenable to
ICL.

Figure 2. The RDES framework is an adaptive RL approach for
few-shot ICL demonstration selection in LLMs. It employs a RL-
based agent to dynamically balance the relevance and diversity
of selected examples, guided by a reward function that incorpo-
rates a label distribution diversity score. This strategy enhances
classification accuracy and generalization by mitigating overfitting
associated with pure similarity-based methods. The framework
involves an Agent interacting with an Environment (including a
Knowledge Base and the LLM) to learn an optimal selection pol-
icy.

• Our RL approach (including Q-learning and a PPO
variant) optimizes selection by balancing relevance
and diversity, mitigating overfitting and improving gen-
eralization.

• RDES integrates seamlessly with advanced reasoning
techniques, such as Chain-of-Thought (CoT) prompt-
ing, further enhancing LLM reasoning capabilities.

• We perform comprehensive evaluations against ten
baseline methods across multiple benchmark datasets,
showcasing significant improvements in diverse tasks
with 14 closed-source and open-source LLMs.

In summary, RDES advances few-shot learning in NLP by
addressing ICL’s key challenges through adaptive demon-
stration selection. By jointly optimizing relevance and diver-
sity, it enhances LLMs’ performance on tasks amenable
to ICL, particularly classification and reasoning. The
schematic framework of RDES is illustrated in Figure 2.

2. Related Work
2.1. In-Context Learning

ICL has emerged as a transformative paradigm in NLP, par-
ticularly with the advent of LLMs, enabling models to adapt
to new tasks by conditioning on a small set of demonstra-
tions within the input context, thus eliminating the need
for extensive retraining. The seminal work by Brown et
al. introduced ICL with the GPT-3 model, demonstrating
that LLMs can effectively perform a wide range of tasks
by being exposed to a few exemplars in the prompt (Brown
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et al., 2020). Subsequent research has further explored ICL’s
capabilities, highlighting its effectiveness in few-shot and
zero-shot learning scenarios (Wei et al., 2021; Liu et al.,
2023). However, the effectiveness of ICL is critically con-
tingent upon the selection of appropriate and representative
demonstrations from the knowledge base to serve as con-
textual references, an aspect often overlooked in existing
literature. The careful selection of demonstrations is essen-
tial, as it directly influences the model’s ability to generalize
and perform accurately in novel situations. Recent studies
emphasize the need for effective demonstration selection
strategies to enhance ICL outcomes, especially in contexts
with limited labeled data (Zhang et al., 2022; Min et al.,
2022; Ye et al., 2023; Bai et al., 2024). Approaches such as
Determinantal Point Process (DPP) methods and Iterative
Demonstration Selection (IDS) have highlighted the impor-
tance of selecting a diverse and relevant subset of demon-
strations to optimize model performance (Wang et al., 2024;
Qin et al., 2024).

2.2. Demonstration Selection Techniques

Effective demonstration selection is crucial for ICL success.
Traditional methods often relied on heuristics or statisti-
cal measures to identify representative examples, includ-
ing selecting informative examples to minimize uncertainty,
a concept central to active learning (Settles, 2009). Re-
cently, the importance of diversity in the selection process
has gained prominence, with research showing that a di-
verse set of examples can improve generalization capabil-
ities (Sener & Savarese, 2018). Techniques such as clus-
tering, coverage-based selection (e.g., BERTScore-Recall),
and representative sampling are employed to ensure chosen
examples cover a broad range of the input space (Zhang
et al., 2023; Gupta et al., 2023). These approaches aim to
enhance model performance, particularly in compositional
tasks where diverse demonstrations offer better coverage.
Skill-based few-shot selection methods, like Skill-KNN, op-
timize example selection by eliminating irrelevant features
(An et al., 2023). Methods such as (Yang et al., 2023) pri-
oritize diversity statically, while (Mavromatis et al., 2023)
selects based on uncertainty and diversity without training
a policy. The work (Levy et al., 2023) also aligns with the
core idea of using diversity to enhance generalization. Cali-
bration techniques (Zhao et al., 2021) focus on correcting
biases in demonstration selection, which overlaps with the
effort to ensure diverse label coverage.

2.3. RL in Demonstration Selection

RL has emerged as a promising framework for optimizing
demonstration selection across diverse machine learning
tasks. Unlike static approaches, RL allows selection poli-
cies to adapt iteratively based on feedback from the model’s
performance. Prior work like RetICL leveraged RL to op-

timize the selection and sequencing of examples for ICL
(Scarlatos & Lan, 2023). Similarly, (Zhang et al., 2022) for-
mulated the demonstration selection problem as a sequential
decision-making task, utilizing a Q-learning framework to
enhance example selection. The proposed RDES method
builds upon these foundational studies, sitting at the in-
tersection of ICL, demonstration selection, and RL-based
post-training for LLMs. However, while prior RL meth-
ods like (Scarlatos & Lan, 2023) and (Zhang et al., 2022)
primarily focused on objectives such as relevance or uncer-
tainty, RDES uniquely focuses on the dual objectives of
diversity and relevance, explicitly aiming to optimize both
by incorporating a diversity score into the reward function.
RDES employs a Q-learning framework and also explored
a PPO-based variant (RDES/PPO) which showed competi-
tive results. This combination of a RL framework with an
explicit label distribution-based diversity metric to achieve
dynamic demonstration selection that balances relevance
and diversity is highlighted as novel. RDES integrates seam-
lessly with advanced reasoning techniques, such as CoT
prompting, with the RDES/C variant incorporating CoT rea-
soning to further enhance predictive performance. While RL
from Human Feedback (RLHF) fine-tunes model weights
for alignment, RDES optimizes input selection while keep-
ing the model fixed, presenting a lighter-weight alternative
for post-training improvements. By learning an adaptive
policy per query, RDES can better optimize selection com-
pared to methods like (Yang et al., 2023) and (Mavromatis
et al., 2023).

3. Methodology
The RDES framework tackles the demonstration selection
challenge using a principled RL approach that jointly opti-
mizes for relevance and diversity. This section systemati-
cally presents our methodology in four progressive compo-
nents: (1) formal problem formulation as a Markov Decision
Process, (2) dual optimization strategies using Q-learning
and PPO, and (3) implementation details.

3.1. Theoretical Foundations

3.1.1. RL FORMULATION

RL provides a natural framework for sequential decision
making in demonstration selection. We model the interac-
tion between the selection policy and language model as an
iterative process where the policy learns to construct optimal
demonstration sets through trial-and-error interactions.

3.1.2. MARKOV DECISION PROCESS CONSTRUCTION

The demonstration selection process is formalized as a finite-
horizon MDP M = (S,A,P,R, γ) with the following
components:
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• State Space (S): Captures the complete decision con-
text through four components:

– Textual features: ϕx(xt) ∈ Rdx (TF-IDF vector
of input text)

– Demonstration memory: ϕE(Et) ∈ Rde (Aggre-
gated embeddings of selected examples)

– Prediction history: ϕy(ŷt) ∈ R|Y| (One-hot en-
coded previous predictions)

– Diversity tracking: Dt =
|L(Et)|

k ∈ [1] (Normal-
ized label diversity)

The state embedding is constructed by concatenating
these four distinct components:

ϕ(st) = ϕx(xt)⊕ ϕE(Et)⊕ ϕy(ŷt)⊕ ϕD(Dt) (1)

where ⊕ denotes vector concatenation, and each ϕ·
represents an embedding for the respective component.

• Action Space (A): Discrete selection over candidate
demonstrations K, with action at ∈ {1, ..., |K|} indi-
cating the chosen example index from the knowledge
base.

• Transition Dynamics (P): Deterministic state up-
dates through demonstration set modification. When
action at (selecting candidate kat) is taken in state
st = (xt, Et, ŷt, Dt), the next state st+1 becomes:

st+1 = f(st, at) = (xt, Et∪{kat}, ŷt+1, Dt+1) (2)

where ŷt+1 is the new prediction based on the updated
example set and Dt+1 is the new diversity score.

• Reward Function (R): A multi-objective reward bal-
ancing prediction accuracy and diversity gain:

R(st, at) = I(ytrue = ŷt)︸ ︷︷ ︸
Accuracy

+λ (Dt+1 −Dt)︸ ︷︷ ︸
Diversity Improvement

(3)

where I(·) is the indicator function, ytrue is the true
label, ŷt is the prediction at step t, Dt is the diversity
at step t, Dt+1 is the diversity after adding the selected
example, and λ controls the exploration-exploitation
tradeoff. The diversity coefficient λ adapts during train-
ing via an annealing schedule:

λ(t) = λmin + (λmax − λmin)e
−ηt (4)

This schedule prioritizes early exploration of diverse
examples before focusing on accuracy.

• Discount Factor (γ): γ ∈ [0, 1) emphasizes immedi-
ate rewards, which is suitable for finite-horizon few-
shot learning scenarios where a fixed number of exam-
ples are selected.

3.2. Optimization Framework

The RDES framework employs two primary RL algorithms
to handle different complexities of the state space and com-
putational resources.

3.2.1. Q-LEARNING APPROACH

Q-learning provides a model-free solution for learning
demonstration selection strategies through temporal differ-
ence updates. This approach is particularly effective for
environments with relatively small or discretizable state
spaces. The action-value function Q : S × A → R esti-
mates the expected cumulative rewards starting from state
s, taking action a, and subsequently following the optimal
policy:

Q(s, a) = E

[
T∑
τ=t

γτ−trτ
∣∣ st = s, at = a

]
(5)

The Q-values are updated via the standard Q-learning rule:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
(6)

where α is the learning rate, r is the immediate reward, s′ is
the next state, and the maxa′ Q(s′, a′) term represents the
estimated value of the next state under the greedy policy.
Key implementation aspects for applying tabular Q-learning
include state discretization, for example, through TF-IDF
feature binning, and using an ϵ-greedy exploration strategy
with exponential decay (ϵ-annealing) to balance exploration
and exploitation. Tabular Q-value storage is used, with
sparse updates focusing on visited state-action pairs.

3.2.2. PROXIMAL POLICY OPTIMIZATION VARIANT

For high-dimensional state spaces where tabular methods
are infeasible, we implement an actor-critic architecture
utilizing PPO. This approach uses neural networks to ap-
proximate the policy and value functions.

• Policy Network (πθ): A neural network with parame-
ters θ that produces demonstration selection probabili-
ties for each action given a state:

πθ(a|s) = softmax(W2σ(W1ϕ(s) + b1) + b2) (7)

where ϕ(s) is the state embedding, σ is a non-linear
activation function, and Wi, bi are learned weights and
biases.

• Value Network (Vψ): A neural network with param-
eters ψ that estimates the value function of a state,
representing the expected cumulative reward from that
state:

Vψ(s) =W4σ(W3ϕ(s) + b3) + b4 (8)

4



Demonstration Selection for In-Context Learning via Reinforcement Learning

where ϕ(s), σ, Wi, bi are similarly defined.

• Optimization Objective: PPO optimizes a clipped
surrogate objective function that encourages moderate
policy updates, ensuring stability. The overall objec-
tive function for training the policy (θ) and value (ψ)
networks combines the clipped surrogate loss, a value
function loss, and an entropy bonus:

L(θ, ψ) = Et
[
LCLIP
t (θ)− c1LVF

t (ψ) + c2LENT
t (θ)

]
(9)

where Et denotes the empirical average over a batch of
trajectories, c1 and c2 are coefficients controlling the
weights of the value and entropy terms, respectively.
The components are defined as:

LCLIP
t (θ) = min (rt(θ)At, clip (rt(θ), 1± ϵ)At)
LVF
t (ψ) = (Vψ(st)− R̂t)2

LENT
t (θ) = −

∑
a

πθ(a|st) log πθ(a|st)

Here, rt(θ) = πθ(at|st)
πθold (at|st)

is the probability ratio be-
tween the new and old policies, At is the advantage
estimate (e.g., using Generalized Advantage Estima-
tion - GAE), clip(·, 1± ϵ) clips the ratio to be within
[1− ϵ, 1 + ϵ], R̂t is the estimated return, and LENT

t is
the entropy of the policy distribution at state st, which
encourages exploration.

3.3. Algorithmic Implementation

3.3.1. UNIFIED TRAINING PARADIGM

The core training procedure shared by both Q-learning and
PPO approaches is formalized in Algorithm 1. The algo-
rithm iteratively samples test inputs, selects a set of demon-
strations (initially based on relevance, then potentially ad-
justed), uses these to prompt the LLM for a prediction,
calculates the diversity of the selected set, encodes the cur-
rent decision context into a state, selects an action (which
corresponds to choosing an example, although the algorithm
abstractly shows (s, a, r) for policy update, implying the
action leads to state transition and reward), calculates the
reward based on prediction accuracy and diversity change,
and updates the policy parameters using the chosen RL
algorithm.

3.3.2. STATE REPRESENTATION DETAILS

As detailed in the MDP construction, the state embedding
ϕ(st) is a concatenation of four components: the TF-IDF
vector of the input text, aggregated embeddings of selected
examples, a representation of the prediction history, and the
normalized label diversity. This comprehensive representa-
tion provides the RL agent with sufficient context to make
informed selection decisions.

Algorithm 1 RDES Training Framework

Require: Knowledge base K, Test inputs Dtest, LLMM,
RL algorithm A

1: Initialize selection policy π (Q-table or neural networks)
2: Precompute TF-IDF vectors for each sample xi ∈ Dtest

and for knowledge base K
3: for i = 1 to N do
4: Sample input xi ∈ Dtest
5: Select demonstrationsE with initial candidates based

on relevance (e.g., top-k TF-IDF matches from K)
and apply diversity adjustment.

6: Generate prompt p = Format(xi, E)
7: Obtain prediction ŷ =M(p)

8: Compute diversity score D = |L(E)|
k

9: Encode state s = ϕ(xi, E, ŷ,D)
10: Select action a ∼ π(s) (example index from K)
11: Calculate reward r = I(ytrue = ŷ) + λ(Dnew −Dold)
12: Update policy parameters θ using A with (s, a, r)
13: end for
14: Return: Optimized policy π∗

3.3.3. PROMPTING STRATEGIES

To enhance the performance of the LLM in few-shot set-
tings, we employ two distinct prompting strategies using the
selected examples:

• Standard Prompting: This strategy constructs a
prompt by concatenating the input text, the selected
demonstrations (input-output pairs), and the set of pos-
sible labels. The LLM is then asked to predict the
probability of a label y given this prompt structure:

p(y|x,E) = PLM
(
y
∣∣ Prompt: x, {(x̃i, ỹi)}ki=1,Y

)
(10)

where x is the input text, {(x̃i, ỹi)}ki=1 are the k se-
lected demonstrations, and Y is the set of possible
labels.

• CoT Prompting: This strategy incorporates CoT rea-
soning into the prompt, allowing the LLM to generate
intermediate reasoning steps before producing the fi-
nal label. This is formulated as marginalizing over
possible reasoning chainsR:

p(y|x,E) =
∑
r∈R

PLM(r|x,E) · PLM(y|x,E, r) (11)

The model first computes the probability of a reasoning
chain r given the input and demonstrations, then the
probability of the label y conditioned on the input,
demonstrations, and the generated reasoning chain.
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4. Experiments
4.1. Datasets

In our framework evaluation, we utilize four widely recog-
nized datasets that encompass a diverse range of domains
and intents. The BANKING77 dataset (Casanueva et al.,
2020) provides a comprehensive set of intents specifically
relevant to the banking sector. Additionally, the HWU64
(Liu et al., 2021) and LIU54 (Liu et al., 2021) datasets
offer extensive multi-domain coverage, making them partic-
ularly valuable for comparative analysis. We also include
the CLINC150 dataset (Larson et al., 2019), which further
enriches our evaluation framework. To better align our eval-
uation with real-world application scenarios, we employed
a challenge set sampling strategy, drawing on the principles
outlined in (Lu et al., 2024). This approach allowed us to
select a demanding subset from the original test splits based
on the precision margin, ensuring a rigorous assessment of
our model’s performance. To further assess the generaliz-
ability and effectiveness of RDES on tasks requiring more
complex reasoning, we also conducted additional experi-
ments on challenging benchmarks. These include subsets of
BigBenchHard (Suzgun et al., 2023) (specifically, boolean
expressions and web of lies), GSM-8K (Cobbe et al., 2021),
and SST5 (Socher et al., 2013). These datasets require ad-
vanced reasoning capabilities from the LLMs and were used
to evaluate how RDES performs in more complex scenarios
compared to baselines.

4.2. Compared Methods

In this study, we evaluate ten baseline approaches for their ef-
fectiveness in various classification tasks, categorizing them
into two main groups: Prompt Engineering Methods and
Demonstration Selection Methods. The Prompt Engineering
Methods manipulate prompt structures to enhance model
understanding and decision-making, including Zero-Shot
Prompting (ZS) (Radford et al., 2019), which tests general-
ization without prior demonstrations; Knowledge Prompting
(KP) (Liu et al., 2022), which provides contextual informa-
tion to improve accuracy; Least-to-Most Prompting (L2M)
(Zhou et al., 2023), which breaks tasks into manageable
steps; Chain of Thought (CoT) prompting (Wei et al., 2022),
which encourages step-by-step reasoning; and Self-Refine
(SF) (Madaan et al., 2024), which allows the model to itera-
tively critique and refine its solutions. The Demonstration
Selection Methods utilize selected demonstrations to inform
predictions, including Few-Shot Prompting (FS) (Lu et al.,
2024), which enhances predictions through a limited num-
ber of text-label pairs; Few-Shot with CoT (FSC) (Lu et al.,
2024), which combines demonstrations with explanations;
Active Demonstration Selection (AES) (Zhang et al., 2022),
which iteratively selects relevant demonstrations to improve
learning efficiency; Representative Demonstration Selection

(RDS) (Yang et al., 2023), which identifies diverse subsets
of demonstrations for better generalization; and Adaptive
Demonstration Selection for In-Context Learning (ADA)
(Mavromatis et al., 2023), which focuses on uncertain cases
to enhance robustness and adaptability. Together, these
methods leverage different aspects of prompting and demon-
stration selection to improve classification accuracy and
response quality.

4.3. LLMs Used in Experiments

To evaluate our method, we employ a diverse set of
LLMs, including both closed-source and open-source mod-
els. Closed-source models such as GPT-3.5-turbo, Doubao-
lite-4k, Doubao-pro-4k, and Hunyuan-lite, developed by
industry leaders, offer strong NLP capabilities for tasks
like content generation and long-context understanding
(Zhang et al., 2024; Team, 2024a; Cloud, 2024). In contrast,
open-source models—including Gemma-2-2B, Gemma-2-
9B, LLaMA-3.2-1B, LLaMA-3.2-3B, LLaMA-3-8B, Qwen-
2.5-7B, Qwen-2.5-14B, and Qwen-1.5-72B—enable greater
customization and adaptability. The Gemma series empha-
sizes efficiency, the Qwen series excels in scalability, and
the LLaMA series is known for strong benchmark perfor-
mance (Team et al., 2024; Bai et al., 2023; Yang et al., 2024;
Dubey et al., 2024). The open-source nature of these mod-
els fosters innovation and wider experimentation compared
to proprietary alternatives. Our primary experiments on
the four classification benchmarks (BANKING77, HWU64,
CLINC150, LIU54) were conducted using RDES/B (our
base version) and RDES/C (RDES with CoT reasoning),
both of which are based on the Q-learning framework de-
tailed in Section 3.2.1. Furthermore, we conducted addi-
tional experiments on challenging benchmarks such as sub-
sets of BigBenchHard (boolean expressions and web of lies),
GSM-8K, and SST5. For these supplementary experiments,
we specifically utilized models known for their strong per-
formance in complex tasks: Qwen-25-72B (Team, 2024b)
and DeepSeek-R1-32B (DeepSeek-AI, 2025). Crucially, in
these supplementary experiments, we evaluated not only the
Q-learning based variants (RDES/B and RDES/C) but also
a PPO-based variant, denoted as RDES/PPO. The results
and analysis using these models and RDES variants on the
challenging reasoning benchmarks are presented in Section
4.5.

4.4. Reasoning Performance Analysis

This section presents a comprehensive evaluation of the
reasoning accuracy of both closed-source and open-source
LLMs using a range of prompt engineering and demonstra-
tion selection techniques across four benchmark datasets:
BANKING77, CLINC150, HWU64, and LIU54. The evalu-
ation focuses on popular closed-source models such as GPT-
3.5-turbo, Doubao-lite-4k, Doubao-pro-4k, and Hunyuan-
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Table 1. Performance comparison of methods designed to boost LLM reasoning across various datasets on closed-source LLMs, with a
focus on accuracy. The RDES/B denotes the base version, while RDES/C indicates the version enhanced with CoT reasoning.

Datasets Models Prompt Engineering Methods Demonstration Selection Methods Ours
ZS KP L2M CoT SF FS FSC AES RDS ADA RDES/B RDES/C

BANKING77

GPT-3.5-turbo 0.340 0.240 0.260 0.200 0.380 0.520 0.320 0.260 0.240 0.360 0.767 0.858
Doubao-lite-4k 0.300 0.300 0.300 0.320 0.300 0.500 0.360 0.300 0.280 0.400 0.750 0.830
Doubao-pro-4k 0.500 0.400 0.500 0.480 0.600 0.540 0.540 0.700 0.680 0.900 0.838 0.888
Hunyuan-lite 0.300 0.233 0.433 0.200 0.300 0.233 0.133 0.320 0.320 0.600 0.593 0.775

Average 0.360 0.293 0.373 0.300 0.395 0.448 0.338 0.395 0.380 0.565 0.737 0.838

CLINC150

GPT-3.5-turbo 0.460 0.420 0.400 0.480 0.460 0.600 0.380 0.300 0.380 0.720 0.845 0.949
Doubao-lite-4k 0.700 0.600 0.600 0.700 0.500 0.680 0.440 0.680 0.660 0.700 0.825 0.927
Doubao-pro-4k 0.660 0.680 0.620 0.700 0.700 0.800 0.640 0.680 0.640 0.900 0.938 0.961
Hunyuan-lite 0.633 0.800 0.767 0.700 0.633 0.467 0.500 0.480 0.620 0.800 0.730 0.772

Average 0.613 0.625 0.597 0.645 0.573 0.637 0.490 0.535 0.575 0.780 0.835 0.902

HWU64

GPT-3.5-turbo 0.260 0.360 0.280 0.340 0.280 0.560 0.360 0.100 0.260 0.520 0.850 0.914
Doubao-lite-4k 0.500 0.500 0.500 0.480 0.500 0.520 0.340 0.360 0.420 0.700 0.765 0.873
Doubao-pro-4k 0.640 0.760 0.620 0.800 0.640 0.680 0.600 0.620 0.640 1.000 0.862 0.918
Hunyuan-lite 0.533 0.367 0.333 0.433 0.233 0.600 0.433 0.540 0.320 0.700 0.514 0.784

Average 0.483 0.497 0.433 0.513 0.413 0.590 0.433 0.405 0.410 0.730 0.748 0.872

LIU54

GPT-3.5-turbo 0.380 0.260 0.360 0.460 0.240 0.480 0.480 0.140 0.180 0.300 0.743 0.868
Doubao-lite-4k 0.500 0.400 0.500 0.540 0.660 0.600 0.440 0.520 0.520 0.600 0.690 0.841
Doubao-pro-4k 0.400 0.420 0.400 0.520 0.520 0.800 0.760 0.500 0.520 0.900 0.829 0.884
Hunyuan-lite 0.533 0.500 0.567 0.700 0.633 0.367 0.500 0.460 0.620 0.560 0.565 0.704

Average 0.453 0.395 0.457 0.555 0.513 0.562 0.545 0.405 0.460 0.590 0.707 0.824

lite, as well as open-source alternatives including Gemma,
LLaMA, and Qwen models. Each dataset is used to test the
models’ accuracy in understanding and classifying various
domain-specific tasks. The results are presented in tables,
with the top-performing techniques highlighted in bold and
the second-best results underlined for clarity.

4.4.1. ANALYSIS OF REASONING PERFORMANCE ON
CLOSED-SOURCE MODELS

As illustrated in Table 1, RDES/B and RDES/C consistently
outperform alternative methodologies across the evaluated
datasets, with RDES/C, which incorporates CoT reason-
ing, achieving the highest accuracy scores in nearly all
instances. While no single prompt engineering method
dominated across all datasets, both KP and CoT reasoning
yielded strong results, particularly on the HWU64 dataset,
where CoT achieved the highest average accuracy of 0.513.
Task-specific prompt engineering appears crucial, though its
advantages are often dataset-dependent. In terms of demon-
stration selection, ADA and FSC produced competitive re-
sults, especially on the CLINC150 and HWU64 datasets,
with ADA showing flexibility in curating demonstrations
based on task-specific factors. However, it was generally
outperformed by RDES/B and RDES/C, indicating that the
integration of CoT reasoning in RDES/C provides signifi-
cant benefits. Among the evaluated models, Doubao-pro-
4k excelled, achieving a peak performance score of 0.961
on the CLINC150 dataset with RDES/C, while Doubao-
lite-4k struggled, particularly on challenging datasets like
HWU64, highlighting the importance of model capacity and
architecture. GPT-3.5-turbo also demonstrated stable per-

formance across various datasets, reinforcing its versatility
when paired with advanced techniques like RDES/C. The
comparison between RDES/B and RDES/C reveals that the
latter’s incorporation of CoT reasoning consistently leads to
superior performance, as seen in the BANKING77 dataset
with an average accuracy of 0.838, significantly surpassing
traditional methods like SF and ADA. This trend is echoed
across other datasets, with RDES/C achieving an average ac-
curacy of 0.902 in CLINC150, further emphasizing its effec-
tiveness. Overall, the evaluation underscores the substantial
impact of advanced prompt engineering and demonstration
selection techniques on the performance of closed-source
LLMs, suggesting that adaptive, context-aware prompting
strategies, particularly those integrating CoT reasoning, are
essential for optimizing LLMs for domain-specific tasks and
guiding future research in this area.

4.4.2. ANALYSIS OF REASONING PERFORMANCE ON
OPEN-SOURCE MODELS

Table 2 reveals significant performance variations across dif-
ferent datasets, highlighting the unique challenges faced by
open-source LLMs. Our RDES/C approach consistently out-
performs other methods in the BANKING77 dataset, demon-
strating its effectiveness in understanding fine-grained cus-
tomer service intents, and shows similar robustness in the
HWU64 dataset across diverse user queries. The CLINC150
dataset, characterized by its technical nature, benefits no-
tably from our methods, particularly when utilizing larger
models like Qwen-1.5-72B, underscoring the importance of
scale in managing domain-specific content. In the LIU54
dataset, which features specialized queries, both RDES/B
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Table 2. Performance comparison of methods designed to boost LLM reasoning across various datasets on open-source LLMs, with a
focus on accuracy. The RDES/B denotes the base version, while RDES/C indicates the version enhanced with CoT reasoning.

Datasets Models Prompt Engineering Methods Demonstration Selection Methods Ours
ZS KP L2M CoT SF FS FSC AES RDS ADA RDES/B RDES/C

BANKING77

Gemma-2-2B 0.200 0.280 0.200 0.200 0.260 0.300 0.340 0.280 0.220 0.900 0.831 0.861
Gemma-2-9B 0.560 0.400 0.500 0.500 0.400 0.440 0.380 0.400 0.400 0.700 0.831 0.886

LLaMA-3.2-1B 0.120 0.100 0.000 0.000 0.100 0.000 0.000 0.020 0.040 0.680 0.024 0.744
LLaMA-3.2-3B 0.200 0.200 0.400 0.500 0.300 0.320 0.060 0.360 0.440 0.700 0.770 0.805
LLaMA-3-8B 0.578 0.560 0.563 0.552 0.458 0.090 0.182 0.531 0.536 0.758 0.784 0.847
Qwen-2.5-7B 0.700 0.480 0.600 0.420 0.480 0.440 0.180 0.440 0.420 0.700 0.803 0.859

Qwen-2.5-14B 0.400 0.400 0.420 0.420 0.420 0.480 0.460 0.500 0.520 0.800 0.839 0.868
Qwen-1.5-72B 0.529 0.480 0.524 0.528 0.551 0.653 0.612 0.509 0.542 0.775 0.785 0.892

Average 0.411 0.363 0.401 0.390 0.371 0.340 0.277 0.380 0.390 0.752 0.708 0.845

CLINC150

Gemma-2-2B 0.400 0.600 0.420 0.460 0.560 0.560 0.540 0.500 0.380 0.800 0.875 0.929
Gemma-2-9B 0.700 0.700 0.800 0.800 0.700 0.800 0.680 0.800 0.800 0.780 0.864 0.819

LLaMA-3.2-1B 0.400 0.520 0.060 0.380 0.600 0.000 0.020 0.080 0.080 0.400 0.256 0.122
LLaMA-3.2-3B 0.800 0.700 0.800 0.400 0.700 0.580 0.260 0.600 0.680 0.800 0.845 0.703

LLaMA3-8B 0.523 0.439 0.594 0.504 0.569 0.007 0.285 0.571 0.543 0.767 0.840 0.783
Qwen-2.5-7B 0.740 0.800 0.800 0.780 0.700 0.740 0.460 0.780 0.780 0.800 0.879 0.741

Qwen-2.5-14B 0.900 0.900 0.900 0.800 0.840 0.700 0.700 0.740 0.740 0.900 0.944 0.792
Qwen-1.5-72B 0.726 0.517 0.683 0.641 0.660 0.850 0.652 0.696 0.656 0.861 0.897 0.963

Average 0.649 0.647 0.632 0.596 0.666 0.530 0.450 0.596 0.582 0.763 0.800 0.731

HWU64

Gemma2-2B 0.300 0.320 0.300 0.300 0.400 0.460 0.440 0.420 0.360 0.600 0.832 0.851
Gemma2-9B 0.600 0.600 0.600 0.600 0.600 0.700 0.700 0.700 0.700 0.800 0.877 0.910

LLaMA-3.2-1B 0.200 0.100 0.080 0.000 0.100 0.020 0.000 0.020 0.060 0.360 0.381 0.687
LLaMA-3.2-3B 0.300 0.100 0.300 0.200 0.300 0.220 0.180 0.300 0.300 0.700 0.747 0.817
LLaMA-3-8B 0.478 0.407 0.493 0.479 0.563 0.632 0.498 0.651 0.645 0.837 0.816 0.859
Qwen-2.5-7B 0.780 0.700 0.800 0.600 0.800 0.640 0.540 0.760 0.740 0.800 0.805 0.880

Qwen-2.5-14B 0.780 0.800 0.800 0.440 0.740 0.800 0.800 0.720 0.680 0.900 0.886 0.895
Qwen-1.5-72B 0.698 0.615 0.676 0.661 0.668 0.825 0.817 0.749 0.774 0.877 0.867 0.924

Average 0.517 0.455 0.506 0.410 0.521 0.537 0.497 0.540 0.532 0.734 0.776 0.853

LIU54

Gemma-2-2B 0.400 0.400 0.500 0.400 0.400 0.620 0.480 0.500 0.440 0.600 0.733 0.854
Gemma-2-9B 0.500 0.500 0.600 0.600 0.600 0.580 0.580 0.500 0.500 1.000 0.722 0.837

LLaMA-3.2-1B 0.200 0.160 0.300 0.400 0.080 0.040 0.040 0.360 0.320 0.700 0.058 0.651
LLaMA-3.2-3B 0.400 0.400 0.400 0.300 0.400 0.360 0.320 0.500 0.400 0.600 0.772 0.749
LLaMA-3-8B 0.358 0.409 0.428 0.360 0.392 0.396 0.320 0.347 0.312 0.763 0.779 0.811
Qwen-2.5-7B 0.800 0.700 0.700 0.640 0.520 0.620 0.500 0.500 0.660 0.800 0.794 0.765

Qwen-2.5-14B 0.700 0.860 0.700 0.660 0.700 0.660 0.600 0.740 0.780 1.000 0.849 0.743
Qwen-1.5-72B 0.496 0.445 0.487 0.491 0.550 0.609 0.647 0.514 0.492 0.769 0.781 0.880

Average 0.482 0.484 0.514 0.481 0.455 0.486 0.436 0.495 0.488 0.779 0.686 0.786

and RDES/C exhibit considerable advantages, showcasing
their capacity for nuanced reasoning. Methodologically,
the comparison highlights the strengths and weaknesses of
various prompt engineering and demonstration selection
techniques, with ZS and KP showing limitations compared
to ADA and our RDES methods. While demonstration
selection strategies like FS and FSC provide moderate im-
provements, they are often outpaced by more sophisticated
approaches like AES and ADA, validating the efficacy of
CoT reasoning in enhancing model understanding, particu-
larly for complex tasks.

The analysis reveals distinct performance patterns tied to
model architecture and scale. Smaller models, such as
Gemma-2-2B and LLaMA-3.2-1B, generally exhibit lower
accuracy, particularly with simpler prompting strategies, in-
dicating limited capacity for nuanced comprehension. In
contrast, larger models like Qwen-2.5-14B and Qwen-1.5-
72B show marked performance improvements, especially

when combined with advanced methods like RDES/C, high-
lighting the synergistic effect of scale and sophisticated
reasoning techniques. Overall, our findings emphasize that
RDES methods, particularly when integrated with CoT rea-
soning, provide a clear advantage across all datasets, rein-
forcing the necessity of computational resources for achiev-
ing higher accuracy. The dataset-specific trends further
underscore the importance of tailored approaches, as differ-
ent datasets require distinct handling strategies for optimal
results. This study suggests that future research should
focus on refining adaptive and CoT-based methods to en-
hance model generalization across domains, positioning
adaptive reasoning as a core component for advancing LLM
architectures and increasing their versatility in real-world
applications.
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4.4.3. AVERAGE PERFORMANCE OF CLOSED-SOURCE
AND OPEN-SOURCE MODELS

The data presented in Figure 3 summarizes the average
performance results of various LLMs, encompassing both
closed-source and open-source variants, across different
datasets. This figure highlights the effectiveness of prompt
engineering and demonstration selection methods in compar-
ison to our proposed approaches, RDES/B and RDES/C. In
the BANKING77 dataset, RDES/C achieved a remarkable
accuracy of 0.843, significantly surpassing other methodolo-
gies, including RDES/B at 0.718 and ADA at 0.689, while
the baseline method, ZS, recorded the lowest accuracy of
0.394. In the CLINC150 dataset, RDES/B demonstrated
strong performance with an accuracy of 0.812, followed
closely by RDES/C at 0.788, with ADA achieving 0.769
and the KP method at 0.640. The HWU64 dataset further
highlighted RDES/C’s superiority, as it led with an accuracy
of 0.859, while RDES/B achieved 0.767 and ADA recorded
0.733, with ZS lagging at 0.506. Finally, in the LIU54
dataset, RDES/C attained an accuracy of 0.799, outperform-
ing RDES/B at 0.693 and ADA at 0.716, while the CoT
method exhibited an accuracy of 0.506. Overall, these re-
sults illustrate the effectiveness of our proposed approaches
in enhancing model performance through advanced prompt
engineering and demonstration selection strategies, under-
scoring their potential to improve classification accuracy
across various applications.

Figure 3. These figures illustrate the average results across closed-
source/open-source models on different datasets, comparing the
best results from the prompt engineering (PE) and demonstration
selection (DS) methods with our proposed approach.

4.5. Evaluation on More Challenging Reasoning Tasks

To further assess the generalizability and effectiveness of
RDES beyond simple text classification, we conducted ad-
ditional experiments on more challenging reasoning bench-
marks: BigBenchHard (specifically, boolean expressions

and web of lies subsets), SST5 and GSM-8K. These datasets
require advanced reasoning capabilities from the LLMs, al-
lowing us to evaluate how different demonstration selection
methods perform in complex scenarios. We evaluated the
performance of our proposed RDES variants (RDES/B and
RDES/C based on Q-learning, and RDES/PPO based on
PPO) against several baseline methods (FS, FSC, AES, RDS,
ADA) on these benchmarks, utilizing both the DeepSeek-
R1-32B and Qwen-2.5-72B models.

As shown in Table 5 in Appendix A.6, the results on these
reasoning benchmarks further highlight the competitive per-
formance of RDES, especially RDES/C which incorporates
CoT reasoning, and RDES/PPO. For instance, RDES/C
achieves the highest accuracy on both BigBenchHard and
GSM-8K with the DeepSeek-R1-32B model. With the
Qwen-2.5-72B model, ADA shows the highest accuracy
on these specific reasoning tasks, while RDES/PPO also
achieves competitive results. These findings demonstrate
that RDES, by effectively balancing relevance and diver-
sity in demonstration selection through a RL framework,
can maintain strong performance even on tasks requiring
more complex reasoning, supporting its broader applicabil-
ity beyond straightforward classification. The exploration
of different RL algorithms like PPO also shows promise for
these tasks.

5. Conclusion
In this study, we introduced RDES, a novel framework uti-
lizing RL (specifically Q-learning, with exploration into a
PPO-based variant) to optimize demonstration selection for
ICL in LLMs by balancing relevance and diversity, thereby
enhancing generalization and mitigating overfitting. Our
extensive evaluation against ten baselines on four bench-
mark classification datasets demonstrated that RDES sig-
nificantly outperforms existing methods. We also showed
that integrating RDES with CoT reasoning (RDES/C) gen-
erally enhances performance, though its benefit can vary
depending on model and dataset characteristics. We con-
ducted additional experiments on more challenging reason-
ing benchmarks and with a variable number of demonstra-
tions, which further validated RDES’s effectiveness and
highlighted diversity-driven generalization, especially with
the RDES/PPO variant, even in complex tasks or varying
settings. These results underscore the potential of RL to
facilitate adaptive demonstration selection and its promise
for addressing complexities in NLP tasks. Future work in-
cludes refining diversity metrics, extending RDES to tasks
beyond classification like generation and question answer-
ing, making CoT usage adaptive within the RL framework,
analyzing computational cost/sample efficiency, exploring
different retrieval methods, and assessing the generalization
capabilities of strategies across datasets.
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A. Appendix
A.1. Algorithm Comparison between Q-learning and PPO

In this section, we provide a comparative analysis of two prominent RL algorithms: Q-learning and Proximal Policy
Optimization (PPO). The table below highlights key aspects of each algorithm, including their policy types, exploration
strategies, value estimation methods, and update rules. This comparison aims to elucidate the strengths and weaknesses of
each approach in the context of RL applications.

Table 3. Algorithm Comparison
Aspect Q-learning PPO
Policy Type Deterministic Stochastic
Exploration ϵ-greedy Entropy bonus
Value Est. Tabular Neural network
Update Rule Temporal Difference Surrogate objective

A.2. Convergence Analysis

Theoretical analysis supports the convergence properties of the adopted RL algorithms under standard conditions.

A.2.1. Q-LEARNING CONVERGENCE

Under standard stochastic approximation conditions for the learning rates and bounded rewards, the Q-learning updates are
guaranteed to converge.
Theorem A.1 (Q-Learning Convergence). Given learning rates αt satisfying the Robbins-Monro conditions (

∑∞
t=1 αt =∞

and
∑∞
t=1 α

2
t < ∞), and bounded rewards |rt| ≤ Rmax, the Q-learning updates converge almost surely to the optimal

Q-function Q∗.

A.2.2. PPO POLICY IMPROVEMENT

The PPO algorithm’s clipped objective provides theoretical guarantees on policy improvement in each update step.
Theorem A.2 (Policy Improvement). For any policy πθold , a policy πθnew updated via PPO’s clipped objective with advantage
estimates Ât satisfies:

Eπθnew
[Ât] ≥ Eπθold

[Ât] (12)

This means the expected advantage of the new policy is greater than or equal to that of the old policy, guaranteeing
monotonic policy improvement unless the policy has already converged.

A.3. Datasets

In this section, we present a summary of the datasets used in our experiments. Each dataset is characterized by its unique
intents, the size of the knowledge base (KB), the number of test samples, and the distinct domains it covers. Table 4 provides
a comprehensive overview of these datasets:

Dataset Intents Size of KB Test Domains

BANKING77 77 9,003 3,080 1
CLINC150 150 18,000 2,250 10
HWU64 64 8,828 1,104 21
LIU54 54 20,382 2,548 21

Table 4. Summary of Experimental Datasets: This table presents the number of unique intents represented in each dataset (Intents), the
total number of knowledge base entries available for retrieval (Size of KB), the number of test samples used for evaluation (Test), and the
number of distinct domains covered by each dataset (Domains).

In addition to the datasets summarized in Table 4, we performed supplementary experiments on several reasoning benchmarks
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to evaluate RDES performance on tasks requiring more complex capabilities. These datasets, including BigBenchHard
(Suzgun et al., 2023) (boolean expressions and web of lies subsets), GSM-8K (Cobbe et al., 2021), and SST5 (Socher
et al., 2013), were utilized to address reviewer feedback and demonstrate the framework’s applicability beyond standard
text classification. Due to time constraints, we randomly sampled 1,000 examples from the test sets for evaluation. The
experimental results and analysis on these benchmarks are presented and discussed in the main body.

A.4. Baselines

In this study, we conduct a comprehensive evaluation of ten baseline approaches to assess their effectiveness in various
classification tasks. These approaches are categorized into two main groups: Prompt Engineering Methods and Demonstra-
tion Selection Methods. Each method employs distinct strategies to enhance the model’s performance, leveraging different
aspects of prompting and demonstration selection to improve classification accuracy and response quality.

A.4.1. PROMPT ENGINEERING METHODS

This category focuses on techniques that manipulate the structure of prompts to guide the model’s understanding and
decision-making process. The methods included in this category are:

• Zero-Shot Prompting (ZS) (Radford et al., 2019): This method prompts the model to classify text without providing
prior demonstrations, directly asking it to select the most appropriate label from a predefined set of options. This
approach tests the model’s ability to generalize from its training data.

• Knowledge Prompting (KP) (Liu et al., 2022): This technique prompts the model to generate relevant contextual
information about the input text before selecting a label. By providing additional context, this method may enhance
classification accuracy and improve the model’s understanding of the task.

• Least-to-Most Prompting (L2M) (Zhou et al., 2023): This approach structures the classification task into smaller,
manageable steps, guiding the model through the selection process. By breaking down the task, the model can focus on
each component, potentially leading to more accurate predictions.

• Chain of Thought (CoT) (Wei et al., 2022): This variant encourages the model to articulate its reasoning step-by-step
before arriving at a classification. By making the reasoning process explicit, CoT prompting can enhance response
quality and provide insights into the model’s decision-making.

• Self-Refine (SF) (Madaan et al., 2024): This approach prompts the model to solve a problem, critique its own solution,
and then refine its answer based on the critique. This iterative process continues until a stopping condition is met,
allowing the model to improve its responses through self-assessment.

A.4.2. DEMONSTRATION SELECTION METHODS

This category encompasses methods that utilize a selection of demonstrations to inform the model’s predictions. The
approaches included in this category are:

• Few-Shot Prompting (FS) (Lu et al., 2024): This approach provides the model with a limited number of text-label
pairs selected randomly. By leveraging contextual information from these demonstrations, the model can enhance its
predictions based on the provided demonstrations.

• Few-Shot with CoT (FSC) (Lu et al., 2024): This method combines few-shot learning with reasoning, presenting
demonstrations alongside explanations to guide the model’s classification process. This integration aims to improve the
model’s understanding and accuracy in making predictions.

• Active Demonstration Selection (AES) (Zhang et al., 2022): This approach involves iteratively selecting and
annotating unlabeled demonstrations to enhance ICL using RL methods. By actively choosing relevant demonstrations,
the model can improve its learning efficiency.

• Representative Demonstration Selection (RDS) (Yang et al., 2023): This method aims to identify a high-quality and
diverse subset of in-context demonstrations that can effectively prompt various test instances for a specific task. By
ensuring diversity, this approach enhances the model’s ability to generalize across different scenarios.
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• Adaptive Demonstration Selection for In-Context Learning (ADAICL, ADA) (Mavromatis et al., 2023): This
approach employs a model-adaptive, optimization-free algorithm to identify uncertain demonstrations and perform
semantic diversity-based selection. By focusing on uncertain cases, the model can improve its robustness and
adaptability.

A.5. LLMs Used in Experiments

To evaluate the effectiveness of the proposed method, we employ a diverse range of LLMs, encompassing both closed-source
and open-source options. Closed-source models, such as GPT-3.5-turbo, Doubao-lite-4k, Doubao-pro-4k, and Hunyuan-lite,
are proprietary systems developed by leading technology companies. For instance, GPT-3.5-turbo, created by OpenAI, is
renowned for its advanced NLP capabilities, making it a popular choice for various applications, including conversational
agents and content generation (Zhang et al., 2024). Similarly, Doubao-pro, released by ByteDance in May 2024, excels in
multiple benchmarks, demonstrating strong performance in natural language understanding and generation tasks, positioning
it as a versatile tool for applications ranging from question answering to complex text creation (Team, 2024a). Hunyuan-lite,
developed by Tencent, is distinguished by its extensive parameter count and advanced capabilities in handling long-context
inputs, thereby enhancing its performance across diverse tasks (Cloud, 2024).

In contrast, open-source models such as Gemma-2-2B, Gemma-2-9B, LLaMA-3.2-1B, LLaMA-3.2-3B, LLaMA-3-8B,
Qwen-2.5-7B, Qwen-2.5-14B, and Qwen-1.5-72B offer researchers and developers the flexibility to modify and adapt
the models for specific use cases. The Gemma series emphasizes efficient training techniques while maintaining high
performance across various NLP tasks, encouraging customization and experimentation within the community (Team et al.,
2024). The Qwen series, particularly noted for its scalability and adaptability, allows users to fine-tune models according to
their needs, fostering collaboration and innovation in AI research (Bai et al., 2023; Yang et al., 2024). The LLaMA series has
garnered attention for its performance across various benchmarks while enabling users to tailor the models to their specific
requirements (Dubey et al., 2024). The open-source nature of these models promotes collaboration and innovation within the
AI community, facilitating a broader range of experiments and applications compared to their closed-source counterparts.

In addition to these models, for supplementary experiments conducted on challenging reasoning benchmarks (such as
BigBenchHard, GSM-8K, and SST5) as detailed in Section 4.5, we also utilized the Qwen-2.5-72B (Team, 2024b) and
DeepSeek-R1-32B (DeepSeek-AI, 2025) models. These additional experiments were performed to demonstrate RDES’s
performance in more complex scenarios and were specifically included in response to reviewer feedback. The detailed
results and analysis using these models are presented in the main body of the paper.

A.6. Supplementary Results

Table 5 presents a performance comparison of the Qwen-2.5-72B and DeepSeek-R1-32B models across several supplemen-
tary datasets, including SST5, BigBenchHard (specifically focusing on boolean expressions and the web of lies tasks), and
GSM-8K. It lists various methods, encompassing traditional Few-Shot (FS) and Few-Shot with Chain of Thought (FSC)
approaches, as well as demonstration selection methods such as Active Demonstration Selection (AES), Representative
Demonstration Selection (RDS), and Adaptive ICL (ADA). Notably, the table also includes different variants of the pro-
posed RL-based RDES method: RDES/B, RDES/C (the base version and the one combined with Chain of Thought), and
RDES/PPO (the PPO-based variant). These supplementary results further support the effectiveness of the RDES method
across diverse tasks and models, including text classification, complex reasoning, and mathematical reasoning.

Table 5. Supplementary Performance Comparison on SST5, BigBenchHard, and GSM-8K
Methods SST5 BigBenchHard - boolean expressions BigBenchHard - web of lie GSM-8K

Qwen-2.5-72B DeepSeek-R1-32B Qwen-2.5-72B DeepSeek-R1-32B Qwen-2.5-72B DeepSeek-R1-32B Qwen-2.5-72B DeepSeek-R1-32B
FS 0.56 0.70 0.98 0.38 0.58 0.98 0.50 0.28
FSC 0.54 0.66 0.60 0.46 1.00 1.00 0.56 0.64
AES 0.84 0.84 0.53 0.60 0.85 0.72 0.92 0.08
RDS 0.76 0.84 0.53 0.60 0.89 0.68 0.90 0.48
ADA 0.90 0.90 0.53 0.60 0.83 0.72 0.98 0.36
RDES/B 0.44 0.57 0.76 1.00 0.50 0.93 0.87 0.37
RDES/C 0.51 0.52 0.90 0.99 0.98 1.00 0.92 0.73
RDES/PPO 0.84 0.84 1.00 1.00 1.00 0.90 0.94 0.48

Table 6 presents experimental results on the GSM-8K and SST5 datasets, specifically investigating the impact of varying
the number of demonstrations (k) used for ICL. The results are reported for the Qwen-72B model. The table evaluates
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the performance (Accuracy) of various demonstration selection methods, including FS, FSC, AES, RDS, ADA, RDES/B,
RDES/C, and RDES/PPO, as the number of demonstrations is set to 3, 5, 7, and 10. These results, included as part of the
authors’ experimental revisions, highlight how the performance of different methods can change depending on the size of
the demonstration set.

Table 6. Performance of Methods Across Varying Numbers of Demonstrations (k) Using Qwen-2.5-72B Model

Methods GSM-8K (Accuracy) SST5 (Accuracy)
k=3 k=5 k=7 k=10 k=3 k=5 k=7 k=10

FS 0.50 0.28 0.50 0.28 0.54 0.56 0.54 0.56
FSC 0.56 0.64 0.56 0.64 0.52 0.54 0.52 0.54
AES 0.92 0.08 0.92 0.08 0.82 0.84 0.82 0.84
RDS 0.90 0.48 0.90 0.48 0.74 0.76 0.74 0.76
ADA 0.98 0.36 0.98 0.36 0.88 0.90 0.88 0.90
RDES/B 0.87 0.37 0.87 0.37 0.42 0.44 0.42 0.44
RDES/C 0.92 0.73 0.92 0.73 0.49 0.51 0.49 0.51
RDES/PPO 0.94 0.48 0.94 0.48 0.82 0.84 0.82 0.84

A.7. Ablation Study

This ablation study investigates the impact of diversity mechanisms—namely, No-Diversity, RDES/B, and RDES/C—across
both closed-source and open-source models using four datasets. The results, illustrated in Figures 4 and 5, consistently
demonstrate that incorporating diversity generally enhances model performance, although the degree of improvement varies
depending on the dataset and model type.

In the closed-source context (Figure 4), the RDES/C mechanism consistently yields superior results across all datasets. In the
BANKING77 dataset, RDES/C achieves an average accuracy of 0.838, significantly higher than the No-Diversity baseline
of 0.600, indicating its effectiveness in handling diverse banking-related queries. Similarly, in the CLINC150 dataset,
RDES/C reaches 0.902 in accuracy, outperforming the No-Diversity baseline of 0.770, demonstrating improved capacity to
interpret a broad range of user intents. The HWU64 dataset also shows a clear benefit from diversity mechanisms, with
RDES/C achieving 0.872 in accuracy, up from 0.690 in the No-Diversity setting, highlighting the mechanism’s advantage in
technical and domain-specific scenarios. In the LIU54 dataset, RDES/C’s accuracy of 0.824 surpasses the 0.640 baseline of
No-Diversity, further emphasizing the benefits of diversity for nuanced classification tasks. Overall, the RDES/C mechanism
stands out as the most effective strategy for closed-source models, particularly in complex and varied environments.

For open-source models (Figure 5), the impact of diversity mechanisms shows more variation. In the BANKING77 dataset,
RDES/C provides a modest improvement, achieving an average accuracy of 0.845 compared to the No-Diversity baseline
of 0.747, suggesting moderate gains from diversity, especially in larger models such as Qwen-1.5-72B. However, in the
CLINC150 dataset, RDES/B outperforms both No-Diversity (0.768) and RDES/C (0.731), reaching an average accuracy
of 0.800. This suggests that the choice of diversity mechanism should be informed by dataset characteristics, as RDES/B
appears more effective in certain contexts. A clearer trend is observed in the HWU64 dataset, where RDES/C significantly
boosts accuracy to 0.853 from the No-Diversity baseline of 0.732, underscoring the value of diversity in handling complex
queries. In the LIU54 dataset, performance differences are subtler, with No-Diversity and RDES/B yielding similar results
(0.769 vs. 0.686), while RDES/C achieves a slightly higher accuracy of 0.786. These findings indicate that while diversity
mechanisms often enhance performance, the specific choice and impact may vary across different datasets and open-source
models, requiring a nuanced approach to model and dataset pairing.
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Figure 4. These figures illustrate the performance of various closed-source models across different datasets, highlighting the impact of
diversity mechanisms.
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Figure 5. These figures illustrate the performance of various open-source models across different datasets, highlighting the impact of
diversity mechanisms.
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