
Physics-Augmented Learning: A New Paradigm
Beyond Physics-Informed Learning

Ziming Liu
MIT & IAIFI

zmliu@mit.edu

Yunyue Chen
KCL

yunyue.chen@kcl.ac.uk

Yuanqi Du
GMU

ydu6@gmu.edu

Max Tegmark
MIT & IAIFI

tegmark@mit.edu

Abstract

Integrating physical inductive biases into machine learning can improve model gen-
eralizability. We generalize the successful paradigm of physics-informed learning
(PIL) into a more general framework that also includes what we term physics-
augmented learning (PAL). PIL and PAL complement each other by handling
discriminative and generative properties, respectively. In numerical experiments,
we show that PAL performs well on examples where PIL is inapplicable or ineffi-
cient.

1 Introduction

Physics-informed learning (PIL) [1, 2, 3, 4, 5] has been widely used in scientific applications where
physical inductive biases are applicable. The integration of domain knowledge into machine learning
can not only enhance generalization, but also make models more interpretable. However, PIL
implicitly requires physics properties to be discriminative, as opposed to generative (defined below).
To complement PIL, we propose a new paradigm call physics-augmented learning (PAL) to handle
generative properties, as illustrated in Figure 1. We define and compare discriminative and generative
properties in Section 2, propose PAL in Section 3 and compare it with PIL, and demonstrate PAL’s
effectiveness via numerical experiments in Section 4.

Prediction

Blackbox

Input

Label

Physics Penalty

𝐿2

Prediction Loss

𝐿1
Prediction

Blackbox

Input

PhyGen

+

Label

Prediction Loss

𝐿1

Residue Penalty

𝐿2

Physics-Informed Learning Physics-Augmented Learning

Loss function

𝐿 = 𝐿1 + 𝜆𝐿2

Loss function

𝐿 = 𝐿1 + 𝜆𝐿2

requires the property
to be discriminative

PhyGen
requires the property

to be generative

Figure 1: Compare Physics-informed learning (PIL, left) and physics-augmented learning (PAL,
right). PIL and PAL apply to discriminative and generative properties respectively.

NeurIPS 2021 AI for Science Workshop.

2 Discriminative and Generative Properties

What is a property? A property P is a mapping from an object f to a boolean variable: P (f) is
true if f satisfies P , false otherwise. For example, if f refers to an individual with age a, and P is the
statement that “The individual has the age no more than 30.", then P (f) is true if a ≤ 30 and P (f)
is false if a > 30.

Inspired by Generative adversarial networks (GAN) [6], we define a generator and a discriminator
associated with a property P .

Definition 2.1 (Generator). A generator can generate objects f that have the property P .

Definition 2.2 (Discriminator). A discriminator determines if an input object f has the property P
or not.

To be maximally useful, a generator should be implementable as a symbolic formula or feedforward
neural network, and a discriminator can be implementable as a classifier or a loss function. More
specifically, we define ideal generators and discriminators as follows:

Definition 2.3 (Ideal Generator). An ideal generator is (1) accurate (never generate an f such that
P (f) is false), (2) complete (can generate any f such that P (f) is true), (3) efficient (can generate f
in polynomial time), and (4) differentiable (can exploit derivative-based optimization methods such
as back propagation).

Definition 2.4 (Ideal Discriminator). An ideal discriminator is (1) accurate (always computes
P (f) correctly), (2) efficient (computes P (f) in polynomial time), and (3) differentiable (can exploit
derivative-based optimization methods such as back propagation). In this paper, we deal with one
specific ideal discriminator L̂ such that L̂f = 0 when P (f) is true and L̂f 6= 0 when P (f) is false.

We now define discriminative and generative properties:

Definition 2.5 (Generative property). A property P is generative if there exists an ideal generator
for P .

Definition 2.6 (Discriminative property). A property P is discriminative if there exists an ideal
discriminator for P .

Let us clarify these abstract definitions with a few examples of properties below, summarized in Table
1).

A. Lagrangian property For a physics system with generalized coordinate q and velocity q̇, the
acceleration field q̈ is Lagrangian if there exists a Lagrangian function L(q, q̇) such that q̈ =
(∇q̇∇T

q̇L)−1(∇qL − (∇q∇T
q̇L)q̇) [7, 8]. The Lagrangian property is generative by definition but

not discriminative, because (perhaps surprisingly) there is no known efficient method to determine
whether a given q̈ is Lagrangian or not [8].

B. Positive definiteness By analogy with linear operators, we say that a function f(x) is positive
definite if there exists a function g such that f(x) = g(g(x)). For example, the function that
time-evolves a physical system during an interval ∆T is positive definite, since it is equivalent by
time-evolving by ∆T/2 twice. The positive definiteness property is generative by definition, but not
discriminative to the best of our knowledge.

C. Manifest symmetry Many manifest symmetries are discriminative, with associated discriminators
that can be elegantly described by partial differential equations [9]. For example, a vector field f(x)
is symmetric under a Lie group G if f(gx) = g(f(x)) for all g ∈ G. This symmetry property is
discriminative because it is equivalent to (Kix · ∇ −Ki)f = 0 for all group generators Ki[9]. It is
also generative due to recent advances in equivariant neural networks [10, 11, 12, 13, 14].

D. Hidden symmetry However, hidden symmetries are not discriminative, because they require
coordinate transformations to ‘generate’ manifestly symmetric objects [9]. For example, manifest
Hamiltonicity is shown to be discriminative in [9], but hidden Hamiltonicity is a generative property
and that is equivalent to Lagrangianess [8].

2

Table 1: Generative and discriminative properties

Properties A. Lagrangian
Property

B. Positive
Definiteness

C. Manifest
Symmetry

D. Hidden
Symmetry E. Separability F. PDE

Satisfiability
Generative Yes Yes Yes Yes Yes Yes

Discriminative No No Yes No Yes Yes

Table 2: Neural network and loss function for PIL and PAL on the separability example
Paradigm NN Prediction error L1,

Penalty L2

PIL f(x1, x2; θ)
1
N

∑
i |f0(x

(i)
1 , x

(i)
2)− f(x

(i)
1 , x

(i)
2 ; θ)|,

2
N(N−1)

∑
j>i |f(x

(i)
1 , x

(i)
2 ; θ) + f(x

(j)
1 , x

(j)
2 ; θ)− f(x

(i)
1 , x

(j)
2 ; θ)− f(x

(j)
1 , x

(i)
2 ; θ)|

PAL f1(x1; θ1), f2(x2; θ2),
f12(x1, x2; θ12)

1
N

∑
i |f0(x

(i)
1 , x

(i)
2)− (f1(x

(i)
1 ; θ1) + f2(x

(i)
2 ; θ2))− f12(x

(i)
1 , x

(i)
2 ; θ12)|,

1
N

∑
i |f12(x

(i)
1 , x

(i)
2 ; θ12)|

E. Separability: A differentiable bivariate function f(x1, x2) is (additively) separable if there exists
two unary functions f1 and f2 such that f(x1, x2) = f1(x1) + f2(x2). Separability is generative by
definition, and also discriminative because it is equivalent to L̂f ≡ ∂2f/∂x1∂x2 = 0 [15, 16].

F. PDE satisfiability We say a function f(x, t) satisfies a partial differential equation (PDE) if
g(t, f, ft, fx, ..) = 0. This property is discriminative by definition, with L̂f = g. It is also
generative when f(x, t) can be efficiently computed by a numerical PDE solver given proper boundary
conditions; this idea underlies neural ordinary/partial/stochastic differential equations [17, 18, 19].

3 Physics-informed Learning (PIL) and Physics-augmented learning (PAL)

In this section, we first review physics-informed learning (PIL) and its limitations, motivating our
proposed physics-augmented learning (PAL) framework.

3.1 Physics-informed Learning (PIL)

The essence of PIL is to seamlessly integrate data and mathematical physics models, and a common
way is to add a soft penalty term L2 (corresponding to physics properties) to the prediction loss
L1 [1] (Figure 1, left panel). PIL works for discriminative properties. Indeed, one of its greatest
successes lies in solving forward/inverse PDE problems [2, 3, 5], based on the unstated fact that
satisfying a PDE is discriminative. We clarify PIL with a toy example below.

Example: PIL for separability Suppose that our training dataset (N samples) is generated by the
oracle y = f0(x1, x2) where f0 : R2 → R and that we want to use a parametrized neural network
f(x1, x2; θ) to fit the data with a function f(x1, x2; θ) that is additively separable. PIL does this
using a loss function with two terms: L ≡ L1 + λL2, where the prediction loss L1 and separability
loss L2 are

L1(θ) ≡ 1

N

∑
i

|f0(x
(i)
1 , x

(i)
2)− f(x

(i)
1 , x

(i)
2 ; θ)|, L2(θ) ≡ 1

N

∑
i

∣∣∣∣∣∂2f(x
(i)
1 , x

(i)
2 ; θ)

∂x1∂x2

∣∣∣∣∣ ,
and the constant λ > 0 is a penalty coefficient.1

By definition, each discriminative property P can be written L̂f = 0 for some operator L̂, so
L2 ≡ |L̂f | is a natural measure of property violation. In contrast, non-discriminative properties,
e.g., being Lagrangian or positive definite, lack a known efficiently computable criterion L̂f = 0.
Fortunately, the PAL framework proposed below can come to rescue whenever the properties of
interest are generative.

1Alternatively, L2 can be expressed in terms of finite differences instead of derivatives; we do this for our
numerical experiments. For example, additive separability corresponds to the condition listed in Table 2, which
we average over all pairs of data points.

3

3.2 Physics-augmented Learning (PAL)

Although both PIL and PAL aim to leverage inductive biases in machine learning, their approaches
are quite different: while PIL is based on regularization design, PAL is based on model design. Useful
regularization designs and model designs are only available for properties that are discriminative and
generative, respectively.

In the PAL paradigm, the whole model consists of two parallel modules (see Figure 1, right panel): the
first module (PhyGen) strictly satisfies the generative property, and the second module (Blackbox)
augments the expressive power to allow violation of the property. The loss function consists of two
terms: the standard prediction error L1, and a penalty term L2 defined as some norm of Blackbox
module output. The combined loss function is L = L1 + λL2.

Example: PAL for separability In PAL we have two neural modules PhyGen and Blackbox.
PhyGen satisfies strictly the additive separability by having two sub-networks (f1(x1; θ1), f2(x2; θ2))
and outputs their sum. Blackbox is a fully-connected neural network f12(x1, x2; θ12) that can
universally approximate any two-variable continuous function. The whole prediction is thus
(f1(x1; θ1) + f2(x2; θ2)) + f12(x1, x2; θ12) and the prediction loss L1 is its distance from the
label y = f0(x1, x2). The penalty loss is simply the function norm of the Blackbox i.e.,
L2 = |f12(x1, x2; θ12)|. Our PIL and PAL examples are summarized and compared in Table
2.

When should I use PAL rather than PIL? PIL and PAL are complementary frameworks exploiting
discriminative and generative properties, respectively. As a consequence, one should resort to PAL
without hesitation when the property of interest is generative and non-discriminative. Another reason
to use PAL is that it provides a model decomposition into PhyGen and Blackbox, and interpreting
them potentially produces physical insights. For example, the decomposition into conservative and
non-conservative force fields enabled new-physics discovery in [8].

How to choose the hyperparameter λ? It was recently proven that L = L1 +λL2 produces a phase
transition at λ = 1 [8]2. λ > 1 is the undesirable phase, so in principle one can simply choose any
λ < 1 to obtain vanishing prediction loss; the numerical results of [8] suggest that λ ∈ [0.02, 0.5]
produces accurate and robust results in practice. We verify these observations with the additive
separability example in Appendix B. In our numerical experiments, we choose λ = 0.2 if not stated
otherwise.

4 Numerical Experiments

We demonstrate the effectiveness of PAL on two tasks: symbolic regression and dynamics prediction.
PAL performs well on these applications, while PIL is inapplicable or performs worse than PAL.

4.1 Symbolic Regression

The goal of symbolic regression is to find a symbolic expression that matches data from an unknown
function f . The physics-inspired AI Feynman symbolic regression module [15, 16] tests if a dataset
satisfies certain properties, including symmetries. However, AI Feynman can only discovers and
exploits these if they hold with high accuracy. To relax this, we employ PAL to first decompose the
function f into two parts: a property-satisfying part f+ and a property-violating residual f−. We
then apply AI Feynman to both parts separately to obtain symbolic formulas; f+ satisfies the strict
property which AI Feynman can exploit.

We experiment with three properties: additive separability, rotational invariance and positive definite-
ness. Training details can be found in Appendix B. Table 3 shows the symbolic regression results: for
the first two properties, PAL decomposes the function as desired while PIL can only learn the whole
function; for the positivity example, PIL is not applicable while PAL can extract meaningful partial
function g.

2Here the loss functions L1 and L2 should be defined as norms to produce sharp phase transition behavior,
e.g., mean-absolute error (MAE) or Euclidean norm. In contrast, MSE does not produce a sharp phase transition.

4

Table 3: Symbolic regression results
Property Methods f+ f−

Additive Separability
f = x21 + x22 + x1x2

Truth (x21) + (x22) x1x2
AI Feynman + PAL (x21 − 0.02) + (x22 − 0.01) x1x2 + 0.03
AI Feynman + PIL x21 + x22 + x1x2

Rotational Invariance
f = 0.5(x21 + x22) + 0.32x1

Truth 0.5(x21 + x22) 0.32x1
AI Feynman + PAL 0.5(x21 + x22) 0.31998x1
AI Feynman + PIL 0.5(x21 + x22) + 0.32x1

Positivity
f = sin(sin(x)) + 0

Truth sin(sin(x)) 0
AI Feynman + PAL g(g(x)), g = −sin(x) + 0.004 0
AI Feynman + PIL Not Applicable

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
initial
final

Ground Truth

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
PAL
PIL

PAL & PIL

(a) Trajectory

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
r(distance between two body)

0

1

2

3

4

f(f
or

ce
)

Truth
PAL Learned
PIL Learned

(b) Force

Figure 2: Dynamics prediction results: (a) Trajectory; (b) Force.

4.2 Dynamics prediction: N-body Problem

In this example, we aim to learn N -body dynamics from the initial (t = 0) and final (t = 1) states
of N particles. We assume that these unit mass particles (m = 1) obey the Newtonian mechanics
with pairwise interactions, i.e., particle i exerts a force fij = f(|xi − xj |) xi−xj

|xi−xj |2 on particle j. Our
ground truth is that f(r) = r2 when computing final states from initial states, but we pretend not to
know f and aim to infer it solely from the initial and final states (indicated by triangles and dots in
Figure 2). The property P that we explore with PAL and PIL is the time-independence of f , which is
clearly both discriminative and generative. Details of loss functions, data generation and training
details are included in Appendix A and C. Figure 2 shows that PAL outperforms PIL in terms of
both trajectory interpolation and force recovery. In other words, although both PIL and PAL can be
applied for this example, PAL reveals the underlying dynamics much more accurately that PIL.

5 Conclusions & Discussions

We have proposed a new paradigm called physics-augmented learning (PAL) to effectively integrate
physical properties into unconstrained neural networks. PAL complements the well-known physics-
informed learning (PIL) paradigm, by applying in some cases where PIL is inapplicable and by
outperforming PIL in some cases where both can be used. While PIL is based on regularization design
and applies to discriminative properties, PAL is based on model design and applies to generative
properties.

Although PAL in its general form is explicitly formulated for the first time in this paper, examples of
it have been implicitly adopted in many successful machine learning models owing to its ability to
integrate human knowledge into the model design phase. For example, AlphaFold2 demonstrated
that designing deep learning models with proper inductive biases could give superior performance for
an unsolved grand challenge [20]. There is growing interest in the ML community in how inductive
biases can shape deep learning models; for example, [21] discovers how two fundamental deep
learning models (CNNs and Transformers) leverage their own inductive biases and tackle challenges
in the computer vision domain. We are hopeful that the PAL-PIL framework unifying inductive
biases can lead to further advances in the ML community for tackling real-world challenges with
optimal selection and design of inductive biases.

5

Acknowledgement

We would like to thank Silviu Udrescu and Jiaxi Zhao for valuable discussions. We thank the Center
for Brains, Minds, and Machines (CBMM) for hospitality. This work was supported by The Casey
and Family Foundation, the Foundational Questions Institute, the Rothberg Family Fund for Cognitive
Science and IAIFI through NSF grant PHY-2019786.

References
[1] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu

Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[2] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning
(part i): Data-driven solutions of nonlinear partial differential equations, 2017.

[3] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning
(part ii): Data-driven discovery of nonlinear partial differential equations, 2017.

[4] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[5] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014.

[7] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley
Ho. Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

[8] Ziming Liu, Bohan Wang, Qi Meng, Wei Chen, Max Tegmark, and Tie-Yan Liu. Machine-
learning non-conservative dynamics for new-physics detection, 2021.

[9] Ziming Liu and Max Tegmark. Machine-learning hidden symmetries, 2021.

[10] Taco Cohen and Max Welling. Group equivariant convolutional networks. In International
conference on machine learning, pages 2990–2999. PMLR, 2016.

[11] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

[12] Fabian B Fuchs, Daniel E Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d
roto-translation equivariant attention networks. arXiv preprint arXiv:2006.10503, 2020.

[13] Risi Kondor, Zhen Lin, and Shubhendu Trivedi. Clebsch-gordan nets: a fully fourier space
spherical convolutional neural network. arXiv preprint arXiv:1806.09231, 2018.

[14] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural
networks. arXiv preprint arXiv:2102.09844, 2021.

[15] Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16), 2020.

[16] Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark.
Ai feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. arXiv preprint
arXiv:2006.10782, 2020.

[17] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations, 2019.

6

[18] Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learn-
ing neural pde solvers with convergence guarantees, 2019.

[19] Patrick Kidger, James Foster, Xuechen Li, Harald Oberhauser, and Terry Lyons. Neural sdes as
infinite-dimensional gans, 2021.

[20] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, pages 1–11, 2021.

[21] Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Doso-
vitskiy. Do vision transformers see like convolutional neural networks? arXiv preprint
arXiv:2108.08810, 2021.

7

Supplementary material

A Definitions of PIL and PAL losses

In Section 4, we conducted experiments related to four properties: additive separability, rotational
invariance, positivity and time independence. PAL applies to all of these properties, while PIL is not
applicable to positivity but applies to other three properties. In Table 4 we show the design of neural
networks and loss functions for each property in the framework of PIL and PAL.

All neural networks f∗(∗; ∗) (each ∗ can be anything) are fully-connected networks which can
approximate any continuous function of input variables (if wide enough). Their differences lie in
input variables. For PIL, the only network is fully-connected and takes in all available variables. For
PAL, we have a PhyGen and Blackbox which usually have different inputs. Blackbox takes in all
available input variables while PhyGen usually takes in fewer variables which is determined by the
specific property, as detailed below.

• Additive separability. PhyGen: f1 takes in x1 only, while f2 takes in x2 only. The out-
put is f1(x1; θ1) + f2(x2; θ2). Blackbox: f12 takes in both x1 and x2. The output is
f12(x1, x2; θ12).

• Rotational invariance. PhyGen: f1 takes in one variable R ≡
√
x21 + x22 only. The output is

f1(R; θ1). Blackbox: f2 takes in both x1 and x2. The output is f2(x1, x2; θ2).
• Positivity. PhyGen: f1 takes in x and outputs f1(f1(x; θ1); θ1). Blackbox: f2 takes in x

and outputs f2(x; θ2).
• Time independence. PhyGen: f1 takes in r where r is the distance between two particles.

The output is f1(r; θ1). Blackbox: f2 takes in both r and t. The output is f2(r, t; θ2).

Table 4: PIL and PAL neural networks and loss functions for four properties
Property Variables Paradigm NN Prediction error L1,

Penalty L2

Additive
Separability x1, x2

PIL f(x1, x2; θ)
1
N

∑
i |f0(x1, x2)− f(x1, x2; θ)|,

2
N(N−1)

∑
j>i |f(x

(i)
1 , x

(i)
2 ; θ) + f(x

(j)
1 , x

(j)
2 ; θ)− f(x

(i)
1 , x

(j)
2 ; θ)− f(x

(j)
1 , x

(i)
2 ; θ)|

PAL f1(x1; θ1), f2(x2; θ2),
f12(x1, x2; θ12)

|f0(x1, x2)− (f1(x1; θ1) + f2(x2; θ2))− f12(x1, x2; θ12)|,
|f12(x1, x2; θ12)|

Rotational
Invariance x1, x2

PIL f(x1, x2; θ)
|f0(x1, x2)− f(x1, x2; θ)|,

|f(x1, x2; θ)− f(x′1, x
′
2; θ)| [(x′1, x′2)T = Rotation(α)(x1, x2)T]

PAL f1(R; θ1),
f2(x1, x2; θ2)

|f0(x1, x2)− f1(R; θ1)− f2(x1, x2; θ2)|,
|f2(x1, x2; θ)|

Positivity x
PIL Not

Applicable
Not

Applicable

PAL f1(x; θ1),
f2(x; θ2)

|f0(x)− f1(f1(x; θ1); θ1)− f2(x; θ2)|,
|f2(x; θ2)|

Time
Independence r, t

PIL f(r, t; θ) |z(t = 0) +
∫ 1

0
dtF(z, t)− z(t = 1)|,∑n

i=1 |f(r, i∆t; θ)− f(r, (i+ 1)∆; θ)|

PAL f1(r; θ1),
f2(r, t; θ2)

|z(t = 0) +
∫ 1

0
dt(F1(z) + F2(z, t))− z(t = 1)|,
|f2(z, t; θ2)|

B Symbolic Regression Details

Neural network architecture: In the symbolic regression experiment, all the neural networks are
fully-connected networks, which have 1 or 2 input neurons (depends on the number of input variables),
2 hidden layers (width = 256) with LeakyReLU (α = 0.2), and a single output neuron.

Additive separability: The function f0(x1, x2) = (x21 + x22) + x1x2 can be decomposed into the
additively separable part x21 + x22 and a violation part x1x2.

We employ PAL To obtain the decomposition numerically first. we train three neural networks,
f1(x1; θ1), f2(x2; θ2), and f12(x1, x2; θ12), with λ = 0.2 for 200 epochs. We use the ADAM
optimizer and annealed learning rate schedule i.e., {10−3, 10−4, 10−5, 10−6} each learning rate for
50 epochs. We show three neural networks succeed in learning the ground truth decomposition in
Figure 3(a)-(b). After PAL training, we then apply AI Feynman to explain the outputs i.e., symbolic
expression of these three neural networks: f1 = x21 − 0.02, f2 = x22 − 0.01, and f12 = x1x2 + 0.03.

8

Phase transition A recent work [8] theoretically proves that L1, L2 ∼ λ has a phase transition
behavior at λ = 1 3. λ > 1 is the undesireable phase, so in principle one can simply choose any
λ < 1 to obtain the correct result. Their numerical results suggest that λ ∈ [0.02, 0.5] produce very
accurate and robust results. We verify these observations in the current example.

We sweep the λ region and obtained final losses (L1 and L2) as a function of λ in PAL and PIL,
by testing λ = {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100}. We show the results in Figure
3(c)-(d). For PAL, there is a sharp phase transition at λ = 1 and two losses are quite robust for any
λ < 1. Intriguingly, the sharp phase transition for PIL has never been reported let alone studied
before (to the best of knowledge), which will be interesting future directions.

Rotational invariance: We use PAL to decompose the function f0(x1, x2) = 1
2 (x21 +x22) +ax1 into

the rotational-invariant part 1
2 (x21 + x22) and violation part ax1 (a = 0.32). In the experiment, we

take λ = 0.2 and jointly train f1(R =
√
x21 + x22; θ1) and f2(x1, x2; θ2) for 200 epochs. We use the

ADAM optimizer and annealed learning rate schedule i.e., {10−3, 10−4, 10−5, 10−6} each learning
rate for 50 epochs.

We apply AI Feynman to explain f1 and f2 parameterized by neural networks: AI Feynman discovers
that f1 = 0.5(x21 + x22) and f2 = 0.31998x1.

Positive Definiteness: Given a function f0(x) = sin(sin(x))+0, we train the the first neural network
in a nested form f1(f1(x; θ1); θ1) for the positivity part and the second neural network for violation
part. We jointly train two networks for 2000 epochs with the ADAM optimizer. We employ annealed
learning rate schedule i.e., {10−3, 10−4, 10−5, 10−6} each learning rate for 500 epochs. AI Feynman
discovers the symbolic expression for two networks: f1 = − sin(x) + 0.004 and f2 = 0.

PIL for additive separability and rotational invariance: To compare PAL and PIL, we also use
PIL to learn the additive separability and rotational invariance under the same setting. The results of
symbolic regression are x21 +x22 +x1x2 (additive separability) and 0.5(x21 +x22) + 0.32x1 (rotational
invariance). Although PIL can obtain correctly the whole symbolic expression, it does not support
decompositions into the property part and the violation part. For the positivity example, PIL is even
not applicable since positivity is non-discriminative.

f1 = x21 f2 = x22 f3 = x1x2

(a) Ground Truth

f1(x1; θ1) f2(x2; θ2) f3(x1, x2; θ3)

(b) Neural Networks Learned

(c) PAL

(d) PIL

Figure 3: (a)(b) Additive separability learned by PAL; (c)(d) λ-loss relations in PAL and PIL.

3Loss functions L1, L2 should be defined as norms to produce the sharp phase transition behavior, e.g.,
mean-absolute error (MAE) or square root of mean-squared error (MSE). By contrast, MSE does not produce
any sharp phase transition

9

C N-body Dynamics Details

Physical Model

We consider a 2D N -particle system described by their positions xi and velocities vi (i = 1, · · · , N).
They all have unit mass m = 1 and have pairwise forces i.e., particle i exerts to particle j a force
fij = f(rij)

rij
rij

where rij ≡ xi − xj , rij ≡ |rij |2 and f(·) is the same for all pairs.

The dynamical equations for the j-th particle is:

d

dt

(
xj

vj

)
=

(
vj∑
i 6=j fij

)
(1)

Concatenating all the particle states together defines z = [x1, · · · ,xN ,v1, · · · ,vN]

d

dt
z ≡ d

dt


x1

· · ·
xN

v1

· · ·
vN

 =


v1

· · ·
vN∑
i6=1 fi1
· · ·∑

i6=N fiN

 ≡ F(z; f) (2)

Discretizing Eq. (2) in time gives

zl+1 = zl + F(z; f)∆t (zl ≡ z(t = l∆t)) (3)

In our simulation, the initial position and initial velocity of each particle are randomly sampled from
a standard Gaussian distribution xi ∼ N ([0, 0]T , σ2I2×2) where σ = 1. The force between each
pair of two bodies is set as f(r) = r2. We use Newton forward scheme as in Eq. (3) to simulate
the 5-body system for 50 steps with step size ∆t = 0.02. The initial positions for the 5 bodies are
(1.62,−0.61), (−0.53,−1.07), (0.87,−2.30), (1.74,−0.76), (0.32,−0.25). The initial velocities
for the 5 bodies are (2.92,−4.12), (−0.64,−0.77), (2.27,−2.20), (−0.34,−1.76), (0.08, 1.17).

Neural network architecture

Note that our goal is to infer the interaction f(·) based on solely the initial z(t = 0) and final z(t = 1).
Our network is effectively a residual network with 50 blocks – it simply implements the computations
as in Eq. (3), with only f parameterized by neural networks. To impose f to be time-independent,
PAL and PIL employ different strategies.

PAL: explicit decomposition f(r, t) = f1(r; θ1) + f2(r, t; θ2) and penalize |f2(r, t; θ2)|. Both f1
and f2 are 2-hidden-layer fully-connected networks (tanh activation) with each layer containing
(1/2, 200, 200, 1) neurons. we take λ1 = 1, λ2 = 0.25, and λ3 = 1, where λ1 is the weight for the
final position prediction loss, λ2 is the weight for the final velocity prediction loss, and λ3 penalty
coefficient for f2(r, t; θ2). We train two neural networks f1(r; θ1) and f2(r, t; θ2), each repeated
100 times and stacked vertically to obtain a 100-layer Resnet. Both f1 and f2 are two-hidden-layer
fully-connected networks (Activation function: tanh) with each layer containing (1/2, 200, 200, 1)
neurons. We train two networks jointly for 2000 epochs with the Adam optimizer with the learning
rate 0.001.

PIL: no explicit decomposition but penalize |f(r, t1)−f(r, t2)| for t1 6= t2. Each block is a 2-hidden-
layer fully-connected network (tanh activation) with each layer containing (1/2, 200, 200, 1) neurons.
For the loss function, we take λ1 = 1, λ2 = 0.25, and λ3 = 0.1, where λ1 is the weight for the final
position prediction loss, λ2 is the final velocity prediction loss, and λ3 is the time-independence
penalty loss. The time-independence loss is simply implemented as the MSE between the outputs of
two neighboring blocks of the Resnet for the same input. We train the Resnet for 2000 epochs with
an Adam optimizer with the learning rate 0.0001.

10

	Introduction
	Discriminative and Generative Properties
	Physics-informed Learning (PIL) and Physics-augmented learning (PAL)
	Physics-informed Learning (PIL)
	Physics-augmented Learning (PAL)

	Numerical Experiments
	Symbolic Regression
	Dynamics prediction: N-body Problem

	Conclusions & Discussions
	Definitions of PIL and PAL losses
	Symbolic Regression Details
	N-body Dynamics Details

