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Abstract
This paper describes the winning solution of all 5 tasks for the Ama-
zon KDD Cup 2024 Multi Task Online Shopping Challenge for LLMs.
The challenge was to build a useful assistant, answering questions
in the domain of online shopping. The competition contained 57
diverse tasks, covering 5 different task types (e.g. multiple choice)
and across 4 different tracks (e.g. multi-lingual).

Our solution is a single model per track. We fine-tune Qwen2-
72B-Instruct on our own training dataset. As the competition re-
leased only 96 example questions, we developed our own training
dataset by processing multiple public datasets or using Large Lan-
guage Models for data augmentation and synthetic data generation.
We apply wise-ft to account for distribution shifts and ensemble
multiple LoRA adapters in one model. We employed Logits Proces-
sors to constrain the model output on relevant tokens for the tasks.
AWQ 4-bit Quantization and vLLM are used during inference to
predict the test dataset in the time constraints of 20 to 140 minutes
depending on the track.

Our solution achieved the first place in each individual track and
is the first place overall of Amazon’s KDD Cup 2024.

CCS Concepts
• Computing methodologies→ Natural language generation;
Machine translation; Information extraction.
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1 Introduction
The capabilities of Large Language Models (LLMs) have signifi-
cantly improved in the last years and they have become popular
due to their easiness to use. Users can interact with the systems
in natural language. The LLMs excel on a variety of tasks, such
as general reasoning, math questions, coding, etc. Many systems
are getting updated by adding a LLMs to make them easier to use
and/or providing more functionality. (Online) shopping is a large
domain with billions of users and high economic output. The Ama-
zon KDD Cup 2024 [2] is designed to evaluate LLMs to be a useful
shopping assistant.

Figure 1: One example of the development dataset. It is a
multiple choice question answering tasks for understanding
shopping concepts.

Amazon developed an evaluation dataset ShopBench, contain-
ing approx. 20,000 questions across 57 different tasks covering 5
task types (e.g. retrieval), to test LLMs capabilites in the online
shopping domain (see an example in Figure 1). The competition
had 5 different tracks, which evaluates different aspects such as
shopping knowledge understanding or user behavior alignment.
The 5th track was the overall track containing all 20,000 questions.
The competition was organized as a code competition in which
participants have no access to the ShopBench dataset and instead
they have to submit their model.

Our team from NVIDIA won all 5 tracks (see Table 3). This
paper describes our final solution and an ablation study on our
experiments. Our solution is based on a single model per track,
which shares following techniques:

(1) Developing a Training Dataset: As the hosts did not pro-
vide a training dataset, we processed many multiple public
datasets and enriched it by prompting Large LanguageMod-
els to generate a training dataset

1
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Figure 2: High-Level Oerview of our pipeline for the KDD
Cup 2024

Table 1: Runtime limit in minutes per track in phase 2

Phase Track 1 Track 2 Track 3 Track 4 Track 5
Phase 2 70 20 30 20 140

(2) Fine-Tuning a Base Model: We fine-tuned Qwen2-72B-
Instruct [18]

(3) Additional Optimization:We appliedmultiple techniques
to maximize our solution by prompt engineering, ensem-
bling multiple adapters, addressing distribution shift with
wise-ft and constraining the model with a Logits Processors

(4) Optimizing Inference: As the competition had compute
and time constraints, we optimized our inference code with
4-bit quantization and vLLM.

We describe ourmethods in details in the following sections 3 and
4. Section 5 will compare our solutions and share more experiments
we ran during the competition as a small ablation study.

2 Amazon KDDCup 2024: Multi Task Online
Shopping Challenge for LLMs

Amazon hosted the KDD Cup 2024 for Multi Task Online Shopping
Challenge for LLMs [2]. They developed a test dataset, called Shop-
Bench, containing 20,000 questions across 57 tasks. A development
dataset of 96 question of only 18 different tasks were shared with the
participants for the competition. The KDD Cup 2024 is designed as
a code competition. Participants submit model weights with code
which will be evaluated on infrastructure provided by Amazon.
Participants have no access to the test dataset and can build solu-
tions based on the 96 development questions. They receive only
the scores on the full ShopBench dataset via the leaderboard. A
submission is evaluated on 4x NVIDIA T4 GPUs with each 16 GB
GPU memory within a runtime limit (see Table 1).

Participants have to address following challenges:
(1) No training dataset: Participants have access to only 96

examples.
(2) Hidden tasks: The development dataset contains only 18

out of 57 tasks. Therefore, the solution has to generalize to
the unknown tasks.

(3) Time and compute constrains: Solutions have to run
within a runtime limit on 4x NVIDIA T4 GPUs with each
16 GB memory (see Table 1)

The competition contains 5 tracks:
• Shopping Concept Understanding: Understanding shop-

ping concepts (e.g. brands, product lines, attributes, etc.)

• ShoppingKnowledgeReasoning: Reasoning ability about
products or product attributes (e.g. total amount in a prod-
uct pack, are two products compliments or substitutes, etc.)

• User Behavior Alignment: Understanding user behavior
in online shopping (e.g. implicit information by user click
stream

• Multi-lingual Abilities: Shopping concept understanding
and user behavior alignment across different languages

• Overall: A final track which combines all 4 tracks

The evaluation dataset is based on 5 task types:

• Multiple Choice: Only one correct answer. Evaluation
metric is accuracy.

• Ranking: Input containsmultiple candidates and themodel
should provide an ordered list. Evaluation metric is nDCG.

• Named Entity Recognition (NER): Extract pieces of text
given an entity type. Evaluation metric is Micro-F1.

• Retrieval: Select candidates from a list which satisfy the
requirements. Evaluation metric is Hit@3

• Generation: There are a diverse set of generation tasks
depending on the task (e.g. translation). Evaluation met-
rics are ROUGE-L, BLEU or cosine similarity of sentence
embedding.

A track can contain one or multiple task types. The final score
of a track is calculated by averaging across all questions because
each evaluation metric is between 0-1. The overall challenge score
is determined by the sum of position per track.

For every question, the requirement is to generate text, which is
parsed by Amazon’s evaluation script. The solution has to follow
the prompt instructions (e.g. return 3 candidates IDs separated by a
comma). If the evaluation script is not able to parse the generated
text, then the score will be 0 for this question.

The competition was organized in 2 phases. The organizer shared
that Phase 2 contains harder samples and tasks than Phase 1. They
increased the compute resources from 2x NVIDIA T4s to 4x NVIDIA
T4s for phase 2.

3 Training Dataset
Amazon shared multiple eCommerce datasets with participants,
which are related to the ShopBench dataset, but do not have the
same structure. We created our training dataset by processing mul-
tiple datasets to have a similar structure as the 18 tasks from Shop-
Bench development dataset. In addition, we developed new tasks. Fi-
nally, we augmented the dataset by prompting LLaMa3-70B-Instruct
[3] and GPT-4 [11] for more diversity or infer missing information
(e.g. product type, category). A detailed overview can be found in
Appendix A.

3.1 Real Datasets
Weutilizedmultiple data sources, including non e-commerce datasets
such as MMLU and Alpaca-Cleaned. Samples from these datasets
were transformed into the instruction prompts.

Amazon-M2 [9] - A multi-lingual Amazon session dataset
with rich meta-data used for KDD Cup 2023.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Winning Amazon KDD Cup’24 , ,

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Amazon Reviews 2023 [8] - A large scale Amazon Review
Dataset with rich features and over 500M reviews across
33 categories.

NingLab/ECInstruct [14] - instruction dataset covers 116,528
samples from 10 real and widely performed e-commerce
tasks of 4 categories.

ESCI-data [15] - Shopping Queries dataset provides a list of
up to 40 potentially relevant results, together with ESCI
relevance judgements (Exact, Substitute, Complement, Ir-
relevant) indicating the relevance of the product to the
query.

MMLU [7] [6] - massive multitask test consisting of 16k
multiple-choice questions and auxiliary 100kmultiple-choice
training questions from ARC, MC_TEST, OBQA, RACE, etc.

Alpaca-Cleaned [16] - a cleaned version of the original Al-
paca Dataset released by Stanford.

3.2 Synthetic Datasets
To further improve diversity of dataset we utilized the synthetic
data generation (SDG) pipelines. In general, we used three different
methods.

We prompt LLM to construct the tasks specific prompts from the
seed data. For example, we rephrase the original tasks fromNingLab
ECInstruct dataset. These tasks include various information about
the product (title, description, attributes) and we combine all of
them into one prompt. (see Table 7 Dataset No 11-19).

Before constructing a task specific prompt, we extract the correct
labels from the seed data using LLM. For example, we extract the
product type, categories or attributes first and then construct the
question. (see Table 7 Dataset No 1,20).

We used GPT-4 to generate the instructions with different word-
ings, and then used it to construct MC tasks from ESCI-data dataset.
The correct answer was randomly selected from the E entries, the
remaining options were selected from the entries with S/C/I labels
(see Table 7 Dataset No 21-26).

4 Model
4.1 Prompt Template
We explored both zero shot LLMmodels and fine-tuned LLMmodels.
Our final winning solution achieving our best model accuracy is
fine-tuned. See Table 4 for a comparison.

When using zero shot with an instruction tuned LLM, we found
it helpful to use both the system role and user role when formatting
prompts. Designing better prompts improved the zero shot model’s
performance.

When fine-tuning, we found that the prompt was not as impor-
tant because the model is fine-tuned to exhibit a certain behavior
given whatever prompt we choose to train with.

One technique of our fine-tuned models used is to include an
instruction to the model identifying which of the 5 task types the
model is solving. Then during inference, we used a heuristic rule
classifier which determined question task type and included this
is the system role’s instruction prompt. Specifically, we used the
following template.

Listing 1: System prompt template with task type

Table 2: Model hyperparameters

Hyperparameter Value
Optimizer AdamW
LR Scheduler cosine
Learning Rate (LR) 0.0002
Weight Decay 0.01
Warm Up Steps 10
Micro Batch Size 1
Gradient Accumulation Steps 4
QLoRA R 64
QLoRA Alpha 32
QLoRA Dropout 0.05
QLoRA Linear TRUE
Quantization 4-bit

system_prompt = "You␣are␣a␣helpful␣online␣shopping␣
↩→ assistant.␣Your␣task␣is␣{task_type}."

4.2 Fine-Tuning Qwen2
We fine-tuned Qwen/Qwen2-72B-Instruct [18] on our developed
training dataset using 8x NVIDIA A100 with each 80GB GPU mem-
ory. Training on 500k examples takes around 24 hours. We used
the library axolotl 1 and bitsandbytes 2 with QLoRA [5] with 4-bit
quantization and bfloat16 [4]. The library applies Multipack (Sam-
ple Packing) 3, concatenating multiple sequences into one batch to
increase training throughput. Table 2 provides an overview of the
hyperparameters.

We train the LLM in a supervised fine-tuning strategy. The loss
is calculated only on the answer tokens (see Figure 1). A common
technique in large languagemodel training is to apply Reinforcement
Learning from Human Feedback (RLHF) [12]. Our hypothesis is
that supervised fine-tuning is sufficient for the competition. Many
answers are a single number or a list of numbers, which have an
exact solutions and does not require human preferences between
multiple possible answers.

4.3 Ensemble Adapters
Our five track solutions are created from 4 fine-tuned LoRA adapters.
We call them v7, v8, v7b, and v9b. First for tracks 1,3,5 we merged v8
to base model Qwen2-72B with 56% weight explained in Section 4.4.
For tracks 2,4 we merged v7 to base with 100%. Version 7 adapter
was trained with 417k samples whereas v8 was trained with 462k.
See Table 7 for details about train data.

Next we trained two more LoRA adapters named v7b and v9b
using two different new subsets of 152k and 40k samples respec-
tively. Our final solutions with ensemble weights and leaderboard
scores to tracks 1-5 are shown in Table 6.

1https://github.com/axolotl-ai-cloud/axolotl
2https://huggingface.co/docs/transformers/main/en/quantization/bitsandbytes
3https://github.com/axolotl-ai-cloud/axolotl/blob/main/docs/multipack.qmd
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4.4 Wise-ft
To take into account the distribution shift between the evaluation
data from the ShopBench dataset and the collected training data
(see Section 3), we used wise-ft [17].

Wise-ft interpolates between the weights𝑊𝑏𝑎𝑠𝑒 of a base model
and the weights𝑊𝑓 𝑡 of a fine-tuned model using the following
formula:

𝑊𝑤𝑖𝑠𝑒 = (1 − 𝛼) ∗𝑊𝑏𝑎𝑠𝑒 + 𝛼 ∗𝑊𝑓 𝑡

where 𝛼 ∈ [0, 1]. This approach effectively balances the trade-off
between the zero-shot capabilities of the base model (𝛼 = 0) and
the task-specific performance of the fine-tuned model (𝛼 = 1).

For LoRA, as𝑊𝑓 𝑡 =𝑊𝑏𝑎𝑠𝑒 +𝑊𝐴 ·𝑊𝐵 , we can rewrite the formula
as:

𝑊𝑤𝑖𝑠𝑒 =𝑊𝑏𝑎𝑠𝑒 + 𝛼 ∗𝑊𝐴 ·𝑊𝐵

We implemented wise-ft by rescaling the ensembled adapter
weights𝑊𝐴 and𝑊𝐵 by a factor

√
𝛼 , so that (

√
𝛼 ∗𝑊𝐴) · (

√
𝛼 ∗𝑊𝐵) =

𝛼 ∗𝑊𝐴 ·𝑊𝐵 . For each track, we optimized 𝛼 based on leaderboard
results and obtained significant improvements for Track 1, Track 3
and Track 5 (see Figure 3).

Figure 3: Accuracy gain on Track 5 using various 𝛼 for wise-
ft for 3 different versions of LoRA adapters (v7, v8 and the
ensemble v7 + v8)

4.5 Logits Processors
We employed a variety of logits processors to generate outputs in
specific formats. For multiple choice, ranking, and retrieval ques-
tions, we constrained our models to produce only digits and com-
mas. For NER tasks, we enhanced the logits of the prompt tokens,
encouraging themodel to cite directly from the prompt. These logits
processors were particularly useful in Phase 1 when we utilized less
powerful models. These constrains also were useful in case when
the training dataset includes only few task types. For example, you
can finetune a model for MC tasks only and successfully apply it for
Retrival or Reranking tasks. However, their importance diminished
in Phase 2 as we transitioned to larger models that more effectively
followed instructions.

Table 3: Leaderboard Results: Final is the sum of the ranks
per track (lower is better). T1 - T5 are the scores per track
(higher is better)

Team Final T1 T2 T3 T4 T5
Team_NVIDIA 5 0.833 0.791 0.746 0.761 0.788
AML_LabCityU 13 0.825 0.781 0.728 0.715 0.782
shimmering_as_... 18 0.824 0.747 0.713 0.735 0.763
CM_RLLM 29 0.823 0.728 0.722 0.690 0.773
ZJU_AI4H 33 0.791 0.784 0.694 0.706 0.746
BMI_DLUT 0.733

4.6 Quantization / vLLM
KDD Cup 2024 was a code competition meaning that we must
submit code plus model weights to be run on the host’s pre-defined
compute resources. Each participant could submit (to each track)
a GitLab repository of maximize size 100GB to be executed on 4x
NVIDIA T4 GPU each with 16 GB GPU memory within a time
constraint.

The Qwen2-72B model is about 150GB at fp16. Therefore in
order to fit this into disk and memory size constraints, we used 4bit
quantization which reduced its size to 40GB.

Quantization plus using the library vLLM [10] accelerated our in-
ference which allowed our model to answer all the questions within
the time limit. Tracks 1-5 had 6102, 1896, 2373, 1349, and 11720
questions to be answered in 70, 20, 30, 20, 140 minutes respectively.

We improved AWQ quantization accuracy by calibrating with
the 96 development questions. We compared AWQ versus GPTQ
quantization and found both to be about equal in speed and accu-
racy.

AWQ quantization for Qwen2-72B takes about 1.5 hours on
1xA100 GPU to process. In order for the AWQ quantized Qwen2-
72B to work with vLLM, we needed to pad the unquantized model
with zeros to change the shape of the weights before quantization.

5 Results
Our quantized, fine-tuned Qwen2-72B model achieves the highest
score on each individual track (T1 - T4) and overall track T5 with a
significant lead of 0.007 to 0.026 to the 2nd place (Table 3). As we
placed 1st in each individual track, our final score is 5, the sum of
our positions, which is the highest possible score.

Each submission for the individual track is based on the key con-
cepts of fine-tuning a Qwen2-72B model on our developed training
dataset and optionally, ensemble multiple versions and/or apply
wise-tf. The submission might differ slightly in the fine-tuning time,
exact amount of training dataset and ensemble combination.

We provide an ablation study in Table 4, 5 and 6. Some values are
missing in the tables due to failed submissions and the successful
submissions were sufficient to decide the next experiments. First,
table 4 compares different base models without being fine-tuned.
We observe that Qwen2-72B has the highest score except of for
Track 2, followed by LLaMa3-70B is 2nd place except of Track
4. The performance of the models are equivalent to public LLMs
benchmarks.

Next, we fine-tuned Smaug-72B and Qwen2-72B on our training
dataset. We compare the zero-shot version (SZ) with the fine-tuned

4
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Table 4: Comparison of different base model without fine-
tuning on Track 1 - Track 5. We report only scores we could
run during the competition.

Model T 1 T 2 T 3 T 4 T 5
Bagel-34B-v0.5 [1] 0.7007 0.6609 0.6339 0.5871 0.6834
LLaMa3-70B [3] 0.7806 0.6532 0.6658 0.6237 0.7183
Smaug-72B [13] 0.7178 0.6564 0.6484 0.6975
Qwen2-72B [18] 0.7982 0.6407 0.7193 0.6918 0.7486

Table 5: Comparison foundationmodel as zero-shot (SZ) with
fine-tuned version (FT) on Track 1 - Track 5. We report only
scores we could run during the competition.

Model T 1 T 2 T 3 T 4 T 5
Smaug 72B ZS 0.7178 0.6564 0.6484 0.6975
Smaug 72B FT 0.7800 0.7389
Qwen2 72B ZS 0.7982 0.6407 0.7193 0.6918 0.7486
Qwen2 72B FT 0.8334 0.7909 0.7461 0.7609 0.7883

Table 6: Configuration and results of ensembling multiple
LoRA configurations. B is the base model weights. We add
the weights M1 from the LoRA Adapter multiplied with the
weight W1 (equivalent for the ensemble B+W1xM1+W2xM2).
LB demonstrates the scores on the leaderboard.

Model T 1 T 2 T 3 T 4 T 5
LoRA 1 name (M1) v8 v7 v8 v7 v8
LoRA 1 weight (W1) 0.56 1.0 0.56 1.0 0.56
LB B+W1xM1 0.831 0.787 0.742 0.758 0.787
LoRA 2 name (M2) v9b v7b v9b v7b v9b
LoRA 2 weight (W2) 0.75 0.5 0.25 0.5 0.25
LB B+W1xM1+W2xM2 0.833 0.791 0.746 0.761 0.788

version (FT) as seen in Table 5. Qwen2-72B SZ would scored 4th
place on Track 5, demonstrating that base model provide great
capabilities without fine-tuning. We achieve significant gains of
0.0035 to 0.15 by additional fine-tuning.

Table 6 summarize the effect of ensembling multiple models. The
first solution is to submit the base model merged with the first
LoRA adapter, scaled by weight W1. If we ensemble two adapters
(LB B+W1xM1+W2xM2), we observe that the LB score improves
between 0.001 to 0.004.

6 Conclusion
The KDD Cup 2024 was a great competition with a diverse set of
tasks to evaluate Large Language Models capabilities in the domain
of online shopping. The code competition design ensured a fair
comparison of solutions. Our team solution is a single models with
multiple optimization methods, which scored the 1st place on each
track. It was essential to fine-tune a base model with an additional
training dataset. The lack of an official training dataset was compen-
sated by processing multiple public datasets and prompting Large
Language Models. We ensembled multiple LoRA adapater, applied
wise-ft for distribution shift and constrained the model output with

a Logits Processors. We optimized inference with 4-bit quantization
and vLLM to run a 72 billion parameters model on 4x NVIDIA T4
with each 16 GB GPU memory in the time constrain. In addition,
we share multiple experiments as an ablation study.
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Table 7: Overview of the different training datasets we developed for fine-tuning Qwen2-72B. The task column describes if our
processed dataset is close to an existing dataset task. The column LLM indicates if a LLM was used for generating the dataset.

No Source Dataset Task Task Type Adapter Size LLM Additional Explanation
1 Amazon-M2 KDD Cup2024 Task 2 multiple-choice v7, v8 2350 Yes Select product categories given product attributes
2 Amazon Reviews 2023 KDD Cup2024 Task 3 retrieval v7, v7b, v8 7373 Yes Given a product type and sentiment, select 3 most likely snippet a customer would write about the product
3 Amazon Reviews 2023 KDD Cup2024 Task 7 retrieval v7, v7b, v8 3608 Yes Given a product type and a review, select 3 aspects covered by the review
4 Amazon Reviews 2023 KDD Cup2024 Task 10 multiple-choice v7, v7b, v8 10000 Yes Given a product type, which of the following categories complement the product type best?
5 ESCI-data KDD Cup2024 Task 12 ranking v7, v8 16728 No
6 Amazon Reviews 2023 KDD Cup2024 Task 14 ranking v7, v7b, v8 5815 No Given a product title a customer will buy, which other product titles will he like
7 Amazon Reviews 2023 KDD Cup2024 Task 15 multiple-choice v7, v7b, v8 10000 No Given a product review, estimate the rating of the review
8 ESCI-data KDD Cup2024 Task 16 multiple-choice v7, v8 10000 No
9 Amazon-M2 KDD Cup2024 Task 17 generation v7, v8 10000 No
10 Amazon-M2 KDD Cup2024 Task 18 multiple-choice v7, v8 10000 No
11 NingLab/ECInstruct Attribute Value Extraction named entity recognition v7, v8 19622 Yes
12 NingLab/ECInstruct Multiclass Product Classification multiple-choice v7, v8 10000 Yes
13 NingLab/ECInstruct Product Relation Prediction multiple-choice v7, v8 10000 Yes
14 NingLab/ECInstruct Query Product Rank retrieval v7, v8 10000 Yes
15 NingLab/ECInstruct Sequential Recommendation multiple-choice v7, v8 10000 Yes
16 NingLab/ECInstruct Answerability Prediction multiple-choice v7, v8 10000 No
17 NingLab/ECInstruct Product Matching multiple-choice v7, v8 4044 No
18 NingLab/ECInstruct Product Substitute Identification multiple-choice v7, v8 10000 No
19 NingLab/ECInstruct Sentiment Analysis multiple-choice v7, v8 10000 No
20 Amazon-M2 New Idea generation v7, v8 10000 Yes Explain product type given title, description, and product type
21 ESCI-data New Idea multiple-choice v7, v8 10000 Yes Select the user query that matches the product description
22 ESCI-data New Idea multiple-choice v7, v8 10000 Yes Select the user query that matches the product features
23 ESCI-data New Idea multiple-choice v7, v8 10000 Yes Select the user query that matches the product title
24 ESCI-data New Idea multiple-choice v7, v8 10000 Yes Select the title for the product description
25 ESCI-data New Idea multiple-choice v7, v8 10000 Yes Select the title for the product features
26 ESCI-data New Idea multiple-choice v7, v8 10000 Yes Select the product title for the user query
27 ESCI-data New Idea retrieval v8 10000 No Pick 3 bullet points to match product
28 NingLab/ECInstruct New Idea ranking v8 5000 No Rank product reviews - positive to negative
29 ESCI-data New Idea multiple-choice v8 5435 No Pick product to match query
30 ESCI-data New Idea ranking v8 5000 No Task12 backwards. Given product, rank queries
31 KDD Cup 2023 New Idea retrieval v8 10000 No Given purchase pick previous clicks (similar to task 14)
32 ESCI-data New Idea multiple-choice v8 10000 No Given title pick brand
33 ESCI-data New Idea multiple-choice v9b 10000 No Given query product pair, what is relationship? E S C I
34 ESCI-data New Idea ranking v9b 10000 No Given list of query product pairs, rank which are most related to least related
35 ESCI-data New Idea retrieval v9b 10000 No Given query, select products which are exact match not substitute, complement, or irrelevent
36 Amazon Reviews 2023 New Idea ranking v9b 10000 No Given a product title and multiple reviews, rank the reviews based on the helpfulness
37 Alpaca Cleaned No Changes generation v7, v8 51760 No
38 MMLU No Changes multiple-choice v7, v7b, v8 115700 No

Total Total Total Total 502435

A Details on Training Dataset
In Table 7, we provide an overview of the different datasets we generated. We share which dataset was used as a source input. We describe
which task the resulting dataset is most similar to (column Task), the size and if a LLM was used. Finally, we provide additional explanation
for our own ideas.
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