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EVENT CAMERA OBJECT DETECTION AT ARBI-
TRARY FREQUENCIES
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Figure 1: Event camera detection at varying frequencies. The performance of the classic RVT
detector (Gehrig & Scaramuzza, 2023) drops significantly at higher event operational frequencies.
Motivated by this, we propose FlexEvent, a robust and flexible detector that maintain high accuracy
across a wide range of frequencies, ensuring strong adaptability in dynamic sensing environments.

ABSTRACT
Event cameras offer unparalleled advantages for real-time perception in dynamic
environments, thanks to their microsecond-level temporal resolution and asyn-
chronous operation. Existing event-based object detection methods, however, are
limited by fixed-frequency paradigms and fail to fully exploit the high-temporal
resolution and adaptability of event cameras. To address these limitations, we
propose FlexEvent, a novel event camera object detection framework that enables
detection at arbitrary frequencies. FlexEvent consists of two key components:
FlexFuser, an adaptive event-frame fusion module that integrates high-frequency
event data with rich semantic information from RGB frames, and FAL, a frequency-
adaptive learning mechanism that generates frequency-adjusted labels to enhance
model generalization across varying operational frequencies. This combination
allows FlexEvent to detect objects with high accuracy in both fast-moving and
static scenarios, while adapting to dynamic environments. Extensive experiments
on large-scale event camera datasets demonstrate that our approach surpasses
state-of-the-art methods, achieving significant improvements in both standard and
high-frequency settings. Notably, FlexEvent maintains robust performance when
scaling from 20 Hz to 90 Hz and delivers accurate detection up to 180 Hz, proving
its effectiveness in extreme conditions. Our framework sets a new benchmark for
event-based object detection and paves the way for more adaptable, real-time vision
systems. The code will be made publicly available to facilitate future research.

1 INTRODUCTION

Event cameras have garnered significant attention for their ability to capture dynamic scenes with
microsecond-level temporal resolution (Gallego et al., 2022). Unlike conventional RGB cameras that
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capture entire frames at fixed intervals, event cameras operate asynchronously, responding to changes
in pixel intensity at each location (Zou et al., 2022). This low-latency operation reduces motion blur
and enables highly energy-efficient sensing, making event cameras ideal for real-time applications
such as autonomous driving, robotics, and surveillance (Steffen et al., 2019).

Despite their potential, existing event camera object detection methods often fail to fully leverage
the high-frequency temporal information captured by these cameras (Cordone et al., 2022; Gehrig &
Scaramuzza, 2022; Jeziorek et al., 2023). Most approaches align event data with the lower frequency
of RGB cameras by adopting a fixed time interval between event streams and frame-based annotations
(Perot et al., 2020; Gehrig et al., 2021b). While this strategy simplifies data processing, it inevitably
overlooks the rich temporal details embedded in high-frequency event streams, limiting its adaptability
to dynamic environments where temporal changes occur at varying rates (Perot et al., 2020). Given
that human annotations are often synchronized with slower frame rates, current detection models
miss valuable information from high-frequency event data, resulting in suboptimal performance when
rapid object detection is required in dynamic environments (Messikommer et al., 2020; Schaefer
et al., 2022).

To address these limitations, we introduce FlexEvent, a novel event camera object detection framework
designed to tackle the challenging problem of object detection at varying operational frequencies.
Our approach addresses the need for high-frequency detection in fast-changing environments, while
adapting to different operational frequencies. We propose two key innovations: (1) FlexFuser, an
adaptive event-frame fusion module, and (2) FAL, a frequency-adaptive learning mechanism.

Flexible Event-Frame Fusion. The first component, FlexFuser addresses the limitations of event
data, which often lacks semantic and texture-rich information, especially at higher frequencies (Zhou
et al., 2023), by synchronizing event data with frames and integrating the rich spatial and semantic
information from frames with the high-temporal resolution of event streams. It enables high detection
accuracy even in fast-moving environments. Furthermore, training on high-frequency event data is
computationally expensive and impractical due to the significant human effort required to label such
data. FlexFuser mitigates this by sampling event data at varying frequencies, aligning them with the
normal frame rate during training, thus maintaining efficiency while preserving the high-frequency
benefits at inference time.

Frequency-Adaptive Learning. The second component, FAL, enhances the generalization capability
of event camera detectors across varying operational frequencies, by generating frequency-adaptive
labels for the unlabeled high-frequency data. These labels allow the model to learn from high-
frequency event streams without manual annotations, and iterative refinement through self-training
ensures that the model remains robust across different motion dynamics and frequency settings.
Together, these two components allow for accurate real-time detection in rapid scene changes and
adapt to a wide range of operational frequencies, by leveraging the temporal richness of event data
and the semantic detail of RGB frames.

Our extensive experiments validate the effectiveness of FlexEvent on multiple large-scale event
camera datasets. Our approach consistently outperforms recent detectors across both standard and
high-frequency settings. In particular, we achieve mAP gains of 15.5%, 9.4%, and 10.3% over
previous best-performing detectors on the DSEC-Det (Gehrig & Scaramuzza, 2024), DSEC-Detection
(Tomy et al., 2022), and DSEC-MOD (Zhou et al., 2023) datasets, respectively. Our model also
maintains 96.2% of its performance when the operational frequency shifts from 20 Hz to 90
Hz, and delivers accurate detection at frequencies as high as 180 Hz, proving its robustness under
extreme conditions.

In summary, our contributions are listed as follows:

▶ The FlexEvent framework is designed to tackle the challenging problem of event camera object
detection at arbitrary frequencies, being one of the early attempts on this line of study.

▶ We propose FlexFuser, an adaptive event-frame fusion that leverages the strengths of both event
and frame data, enabling efficient and accurate detection in dynamic environments.

▶ We introduce FAL, a frequency-adaptive learning mechanism that generates frequency-adjusted
labels and improves generalization across a wide range of motion frequencies.
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▶ We demonstrate that our approach achieves state-of-the-art performance in event-based object de-
tection across large-scale datasets, particularly in high-frequency scenarios, validating its effectiveness
and potential to handle safety-critical problems in the real world.

2 RELATED WORK

Event Camera Object Detection. Event-based detection methods can be broadly split into two
approaches: GNNs/SNNs and dense feed-forward models. GNNs build dynamic spatio-temporal
graphs by subsampling events (Gehrig & Scaramuzza, 2022; Sun & Ji, 2023; Messikommer et al.,
2020; Schaefer et al., 2022), but they face challenges in propagating information over large spatio-
temporal regions, especially for slow-moving objects. SNNs offer efficient sparse information
transmission but are often hindered by their non-differentiable nature, complicating optimization
processes (Cuadrado et al., 2023; Cordone et al., 2022; Zhang et al., 2022). Dense, feed-forward
models represent the second approach. Initial methods using fixed temporal windows (Chen, 2018;
Iacono et al., 2018; Jiang et al., 2019) struggled with slow-moving or stationary objects due to their
limited capability to capture long-term temporal data. Subsequent advancements incorporated RNNs
and transformers to enhance temporal modeling capabilities (Perot et al., 2020; Zubić et al., 2023; Li
et al., 2022; Gehrig & Scaramuzza, 2023; Peng et al., 2024), but these models often still lack semantic
richness and face difficulties in adapting to variable frequencies. EventDrop (Gu et al., 2021) and
Shadow Mosaic (Peng et al., 2023) improve generalization using data augmentation techniques that
introduce spatial and temporal manipulations to increase data diversity. However, they do not focus
on high-frequency event data or fully leverage the rich temporal information of event streams.

Event-Frame Multimodal Learning. To overcome the limited texture in event streams, multimodal
fusion techniques combining event-based and frame-based data have gained traction across tasks,
such as deblurring (Sun et al., 2022a; Zhang et al., 2020), depth estimation (Gehrig et al., 2021a;
Uddin et al., 2022), and tracking (Zhao et al., 2022; Gehrig et al., 2020). Earlier object detection
approaches fused event and image data during post-processing (Li et al., 2019; Chen et al., 2019), but
they lacked meaningful feature-level interaction. Recent works focus on deeper feature fusion (Tomy
et al., 2022; Cao et al., 2022; 2021), with advanced methods introducing pixel-level spatial attention
or temporal transformers for asynchronous processing (Zhou et al., 2023; Li et al., 2023; Gehrig
& Scaramuzza, 2024; Cao et al., 2024). Some early attempts (Li et al., 2023; Gehrig et al., 2021a)
explore combining events and frames through asynchronous multi-modal fusion, enabling inference
at varying frequencies. However, they do not focus on high-frequency event data and fully leverage
the temporally rich nature of event streams. Furthermore, these methods still face challenges in
fully exploiting complementary strengths and addressing feature imbalance in event-frame detection.
Unlike previous methods, FlexEvent employs a more comprehensive fusion framework that effectively
combines high-temporal resolution event data with rich semantics from RGB frames, enabling robust
object detection across varying frequencies while addressing feature imbalance.

Label-Efficient Learning in Event Data. Due to limited annotated datasets, label-efficient learning
has become an important area for event-based vision. Several studies attempt to reconstruct images
from event data (Rebecq et al., 2019; 2021; Stoffregen et al., 2020) or leverage knowledge distillation
from pre-trained frame-based models (Wang et al., 2021; Sun et al., 2022b; Yang et al., 2023; Kong
et al., 2024). Other approaches utilize pre-trained models or self-supervised losses (Klenk et al., 2022;
Wu et al., 2023; Zhu et al., 2019). LEOD (Wu et al., 2024) pioneered object detection with limited
labels but did not address high-frequency generalization. A recent state-space model (Zubić et al.,
2024) adapts to varying frequencies without retraining but struggles with detecting static objects at
high frequencies due to reliance solely on event data. In contrast, FlexEvent is specifically designed
to adapt to varying event frequencies, ensuring consistent performance even in scenarios with limited
labels, and effectively detecting both stationary and fast-moving objects.

3 FLEXEVENT: A FLEXIBLE EVENT OBJECT DETECTOR

In this section, we elaborate on the technical details of our FlexEvent framework. We start with
the foundational concepts of event data and their representation in Sec. 3.1. We then introduce the
FlexFuser module in Sec. 3.2, which adaptively fuses event and frame data to enhance detection
across varying frequencies. Finally, we detail the frequency-adaptive learning (FAL) mechanism in
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Figure 2: Framework Overview. The proposed FlexEvent consists of two branches: Event and
Frame. The event branch captures high-temporal resolution data, while the frame branch leverages the
rich semantic information from frames (cf. Sec. 3.1). These branches are fused dynamically through
FlexFuser, allowing adaptive integration of event and frame data (cf. Sec. 3.2). Additionally, the
frequency-adaptive learning (FAL) mechanism ensures robust detection performance across varying
operational frequencies (cf. Sec. 3.3). Together, these components enable the model to handle diverse
motion dynamics and maintain high detection accuracy in both low- and high-frequency scenarios.

Sec. 3.3, which enables our model to generalize effectively across diverse temporal conditions using
self-training and adaptive label generation. The overall framework is illustrated in Fig.2.

3.1 PRELIMINARIES

Event Processing. Event cameras are bio-inspired vision sensors that capture changes in log intensity
per pixel asynchronously, rather than capturing entire frames at fixed intervals. Formally, let I(x, y, t)
denote the log intensity at pixel coordinates (x, y) and time t. An event e is generated at (x, y, t)
whenever the change in log intensity ∆I exceeds a certain threshold C. Such a process can be
modeled as:

∆I(x, y, t) = I(x, y, t)− I(x, y, t−∆t) ≥ C . (1)
Each event e is a tuple (x, y, t, p), where (x, y) are the pixel coordinates, t is the timestamp, and
p = {−1, 1} denotes the polarity of the event which indicates the direction of the intensity change.

To leverage event data with convolutional neural network layers, we preprocess events into a 4D
tensor E with dimensions representing the polarity, temporal discretization T , and spatial dimensions
(H,W ). This representation involves mapping a setting of events E within time interval [ta, tb) into:

E(p, τ, x, y) =
∑
ek∈E

δ(p− pk)δ(x− xk, y − yk)δ(τ − τk), τk =

⌊
tk − ta
tb − ta

· T
⌋
. (2)

The tensor captures event activity in T discrete time slices, yielding a compact representation suitable
for 2D convolutions by flattening the polarity and temporal dimensions.

Problem Formulation. Given two consecutive frames Fa and Fb captured at timestamps Ta and
Tb, our objective is to leverage the event stream over the interval [Ta, Tb] to detect objects at the
end timestamp Tb. Existing event-based object detection methods often use fixed time intervals ∆T ,
limiting adaptability to dynamic environments (Perot et al., 2020). Additionally, integrating spatial
information from RGB frames remains challenging, affecting performance in complex scenarios
(De Tournemire et al., 2020). To address this, we synchronize event data with frames and explore
varying training frequencies, leveraging the temporal richness of event cameras to improve detection
accuracy.

3.2 FLEXFUSER: ADAPTIVE EVENT-FRAME FUSION MODULE

In dynamic environments, object detection systems must adapt to varying motion frequencies (Sun
et al., 2022a). While event cameras excel at capturing rapid changes in pixel intensity, they often
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lack the rich spatial and semantic information provided by frames. To address this limitation and
fully leverage the complementary strengths of both modalities, we introduce FlexFuser, an adaptive
fusion module designed to dynamically combine event data at different frequencies with frame data.

Dynamic Event Aggregation. Given a dataset D, consisting of sequences of calibrated event camera
data and frame data with a resolution of H ×W , along with corresponding bounding box annotations
y collected at frequency a, we begin by selecting a batch of frame data F paired with event data
Ea, both captured at frequency a. To aggregate event data from a higher frequency b (where b > a),
we divide the time interval ∆T a corresponding to Ea into b/a smaller sub-intervals. From each
sub-interval, we obtain a high-frequency event set {Eb

i}
b/a
i=0, as defined in Eq. 2. From this set, we

randomly sample one event data point1 Eb. By doing so, the sampled high-frequency event data Eb is
temporally aligned with the frame data F and the base frequency event data Ea. This synchronization
of event streams at different frequencies ensures consistent and reliable processing for subsequent
stages.

Frame Feature Event Feature
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Figure 3: Illustration of the Flex-
Fuser module. We show a gen-
eral example of event and frame
under frequency a at stage i.

Feature Extraction. Let ϕE(·) and ϕF(·) represent the event- and
frame-based networks, respectively, where the former employs
the RVT (Gehrig & Scaramuzza, 2023) for extracting features
from event data, and the latter uses ResNet-50 (He et al., 2016)
for feature extraction from frames. Both networks are structured
into four stages, as shown in Fig. 2.

At each scale i, we extract the corresponding features (i)ha
E,

(i) hb
E

from the event data and (i)hF from the frame data:
(i)ha

E = ϕ
(i)
E (Ea), (i)hb

E = ϕ
(i)
E (Eb), (i)hF = ϕ

(i)
F (F), (3)

where (i)ha
E and (i)hb

E ∈ RB×CE×Hi×Wi , (i)hF ∈
RB×CF×Hi×Wi . Here, i denotes the scale, B is the batch size,
and CE and CF are the dimensions of the feature maps extracted
from the event and frame data, respectively.

Event-Frame Adaptive Fuser. To effectively fuse the event and
frame data, we employ an adaptive fuser that is consistent across
different event data frequencies. At each scale i, taking the low
frequency event features (i)ha

E as an example, we concatenate the
feature maps from both the event and frame branches as follows:

(i)ha
shared =

[
(i)ha

E,
(i)hF

]
∈ RB×(CE+CF)×Hi×Wi . (4)

Inspired by previous works (Zhou et al., 2023) and (Zhong et al.,
2024), our goal is to dynamically fuse these two modalities in
a flexible manner. The proposed FlexFuser module computes
adaptive soft weights that regulate the contribution of each branch (event and frame) based on the
current input conditions. As shown in Fig. 3, these adaptive soft weights are computed using a gating
function, which incorporates learned noise to introduce perturbation for improved adaptability. The
process is: [

(i)α, (i)β
]
= Softmax

(
((i)ha

shared ·(i) Wg) +
(i) σ · ϵ

)
, (5)

where (i)W ∈ R(CE+CF)×2 is a trainable weight matrix, (i)α and (i)β are the adaptive soft weights
for the event and frame branches, respectively. Here, (i)σ is a learned standard deviation that controls
the magnitude of the noise perturbation, and ϵ ∼ N (0, 1) represents a Gaussian noise term.

The fused feature map at each scale i is then obtained by applying the adaptive soft weights to the
event and frame features:

(i)ha
fuse =

(i) α⊙(i) ha
E +(i) β ⊙(i) hF, (6)

1For simplicity, we use Eb to represent a sample from the set of high-frequency event data {Eb
i}

b/a
i=0, rather

than explicitly referencing each individual sample from the event set. The same applies to other frequencies.
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where ⊙ denotes element-wise multiplication. This fusion process dynamically balances the con-
tribution of each modality based on the input data, allowing for more robust and adaptive feature
representation across varying conditions.

Then, at each scale i, the final feature map combines event data at different frequencies and the frame
data is obtained by adding the fused features from the different frequencies. Specifically, we combine
the fused feature maps as (i)hfuse =

(i) ha
fuse +

(i) hb
fuse. After obtaining the fused feature maps across

all scales, the multi-scale features are concatenated and fed into the detection head to produce the
predicted bounding box ŷ.

Optimization & Regularization. In addition to the standard detection loss Ldet(y, ŷ), such as the
one used in YOLOX, we introduce a regularization term to ensure balanced utilization of both the
event and RGB branches. This term penalizes large variations in the soft weights, encouraging a
more uniform contribution from both modalities and preventing overfitting to a single branch:

Lfuser = Ldet(y, ŷ) + λ

(
Var (α)

(E [α])
2 +

Var (β)

(E [β])
2

)
, (7)

where λ is a weighting factor.

3.3 FAL: FREQUENCY-ADAPTIVE LEARNING MECHANISM

FlexFuser aggregates information from different frequencies using labeled low-frequency data. To
adaptively tune the model to handle diverse frequencies by leveraging both labeled low-frequency
data and unlabeled high-frequency data, we design a flexible frequency-adaptive learning (FAL)
mechanism. FAL incorporates multi-frequency information into the training process through iterative
self-training. This approach enhances the model’s ability to generalize across varying frequencies,
making it more robust in different scenarios. The key steps of the FAL mechanism are as follows:

Pre-Training with Low-Frequency Labels. Rather than training solely at the same frequency as the
data collection frequency a, we enhance the model’s capability by training it at a higher frequency b.
To efficiently leverage the available labels, we select only the final event from the high-frequency
event set {Eb

i}
b/a
i=0, which corresponds to the labeled timestamp. This approach allows the model

to capture valuable high-frequency temporal information while still utilizing low-frequency labels,
improving its temporal understanding and robustness. The training objective is to minimize the
detection loss over the labeled data:

LGT =
∑

(F,Eb
b/a

,y)∈D

Ldet(y, ŷ). (8)

Label at Higher Frequencies. For the unlabeled data in D captured at frequency b, the pre-trained
model generates high-frequency labels ŷ by performing inference on the entire high-frequency
event set {Eb

i}
b/a
i=0. These generated labels ŷ serve as labels for guiding further training at higher

frequencies, improving the model’s ability to generalize across different temporal conditions.

Enhanced Temporal Refinement. To refine the high-frequency labels, we introduce a multi-step
temporal refinement approach. First, we adopt bidirectional event augmentation by processing both
forward and reversed event streams to detect objects with varying movements and orientations, thereby
boosting recall. After generating the bidirectional labels, we apply Non-Maximum Suppression
(NMS) to remove overlapping bounding boxes, followed by a low confidence threshold τ to retain
potential objects and further improve recall. Next, leveraging a tracking-by-detection framework, we
link detection boxes across frames using pairwise IoU matching with a threshold τ IoU. Short-lived
tracks, with lengths below Ltrack, are pruned to ensure temporal consistency. This approach ensures
that the refined high-frequency labels ỹ are accurate, temporally consistent, and reliable, ultimately
improving detection quality in high-frequency data even in the absence of ground truth labels.

Self-Training Iteration. The model is iteratively trained using these refined high frequency labels ỹ
on high-frequency data where no ground truth labels are available. The total loss function combines
the base training loss and the pseudo-label loss as:

LFAL = LGT + β
∑

(F,{Eb
i}

b/a−1
i=0 ,ỹ)∈D

Ldet (ỹ, ŷ) , (9)
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Table 1: Comparative study of state-of-the-art event camera detectors on the validation set of DSEC-
Det (Gehrig & Scaramuzza, 2024). Both event-only and event-frame fusion methods are compared.
The best and 2nd best scores from each metric are highlighted in bold and underlined, respectively.

Modality Method Venue Reference mAP AP50 AP75 APS APM APL

E

RVT CVPR’23 (Gehrig & Scaramuzza, 2023) 38.4% 58.7% 41.3% 29.5% 50.3% 81.7%
SAST CVPR’24 (Peng et al., 2024) 38.1% 60.1% 40.0% 29.8% 48.9% 79.7%
SSM CVPR’24 (Zubić et al., 2024) 38.0% 55.2% 40.6% 28.8% 52.2% 77.8%

LEOD CVPR’24 (Wu et al., 2024) 41.1% 65.2% 43.6% 35.1% 47.3% 73.3%

E + F

DAGr-18 Nature’24 (Gehrig & Scaramuzza, 2024) 37.6% - - - - -
DAGr-34 Nature’24 (Gehrig & Scaramuzza, 2024) 39.0% - - - - -
DAGr-50 Nature’24 (Gehrig & Scaramuzza, 2024) 41.9% 66.0% 44.3% 36.3% 56.2% 77.8%
FlexEvent Ours - 57.4% 78.2% 66.6% 51.7% 64.9% 83.7%

where β balances the contribution of the high-frequency label loss. The complete FlexEvent frame-
work combines FlexFuser and FAL, allowing the model to dynamically fuse event and frame data
while adapting to varying frequencies. As we will verify in the next sections, this combination pro-
vides a robust detection framework capable of maintaining high accuracy in dynamic environments.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments based on three large-scale event camera datasets: 1DSEC-Det
(Gehrig & Scaramuzza, 2024), 2DSEC-Detection (Tomy et al., 2022), and 3DSEC-MOD (Zhou
et al., 2023). These datasets comprise 78, 344 frames across 60 sequences, 52, 727 frames over 41
sequences, and 13, 314 frames within 16 sequences, respectively, making them suitable for evaluating
event-based object detection methods. For more details, please refer to the Appendix.

Implementation Details. We trained our model using the YOLOX framework (Zheng et al., 2021),
optimizing with a combination of IoU loss, classification loss, and regression loss, averaged across
both batch and sequence length for stable training. We also introduce the extra MoE loss for balancing
the utilization among the experts. The model was trained for 100, 000 iterations with a batch size of
8 and a sequence length of 11, using a learning rate of 1× 10−4. All experiments were conducted on
two NVIDIA RTX A5000 GPUs with 24GB memory, with the entire training process completed in
approximately one day. Due to space limits, more details are placed in the Appendix.

Evaluation Metrics. We evaluate object detectors using the mean Average Precision (mAP) as the
primary metric, along with AP50, AP75, APS, APM, and APL from the COCO evaluation proto-
col (Lin et al., 2014). These metrics provide a comprehensive assessment of detection performance
across different IoU thresholds and object sizes. Kindly refer to the Appendix for more details.

4.2 COMPARISONS TO STATE-OF-THE-ART DETECTORS

Compare to Event-Only Models. We compared FlexEvent with state-of-the-art event-only detectors,
including RVT (Gehrig & Scaramuzza, 2023), SSM (Zubić et al., 2024), SAST (Peng et al., 2024),
and LEOD (Wu et al., 2024), as shown in Tab. 1. We significantly outperform these methods across all
metrics, with the performance gap becoming even more pronounced at higher frequencies. Event-only
methods struggle to maintain detection accuracy in these scenarios due to their inability to fully
capture object semantics. In contrast, we overcome these limitations through the FlexFuser module,
which integrates RGB data to compensate for the lack of semantic richness in the event stream. By
fusing both event and frame data, we excel in complex, dynamic environments, achieving superior
detection accuracy where event-only methods fall short.

Compare to Multimodal Models. We compare FlexEvent with multimodal event-camera object
detection methods such as DAGr (Gehrig & Scaramuzza, 2024) and SPNet (Zhou et al., 2021), which
fuse event data with other sensor inputs like RGB frames or depth to improve detection accuracy.
While these methods enhance performance over event-only approaches, they struggle with adapting to
varying operational frequencies and often exhibit inadequate feature fusion in dynamic environments.
Our approach addresses these limitations by dynamically balancing the contributions of event and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparative study of state-of-the-art event camera detectors on the test set of DSEC-
Detection (Tomy et al., 2022). Both event-only and event-frame fusion methods are compared. The
reported results are the mAP scores of 1Car, 2Pedestrian (Ped), and 3Large-Vehicle (L-Veh) classes.
The best and 2nd best scores from each metric are highlighted in bold and underlined, respectively.

Modality Method Venue Reference Type Car Ped L-Veh Average

E CAFR ECCV’24 (Cao et al., 2024) Event - - - 12.0%

E + F

SENet CVPR’18 (Hu et al., 2018)
Attention

38.4% 14.9% 26.0% 26.2%
CBAM ECCV’18 (Woo et al., 2018) 37.7% 13.5% 27.0% 26.1%

ECA-Net CVPR’20 (Wang et al., 2020) 36.7% 12.8% 27.5% 25.7%

SAGate ECCV’20 (Chen et al., 2020)
RGB + Depth

32.5% 10.4% 16.0% 19.6%
DCF CVPR’21 (Ji et al., 2021) 36.3% 12.7% 28.0% 25.7%

SPNet ICCV’21 (Zhou et al., 2021) 39.2% 17.8% 26.2% 27.7%

RAMNet RA-L’21 (Gehrig et al., 2021a) 24.4% 10.8% 17.6% 17.6%
FAGC Sensors’21 (Cao et al., 2021) 39.8% 14.4% 33.6% 29.3%

FPN-Fusion ICRA’22 (Tomy et al., 2022)

RGB + Event

37.5% 10.9% 24.9% 24.4%
EFNet ECCV’22 (Sun et al., 2022a) 41.1% 15.8% 32.6% 30.0%

DRFuser EAAI’23 (Munir et al., 2023) 38.6% 15.1% 30.6% 28.1%
CMX TITS’23 (Zhang et al., 2023) 41.6% 16.4% 29.4% 29.1%

RENet ICRA’23 (Zhou et al., 2023) 40.5% 17.2% 30.6% 29.4%
CAFR ECCV’24 (Cao et al., 2024) 49.9% 25.8% 38.2% 38.0%

FlexEvent Ours - 59.3% 37.4% 45.5% 47.4%
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Figure 4: Comparisons of event-based detectors
under different event frequencies on DSEC-Det.

Table 3: Comparisons of fusion-based event de-
tectors on the test set of DSEC-MOD (Zhou et al.,
2023). The best and 2nd best scores from each
metric are highlighted in bold and underlined.

Method Venue Reference mAP

SENet CVPR’18 (Hu et al., 2018) 29.28%
CBAM ECCV’18 (Woo et al., 2018) 36.22%

ECA-Net CVPR’20 (Wang et al., 2020) 34.49%
SAGate ECCV’20 (Chen et al., 2020) 33.62%

DCF CVPR’21 (Ji et al., 2021) 32.20%
SPNet ICCV’21 (Zhou et al., 2021) 32.70%

FPN-Fusion ICRA’22 (Tomy et al., 2022) 32.28%
EFNet ECCV’22 (Sun et al., 2022a) 35.33%
RENet ICRA’23 (Zhou et al., 2023) 38.38%

FlexEvent Ours - 48.64%

frame data. As a result, we achieve superior performance, such as a 48.64% mAP on DSEC-MOD in
Tab. 3, outperforming RENet (38.38%) and EFNet (35.33%). This flexible combination of event and
frame data, along with its ability to generalize across different temporal resolutions, enables us to
excel in high-frequency detection scenarios, surpassing state-of-the-art methods.

Comparisons Across Different Categories. We evaluate the performance of FlexEvent across
various object categories, including cars, pedestrians, and large vehicles. As shown in Tab. 2, we
consistently outperform other methods, achieving 59.3% mAP for cars, compared to 49.9% for
CAFR (Cao et al., 2024). This highlights its effectiveness in detecting larger, fast-moving objects,
while also surpassing CAFR on pedestrian and large-vehicle categories. Existing methods struggle
with smaller, slower-moving objects, especially at high speeds. Event-based detectors like SSM miss
stationary objects due to a lack of pixel intensity changes, and fusion methods over-rely on frame
data, which lacks temporal resolution. Our approach addresses these issues with adaptive fusion and
temporal refinement, ensuring accurate detection across different object types and motion dynamics.
This versatility reinforces its superiority over state-of-the-art methods.

Generalization on High-Frequency Data. A key contribution of FlexEvent is its ability to generalize
across various operational frequencies, particularly in high-frequency scenarios. We evaluate this by
testing detection performance at different temporal offsets, i

n∆T , where n = 10, i = 0, ..., 10, and
∆T = 50 ms. Ground truth labels are generated by linearly interpolating object positions between
frames for consistent evaluation. In this setting, event-based methods are tested across multiple time
durations, while event-frame fusion methods process one RGB frame followed by event data of
varying time durations. The comparison result is shown in Fig. 4. Most existing methods, such as
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Figure 5: Qualitative results of state-of-the-art event camera detectors. We compare FlexEvent with
RVT (Gehrig & Scaramuzza, 2023), SAST (Peng et al., 2024), and DAGr (Gehrig & Scaramuzza,
2024) on the validation set of DSEC-Det. Best viewed in colors. See the Appendix for more examples.

Table 4: Ablation study of components in FlexEvent. EFF denotes the adaptive event-frame fusion
module (cf. Sec.3.2). FAL denotes the frequency-adaptive learning module (cf. Sec. 3.3). The
reported are the mAP scores on the test set of DSEC-Det (Gehrig & Scaramuzza, 2024). The symbol
♦ denotes the use of interpolated ground truth labels at high frequencies in FAL.

Modality FAL EFF Frequency (Hz) Average
20.0 27.5 30.0 36.0 45.0 60.0 90.0 180

E ✗ ✗ 53.2% 54.0% 53.5% 52.0% 49.4% 45.9% 38.8% 22.9% 46.2%
✓ ✗ 54.6% 54.9% 54.9% 54.3% 53.3% 50.7% 44.6% 30.4% 49.7%

E + F
♦ ✓ 54.9% 57.3% 57.7% 57.8% 57.2% 56.1% 53.7% 48.3% 55.4%
✗ ✓ 58.0% 59.6% 60.0% 59.6% 59.0% 57.6% 54.8% 49.2% 57.2%
✓ ✓ 57.4% 60.0% 60.0% 60.1% 59.5% 58.8% 56.5% 50.9% 57.9%

RVT and SAST, struggle at higher frequencies due to fixed temporal intervals and limited ability
to capture fast scene changes. In contrast, our approach achieves 56.5% mAP at 90 Hz and 50.9%
at 180 Hz. This improvement demonstrate that our method excels in dynamic, rapidly changing
environments where accurate detection is critical for safety and reliability.

Qualitative Assessment. We provide qualitative comparisons between FlexEvent and other state-
of-the-art methods under different event operation frequencies, as shown in Fig. 5 and Fig. 6, with
visual results from DSEC-Det highlighting our superior detection capabilities. Unlike RVT and
DAGr, which miss critical object details, our model consistently detects objects with high accuracy,
even in challenging cases involving fast-moving vehicles and occluded pedestrians. For instance, in
Scene 2 of Fig. 5, RVT fails to detect a pedestrian due to insufficient event data, while our approach
successfully identifies the pedestrian by leveraging both frames and high-frequency event data.
Similarly, in Scene 4, DAGr struggles with the rapid motion of a large vehicle, leading to inaccurate
predictions, whereas our approach ensures precise object localization. These qualitative findings
confirm that our model excels not only in quantitative metrics but also in real-world performance.

4.3 ABLATION STUDIES

Component Analysis. We conduct ablation studies by selectively removing key modules: the
FlexFuser and FAL mechanisms. As shown in Tab. 4, removing the FAL mechanism causes a
significant performance drop, particularly in high-frequency scenarios, underscoring its role in
adapting to varying frequencies and generating frequency-adjusted labels. Similarly, omitting the
FlexFuser module leads to a marked decrease in mAP, highlighting the importance of adaptive event-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Ground Truth Freq @ 20 Hz Freq @ 60 Hz Freq @ 90 Hz Freq @ 180 Hz

R
V
T

Fl
ex

Ev
en

t
R
V
T

Fl
ex

Ev
en

t

Figure 6: Qualitative comparisons of FlexEvent and RVT (Gehrig & Scaramuzza, 2023) under
different event operation frequencies. Our approach demonstrates a strong robustness under both low-
and high-frequency scenarios. Best viewed in colors. See the Appendix for more examples.

Table 5: Ablation study of hyperparameter configurations in the FlexEvent frameworks. τ car, τ ped

denotes the confidence threshold for car and pedestrian, respectively. τ iou denotes the IoU threshold
when filter by tracking, Ltrack denotes the minimum track length. The reported results are the mAP
scores on the validation set of DSEC-Det (Gehrig & Scaramuzza, 2024).

τ car τ ped Ltrack τ iou Frequency (Hz) Average
20.0 27.5 30.0 36.0 45.0 60.0 90.0 180

0.6 0.3 10 0.8 56.5% 55.9% 56.7% 57.2% 57.1% 56.7% 54.5% 49.2% 55.5%
0.6 0.3 10 0.6 56.7% 57.2% 57.7% 57.9% 57.7% 57.0% 54.3% 47.0% 55.7%
0.6 0.3 8 0.6 56.3% 58.5% 58.8% 59.1% 58.8% 58.4% 56.2% 51.2% 57.2%
0.6 0.3 6 0.6 57.3% 59.4% 59.7% 59.9% 59.3% 58.5% 55.7% 48.8% 57.3%
0.6 0.6 6 0.6 57.4% 60.0% 60.0% 60.1% 59.5% 58.8% 56.5% 50.9% 57.9%
0.8 0.8 6 0.6 56.6% 58.7% 59.1% 58.9% 58.4% 57.4% 55.6% 50.2% 56.9%

frame fusion for accurate detection across different operational frequencies. We also test training with
interpolation labels for high-frequency testing, but this approach reduces recall by missing objects
that suddenly appear or disappear, making it less effective than FAL.

Hyperparameter Tuning. We tune the hyperparameters of the FAL mechanism, focusing on key
settings like the confidence threshold (τ ), IoU threshold, and track length for temporal refinement.
As shown in Tab. 5, lowering the confidence threshold improves recall but reduces precision, as the
model becomes more lenient in detecting objects. Applying overly strict conditions, such as a higher
confidence threshold or IoU threshold, lowers recall by filtering out valid detections. The optimal
configuration is achieved with τ = 0.6 and a track length of 6, balancing precision and recall for both
low- and high-frequency conditions. These moderate settings ensure that FlexEvent maintains robust
performance and stable detection accuracy across diverse environments.

5 CONCLUSION

This paper introduces FlexEvent, an event camera object detection framework designed to operate
across arbitrary frequencies. By combining FlexFuser for adaptive event-frame fusion and FAL for
frequency-adaptive learning, we combine event data’s rich temporal information with the semantic
detail of RGB frames to overcome the limitations of existing methods and offer a flexible solution for
dynamic environments. Extensive experiments on large-scale datasets show that our approach signifi-
cantly outperforms state-of-the-art methods, particularly in high-frequency scenarios, demonstrating
its robustness and adaptability for real-world applications like autonomous driving and robotics.
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APPENDIX

In this appendix, we supplement the following materials to support the findings and conclusions
drawn in the main body of this paper.
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A ADDITIONAL IMPLEMENTATION DETAILS

In this section, to facilitate future reproductions, we elaborate on the necessary details in terms of the
datasets, evaluation metrics, and implementation details adopted in our experiments.

A.1 DATASETS

In this work, we develop and validate our proposed approach on the large-scale DSEC dataset (Gehrig
et al., 2021b). DSEC serves as a high-resolution, large-scale multimodal dataset designed to capture
real-world driving scenarios under various conditions. It combines data from stereo Prophesee Gen3
event cameras with a resolution of 640× 480 pixels and FLIR Blackfly S RGB cameras operating at
20 FPS, enabling high-fidelity capture of dynamic scenes. To align the RGB frames with the event
camera data, an infinite-depth alignment process is employed, which involves undistorting, rotating,
and re-distorting the RGB images. This alignment ensures that the event data and RGB frames are
temporally and spatially synchronized.
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Table 6: Summary of key statistics from the event camera object detection datasets used in this work.

Dataset Reference Classes Frames Sequences Class Names

DSEC-MOD (Zhou et al., 2023) 1 13, 314 16 Car

DSEC-Detection (Tomy et al., 2022) 3 52, 727 41
Car

Pedestrian
Large-Vehicle

DSEC-Det (Gehrig & Scaramuzza, 2024) 8 78, 344 60

Car
Pedestrian

Bus
Bicycle
Truck

Motorcycle
Rider
Train

In our experiments, we utilize three comprehensive versions of DSEC tailored for object detection:
DSEC-Det (Gehrig & Scaramuzza, 2024), DSEC-Detection (Tomy et al., 2022), and DSEC-MOD
(Zhou et al., 2023). A summary of the key statistics of these datasets is listed in Tab. 6.

• DSEC-Det (Gehrig & Scaramuzza, 2024): This version was developed by the original DSEC
team and includes annotations generated using the QDTrack multi-object tracker (Fischer
et al., 2023; Pang et al., 2021). The annotation process involved tracking multiple objects
across frames, followed by manual refinement to ensure high-quality and accurate detection
labels. The dataset introduces additional sequences specifically designed to capture complex,
dynamic urban environments, featuring crowded pedestrian areas, moving vehicles, and
diverse lighting conditions. These challenging scenarios provide a rich testing ground for
evaluating object detection algorithms in real-world driving settings. In total, DSEC-Det
features 60 sequences comprising 78, 344 frames, making it the most extensive dataset used
in this study. It captures diverse, complex urban scenes with dynamic environments, such as
crowded pedestrian areas and moving vehicles. Covering eight object categories relevant to
autonomous driving – Car, Pedestrian, Bus, Bicycle, Truck, Motorcycle, Rider, and Train –
this dataset provides a robust foundation for training and evaluating object detection models
in diverse driving scenarios. In our experiment on DSEC-Det, to be consistent with the
experiment setting of previous work DAGr (Gehrig & Scaramuzza, 2024), we report results
on two categories: Car and Pedestrian.

• DSEC-Detection (Tomy et al., 2022): The dataset comprises 41 sequences with a total
of 52, 727 frames. Focusing on three fundamental object categories – Car, Pedestrian,
and Large-Vehicle – this version emphasizes high-precision annotations for these critical
classes in autonomous driving. The initial annotations were generated using the YOLOv5
model (Jocher, 2020) on RGB frames, known for its robust performance in real-time object
detection. These annotations were then transferred to the corresponding event frames through
homographic transformation, ensuring spatial alignment between the two modalities. A
subsequent manual refinement process was conducted to correct any discrepancies and
improve annotation quality, resulting in a dataset that provides accurate and reliable labels
for event-based object detection.

• DSEC-MOD (Zhou et al., 2023): As one of the most recent and comprehensive versions,
DSEC-MOD extends the object detection capabilities to multi-object detection across diverse
urban environments. It includes 16 sequences containing 13, 314 frames and is specifically
focused on the Car category, making it highly suitable for complex detection tasks in
varied urban settings, such as intersections, highways, and residential areas. The dataset
features high-frequency and dense annotations, providing a valuable resource for evaluating
event-based object detectors’ performance under challenging real-world conditions.

These three versions of the DSEC dataset together offer a comprehensive platform for benchmarking
and evaluating event-based object detection methods, capturing a wide spectrum of scenarios, object
categories, and environmental conditions. Among them, DSEC-Det is the most recent, largest, and
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most comprehensive one, annotated and released by the original DSEC authors. Thus, we prioritized
it as the primary benchmark for reporting results, ensuring relevance and reliability. DSEC-Detection
and DSEC-MOD are datasets used by two recent event-frame fusion methods CAFR (Cao et al.,
2024) and RENet (Zhou et al., 2023), so we also report results on these two datastes to validate our
method’s effectiveness.

A.2 BASELINES

To evaluate the effectiveness of our method, we compare it against both event-only and event-frame
fusion state-of-the-art methods.

Event-Only Methods. We include state-of-the-art event-only object detectors, namely RVT (Gehrig
& Scaramuzza, 2023), SAST (Peng et al., 2024), LEOD (Wu et al., 2024), and SSM (Zubić et al.,
2024), which are originally trained on event-only datasets like Gen1 (De Tournemire et al., 2020) and
1Mpx (Perot et al., 2020). To ensure a fair comparison, we retrain these methods on the DSEC-Det
dataset following their respective training protocols.

Event-Frame Fusion Methods. For event-frame fusion methods on DSEC-Det, we include DAGr,
as it has been evaluated on this dataset. We report the scores of DAGr (Gehrig & Scaramuzza, 2024)
from the original paper to ensure consistency and fairness. For the DSEC-Detection and DSEC-MOD
datasets, we train our model following the standard training and evaluation settings. We compare
our method against state-of-the-art methods CAFR (Cao et al., 2024) and RENet (Zhou et al., 2023),
as reported in their respective papers. For other methods evaluated on DSEC-Detection and DSEC-
MOD, we reference the results reported in the CAFR and RENet papers, respectively. Since DAGr’s
training code is not publicly available, we are unable to reproduce its results on DSEC-Detection and
DSEC-MOD.

These comparisons ensure a fair and comprehensive evaluation while adhering to resource and code
availability constraints.

A.3 EVALUATION METRICS

In this work, we adopt the mean Average Precision (mAP) as the primary metric to evaluate the
performance of our object detection models, consistent with standard practices in the field. The
mAP metric provides a comprehensive measure of detection accuracy across multiple categories and
intersection-over-union (IoU) thresholds.

Mathematically, the Average Precision (AP) for a single class is calculated as:

AP =

∫ 1

0

p(r) dr (10)

where p(r) represents the precision at a given recall level r. The mean Average Precision (mAP) is
then computed as the mean of the AP values across all object categories and a range of IoU thresholds
(typically from 0.5 to 0.95 with a step size of 0.05). This provides an overall measure of model
performance across different levels of localization precision.

In addition to mAP, we also report the following metrics from the COCO evaluation protocol (Lin
et al., 2014):

• AP50: The average precision when evaluated at a fixed IoU threshold of 0.50, indicating
how well the model performs with relatively lenient localization criteria.

• AP75: The average precision at a fixed IoU threshold of 0.75, representing performance
under stricter localization requirements.

• APS, APM, and APL: These metrics represent the average precision for small (S), medium
(M ), and large (L) objects, respectively. Object sizes are defined based on their pixel
area, with APS typically representing objects with areas less than 32 × 32 pixels, APM

representing areas between 32 × 32 and 96 × 96 pixels, and APL for objects larger than
96× 96 pixels.
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By reporting these metrics, we obtain a more nuanced understanding of the model’s detection
capabilities across varying object sizes and localization precision levels, ensuring a comprehensive
evaluation of detection performance.

A.4 TRAINING & INFERENCE DETAILS

We train our models using mixed precision to optimize both memory efficiency and training speed.
The training process spans 100,000 iterations, utilizing the ADAM optimizer (Kingma, 2014) with
a OneCycle learning rate schedule (Smith & Topin, 2019), which gradually decays from a peak
learning rate to enhance convergence.

Consistent with (Gehrig & Scaramuzza, 2023), we employed a mixed batching strategy to balance
computational efficiency and memory usage. Specifically:

• Standard Backpropagation Through Time (BPTT): Applied to half of the training samples,
allowing for full sequence training.

• Truncated BPTT (TBPTT): Used for the other half, reducing memory usage by splitting
sequences into smaller segments.

For data augmentation, we applied random horizontal flipping and zoom transformations (both
zoom-in and zoom-out) to enhance the diversity of training samples.

Our training process utilized the YOLOX framework (Zheng et al., 2021), a versatile object detection
framework known for its efficient and high-performing architecture. We employed a multi-component
loss function to optimize our model effectively:

• Intersection over Union (IoU) Loss: This loss component measures the overlap between the
predicted bounding boxes and the ground-truth boxes, ensuring that the predicted regions
closely match the actual object locations.

• Classification Loss: This component evaluates the accuracy of class predictions for each
detected object, ensuring that the model correctly identifies the category of each detected
instance.

• Regression Loss: This loss assesses the precision of the predicted bounding box coordinates,
helping the model refine the location and size of bounding boxes to align closely with the
ground-truth annotations.

To ensure stable training, these loss components were averaged across both the batch and sequence
length at each optimization step. This averaging process helped to reduce variance during training
and facilitated smoother convergence of the model parameters.

Training Configuration. The training was conducted with a batch size of 8, which provided an
optimal balance between efficient GPU utilization and memory requirements. Each training sample
contained a sequence length of 11 frames, allowing the model to learn temporal dependencies
effectively. The learning rate was set to 1× 10−4, following a OneCycle learning rate schedule that
allowed for efficient exploration of the learning space and helped in achieving faster convergence.

Hardware & Training Time. All training experiments were carried out on two NVIDIA RTX
A5000 GPUs, each with 24GB of memory, providing the computational resources necessary for
handling the high-resolution event data and RGB frames. The complete training process, including
all iterations and model optimization, took approximately one day, demonstrating the efficiency of
our implementation in terms of both training speed and resource utilization.

B ADDITIONAL QUANTITATIVE RESULTS

B.1 COMPARISON OF EFFICIENCY

We present a comparative analysis of inference times and parameter counts for the evaluated methods
in Tab. 7. All experiments were conducted on an NVIDIA RTX A5000 24GB GPU paired with an
AMD EPYC 9354P 32-Core Processor operating at 3.8 GHz. The results demonstrate that, despite
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Table 7: Comparative efficiency analysis of state-of-the-art event camera detectors on the validation
set of DSEC-Det (Gehrig & Scaramuzza, 2024), comparing both event-only and event-frame fusion
methods. This table reports inference times at various frequencies, measured in milliseconds (ms).

Modality Method Param Frequency (Hz)
(M) 20.0 27.5 30 36 45 60 90 180 200

E
RVT 18.5 9.20 8.67 8.35 7.93 7.61 7.51 7.19 6.77 6.34

SAST 18.9 14.06 13.11 12.68 12.37 11.95 11.63 11.52 11.10 10.36
SSM 18.2 8.79 8.26 8.08 7.71 7.55 7.30 6.90 6.54 6.12

E + F DAGr-50 34.6 73.35 65.73 60.02 55.11 51.00 48.00 45.29 43.89 37.58
FlexEvent 45.4 14.27 13.53 13.32 13.00 12.79 12.58 12.47 12.37 12.12

Table 8: Comparison of FlexEvent with data augmentation methods EventDrop (Gu et al., 2021)
and Shadow Mosaic (Peng et al., 2023). FAL represents the frequency-adaptive learning module
(cf. Sec. 3.3), Drop refers to the EventDrop augmentation technique (Gu et al., 2021), and Mosaic
corresponds to the Shadow Mosaic method (Peng et al., 2023). The table reports mAP scores
evaluated on the test set of DSEC-Det (Gehrig & Scaramuzza, 2024).

Drop Mosaic FAL Frequency (Hz) Average
20.0 27.5 30.0 36.0 45.0 60.0 90.0 180

✗ ✗ ✗ 53.2% 54.0% 53.5% 52.0% 49.4% 45.9% 38.8% 22.9% 46.2%
✓ ✗ ✗ 53.6% 54.4% 53.8% 52.7% 50.2% 47.2% 40.2% 24.5% 47.1%
✗ ✓ ✗ 53.7% 54.4% 54.0% 53.9% 51.4% 48.6% 41.8% 27.8% 48.2%
✗ ✗ ✓ 54.6% 54.9% 54.9% 54.3% 53.3% 50.7% 44.6% 30.4% 49.7%

having a higher parameter count, FlexEvent achieves inference times comparable to the event-only
method SAST and significantly outperforms the event-frame fusion method DAGr in terms of speed.
Moreover, FlexEvent consistently outperforms all other methods across all tested frequencies. These
results underscore the efficiency and rapid performance of FlexEvent, highlighting its suitability for
real-time applications.

B.2 COMPARISON WITH DATA AUGMENTATION METHODS

We include the comparison of FlexEvent with data augmentation methods EventDrop (Gu et al., 2021)
and Shadow Mosaic (Peng et al., 2023) with only Event modality in Tab. 8. EventDrop and Shadow
Mosaic demonstrate good performance enhancement, credited to the strong generalization ability
brought by the spatial and temporal manipulations of the event data. However, FAL significantly
outperforms other methods by leveraging high-frequency event data, especially in high-frequency
scenarios. The iterative refinement through self-training in our method ensures that the model remains
robust across different motion dynamics and frequency settings.

B.3 COMPLETE RESULTS OF ABLATION STUDY

We include the complete results of the ablation study in Tab. 9.

B.4 COMPLETE RESULTS OF HYPERPARAMETER SEARCHING

We include the complete results of the hyperparameter searching in Tab. 10.

C ADDITIONAL QUALITATIVE RESULTS

C.1 VISUAL COMPARISONS OF EVENT CAMERA DETECTORS

We include additional qualitative assessments in Fig. 7, Fig. 8, and Fig. 9.

C.2 VISUAL COMPARISONS UNDER DIFFERENT FREQUENCIES

We include additional qualitative assessments in Fig. 10, Fig. 11, and Fig. 12.
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Table 9: The complete results of the ablation study (cf. Tab. 4) of different components in the
FlexEvent framework. EFF denotes the adaptive event-frame fusion module (cf. Sec.3.2). FAL
denotes the frequency-adaptive learning module (cf. Sec. 3.3). The reported results are the mAP,
AP50, AP75, APS, APM, and APL scores on the validation set of DSEC-Det (Gehrig & Scaramuzza,
2024). The symbol ♦ denotes the use of interpolated ground truth labels at high frequencies in FAL.
The best and 2nd best scores of each metric are highlighted in bold and underline, respectively.

Modality FAL EFF Frequency (Hz) mAP AP50 AP75 APS APM APL

Event

✗ ✗ 20.0 53.2% 77.2% 58.1% 46.4% 64.4% 83.0%
✗ ✗ 27.5 54.0% 76.8% 59.3% 46.4% 66.6% 85.2%
✗ ✗ 30.0 53.5% 75.5% 59.3% 45.6% 66.8% 85.0%
✗ ✗ 36.0 52.0% 73.3% 58.1% 44.0% 65.5% 84.9%
✗ ✗ 45.0 49.4% 69.5% 55.4% 40.7% 64.1% 84.3%
✗ ✗ 60.0 45.9% 64.2% 51.8% 36.5% 62.3% 82.7%
✗ ✗ 90.0 38.8% 55.4% 43.9% 28.5% 55.3% 79.9%
✗ ✗ 180.0 22.9% 36.1% 23.9% 14.1% 34.5% 60.1%

Event

✓ ✗ 20.0 54.6% 79.1% 61.8% 47.4% 64.4% 81.4%
✓ ✗ 27.5 54.9% 78.8% 61.4% 47.6% 66.1% 83.2%
✓ ✗ 30.0 54.9% 78.5% 61.3% 47.4% 66.9% 83.3%
✓ ✗ 36.0 54.3% 77.1% 60.5% 46.8% 66.7% 83.4%
✓ ✗ 45.0 53.3% 75.3% 59.8% 45.6% 65.4% 83.8%
✓ ✗ 60.0 50.7% 72.4% 57.3% 42.3% 63.5% 83.5%
✓ ✗ 90.0 44.6% 65.1% 49.9% 35.3% 58.9% 81.9%
✓ ✗ 180.0 30.4% 48.1% 32.2% 20.7% 44.0% 72.9%

Event + Frame

♦ ✓ 20.0 54.9% 74.0% 63.2% 50.7% 61.3% 85.5%
♦ ✓ 27.5 57.3% 75.7% 66.3% 52.8% 65.8% 86.9%
♦ ✓ 30.0 57.7% 75.9% 66.8% 52.7% 67.2% 87.5%
♦ ✓ 36.0 57.8% 75.7% 66.5% 52.5% 67.9% 87.2%
♦ ✓ 45.0 57.2% 75.5% 65.4% 51.6% 68.2% 87.5%
♦ ✓ 60.0 56.1% 74.2% 63.4% 50.1% 68.1% 86.5%
♦ ✓ 90.0 53.7% 72.2% 59.5% 47.1% 66.2% 85.7%
♦ ✓ 180.0 48.3% 66.9% 52.2% 40.8% 60.6% 84.2%

Event + Frame

✗ ✓ 20.0 58.0% 76.5% 66.4% 52.7% 66.2% 86.3%
✗ ✓ 27.5 59.6% 78.2% 69.6% 54.1% 69.9% 88.0%
✗ ✓ 30.0 60.0% 78.1% 69.5% 53.7% 71.3% 87.8%
✗ ✓ 36.0 59.6% 77.2% 68.6% 53.1% 71.1% 87.7%
✗ ✓ 45.0 59.0% 76.7% 67.1% 52.1% 71.1% 87.8%
✗ ✓ 60.0 57.6% 75.2% 65.6% 50.2% 70.6% 87.2%
✗ ✓ 90.0 54.8% 72.6% 61.9% 46.8% 68.8% 86.3%
✗ ✓ 180.0 49.2% 67.4% 53.5% 40.8% 62.3% 85.4%

Event + Frame

✓ ✓ 20.0 57.4% 78.2% 66.6% 51.7% 64.9% 83.7%
✓ ✓ 27.5 60.0% 79.4% 70.1% 53.5% 68.4% 86.1%
✓ ✓ 30.0 60.0% 79.7% 70.8% 53.6% 69.9% 86.1%
✓ ✓ 36.0 60.1% 79.6% 70.8% 53.2% 70.3% 85.7%
✓ ✓ 45.0 59.5% 79.0% 69.5% 52.5% 70.8% 85.3%
✓ ✓ 60.0 58.8% 78.5% 69.0% 51.1% 71.1% 85.3%
✓ ✓ 90.0 56.5% 76.5% 65.4% 48.2% 70.1% 83.8%
✓ ✓ 180.0 50.9% 71.4% 56.2% 41.6% 65.4% 82.9%

D POTENTIAL SOCIETAL IMPACT & LIMITATIONS

In this section, we discuss the potential societal impact of FlexEvent, including its positive contribu-
tions, broader implications, and known limitations. While our method offers significant advancements
in event camera object detection, it is important to consider its broader consequences and areas for
future improvement.

D.1 SOCIETAL IMPACT

The development of FlexEvent introduces several positive societal benefits, particularly in safety-
critical applications such as autonomous driving, robotics, and surveillance. By enhancing the ability
to detect fast-moving objects in real time, our framework can improve the responsiveness and safety
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Table 10: The complete results of the ablation study (cf. Tab. 5) of different hyperparameter configu-
rations in the FlexEvent framework. τ car, τ ped denotes the confidence threshold for car and pedestrian,
respectively. τ iou denotes the IoU threshold when filter by tracking, Ltrack denotes the minimum
track length. The reported results are the mAP scores on the validation set of DSEC-Det (Gehrig
& Scaramuzza, 2024). The best and 2nd best scores of each metric from each hyperparameter
configuration are highlighted in bold and underline, respectively.

τ car τ ped Ltrack τ iou Frequency (Hz) mAP AP50 AP75 APS APM APL

0.6 0.3 10 0.8 20.0 56.5% 81.3% 66.4% 51.8% 62.2% 82.8%
0.6 0.3 10 0.8 27.5 55.9% 74.7% 65.1% 51.9% 61.4% 87.0%
0.6 0.3 10 0.8 30.0 56.7% 75.3% 66.0% 52.3% 63.5% 87.0%
0.6 0.3 10 0.8 36.0 57.2% 75.9% 67.0% 52.5% 64.8% 86.9%
0.6 0.3 10 0.8 45.0 57.1% 75.7% 66.2% 51.5% 66.1% 87.2%
0.6 0.3 10 0.8 60.0 56.7% 75.3% 65.7% 50.3% 67.4% 87.3%
0.6 0.3 10 0.8 90.0 54.5% 73.2% 62.3% 47.3% 66.3% 86.2%
0.6 0.3 10 0.8 180.0 49.2% 68.2% 54.2% 40.8% 62.4% 85.5%

0.6 0.3 10 0.6 20.0 56.7% 80.6% 65.5% 51.2% 63.0% 81.7%
0.6 0.3 10 0.6 27.5 57.2% 79.3% 65.0% 51.9% 65.2% 84.5%
0.6 0.3 10 0.6 30.0 57.7% 79.4% 66.0% 52.3% 66.3% 85.0%
0.6 0.3 10 0.6 36.0 57.9% 79.5% 66.4% 52.2% 66.8% 84.8%
0.6 0.3 10 0.6 45.0 57.7% 79.2% 65.6% 51.7% 67.1% 85.1%
0.6 0.3 10 0.6 60.0 57.0% 78.8% 64.8% 50.5% 67.6% 85.3%
0.6 0.3 10 0.6 90.0 54.3% 76.4% 60.0% 46.9% 66.3% 84.5%
0.6 0.3 10 0.6 180.0 47.0% 69.0% 49.1% 37.8% 61.1% 83.9%

0.6 0.3 8 0.6 20.0 56.3% 77.2% 64.9% 50.4% 64.1% 83.3%
0.6 0.3 8 0.6 27.5 58.5% 78.3% 68.1% 52.5% 66.8% 84.8%
0.6 0.3 8 0.6 30.0 58.8% 78.5% 68.7% 52.6% 67.9% 85.7%
0.6 0.3 8 0.6 36.0 59.1% 78.8% 69.0% 52.7% 68.8% 86.5%
0.6 0.3 8 0.6 45.0 58.8% 78.2% 68.6% 52.3% 68.8% 86.1%
0.6 0.3 8 0.6 60.0 58.4% 77.9% 67.5% 51.3% 69.6% 85.5%
0.6 0.3 8 0.6 90.0 56.2% 76.6% 64.8% 48.5% 68.3% 84.7%
0.6 0.3 8 0.6 180.0 51.2% 71.9% 56.3% 42.6% 64.2% 82.9%

0.6 0.3 6 0.6 20.0 57.3% 80.0% 65.2% 51.2% 65.8% 84.1%
0.6 0.3 6 0.6 27.5 59.4% 81.3% 68.5% 53.4% 68.8% 85.7%
0.6 0.3 6 0.6 30.0 59.7% 81.7% 69.0% 53.7% 69.0% 85.3%
0.6 0.3 6 0.6 36.0 59.9% 81.4% 69.0% 53.6% 69.8% 85.7%
0.6 0.3 6 0.6 45.0 59.3% 80.5% 67.9% 52.8% 69.4% 85.6%
0.6 0.3 6 0.6 60.0 58.5% 79.6% 67.0% 51.5% 69.6% 84.9%
0.6 0.3 6 0.6 90.0 55.7% 77.2% 62.8% 48.1% 67.9% 84.3%
0.6 0.3 6 0.6 180.0 48.8% 70.6% 50.9% 40.8% 61.1% 83.4%

0.6 0.6 6 0.6 20.0 57.4% 78.2% 66.6% 51.7% 64.9% 83.7%
0.6 0.6 6 0.6 27.5 60.0% 79.4% 70.1% 53.5% 68.4% 86.1%
0.6 0.6 6 0.6 30.0 60.0% 79.7% 70.8% 53.6% 69.9% 86.1%
0.6 0.6 6 0.6 36.0 60.1% 79.6% 70.8% 53.2% 70.3% 85.7%
0.6 0.6 6 0.6 45.0 59.5% 79.0% 69.5% 52.5% 70.8% 85.3%
0.6 0.6 6 0.6 60.0 58.8% 78.5% 69.0% 51.1% 71.1% 85.3%
0.6 0.6 6 0.6 90.0 56.5% 76.5% 65.4% 48.2% 70.1% 83.8%
0.6 0.6 6 0.6 180.0 50.9% 71.4% 56.2% 41.6% 65.4% 82.9%

0.8 0.8 6 0.6 20.0 56.6% 80.7% 65.5% 50.8% 65.4% 82.6%
0.8 0.8 6 0.6 27.5 58.7% 81.9% 68.9% 52.8% 68.6% 84.9%
0.8 0.8 6 0.6 30.0 59.1% 82.0% 69.2% 52.7% 69.5% 84.8%
0.8 0.8 6 0.6 36.0 58.9% 81.7% 68.8% 52.6% 69.9% 85.0%
0.8 0.8 6 0.6 45.0 58.4% 81.4% 67.7% 51.6% 69.8% 85.1%
0.8 0.8 6 0.6 60.0 57.4% 80.1% 66.6% 50.2% 69.9% 84.3%
0.8 0.8 6 0.6 90.0 55.7% 78.6% 63.7% 47.8% 68.9% 84.2%
0.8 0.8 6 0.6 180.0 50.2% 74.0% 55.2% 41.5% 63.7% 83.1%

of autonomous systems operating in dynamic environments. This is especially important for avoiding
collisions or responding to hazards in high-speed scenarios. For example, autonomous vehicles
equipped with our approach can better detect pedestrians, cyclists, and other vehicles in real time,
potentially reducing accidents and saving lives.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Additionally, the computational efficiency provided by the adaptive event-frame fusion (FlexFuser)
and frequency-adaptive learning (FAL) mechanisms reduces the need for resource-intensive training
processes. This contributes to the broader societal goal of making advanced AI technologies more
accessible and less energy-intensive, thereby minimizing the environmental impact of large-scale
AI models. Our approach could also benefit industries beyond transportation, such as robotics for
healthcare, industrial automation, and public safety.

D.2 BROADER IMPACT

The broader implications of FlexEvent include its potential to advance the field of event-based vision
and enable new applications where high temporal resolution is crucial. By overcoming the limitations
of conventional fixed-frequency object detection methods, our approach paves the way for more
flexible, adaptable AI systems. This could lead to improvements in areas such as drone navigation,
real-time video analysis for security purposes, and human-robot collaboration, where detecting
fast-moving objects and adapting to changing environments are critical.

Moreover, the development of efficient and scalable detection systems like our approach can drive
further innovation in resource-constrained environments, such as low-power edge devices. These
advancements could make high-performance detection systems more widely available, particularly in
developing regions or areas with limited access to computational resources.

However, as with any powerful technology, there is a risk of misuse. Enhanced object detection
capabilities could potentially be exploited for surveillance purposes, raising privacy concerns. As
event camera technology becomes more widespread, it is important to establish ethical guidelines
and regulatory frameworks to ensure that these systems are used responsibly, particularly when
monitoring public spaces or collecting sensitive data.

D.3 KNOWN LIMITATIONS

While FlexEvent demonstrates significant performance improvements, there are several known
limitations to our approach.

Dependence on Event Camera Quality. The effectiveness of our approach relies on the quality of
the event camera sensor. Inconsistent or noisy event data, especially under poor lighting or extreme
weather conditions, could affect detection performance. Future work could explore robustness to
sensor noise and adaptation to diverse environmental conditions.

Limited Generalization to Unseen Scenarios. Although our approach shows strong performance
across varying frequencies, it may still face challenges in completely unseen environments, where
the motion dynamics and scene conditions differ significantly from the training data. Investigating
methods for domain adaptation or online learning could help improve generalization to new contexts.

Resource Requirements for High-Frequency Data. While FlexFuser mitigates the computational
cost of training on high-frequency event data, processing extremely high-frequency event streams
still requires substantial computational resources during inference. This could limit the scalability on
resource-constrained devices or in real-time applications with stringent latency requirements.
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Figure 7: Additional qualitative results of state-of-the-art event camera detectors. We compare the
proposed FlexEvent with RVT (Gehrig & Scaramuzza, 2023), SAST (Peng et al., 2024), and DAGr
(Gehrig & Scaramuzza, 2024) on the test set of DSEC-Det. Best viewed in colors.
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Figure 8: Additional qualitative results of state-of-the-art event camera detectors. We compare the
proposed FlexEvent with RVT (Gehrig & Scaramuzza, 2023), SAST (Peng et al., 2024), and DAGr
(Gehrig & Scaramuzza, 2024) on the test set of DSEC-Det. Best viewed in colors.
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Figure 9: Additional qualitative results of state-of-the-art event camera detectors. We compare the
proposed FlexEvent with RVT (Gehrig & Scaramuzza, 2023), SAST (Peng et al., 2024), and DAGr
(Gehrig & Scaramuzza, 2024) on the test set of DSEC-Det. Best viewed in colors.
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Figure 10: Additional qualitative comparisons of the RVT model (Gehrig & Scaramuzza, 2023)
and the proposed FlexEvent under different event camera operation frequencies (20 Hz, 60 Hz, 90
Hz, and 180 Hz) and the empty event scenario. The experiments are conducted on the test set of
DSEC-Det. Best viewed in colors.
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Figure 11: Additional qualitative comparisons of the RVT model (Gehrig & Scaramuzza, 2023)
and the proposed FlexEvent under different event camera operation frequencies (20 Hz, 60 Hz, 90
Hz, and 180 Hz) and the empty event scenario. The experiments are conducted on the test set of
DSEC-Det. Best viewed in colors.
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Figure 12: Additional qualitative comparisons of the RVT model (Gehrig & Scaramuzza, 2023)
and the proposed FlexEvent under different event camera operation frequencies (20 Hz, 60 Hz, 90
Hz, and 180 Hz) and the empty event scenario. The experiments are conducted on the test set of
DSEC-Det. Best viewed in colors.
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E PUBLIC RESOURCES USED

In this section, we acknowledge the public resources used, during the course of this work.

E.1 PUBLIC DATASETS USED

• DSEC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-SA 4.0
• DSEC-Det3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GNU General Public License v3.0
• DSEC-Detection4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Creative Commons Zero v1.0 Universal
• DSEC-MOD5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• Gen 16 . . . . . . . . . . . . . . . . . . . . . . . . . Prophesee Gen1 Automotive Detection Dataset License
• 1 Mpx7 . . . . . . . . . . . . . . . . . . . . . . . . Prophesee 1Mpx Automotive Detection Dataset License

E.2 PUBLIC IMPLEMENTATIONS USED

• RVT8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MIT License
• SAST9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• SSM10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• LEOD11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• DAGr12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GNU General Public License v3.0
• RENet13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown

2https://dsec.ifi.uzh.ch
3https://github.com/uzh-rpg/dsec-det
4https://github.com/abhishek1411/event-rgb-fusion
5https://github.com/ZZY-Zhou/RENet
6https://www.prophesee.ai/2020/01/24/prophesee-gen1-automotive-detection-dataset
7https://www.prophesee.ai/2020/11/24/automotive-megapixel-event-based-dataset
8https://github.com/uzh-rpg/RVT
9https://github.com/Peterande/SAST

10https://github.com/uzh-rpg/ssms_event_cameras
11https://github.com/Wuziyi616/LEOD
12https://github.com/uzh-rpg/dagr
13https://github.com/ZZY-Zhou/RENet
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